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NUMERICAL-AND-ANALYTICAL METHOD FOR SOLVING 
GEOMETRICALLY NONLINEAR BENDING PROBLEMS 
OF COMPLEX-SHAPED PLATES FROM FUNCTIONALLY GRADED MATERIALS  

S. M. Sklepus      UDC 539.3 

This study proposes a new numerical-and-analytical method for solving geometrically nonlinear 
problems of bending of complex-shaped plates made of functionally graded materials developed. The 
problem was formulated within the framework of a refined higher-order theory considering the 
quadratic law of distribution of transverse tangential stresses along the plate thickness. To linearize 
the nonlinear problem, we used the method of continuous continuation in the parameter associated 
with the external load. For the variational formulation of the linearized problem, a Lagrange 
functional was constructed, defined at kinematically possible displacement velocities. To find the main 
unknowns of the problem of nonlinear plate bending (displacements, strains, and stresses), the Cauchy 
problem for a system of ordinary differential equations is formulated. The Cauchy problem was solved 
by the Runge-Kutta–Merson method with automatic step selection. The initial conditions are found 
from the solution of the problem of geometrically linear deformation. The right-hand sides of the 
differential equations, at fixed values of the load parameter corresponding to the Runge-Kutta–
Merson scheme, were obtained from the solution of the variational problem for the Lagrange 
functional. The variational problems were solved by the Ritz method in combination with the R-
function method. The latter makes it possible to present an approximate solution as a formula. This 
solution structure exactly satisfies all (general structure) or part (partial structure) of the boundary 
conditions. Test problems are solved for a homogeneous rigidly fixed and functionally graded hinged 
square plate subjected to a uniformly distributed load of varying intensity. The results for deflections 
and stresses obtained by the developed method are compared with the solutions obtained by radial 
basis functions. The problem of bending of a functionally graded plate of complex shape is solved. 
The influence of the gradient properties of the material and geometric shape on the stress-strain state 
is investigated. 

Keywords: flexible plate, functional graded material, geometric nonlinearity, complex shape, method of R-functions. 

Introduction. Functional graded materials (FGM) belong to a class of modern materials from the family of 
composites. They usually consist of two microstructural phases, such as metal and ceramic, which makes them resistant 
to high temperatures, corrosion, and mechanical stress. The mechanical and other properties of FGMs change 
continuously and smoothly in certain directions following a set law. This avoids sharp interlaminar tears and stress 
concentrations caused by mismatches in the properties of two different materials. Due to their high strength and heat 
resistance, ceramic-metal FGMs are used in various engineering fields, including aerospace and chemical industries, 
energy, shipbuilding, etc.  

For example, a fairly complete review of models and methods for solving nonlinear problems of deformation 
of shells and plates made of functionally graded materials is given in [1–3]. To formulate the initial problem, both the 
classical geometrically nonlinear formulation [4] and refined formulations are used: First-order shear deformation 
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theory (FSDT) [5, 6] and various refined higher-order theories (HSDT) [7–10]. The first-order shear theory has certain 
disadvantages associated with the assumption that the shear strain is constant with thickness. Refined higher-order 
theories increase the accuracy of stress calculations but at the expense of increased computational costs.  

Most often, researchers consider plates of canonical geometric shape. Under certain conditions of loading and 
fixation, it is possible to obtain the solution of the boundary value problem in an analytical form. If the plate has a 
complex geometric shape, it is necessary to use universal methods to find an approximate solution in areas of complex 
shape. These are, first of all, the finite element method [11, 12], the R-function method [13, 14], the “immersion” 
method [15], etc. The R-function method was first extended to study the geometrically nonlinear bending of 
functionally graded plates in [14]. Here, the linearization of the initial nonlinear system of equations written within the 
framework of the classical theory of Carman-type plates is carried out by successive loads and Newton. The finite 
element method (FEM) for calculating the FGM of plates is used, for example, in [1, 10]. As for the use of the FEM to 
study the deformation of structural elements with FGM, the monograph [16] emphasizes that, in this case, it may be 
unacceptable and lead to qualitatively incorrect results. As the analysis of the above sources shows, the number of 
works devoted to studying geometrically nonlinear deformation of plates of complex shapes with FGM is quite limited, 
and the search for effective methods for solving such problems continues today. 

This work aims to develop a numerical-analytical method for studying the geometrically nonlinear 
deformation of plates of complex shapes with FGM based on the refined theory and R-functions method. 

Problem Formulation and Solution Method. Consider in a rectangular Cartesian coordinate system ܱݔଵݔଶݖ 
an isotropic plate of FGM of thickness ݄ and arbitrary shape ߗ in plan. The plate is subjected to a transverse load of 
intensity ݍ௭∗ ൌ  ଶሻ. Let the material properties change continuously along the thickness, and the coordinateݔ ,ଵݔ௭∗ሺݍ
surface of the plate coincides with the median surface. Suppose that the upper surface of the ሺݖ ൌ െ݄ 2⁄ ሻ of the plate 
is metal, and the bottom ሺݖ ൌ ݄ 2⁄ ሻ – ceramic, and the material properties, in particular the elastic characteristics, 
depend on the volume fraction of the constituent materials and can be expressed as [1, 17] 

 
ܲሺݖሻ ൌ ௖ܲ ௖ܸሺݖሻ ൅ ௠ܲ ௠ܸሺݖሻ, 

 
where 	 ௖ܸ 	 and  ௠ܸ	 are the volume fractions of the reinforcing ceramic material and metal related by the ratio ௖ܸ ൅

௠ܸ ൌ 1. Following [1], we assume that the fraction of ceramics 	 ௖ܸ 	 varies in thickness according to the power law  
 

௖ܸሺݖሻ ൌ ൬
1
2
൅
ݖ
݄
൰
௡

ሺ݊ ൒ 0ሻ. (1)

 
At ݊ ൌ 0, we will have a homogeneous ceramic plate; at ݊ → ∞, we get a metal plate. 

