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AN ASYMPTOTIC ANALYSIS OF METHODS 
FOR PREDICTING THE FRACTURE TOUGHNESS 
OF MULTIAXIAL CARBON FIBER COMPOSITE LAMINATES 
USING THE ELASTIC CONSTANTS OF THE 0º PLIES 

M. Y. Abdellah       UDC 539.4 

Carbon fiber composite laminates are an important alternative to metal in many mechanical 
structural applications. Carbon fiber composite laminates usually have multidirectional plies with 
different angles. In this study, a simple analytical model is derived to predict the notch strength of 
these multidirectional plies from the unidirectional strength of the 0º ply. The first method considers 
the orthogonal analysis of the forces introduced in each ply at the Cartesian coordinates in each of 
the 2 axes with their direction, and then calculates the resulting forces. The second method considers 
the percentage of layers inside the laminates and then orthogonally analyzes the induced forces on 
the entire laminate sheets. The resulting stress induced by these forces is calculated according to the 
theory of maximum failure shear or principal stress. In addition, the fracture toughness ܩூ஼ was 
predicted based on the strength of the unnotched laminates calculated by previous methods. In 
addition, the size effect of the open-hole specimen was measured based on the predicted fracture 
toughness and strength of the unnotched laminates. The model was compared with available 
experimental and other published models. The optimum values for the two methods of fracture 
toughness were determined. The average percent accuracy of size effect prediction based on the first 
method is 3.24%, while it is 6.82% for the second method. 

Keywords: ply, layup, nominal strength, unidirectional, multidirectional. 

Nomenclature 

– ௟௔ߪ ,௨௡ߪ un-notch strength

– ଴തതതܣ ఏതതതത, andܣ ,ଽ଴തതതതതܣ area of laminate in 90º, angle ply, and 0º

 ݔ angle ply, and in ,ݕ ௟௔௫തതതതതത – area of laminate inܣ ௣௟௬തതതതതത, andܣ ,௟௔௬തതതതതതܣ

ሾܣሿ – stiffness matrix
– ଽ଴ܣ area of 90º ply
 ௟௔ܣ – area of laminate
 ௣௟௫ܣ ௣௟௬ andܣ – area of ply in ݔ and ݕ directions

 ఏܣ – area of angle ply
 ଵଶ – elastic constant in 1 and 2 principal directionsߥ ଵଶ, andܩ ,ଶܧ ,ଵܧ
 ௘௙௙ܧ – modified effective Young modulus

 ௫௬ߥ ௫௬, andܩ ,௬ܧ ,௫ܧ – elastic constant in ݔ and ݕ Cartesian coordinates 

 ଴ܨ – force induced in zero direction
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 ௟௔௬ܨ – ply force induced in ݕ direction 

 ௬ܨ  ௫ andܨ – total component of force in ݔ and ݕ directions 

 ఏܨ – force induced in angle direction 
 ଵܫ – ones matrix 
ܳ௫௬  – the reduced stiffness 

ܺ௧ and ܺ௖   – uniaxial tensile and compression strength 

௜݂௝  – transformation function calculating in Appendix [1] 

 ௖ߜ – critical crack opening 
 ௜௝ߜ – Kronecker delta 

 ௙ߝ – fracture strain 

 ଴ߣ ఏ, andߣ ,ଽ଴ߣ – percent of ply in 90º, angle, and 0º, respectively 
 തߪ – average stress 
 ଽ଴ߪ – uniaxial stress in 90º ply 
 ௟௔௬ߪ – stress through laminates in ݕ direction 

 ௡ߪ – nominal strength 
 ఏߪ – uniaxial stress through angle ply 
ூ஼ܩ   – mode I fracture toughness, kJ/m2 
 Cartesian coordinates – ݕ and ݔ
߰  – calculated equivalent Young modulus 
ܰ  – total number of plies 
 ݔ݊ – number of ply in ݔ direction 
 ݕ݊ – number of plies in ݕ direction 
 ݐ – total thickness of laminate 
 ߠ – angle of ply inclination 
 

Introduction. Carbon fiber composite laminate structures are a competitive alternative to many metals due to 
their excellent specific strength and specific weight, especially in the aerospace, marine and offshore industries [2–4]. 
In the design of such materials, stress concentration factors [5] are usually used, which are caused by discontinuity or 
interfaces between plies or layers such as delaminations [6]. Therefore, the applicability of such types of materials 
depends mainly on a fast and robust model to determine their strength under accurate applications. 