To formulate the problem, we will use the refined higher-order theory, which considers the nonlinear 
distribution of transverse tangential stresses along the thickness [7]. The main hypotheses of the refined theory are 
written as follows [7]: 

௜ଷߪ ൌ ௜ଷߝܩ2 ൌ ሺ݅			ଶሻ,ݔ ,ଵݔሻ߰௜ሺݖሻ݂ᇱሺݖሺܩ ൌ 1, 2ሻ,   ߪଷଷ ൌ 0, 

,ଶݔ ,ଵݔଷሺݒ  ሻݖ  ൌ ଷଷߝ  ,ଶሻݔ ,ଵݔሺݓ ൌ ଷ,ଷݒ ൌ 0, 

 
where ߰௜ሺݔଵ, ݔଶሻ are the derived shear functions, ݂ሺݖሻ is the function of distribution of transverse tangential stresses, 
which, in the case of coincidence of the coordinate surface of the plate with the median surface, has the following form: 
 

݂ሺݖሻ ൌ ݖ െ
ସ

ଷ
ଷݖ ݄ଶ⁄ . 

 
The motion paths of the plate points along the axes ܱݔଵ and ܱݔଶ are determined by the formula 
  

,ଶݔ ,ଵݔ௜ሺݒ ሻݖ  ൌ ௜ݑ  െ ௜൅,ݓݖ ݂ሺݖሻ߰௜   ሺ݅ ൌ 1, 2ሻ, 
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where ݑଵሺݔଵ, ,ଵݔଶሺݑ ,ଶሻݔ ,ଶሻݔ  ଶሻ are the displacements of the points of the coordinate surface of the plateݔ ,ଵݔሺݓ 
along the ܱݔଵ, ,ଶݔܱ   .axes, respectively ݖܱ	݀݊ܽ 

If the deflection arrow is comparable to the plate thickness ሺݓ௠௔௫ ൒ 0.25݄ሻ, then the problem must be solved 
using a geometrically nonlinear theory considering large deflections. We assume that the displacements ݑଵ and ݑଶ are 
much smaller than the deflections	ݓ. In this case, the deformations are calculated through the displacements according 
to the following nonlinear relations [7]: 

 

ە
ۖ
۔

ۖ
ଵଵߝۓ ൌ ଵ,ଵݑ ൅ ଵ,ݓ0.5

ଶെ ଵଵ൅,ݓݖ ݂ሺݖሻ߰ଵ,ଵ,
ଶଶߝ ൌ ଶ,ଶݑ ൅ ଶ,ݓ0.5

ଶെ ଶଶ൅,ݓݖ ݂ሺݖሻ߰ଶ,ଶ,

ଵଶߛ ൌ ଵଶߝ2 ൌ ଵ,ଶݑ ൅ ଶ,ଵݑ ൅ ଵ,ݓ ଶെ,ݓ ଵଶ൅,ݓݖ2 ݂ሺݖሻ൫߰ଵ,ଶ ൅ ߰ଶ,ଵ൯,
௜ଷߛ ൌ ௜ଷߝ2 ൌ ݂ᇱሺݖሻ߰௜.

 (2)

 
Stresses and strains are related by Hooke’s law: 
 

ଵଵߪ ൌ
ሻݖሺܧ

1 െ ሻݖଶሺߥ
ሺߝଵଵ ൅ ,ଶଶሻߝሻݖሺߥ ଶଶߪ ൌ

ሻݖሺܧ

1 െ ሻݖଶሺߥ
ሺߝଶଶ ൅  ,ଵଵሻߝሻݖሺߥ

௜௝ߪ ൌ ,௜௝ߛሻݖሺܩ ሺ݅, ݆ ൌ 1, 2, 3, ݅ ് ݆ሻ, 

(3)

 
where ܧሺݖሻ and ߥሺݖሻ are the Young modulus and Poisson’s ratio of the plate material, respectively, and ܩሺݖሻ ൌ

ாሺ௭ሻ

ଶ൫ଵାఔሺ௭ሻ൯
   is the shear modulus. 

To linearize and formulate the problem of geometrically nonlinear bending of plates, we will use the method 
of continuous continuation of the solution in terms of the parameter [18]. In the case under consideration, it is natural 
to relate this parameter to the external load. Let us introduce an increasing parameter ݐ ∈ ሾݐ଴, ݐ∗ሿ characterizing the 
loading process, where ݐ଴ is the parameter at which the deflections of the plate will be small and, accordingly, the 
deformation problem will be geometrically linear; ݐ∗ corresponds to a given load level ݍ௭ሺݐ∗ሻ ൌ   .∗௭ݍ

Having differentiated the relation (2) by the parameter ݐ, we obtain formulas that relate the derivatives of 
deformations and displacements: 

 

ە
ۖ
۔

ۖ
ሶଵଵߝۓ ൌ ሶଵ,ଵݑ ൅ ଵ,ݓ ሶݓ ,ଵെ ሶݓݖ ,ଵଵ൅ ݂ሺݖሻ ሶ߰ଵ,ଵ,

ሶଶଶߝ ൌ ሶݑ ଶ,ଶ ൅ ଶ,ݓ ሶݓ ,ଶെ ሶݓݖ ,ଶଶ൅ ݂ሺݖሻ ሶ߰ ଶ,ଶ,

ሶଵଶߛ ൌ ሶଵଶߝ2 ൌ ሶଵ,ଶݑ ൅ ሶݑ ଶ,ଵ ൅ ଵ,ݓ ሶݓ ,ଶ൅ ଶ,ݓ ሶݓ ,ଵെ ሶݓݖ2 ,ଵଶ൅ ݂ሺݖሻ൫ ሶ߰ଵ,ଶ ൅ ሶ߰ଶ,ଵ൯, 

ሶଵଷߛ ൌ ሶଵଷߝ2 ൌ ݂ᇱሺݖሻ ሶ߰ଵ, ߛሶଶଷ ൌ ሶଶଷߝ2 ൌ ݂ᇱሺݖሻ ሶ߰ ଶ,

 (4)

 

where the dot above the symbols denotes the derivative 
ௗሺ...ሻ

ௗ௧
	 by the argument ݐ. In the following, the variable t's 

derivatives will be called velocities. If we consider the angles of rotation ݓ,௜ as given functions, then the relations (4) 
are linear.  

Having differentiated Hooke’s law (3) by the variable ݐ taking into account (4) for the stress rates, we get 
 

ە
ۖۖ

۔

ۖۖ

ሶଵଵߪۓ ൌ
ሻݖሺܧ

1 െ ሻݖଶሺߥ
ሶଵ,ଵݑൣ ൅ ሶݑሻݖሺߥ ଶ,ଶ ൅ ଵ,ݓ ሶݓ ,ଵ൅ ଶ,ݓሻݖሺߥ ሶݓ ,ଶെ ሶݓሺݖ ,ଵଵ൅ ሶݓሻݖሺߥ ,ଶଶ ሻ ൅ ݂ሺݖሻ൫ ሶ߰ଵ,ଵ ൅ ሻݖሺߥ ሶ߰ ଶ,ଶ൯൧,

ሶଶଶߪ ൌ
ሻݖሺܧ

1 െ ሻݖଶሺߥ
ሶݑൣ ଶ,ଶ ൅ ሶଵ,ଵݑሻݖሺߥ ൅ ଶ,ݓ ሶݓ ,ଶ൅ ଵ,ݓሻݖሺߥ ሶݓ ,ଵെ ሶݓሺݖ ,ଶଶ൅ ሶݓሻݖሺߥ ,ଵଵ ሻ ൅ ݂ሺݖሻ൫ ሶ߰ ଶ,ଶ ൅ ሻݖሺߥ ሶ߰ଵ,ଵ൯൧,

ሶଵଶߪ ൌ ሶଵ,ଶݑሻൣݖሺܩ ൅ ሶݑ ଶ,ଵ ൅ ଵ,ݓ ሶݓ ,ଶ൅ ଶ,ݓ ሶݓ ,ଵെ ሶݓݖ2 ,ଵଶ൅ ݂ሺݖሻ൫ ሶ߰ଵ,ଶ ൅ ሶ߰ଶ,ଵ൯൧,

ሶଵଷߪ ൌ ሻݖሻ݂ᇱሺݖሺܩ ሶ߰ଵ, ሶଶଷߪ ൌ ሻݖሻ݂ᇱሺݖሺܩ ሶ߰ ଶ.

(5)



 
930 

 
 

For the variational formulation of the problem, we will use the principle of virtual work for quasi-static 
problems [19]. The corresponding Lagrangian functional, written with respect to the kinematically possible 
displacement velocities for a three-dimensional body, is as follows [19]: 

 

ሶ௜ሻݒሺܮ ൌ 0.5ම൫ߪሶ௞௟ߝሶ௞௟ ൅ ሶ௞,௝൯ݒሶ௞,௜ݒ௜௝ߪ
௏

ܸ݀ െඵ ሶܲ௜ݒሶ௜݀ܵ
ௌ೛

ሺ݅, ݆, ݇, ݈ ൌ 1, 2, 3ሻ. (6)

 
We assume that ݒሶ௜,௝~ݓሶ ,௜

ଶ ൏൏ 1 and neglect the higher order terms of smallness in expression (6). Then, for a 

flexible plate, we can write 
 

ܮ ൌ 0.5ඵ න ሺߪሶ௞௟ߝሶ௞௟ ൅ ሶݓଵଵߪ ,ଵ
ଶ൅ ሶݓଶଶߪ ,ଶ

ଶ൅ ሶݓଵଶߪ2 ,ଵ ሶݓ ,ଶ ሻ݀ݔଵ݀ݔଶ݀ݖ െ
ሺ௛ሻఆ

ඵݍሶ௭ݓሶ .ଶݔଵ݀ݔ݀
ఆ

 (7)

 
Substituting (4) and (5) into (7) and integrating by z, we obtain the Lagrangian functional for the linearized 

bending problem of a flexible plate: 
ܮ ൌ ௟ܮ ൅ ௡, (8)ܮ

 
where ܮ௟൫ݑሶଵ, ݑሶ ଶ, ݓሶ , 	 ሶ߰ଵ, ሶ߰ ଶ൯, ܮ௡൫ݑሶଵ, ݑሶ ଶ, ݓሶ , 	 ሶ߰ଵ, ܽ݊݀	 ሶ߰ ଶ൯ are the “linear” and “nonlinear” parts of the functionality, 

which are defined by the following formulas: 
 