Finite element methods can predict the strength of laminates with good accuracy, but they are time consuming 
and not preferable in optimization [5, 7] or material selection proposals [8].  Moreover, most mesh element methods 
need to be refined, which increases the computation time. Therefore, analytical methods based on the cohesive zone 
model can be proposed and overcome the limitation of FEM difficulties with satisfactory accuracy and speed [9–11].  
A direct relationship between the fracture toughness and the notched impact strength of a structural plate was 
established by Tan [12]. The cohesive zone model uses a fictitious crack [13] and relates the cohesive stress across the 
crack surface and the critical crack opening [14]. The cohesive zone model used to predict the nominal strength of 
composite laminates with open holes can have different forms: linear [9], exponential [1] and even bilinear [15]. 
Fracture toughness for aerospace and aircraft wings should be precisely defined to improve safety [16]. Therefore, to 
define it completely, two main parameters are required: fracture toughness and notched impact strength of composite 
laminates. Many analytical models [1, 17–19] have been derived to predict the nominal strength of cracked composite 
laminates. The failure modes would be concentrated in a process zone ahead of the crack tip if the thickness of the 
plies is sufficiently thin, while for thicker plies, failure occurs by delamination. For composite structures, the nominal 
strength decreases as the size or geometry of the structure increases [20].  Therefore, in order to predict the size effect 
well, methods are needed to calculate the energy lost due to crack propagation [21].  
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Furtado et al. [5] proposed an analytical model to predict the strength of open hole carbon fiber reinforced 
polymer laminates. This model used three characteristic material properties such as fracture toughness, Young’s 
modulus and notched impact strength, these parameters were calculated using invariant-based models, the results were 
acceptable, but the model lacks generality of layers and stacking sequences with large percentage error, neglecting the 
availability of many angular layers with 90º or without. In this context, it was reported in [22] that the longitudinal 
fracture toughness of Hexcel IM7-8552 carbon epoxy multidirectional laminates can be predicted using unidirectional 
laminates based on linear elastic fracture mechanics (LEFM) concepts and lamination theories, but the accuracy of 
these models required increasing caution and more experience to be implemented. Therefore, a simplification based 
on geometry and orientation was performed by Mohammed et al [23]. In addition, a comparative study was presented 
by Abdellah  [24] to predict the fracture toughness of T800/924C CFRP. Here, the cohesive zone model was applied 
in reverse to predict the fracture toughness with the definition of the size-effect curve profile of the open-hole specimen, 
and the results were compared with the results of the study by Soutis and Curtis [25], in which the nominal strength of 
open-hole specimens was predicted using the cohesive zone model based on the experimentally measured fracture 
toughness and a predicted notch-free strength. Since the two parameters of the cohesive zone model are a characteristic 
property, it was not necessary to measure each time the specimen geometry changed due to holes, cracks, or other 
shape discontinuities. Moreover, the cohesive zone models are based on physical properties with exact sense [26].   

The linear elastic failure theories for isotropic material have been used [27–30] to predict the failure of 
composite materials, but their applicability and reliability are still problematic and require much work. 
Micromechanical models have been used to accurately predict the stiffness and strength models of composite laminates 
using length, stochastic fiber orientation, fiber volume fraction, and void volume fraction [31]. The strain energy failure 
criterion has been used to predict the tensile strength of composite laminates, but was limited to some assumptions. 
Recently, natural vibration was used as a nondestructive test [32] o measure the fracture toughness and size effect of 
composite laminates. In the study, the equivalent Young modulus of the glass fiber composite structure was first 
predicted from the natural frequencies, and then the modified hook law was used according to the LEFM approach 
with high accuracy and lower % error.  

It is clear that the elasticity theories need to be further investigated in order to apply them in the calculation of 
strength and elastic stiffness of composite laminates. Therefore, the present study attempts to establish a robust model 
to predict the notch-free strength of laminates with angular plies and quasi-isotropic plies, and to propose a model to 
predict the fracture toughness of composite laminates and the strength of CFRP composite panels with open holes. 
Another objective of the present study is to compare the results of the proposed models with other available models to 
determine the optimization and accuracy of the model. In addition, the size-response curve of the open-hole sample is 
determined. 

In the first section, the analytical model is explained, and in the second section, the results of the model are 
compared with those of other publications to obtain optimization tables. Finally, the results are summarized. 

1. Un-Notch Strength. The following macromechanical analysis method is an attempt to calculate the strength 
ܺ ௨௡ of unidirectional composite laminates from the strength of unidirectional laminates in tensionߪ ௧ or in compression 
ܺ௖. Then the equivalent Young modulus is calculated using the stiffness of unidirectional laminates ܧଵ, ,ଶܧ  ଵଶ, andߥ
 ,ଵଶ. Based on the prediction of multidirectional strength without notch, fracture strain and equivalent Young modulusܩ
it is possible to calculate fracture toughness ܩூ஼ by theories of elastic fracture mechanics. Finally, the size effect of 
open holes can be predicted using the linear cohesive law. 