௟ܮ ൌ 0.5ඵൣܣଵ൫ݑሶଵ,ଵ
ଶ ൅ ሶݑ ଶ,ଶ

ଶ ൯
ఆ

൅ ሶݑሶଵ,ଵݑଶܣ2 ଶ,ଶ ൅ ሶଵ,ଶݑଷ൫ܣ ൅ ሶݑ ଶ,ଵ൯
ଶ
 

െ2ܤଵ൫ݑሶଵ,ଵݓሶ ,ଵଵ൅ ሶݑ ଶ,ଶݓሶ ,ଶଶ ൯ െ ሶݓሶଵ,ଵݑଶ൫ܤ2 ,ଶଶ൅ ሶݑ ଶ,ଶݓሶ ,ଵଵ ൯ െ ሶݓଷܤ2 ,ଵଶ ൫ݑሶଵ,ଶ ൅ ሶݑ ଶ,ଵ൯ 

൅ܦଵሺݓሶ ,ଵଵ
ଶ ൅ ሶݓ ,ଶଶ

ଶ ሻ ൅ ሶݓଶܦ2 ,ଵଵ ሶݓ ,ଶଶ൅ ሶݓଷܦ ,ଵଶ
ଶ  

൅2ܨଵ൫ݑሶଵ,ଵ ሶ߰ଵ,ଵ ൅ ሶݑ ଶ,ଶ ሶ߰ ଶ,ଶ൯ ൅ ሶଵ,ଵݑଶ൫ܨ2 ሶ߰ ଶ,ଶ ൅ ሶݑ ଶ,ଶ ሶ߰ଵ,ଵ൯ ൅ ሶଵ,ଶݑଷ൫ܨ2 ൅ ሶݑ ଶ,ଵ൯൫ ሶ߰ଵ,ଶ ൅ ሶ߰ଶ,ଵ൯ 

െ2ܨସ൫ݓሶ ,ଵଵ ሶ߰ଵ,ଵ ൅ ሶݓ ,ଶଶ ሶ߰ ଶ,ଶ൯ െ ሶݓହ൫ܨ2 ,ଵଵ ሶ߰ ଶ,ଶ ൅ ሶݓ ,ଶଶ ሶ߰ଵ,ଵ൯ െ ሶݓ଺ܨ2 ,ଵଶ ൫ ሶ߰ଵ,ଶ ൅ ሶ߰ଶ,ଵ൯ 

൅ܨ଻൫ ሶ߰
ଵ,ଵ
ଶ ൅ ሶ߰

ଶ,ଶ
ଶ ൯ ൅ ܨ2଼ ሶ߰ଵ,ଵ ሶ߰ ଶ,ଶ ൅ ଽ൫ܨ ሶ߰ଵ,ଶ ൅ ሶ߰ଶ,ଵ൯

ଶ
൅ ଵ଴൫ܨ ሶ߰

ଵ
ଶ ൅ ሶ߰

ଶ
ଶ൯ቃ ଶݔଵ݀ݔ݀ െ∬ ሶఆݓሶ௭ݍ ଶ, (9)ݔଵ݀ݔ݀

  

௡ܮ ൌ 0.5ඵൣܣଵ൫ݓ,ଵ
ଶ ሶݓ ,ଵ

ଶ൅ ଶ,ݓ
ଶ ሶݓ ,ଶ

ଶ൅ ଵ,ݓ2 ሶݓሶଵ,ଵݑ ,ଵ൅ ଶ,ݓ2 ሶݑ ଶ,ଶݓሶ ,ଶ ൯
ఆ

 

൅2ܣଶ൫ݓ,ଵ ሶݑ ଶ,ଶݓሶ ,ଵ൅ ଶ,ݓ ሶݓሶଵ,ଵݑ ,ଶ ൅ ଵ,ݓ ଶ,ݓ ሶݓ ,ଵ ሶݓ ,ଶ ൯ 

൅ܣଷ൫ݓ,ଶ
ଶ ሶݓ ,ଵ

ଶ൅ ଵ,ݓ
ଶ ሶݓ ,ଶ

ଶ൅ 2ሺݓ,ଵ ሶݓ ,ଶ൅ ଶ,ݓ ሶݓ ,ଵ ሻ൫ݑሶଵ,ଶ ൅ ሶݑ ଶ,ଵ൯ ൅ ଵ,ݓ2 ଶ,ݓ ሶݓ ,ଵ ሶݓ ,ଶ ൯ 
െ2ܤଵሺݓ,ଵ ሶݓ ,ଵ ሶݓ ,ଵଵ൅ ଶ,ݓ ሶݓ ,ଶ ሶݓ ,ଶଶ ሻ െ ଵ,ݓଶሺܤ2 ሶݓ ,ଵ ሶݓ ,ଶଶ 

൅ݓ,ଶ ሶݓ ,ଶ ሶݓ ,ଵଵ ሻ െ ሶݓଷܤ2 ,ଵଶ ሺݓ,ଵ ሶݓ ,ଶ൅ ଶ,ݓ ሶݓ ,ଵ ሻ 
൅2ܨଵ൫ݓ,ଵ ሶݓ ,ଵ ሶ߰ଵ,ଵ ൅ ଶ,ݓ ሶݓ ,ଶ ሶ߰ ଶ,ଶ൯ ൅ ଵ,ݓଶ൫ܨ2 ሶݓ ,ଵ ሶ߰ ଶ,ଶ ൅ ଶ,ݓ ሶݓ ,ଶ ሶ߰ଵ,ଵ൯