1.1. Method 1-a. Simple method based on equilibrium forces in each ply for balanced laminates with ߠ-angle, 
0º and 90º ply. The problem is divided into four segments (top and bottom) in the ݕ-axis direction and (right and left) 
in the ݔ-axis direction, as shown in Fig. 1. The positive direction is clockwise. 

Analysis the forces in only ݕ directions without consider forces in ݔ direction (Fig. 1a) as follows: 
 

௟௔௬ܨ ൌ෍ܨ௬ ൌ ଴ܨ ൅ ఏܨ cosሺߠሻ ൅ ఏܨ cosሺߠሻ, (1)
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                                                  a                                                          b 

Fig. 1. Cartesian coordinates of multidirectional laminates with ߠ-angle position: (a) upper and lower segment; 
(b) right and left segment. 

 
where ܨ௟௔௬ is the total laminates force in ݕ direction. As the force through fiber is equal the stress through laminates 

multiplied by area ߪ௟௔௬ܣ௟௔ therefore the previous equation can be rewritten as 

 

௟௔ܣ௟௔௬ߪ ൌ෍ܨ௬ܣ௣௟௬ ൌ ଽ଴ܣଽ଴ߪ ൅ ఏߪ ሻߠఏcosሺܣ ൅ ఏߪ ሻ, (2)ߠఏcosሺܣ

 
where ܣ௟௔ is laminate area per unit width equal (ܣ௟௔ ൌ  ,is laminates thickness, ܰ is total laminates plies ݐ where ,(ݐܰ
and ܣ௣௟௬  ply area which equal to (ܣ௣௟௬ ൌ ሺܰ/݊ݕሻݐ). Therefore, substitution into Eq. (2) give the following expression: 

 

௟௔௬ߪ ൌ෍ܨ௬ܣ௣௟௬ ൌ
ଽ଴ߪ
ݕ݊

൅
ఏߪ
ݕ݊

cosሺߠሻ ൅
ఏߪ
ݕ݊

cosሺߠሻ, (3)

 
where ݊ݕ is total ply in ݕ direction which is equal to (݊ݕ ൌ ∑ሺ݊ଽ଴ ൅ ݊ఏሻ), where ݊ଽ଴ and ݊ఏ are 90º and ߠ plies, 
respectively.  Repeat the pervious analysis at the bottom side of the laminates.  

The same analysis is carried out for the right and lift section in ݔ direction of the laminates (Fig. 1b), it is 
obtained the strength in ݔ direction as follows: 

 

௟௔௫ߪ ൌ෍ܨ௫ܣ௣௟௫ ൌ
଴ߪ
ݔ݊

൅
ఏߪ
ݔ݊

sinሺߠሻ ൅
ఏߪ
ݔ݊

sinሺߠሻ, (4)

 
where ݊ݔ is total ply in ݔ direction which is equal to (݊ݔ ൌ ∑ሺ݊଴ ൅ ݊ఏሻ), where ݊଴ and ݊ఏ are 0º and ߠ plies, 
respectively. Then the multidirectional laminate strength (ߪ௟௔) is the product of the strengths in the ݕ and ݔ direction 
as follows: 

௟௔ߪ ൌ 2ටߪ௟௔௫
ଶ ൅ ௟௔௬ߪ

ଶ . (5)
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Fig. 2. Cartesian coordinates of multidirectional laminates with	ߠ angle ply. 

 
1.2. Method 1-b. For laminates without 90º or without ߠ, the Cartesian coordinate from Fig. 2 is used. And 

the thickness of the laminates can be calculated as follows: 
For strength in ݕ direction, it is as follows: 

 

௟௔௬ߪ ൌ෍ܨ௬ܣ௣௟௬ ൌ ଽ଴ߣଽ଴ߪ ൅ ሻߠఏcosሺߣఏߪ ൅ ఏିߣఏିߪ cosሺ2ߨ െ ሻ. (6)ߠ

 
For strength in ݔ direction, it is as follows: 

 

௟௔௫ߪ ൌ෍ܨ௫ܣ௣௟௫ ൌ ଴ߣ଴ߪ ൅ ሻߠఏsinሺߣఏߪ ൅ ఏିߣఏିߪ sinሺ2ߨ െ ሻ. (7)ߠ

 
The laminates consider one plate with ݕ ,ݔ component and the resultant force is as follows: 

 

௟௔ߪ ൌ 2ටߪ௟௔௫
ଶ ൅ ௟௔௬ߪ

ଶ . (8)

 
Here ߣଽ଴, ߣ଴, ߣఏ, and  ିߣఏ are percent of 90º, 0º, and  േߠ ply in the whole laminates thickness. 