൅ ଷ൫ܨ2 ሶ߰ଵ,ଶ ൅ ሶ߰ଶ,ଵ൯ሺݓ,ଶ ሶݓ ,ଵ൅ ଵ,ݓ ሶݓ ,ଶ ሻ ൅ ଵ݂ଵݓሶ ,ଵ
ଶ൅ ଶ݂ଶݓሶ ,ଶ

ଶ൅ 2 ଵ݂ଶݓሶ ,ଵ ሶݓ ,ଶ ሿ݀ݔଵ݀ݔଶ. (10)
 
In expressions (9) and (10), the stiffness parameters and “dummy” forces ଵ݂ଵ, ଶ݂ଶ, and ଵ݂ଶ are calculated by 

the following formulas: 

ଵܣ ൌ න
ሻݖሺܧ

1 െ ሻݖଶሺߥ
,ݖ݀

௛ ଶ⁄

ି௛ ଶ⁄
ଶܣ  ൌ න

ሻݖሺߥሻݖሺܧ

1 െ ሻݖଶሺߥ
,ݖ݀

௛ ଶ⁄

ି௛ ଶ⁄
ଷܣ  ൌ න ,ݖሻ݀ݖሺܩ

௛ ଶ⁄

ି௛ ଶ⁄
 

 

ଵܤ ൌ න
ݖሻݖሺܧ

1 െ ሻݖଶሺߥ
,ݖ݀

௛ ଶ⁄

ି௛ ଶ⁄
ଶܤ  ൌ න

ݖሻݖሺߥሻݖሺܧ
1 െ ሻݖଶሺߥ

,ݖ݀
௛ ଶ⁄

ି௛ ଶ⁄
ଷܤ  ൌ න ݖ݀ݖሻݖሺܩ

௛ ଶ⁄

ି௛ ଶ⁄
, 
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ଵܦ ൌ න
ଶݖሻݖሺܧ

1 െ ሻݖଶሺߥ
ଶܦ ,ݖ݀ ൌ න

ଶݖሻݖሺߥሻݖሺܧ

1 െ ሻݖଶሺߥ
ଷܦ ,ݖ݀ ൌ 4න ݖଶ݀ݖሻݖሺܩ

௛ ଶ⁄

ି௛ ଶ⁄
, 

 

ଵܨ ൌ න
ሻݖሻ݂ሺݖሺܧ

1 െ ሻݖଶሺߥ

௛ ଶ⁄

ି௛ ଶ⁄
ଶܨ ,ݖ݀ ൌ න

ሻݖሻ݂ሺݖሺߥሻݖሺܧ

1 െ ሻݖଶሺߥ

௛ ଶ⁄

ି௛ ଶ⁄
ଷܨ ,ݖ݀ ൌ න ݖሻ݀ݖሻ݂ሺݖሺܩ

௛ ଶ⁄

ି௛ ଶ⁄
, 

 

ସܨ ൌ න
ݖሻݖሻ݂ሺݖሺܧ
1 െ ሻݖଶሺߥ

,ݖ݀
௛ ଶ⁄

ି௛ ଶ⁄
ହܨ  ൌ න

ݖሻݖሺߥሻݖሻ݂ሺݖሺܧ
1 െ ሻݖଶሺߥ

,ݖ݀
௛ ଶ⁄

ି௛ ଶ⁄
଺ܨ  ൌ 2න ,ݖ݀ݖሻݖሻ݂ሺݖሺܩ

௛ ଶ⁄

ି௛ ଶ⁄
 

 

଻ܨ ൌ න
ሻݖሻ݂ଶሺݖሺܧ

1 െ ሻݖଶሺߥ
,ݖ݀

௛ ଶ⁄

ି௛ ଶ⁄
ܨ଼  ൌ න

ሻݖሺߥሻݖሻ݂ଶሺݖሺܧ

1 െ ሻݖଶሺߥ
,ݖ݀

௛ ଶ⁄

ି௛ ଶ⁄
ଽܨ  ൌ න ,ݖሻ݀ݖሻ݂ଶሺݖሺܩ

௛ ଶ⁄

ି௛ ଶ⁄
 

 

ଵ଴ܨ ൌ න ,ݖሻ݀ݖሻ݂ᇱଶሺݖሺܩ
௛ ଶ⁄

ି௛ ଶ⁄
  ଵ݂ଵ ൌ න ,ݖଵଵ݀ߪ

௛ ଶ⁄

ି௛ ଶ⁄
  ଶ݂ଶ ൌ න ,ݖଶଶ݀ߪ

௛ ଶ⁄

ି௛ ଶ⁄
  ଵ݂ଶ ൌ න .ݖଵଶ݀ߪ

௛ ଶ⁄

ି௛ ଶ⁄
 

 
In formula (10), we assume that functions ݓ,ଵ, ݓ,ଶ, ଵ݂ଵ, ଶ݂ଶ, and ଵ݂ଶ are given for each fixed value of the 

parameter ݐ and do not vary.  
The solution of the variational equation ܮߜ ൌ 0 gives the distribution of the displacement velocity fields and 

shear functions for the values of the parameter ݐ ൐  ଴ at any point of the plate. The main unknowns of the problem ofݐ
nonlinear plate bending can be found by integrating the corresponding velocity fields as solutions to the Cauchy 
problem in terms of the parameter ݐ for a system of ordinary differential equations: 
 