1.3. Method 2. This method is similar to method 1-b, but is considered a general method for quasi-isotropic 
laminates with all stacking sequences, based on orthogonal force analysis of two sides of the laminates and ply 
percentages through the laminates. Both maximum principal stress theory and maximum shear stress theory are used. 
Referring to Fig. 2, the force analysis is as follows: 

 

௟௔௬ܨ ൌ෍ܨ௬ ൌ ଽ଴ܨ ൅ ఏܨ cosሺߠሻ ൅ ఏܨ cosሺ2ߨ െ ሻ. (9)ߠ
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And the ݔ component of force is as follows: 

 

௟௔௫ܨ ൌ෍ܨ௫ ൌ ଴ܨ ൅ ఏܨ sinሺߠሻ ൅ ఏܨ sinሺ2ߨ െ ሻ. (10)ߠ

 
By substituent stress ߪ instead of forces, these equations can be rewritten as follows: 
 

௟௔௬ߪ ൈ ௟௔௬തതതതതതܣ ൌ෍ܨ௬ܣ௣௟௬തതതതതത ൌ ଽ଴തതതതതܣଽ଴ߪ ൅ ఏߪ ሻߠఏതതതതcosሺܣ ൅ ఏߪ ߨఏതതതതcosሺ2ܣ െ ሻ, (11)ߠ

  
where  ܣ௟௔തതതത is the total laminate area per unit width and equal to ܣ௟௔௬തതതതതത ൌ ሺߣଽ଴ ൅ ఏߣ ൅ ఏିߣ ൅ ௟௔௫തതതതതതܣ also  ݐ଴ሻߣ ൌ
ሺߣଽ଴ ൅ ఏߣ ൅ ఏିߣ ൅ ௣௟௬തതതതതതܣ) ௣௟௬തതതതതത ply area per width which equal toܣ and  ݐ଴ሻߣ ൌ ሺ ௣ܰ௟௬/ܰሻݐ ൌ  ,Therefore .(ݐ௣௟௬ߣ

substitution into Eq. (11) give the following expression: 

 

௟௔௬ߪ ൌ෍ܨ௬ܣ௣௟௬തതതതതത ൌ ଽ଴ߣଽ଴ߪ ൅ ఏߪ2 ሻߠఏcosሺߣ ൅ ఏିߣఏߪ2 cosሺ2ߨ െ ሻ. (12)ߠ

  
Repeat the steps for the ݔ direction, it is obtained the following expression: 

 

௟௔௫ߪ ൌ෍ܨ௬ܣ௣௟௫തതതതതത ൌ ଴ߣ଴ߪ ൅ ఏߪ2 ሻߠఏcosሺߣ ൅ ఏିߣఏߪ2 cosሺ2ߨ െ ሻ. (13)ߠ

 
Note the number 2 is used to obtain to sides of the laminates right and left segments.  

Then the maximum failure shear stress theory can be applied [25, 30, 33] for some quasi-isotropic laminates 
to obtain the resultant strength as follows: 

௟௔ߪ ൌ
௟௔௬ߪ െ ௟௔௫ߪ

2
, (14)

 
or the maximum principal failure stress theory can be expressed as follows: 

 

௟௔ߪ ൌ
௟௔௬ߪ ൅ ௟௔௫ߪ

2
. (15)

 
2. Fracture Toughness.  The fracture toughness ܩூ஼ is an important property to obtain the size-response curve 

or to predict the nominal strength of composite plates with open holes using the cohesion law [1, 22, 23].  The cohesive 
law relates the strength σ at the onset of failure to the progressive crack opening  [35 ,34 ,10] ߜ, as shown in Fig. 3. 
The notch-free failure strength of laminates for which ߪ௟௔ was previously measured is related to the GIC by linear 
cohesion laws as follows [24, 25]: 

ூ௖ܩ ൌ න ߜ௟௔݀ߪ ൌ ௖ߜ௟௔ߪ
ఋ೎

଴
. (16)

 
Now the critical crack opening displacement ߜ௖ can be calculated using the proposed equation by Hahn and 

Rosenfield [36] and Perez [37], under the following stress condition at fracture: 
For plan stress condition: 

௖ߜ ൌ ௙. (17)ߝݐ

For plane strain condition: 

௖ߜ ൌ ௙൫1ߝݐ െ ௫௬ଶߥ ൯. (18)
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Fig. 3. Linear cohesive law. Fig. 4. Angle ply transformation system. 

 
To calculate the strain at break ߝ௙, the equivalent Young modulus ߰ is first calculated from the unidirectional 

elastic stiffness of unidirectional laminates using lamination theories. The indices 1 and 2 represent the lamina 
properties in the fiber direction and in the transverse direction, respectively [38] (see Fig. 4). The reduced stiffness [39] 
ܳ௜௝ can be expressed by the elastic constant of the laminae as follows: 

 

ܳଵଵ ൌ
ଵܧ

1 െ ଶଵߥଵଶߥ
, ܳଶଶ ൌ

ଵଶܧ
1 െ ଶଵߥଵଶߥ

, 

ܳଵଶ ൌ
ଶܧଵଶߥ

1 െ ଶଵߥଵଶߥ
, ܳ଺଺ ൌ ,ଵଶܩ ଶଵߥ ൌ ଵଶߥ

ଶܧ
ଵܧ
. 

(19)

 
For symmetric layup, the average stress 	ߪ	ഥ  through laminates thickness ݐ can be calculated using Eqs. (20): 
 

തߪ ൌ ሾܣሿ
ሼ߳ሽ
ݐ
,					൭

ത௫ߪ
ത௬ߪ
ത௭ߪ
൱ ൌ ൭

ଵଵܣ ଵଶܣ ଵ଺ܣ
ଵଶܣ ଶଶܣ ଶ଺ܣ
ଵ଺ܣ ଶ଺ܣ ଺଺ܣ

൱൭
௫ߝ
௬ߝ
௭ߝ
൱, (20)

 
where ܣ is the stiffness matrix where can calculate from the following relationship [Eqs. (21)] for multidirectional 
laminates with ߠ angle plies: 

ଵଵܣ ൌ ଵଵܣ
ଽ଴ ൅ ଵଵܣ

଴ ൅ ଵଵܣ
ఏ , ଶଶܣ ൌ ଶଶܣ

ଽ଴ ൅ ଶଶܣ
଴ ൅ ଶଶܣ

ఏ , 

ଵଶܣ ൌ ଵଶܣ
ଽ଴ ൅ ଵଶܣ

଴ ൅ ଵଶܣ
ఏ ଺଺ܣ					, ൌ ଺଺ܣ

ଽ଴ ൅ ଺଺ܣ
଴ ൅ ଺଺ܣ

ఏ , 

௜௝ܣ
ଽ଴ ൌ ௜௝ܣ					,ଽ଴ݐଽ଴ܳ௜௝ߣ

଴ ൌ ଵଵܣ					,଴ݐ଴ܳ௜௝ߣ
ఏ ൌ ఏߣ ൬

ܳଵଵ
4
൅
ܳଶଶ
4

൅
ܳଵଶ
4
൅ ܳ଺଺൰ ఏݐ ൌ ଶଶܣ

ఏ , 

ଵଶܣ
ఏ ൌ ఏߣ ൬

ܳଵଵ
4
൅
ܳଶଶ
4

൅
ܳଵଶ
4
െ ܳ଺଺൰ ,ఏݐ ଺଺ܣ

ఏ ൌ ఏߣ ൬
ܳଵଵ
4
൅
ܳଶଶ
4

െ
ܳଵଶ
2
൰  ,ఏݐ

(21)

 
where ݐଽ଴, ݐ଴, and ݐఏ are ply thickness of 90º, 0º, and ߠ direction, respectively.  

Substitution into Eqs. (22) give an expression for elastic constant in ݔ and ݕ directions: 

 

௫ܧ ൌ ଵଵܣ െ
ଵଶܣ
ଶ

ଶଶܣ
, ௬ܧ			 ൌ ଶଶܣ െ

ଵଶܣ
ଶ

ଵଵܣ
, ௫௬ܩ ൌ ,଺଺ܣ ௫௬ߥ ൌ

ଵଶܣ
ଶଶܣ

. (22)
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Then after the elastic constant in ݕ ,ݔ directions calculated the equivalent Young modulus is then can be determine 
form Eqs. (23) as follows: 

߰ ൌ
ඥ2ܧ௫ܧ௬

ඩඨ
௬ܧ
௫ܧ

൅
௬ܧ
௫௬ܩ2

െ ௫௬ߥ

. (23)

 
Substitution into Hooke’s law for linear material behaviors into Eq. (24) as follows: 
 

௙ߝ ൌ
௟௔ߪ
߰
. (24)

 
To evaluated the effective Young modulus ܧ௘௙௙, rearrange Eq. (16) and modification respect to (17), it is given Eq. (25) 

as follows: 

௘௙௙ܧ ൌ
௟௔ߪ
ଶ

ூ஼ܩ
(25) .ݐ

  
3. Nominal Strength and Size Effect. The linear cohesion law, shown in Fig. 3, is used to determine the 

nominal strength of open hole specimens of carbon fiber laminates. The two main parameters fracture toughness GIC 
and laminate strength ߪ௟௔ determined in the previous sections must be fully described and defined, then Eq. (26) [9, 
10] is applied as follows: 

௡ߪ ൌ ௖ߜ ൤
௖ߜ
௟௔ߪ

௜௝ߜ ൅ ௜݂௝൨
ିଵ

ଵ, (26)ܫ

 
where ߜ௜௝ is knocker delta and  ܫଵ is one matrix, and ௜݂௝ is the transformation function completely derived in [9, 10].  