ଵݑ݀
ݐ݀

ൌ ሶଵݑ ,			
ଶݑ݀
ݐ݀

ൌ ሶݑ ଶ ,			
ݓ݀
ݐ݀

ൌ ሶ,ݓ 			
ଵ,ݓ݀
ݐ݀

ൌ ሶݓ ,ଵ ,			
ଶ,ݓ݀
ݐ݀

ൌ ሶݓ ,ଶ ,			
݀߰ଵ
ݐ݀

ൌ ሶ߰ଵ ,			
݀߰ଶ
ݐ݀

ൌ ሶ߰ଶ, 

ଵଵߝ݀
ݐ݀

ൌ ሶଵ,ଵݑ ൅ ଵ,ݓ ሶݓ ,ଵെ ሶݓݖ ,ଵଵ൅ ݂ሺݖሻ ሶ߰ଵ,ଵ ,			
ଶଶߝ݀
ݐ݀

ൌ ሶݑ ଶ,ଶ ൅ ଶ,ݓ ሶݓ ,ଶെ ሶݓݖ ,ଶଶ൅ ݂ሺݖሻ ሶ߰ ଶ,ଶ, 

ଵଶߛ݀
ݐ݀

ൌ ሶଵ,ଶݑ ൅ ሶݑ ଶ,ଵ ൅ ଵ,ݓ ሶݓ ,ଶ൅ ଶ,ݓ ሶݓ ,ଵെ ሶݓݖ2 ,ଵଶ൅ ݂ሺݖሻ൫ ሶ߰ଵ,ଶ ൅ ሶ߰ଶ,ଵ൯, 

ଵଷߛ݀
ݐ݀

ൌ ݂ᇱሺݖሻ ሶ߰ଵ ,			
ଶଷߛ݀
ݐ݀

ൌ ݂ᇱሺݖሻ ሶ߰ ଶ, 

ଵଵߪ݀
ݐ݀

ൌ
ሻݖሺܧ

1 െ ሻݖଶሺߥ
ቀݑሶଵ,ଵ ൅ ሶݑሻݖሺߥ ଶ,ଶ ൅ ଵ,ݓ ሶݓ ,ଵ൅ ଶ,ݓሻݖሺߥ ሶݓ ,ଶെ ሶݓሺݖ ,ଵଵ൅ ሶݓሻݖሺߥ ,ଶଶ ሻ ൅ ݂ሺݖሻ൫ ሶ߰ଵ,ଵ ൅ ሻݖሺߥ ሶ߰ ଶ,ଶ൯ቁ, 

ଶଶߪ݀
ݐ݀

ൌ
ሻݖሺܧ

1 െ ሻݖଶሺߥ
ቀݑሶ ଶ,ଶ ൅ ሶଵ,ଵݑሻݖሺߥ ൅ ଶ,ݓ ሶݓ ,ଶ൅ ଵ,ݓሻݖሺߥ ሶݓ ,ଵെ ሶݓሺݖ ,ଶଶ൅ ሶݓሻݖሺߥ ,ଵଵ ሻ ൅ ݂ሺݖሻ൫ ሶ߰ ଶ,ଶ ൅ ሻݖሺߥ ሶ߰ଵ,ଵ൯ቁ, 

ଵଶߪ݀
ݐ݀

ൌ ሻݖሺܩ ቀݑሶଵ,ଶ ൅ ሶݑ ଶ,ଵ ൅ ଵ,ݓ ሶݓ ,ଶ൅ ଶ,ݓ ሶݓ ,ଵെ ሶݓݖ2 ,ଵଶ൅ ݂ሺݖሻ൫ ሶ߰ଵ,ଶ ൅ ሶ߰ଶ,ଵ൯ቁ, 

ଵଷߪ݀
ݐ݀

ൌ ሻݖሻ݂ᇱሺݖሺܩ ሶ߰ଵ ,
ଶଷߪ݀
ݐ݀

ൌ ሻݖሻ݂ᇱሺݖሺܩ ሶ߰ ଶ. (11)

 
The initial conditions for equations (11) are obtained from solving the problem of linear deformation at ݍ௭଴ ൌ

 ଴ሻ. To do this, we can use the functional in the form (9), replacing the velocities of the functions with the functionsݐ௭ሺݍ
themselves. 
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The initial problem for the system of equations (11) will be solved by the Runge-Kutta–Merson (RKM) method 
with automatic step selection [20]. The right-hand sides of these equations at fixed values ݐ ൐  ଴ corresponding to theݐ
RKM scheme, are found from the solution of the variational problem for the functional (8). We will solve the variational 
problems using the Ritz and R-function methods (RFM) [13]. The R-function method allows us to present an 
approximate solution in the form of a formula, which solution structure exactly satisfies the boundary conditions. The 
solution structure is the basis for constructing systems of coordinate functions of variational methods. 

Numerical Results. Let us consider test examples. First, let us solve the problem of bending a homogeneous 
square rigidly fixed plate [21] under a uniformly distributed load. The geometric dimensions of the plate are: side 
length 2ܽ ൌ 7.62 m, thickness ݄ ൌ 0.0762 m. Elastic characteristics of the material are ܧ ൌ 2.1 ൈ 10ହ  MPa and ߥ ൌ
0.316.  

The boundary conditions for rigid anchoring are as follows: 
 

ሶݓ ൌ ሶݓ ,0 ,௡ ൌ ሶݑ ,0 ଵ ൌ ሶݑ ,0 ଶ ൌ 0,  ሶ߰ଵ ൌ 0,  ሶ߰ ଶ ൌ 0, 
 

and the corresponding solution structure is 
 

ሶݓ ൌ ߱ଶΦଵ, 	ݑሶ ଵ ൌ ߱Φଶ, 		ݑሶ ଶ ൌ ߱Φଷ, 		 ሶ߰ଵ ൌ ߱Φସ, 		 ሶ߰ ହ ൌ ߱Φହ, 
 

where Φ௜ ൫݅ ൌ 1, 5൯ are the uncertain components of the solution structure; function ߱ ൌ ߱ሺݔଵ, ݔଶሻ is constructed 

using the theory of R-functions and satisfies the conditions: ߱ ൌ 0, 	߱,௡ ൌ െ1 for the boundary 	߲ߗ, 	߱ ൐ 0 inside ߗ 
( ሬ݊Ԧ is the outer normal to the contour ߲ߗ). The requirement of normalization of the function ߱ to the first order 
ሺ߱,௡ ൌ െ1ሻ, in some cases, is not mandatory. 

In the case of a square plate, the function 	߱	 has the form 
 

߱ ൌ ߱ଵ ∧଴ ߱ଶ, 
 

where ߱ଵ ൌ
ଵ

ଶ௔
ሺܽଶ െ ଶݔ

ଶሻ, ߱ଶ ൌ
ଵ

ଶ௔
ሺܽଶ െ ଵݔ

ଶሻ, ∧଴ denotes an R-conjunction [13], ߱ଵ ∧଴ ߱ଶ ൌ ߱ଵ ൅ ߱ଶ െ ඥ ଵ߱
ଶ ൅ ߱ଶ

ଶ. 

In the numerical implementation, the uncertain components of the solution structure were represented as finite 

series Φ௜ሺݔଵ, ݔଶ, ሻݐ  ൌ ∑ ௡ܥ
ሺ௜ሻሺݐሻ߮௡

ሺ௜ሻሺݔଵ, ݔଶሻ௡ , where ܥ௡
ሺ௜ሻሺݐሻ are uncertain coefficients that were found at each step 

by the Ritz method, ݐ is a fixed value of the load parameter, ቄ߮௡
ሺ௜ሻቅ – systems of linearly independent functions. For 

ቄ߮௡
ሺ௜ሻቅ can be taken as ordinary power polynomials, Chebyshev polynomials, splines, etc. [13]. Here, for ቄ߮௡

ሺ௜ሻቅ, we 

used power polynomials of the form ݔଵ
௞ݔଶ

௟  (the degree of a polynomial is defined as ܲ ൌ ݇ ൅ ݈). When solving problems 
by the method of R-functions, the symmetry of the solution was taken into account. 

For the external load, we assume a linear law:  
 

ሻݐ௭ሺݍ ൌ ௭଴ݍ ൅ ௭ଵ, (12)ݍݐ
where ݐ ∈ ሾ0, ݐ∗ሿ. 

For this example, we assumed 	ݍ௭଴ ൌ ௭ଵݍ ൌ 10ିଶ МПа. 
Figure 1 shows graphs of dimensionless deflections ݓഥ ൌ ݓ ݄	⁄  in the center of the plate depending on the 

value of the dimensionless load ݍത ൌ
ଵ଺௤೥௔ర

ா௛ర
, where the dots indicate the results obtained in [21] by the radial point 

interpolation method (RPIM) in combination with the Newton–Raphson method, and the solid line is the R-function 

method. Table 1 shows the results of calculating normal dimensionless stresses 	ߪതଵଵ ൌ
ସఙభభ௔మ

ா௛మ
	 in the center of the plate 

on the bottom surface (ݖ ൌ 0.5݄) obtained by the RPIM method and the RFM method. 
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TABLE 1. Dimensionless Stresses ߪതଵଵ in the Center of the Plate 

 402.0 318.0 245.0 184.0 134.9 95.0 63.4 38.3 17.8 ݍ̄

 ଵଵ, RPIM 2.630 5.454 8.269 11.023 13.731 16.392 19.114 21.878 24.658ߪ̄

 ଵଵ, RFM 2.575 5.371 8.220 11.030 13.710 16.333 19.124 21.866 24.607ߪ̄

 

 

Fig. 1. Dimensionless deflections in the center of the plate. 
 
Next, we consider the problem of bending square-hinged plates with side 2ܽ ൌ 0.2	m and thickness ݄ ൌ

0.01 m from the functionally graded material Ti-6Al-4V/aluminum oxide [21]. The elastic characteristics of the 
titanium alloy (Ti-6Al-4V) are: ܧ௠ ൌ 1.057 ൈ 10ହ MPa, ߥ௠ ൌ 0.298, ceramic material (aluminum oxide): ܧ௖ ൌ
3.202 ൈ 10ହ MPa, ߥ௖ ൌ 0.26. 

The boundary conditions for the hinged support are as follows: 
 

ሶݓ ൌ 0, ሶݑ ఛ ൌ 0, ሶ߰ఛ ൌ 0, (13)
 

where ݑሶ ఛ ൌ ሶݑ ଶ݊ଵ െ ሶଵ݊ଶ, ሶ߰ݑ ఛ ൌ ሶ߰ ଶ݊ଵ െ ሶ߰ଵ݊ଶ, ݊ଵ, ݊ଶ  are the directional cosines of the normal 	 ሬ݊Ԧ	 to the contour of 
the plate 	߲ߗ. 