4. Results and Discussion. Figures 5 and 6 and Table 1 show the predicted failure strength of multidirectional 
laminates. It can be observed that the percent error in tension is 4.37 and –2.72 for La0 and 9.297 and 1.897 for La1 
for method a1 and method 2, respectively; moreover, the percent error is 0.70 and –6.13 for La2. For compression, 
these values increase to –14.63 and –20.45, respectively. The same results for compression for the other material La1, 
as the percent errors are 17.439 and 9.461 for method a1 and method 2, respectively. The average percent errors for all 
materials (La0, La1, and La2) in tension and compression were 9.29 and 8.13 for method 1-a and method 2, 
respectively, which is based on the maximum shear stress theory. These values are lower than the average percent error 
of 9.8 produced by other unit circle models [5].   
 
TABLE 1. Comparison of Predicted Failure Strength of Quasi-Isotropic Laminates Using the Present Models with 
Experimental and Other Available Published Models for Different CFRP Material Systems with Layered Structure 
{Maximum Shear Stress [Eq. (15)]} 

# Material Layup 0º ply strength 
(MPa) 

Multiaxial laminates strength (MPa) 
Exp. Model other [5] Method 1-a, Eq. (5) Method 2 

La0 IM7/8552 
[5, 33] 

[90/0/±45]3s 2326  845 888 882 822 

1200 (–) 533 458 455 424 
La1 T800/M21 

[5, 19] 
[90/45/0/–45]3s 

 
3039 1054 1166 1152 1074 

1669 (–) 539 637 633 590 
La2 M40JB/ThinPreg 80EP/CF 

[40, 44] 
[(0/90)/(45/–45)]3s 

 
2250 847 859 853 795 

1052 (–) – 402 399 371 
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Fig. 5. Comparison model methods with experimental data [5, 19, 33, 40, 44] and other available models [5] in tension 
case for CFRP. 

 

Fig. 6. Comparison among model methods with experimental data [5, 19, 33, 40, 44] and other available models [5] in 
compression based on Eq. (15). 
 

Figure 7 and Table 2 show the failure strength predicted by method 1-a and method 2, which is based on 
maximum principal stress theory, for CFRP laminates under compression. The percent errors for La3 are –0.97 and 
5.24 for method 1-a and method 2, respectively, which is based on maximum principal stress theory. This theory was 
selected for these material systems with relatively lower fracture toughness than those listed in Table 1. It is found that 
La5 has a lower % error –0.82 when method 1-a is used, while the % error increases by 57% for method 2. However, 
moderate % errors –17.53 and 10.61 were observed for sample La4. This result is due to unbalanced stacking 
sequences. In general, method 1-a gives the lowest average % error –6.44 corresponding to 11.092 for the model of 
Soutis and Curtis [25]. 
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TABLE 2. Comparison of Predicted Failure Strength of Quasi-Isotropic Laminates Using the Present Models with 
Experimental and Other Available Published Models for Different CFRP Material Systems with Layered Structure 
{Maximum Principal Stress [Eq. (16)]} 

# Material Layup 0º ply strength 
(MPa) 

Multiaxial laminates strength (MPa) 
Exp. Model other [5] Method 1-a, Eq. (5) Method 2

La3 T800/924C 
[25, 41] 

[±45/02/902/02/902/02]s 1485 (–1) 820 916 812 863 
La4 [(±45/02)] 3s   1485 (–1) 810 912 668 896 
La5 [(±45/0/90)3]s   1485 568 619 563.34 896 

 

 

Fig. 7. Comparison among model methods with experimental data [25, 41],  and other available models in compression 
case for CFRP. 
 

Figure 8 and Table 3 show the prediction of the failure strength of CFRP laminates with an angular layer 
 2s or a laminate with only one transverse layer [0/90]. These types of superstructures were calculated using[0/ߠ]
method 1-b because it has the same aspects as method 1-a. The comparison of the percentage error shows that it is 
generally lower for both methods, but differs for specimen La10 because there is no angular layer to reduce the size 
effect and balance the loads by a specific direction, since the superstructure has a loss when loaded by the exact 
direction. The percentage errors were –6.25 and –3.36 for La6, while they were 6.57 and 5.12 for La7, with positive 
sense, moreover, the percentage errors for La8 and La9 were 4.09, –6.8182 and –2.6, –28.3614 for method 1-b and 
method 2, respectively. Although the percent error –3.13 in the case of La10 has a lower value for method 2, it is very 
large at 30% for method 1-b, which can be attributed to the loss of shear load due to arbitrary angular positions [5, 40–
43]. Finally, the model within the two methods has a lower average % error of 9.9 and 9.3, while the average % error 
of the model proposed by Soutis and Curtis[25] is larger at 18. 

Table 4 shows the comparison between the predicted fracture toughness measured by the proposed Eq. (16) 
and the notched impact strength calculated by method 1. It is observed that the percentage errors vary between lower 
and higher values, with the lowest value of percentage errors being –1.76 and –5.86 for La4 and La5, respectively (see 
Fig. 9). It is noted that the calculated equivalent ߰ for La0 is the same as the values of fracture toughness were used 
for plane stress condition [Eq. (17)], as it is suitable for high values of fracture toughness for less thin laminates by 
thickness [24]. The percent errors listed in Table 5 obtained by method 2 generally have lower values for most specimen 
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types, although the La4 material has the highest value of –19.66 due to its high predicted strength of 896 MPa and 
therefore does not match its experimental fracture toughness  [25] (see Fig. 9). The optimum values for the two methods 
are listed in Table 6 and Fig. 10. The optimum values are mainly obtained from the second proposed method. 
 
TABLE 3. Comparison of Predicted Failure Strength of T800/ 924C CFRP with [0/ߠ]2s and without Angular Laminate 
Using the Present Models with Experimental and Another Available Published Model 

# Material Layup 
 

0º ply strength 
(MPa) 

Multiaxial laminates strength (MPa) 

Exp.  Model other [25, 41] Method 1-b, Eq. (9) Max. principal stress, 
Eq. (16) 

La6 T800/924C 
[25, 41]  

[±30/02)2]s 1178 (–)  832 995 780 804.0 
La7 [±45/02)2]s 1298 (–) 745 820 794 783.2 
La8 [±60/02)2]s 1230 (–) 660 768 687 615.0 
La9 [±75/02)2]s 1233 (–) 653 757 636 467.8 
La10 [(0/902/0)3]s 1298 (–) 670 858 871 649.0 

 
TABLE 4. Comparison of Prediction of Fracture Toughness Based on Un-Notch Strength of Method 1-a  

# Material  Layup Fracture toughness ܩூ஼   ߰ 
(GPa) 

 

 ௘௙௙ܧ

(GPa) Exp.  Predicted  % error 

La0 
 

IM7/8552 
[5, 33] 

[90/0/±45]3s 
 

81.5  100 
Eq. (17) 

22.69 23.34 23.34 

                                                                                                     Eq. (18) 
La3, doubled 0º T800/924C 

[25, 41] 
[±45/02/902/02/902/02]s 27.3 24.1 –11.72 76.3 82.08 

La4 [±45/02] 3s   29.5 28.98 –1.76 32.5 46.19 
La5 [(±45/0/90)3]s   29.36 27.64 –5.86 21.2 36.700 

La10 [(0/902/0)3]s   38.8 53 36.59 33.04 35.33 

 

 

Fig. 8. Comparison among model methods with experimental data [25, 41] and other available models in compression 
based on Eq. (16). 
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TABLE 5. Comparison of Prediction of Fracture Toughness Based on Un-Notch Strength of Method 2  

# Material  Layup Fracture toughness ܩூ஼  ߰ 
(GPa) 

 

 ௘௙௙ܧ

(GPa) Exp.  Predicted  % error 

La0 
 

IM7/8552 
[5, 33] 

[90/0/±45]3s 
 

81.5  87.52 
Eq. (17) 

7.39 23.34 23.34 

                                                                                                    Eq. (18) 
La3, doubled 0º T800/924C 

[25, 41] 
[±45/02/902/02/902/02]s 27.3 25 –8.42 76.3 91.6 

La4 [±45/02] 3s   29.5 23.7 –19.66 55.8 101 
La5 [(±45/0/90)3]s   29.36 30.9 5.25 36.7 77.9 

La10 [(0/902/0)3]s   38.8 36.09 –6.98 33.02 38.34 

 
TABLE 6. Optimum Values for Fracture Toughness 

# Material  Layup Fracture toughness GIC  Method  
 Exp.  Predicted  % error 

La0 
 

IM7/8552 
[5, 33] 