The structure of the solution satisfying the conditions (13) can be written as follows: 
 
ሶݓ ൌ ߱Φଵ,  ݑሶଵ ൌ ߱,ଵ Φଶ ൅ ߱Φଷ,  ݑሶ ଶ ൌ ߱,ଶ Φଶ ൅ ߱Φସ,, ሶ߰ଵ ൌ ߱,ଵ Φହ ൅ ߱Φ଺,  ሶ߰ ଶ ൌ ߱,ଶ Φହ ൅ ߱Φ଻. 

 
The calculations were performed for the following power factor values in (1): ݊ ൌ ሼ0.2,   2.0,   100.0ሽ. 

Figure 2 shows graphs of the dimensionless central deflections  ̄ݓ ൌ ݓ ݄⁄ 	 as a function of the dimensionless load 	̄ݍ ൌ
ଵ଺௤೥௔ర

ா೘௛ర
. 

It can be seen that the central deflection increases with the increase of the degree index, and the behavior 
becomes more nonlinear, since the Young’s modulus of the metal is smaller than that of the ceramic material. 

In formula (12), for the external load, we took ݍ௭଴ ൌ ௭ଵݍ ൌ 0.5 MPa. The initial step and calculation error in 
the FEM method in both test examples were set as follows:  ݐ߂଴ ൌ 10ିଷ, 	ߝ ൌ 10ିଷ. 

Consider the bending of a functionally graded plate of complex shape with elliptical cutouts (Fig. 3), which is 
subjected to a uniformly distributed load. The geometric dimensions of the plate are: ܽ ൌ 0.15 m, ܾ ൌ 0.1 m, ܿ ൌ
0.06 m, ݀ ൌ 0.07 m, and thickness ݄ ൌ 0.01 m. The plate material is the same as in the previous example. 

The equation of the boundary of the domain in Fig. 3 can be written as follows: 
 

߱ ൌ ሺ߱ଵ ∧଴ ߱ଶሻ ∧଴ ሺ߱ଷ ∧଴ ߱ସሻ ൌ 0, 
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where 

߱ଵ ൌ
1
2ܾ

ሺܾଶ െ ଶݔ
ଶሻ,			߱ଶ ൌ

1
2ܽ

ሺܽଶ െ ଵݔ
ଶሻ,			߱ଷ ൌ

ଵݔ
ଶ

ܿଶ
൅
ሺݔଶ െ ܾሻଶ

ሺܾ െ ݀ሻଶ
െ 1,			߱ସ ൌ

ଵݔ
ଶ

ܿଶ
൅
ሺݔଶ ൅ ܾሻଶ

ሺܾ െ ݀ሻଶ
െ 1. 

 
Boundary conditions corresponding to a fixed hinge are set on the plate contour: 
 

ሶݓ ൌ ሶݑ			,0 ௡ ൌ 0, ሶݑ ఛ ൌ 0, ሶ߰௡ ൌ 0, ሶ߰ఛ ൌ 0, (14)
 

where ݑሶ ௡ ൌ ሶଵ݊ଵݑ ൅ ሶݑ ଶ݊ଶ, ሶ߰௡ ൌ ሶ߰ଵ݊ଵ ൅ ሶ߰ଶ݊ଶ. 
The structure of the solution that satisfies the conditions (14) is as follows: 
 

ሶݓ ൌ ߱Φଵ, 			ݑሶଵ ൌ ߱Φଶ, 			ݑሶ ଶ ൌ ߱Φଷ,    ሶ߰ ଵ ൌ ߱Φସ,     ሶ߰ ଶ ൌ ߱Φହ. 
 
            Figures 4 and 5 are graphs of dimensionless deflections ݓ	 and stresses 	ߪଵଵ	 on the lower surface in the center 
of the plates of complex shape (solid curves) and rectangular plates (dashed curves) depending on the dimensionless 
load	̄ݍ	 and the value of the degree index ݊. It can be seen that the side cuts make the plate more rigid, reducing 
deflections and stresses. For the external load, we took ݍ௭଴ ൌ ௭ଵݍ ൌ 0.5 MPa. The initial step and calculation error 
were equal to ݐ߂଴ ൌ 10ିଷ, 	ߝ ൌ 10ିଷ. 

 
Fig. 2. Dimensionless deflections in the center of hinged FGM plates, where dots and solid lines correspond to results 
obtained by the RPIM [21] and RFM methods, respectively. 
 

 

Fig. 3. Plate with a complex shape. 
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Fig. 4. Dimensionless deflections in the plate center. 
 

 

Fig. 5. Dimensionless stresses on the bottom surface in the plate center. 
 

Conclusions. A new numerical-and-analytical method for solving bending problems of flexible plates of 
complex shapes made of functionally graded materials has been developed. The problem is formulated within the 
framework of a refined higher-order theory that considers the quadratic law of distribution of transverse tangential 
stresses along the thickness. The method is based on the use of the method of R-functions and the method of continuous 
continuation in a parameter. Test problems for plates with different fixation conditions are solved, and the agreement 
with solutions obtained by other methods is shown. The influence of material gradient properties and geometric shape 
on the stress-strain state is investigated.  
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