[90/0/±45]3s 
 

81.5  87.52 
Eq. (17) 

7.39 2 

                                                                  Eq. (18) 
La3, doubled 0º T800/924C 

[25, 41] 
[±45/02/902/02/902/02]s 27.3 25.0 –8.42 2 

La4 [±45/02] 3s   29.5 23.7 –1.76 1 
La5 [(±45/0/90)3]s   29.36 30.9 5.25 2 
La10 [(0/902/0)3]s   38.8 36.09 –6.98 2 

 

 

Fig. 9. Comparison among model methods with experimental data [25, 26, 41] to predict the fracture toughness of 
different CFRP laminates. 
 

The linear cohesion law provides considerable data for predicting the nominal strength of open-hole CFRP 
laminate structures. The cohesion law methods must define two main material properties, the notched impact strength 
and the fracture toughness ܩூ஼, and the value of the nominal strength differs from the method in which the equivalent 
Young modulus is calculated, even in the present study [25, 41].  Figures 11 and 12 show the nominal strength of 
the open hole predicted using the calculated Young modulus 	߰	 and the effective Young modulus 	ܧ௘௙௙	 based on 
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method 1-a and method 2, respectively. The percent error values for the open hole strength were 6.17 and –1.03 for 
La0. However, different percent error values were obtained for the other specimens, which can be attributed to the 
changed values of ߰ and ܧ௘௙௙. The optimal values are listed in Table 7. It can be seen that the optimal values obtained 

by method 1-a with the equivalent Young modulus ߰ for samples La3 and La10 have a percent error of 7.67 and –2.5, 
respectively. The percent error determined by method 2 with the equivalent Young modulus ܧ௘௙௙ for La4 was 2.5, 

while it was 5.67 for La5 with the equivalent Young modulus ߰.  
 

 

Fig. 10. Optimum values of the fracture toughness of different CFRP laminates with different methods and 
experimental data [25, 26, 41]. 

 

Fig. 11. Nominal strength of open hole CFRP laminates predicted based on un-notch strength calculated by 
method 1-a respect to experimental data [25, 26, 41]. 
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TABLE 7. Optimum Values for Open Hole Strength  

# Material  Layup Open hole strength Method 
 

Young modulus 
Exp.  Predicted  % Error 

La0 IM7/8552 [5, 33] [90/0/±45]3s 555.7 555.7 –1.02 2 ߰	 or ܧ௘௙௙ 

La3  T800/924C 
[25, 41] 

[±45/02/902/02/902/02]s 365 393 7.67 1 ߰ 
La4 [±45/02] 3s   440 451 2.5 2 ܧ௘௙௙ 

La5 [(±45/0/90)3]s   335 354 5.67 2 ߰ 
La10 [(0/902/0)3]s   358 349 –2.51 1 ߰ 

 

 

Fig. 12. Nominal strength of open hole CFRP laminates predicted based on un-notch strength calculated by method 2 
respect to experimental data [25, 26, 41]. 

 
Fig. 13. Size effect curve prediction using un-notch and fracture toughness calculated with the proposed model 
compared to experimental data [26]. 
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Figure 13 shows the size effect curve predicted using the linear cohesion law based on the predicted notched 
impact strength by method 1-a and method 2. Although the two methods provide a remarkably good prediction, method 
1-a fits better due to its good fracture toughness and low notched impact strength predicted with a lower % error of 
822. The average % accuracy of size effect prediction based on method 1-a is 3.24%, while it is 6.82% for method 2. 

Conclusions. The notched impact strength of CFRP is a very important characteristic property, so it is of great 
importance to determine it. In the present study, it was predicted using two simple analytical methods based on the 
elastic strength and stiffness of unidirectional plies with an angle of 0º and lamination theory. A comparison study was 
proposed to determine the degree of accuracy of each method. Based on the predicted strength of different CFRP 
material systems and different layers, both the fracture toughness curve (ܩூ஼) and the size effect curve were defined 
and the following optimal results were reported: 

1. The second method, based on the ply ratio and force analysis through the whole laminate plate, is more 
suitable and gives a lower % error. 

2. The maximum failure shear stress theory is well suited for CFRP laminates with higher fracture toughness, 
while the maximum principal failure stress theory is better suited for materials with fracture toughness of 25–40 kJ/m2. 

3. The equivalent modulus of elasticity, calculated based on the percentage of plies in the elastic stiffness of 
the laminates using the laminate theory, is well suited to measure open hole strength. 

4. The average percentage accuracy of predicting the size effect based on method 1-a is 3.24%, while it is 
6.82% for method 2.  
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