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DYNAMICS AND STRENGTH OF METAL-COMPOSITE CYLINDERS ON INTERNAL EXPLOSION 
AGAINST THE THICKNESS AND PROPERTIES OF METALLIC AND COMPOSITE LAYERS. 
PART 1. NUMERICAL SIMULATION OF THIN- AND MEDIUM-THICKNESS CYLINDERS 

P. P. Lepikhin, V. A. Romashchenko, S. O. Tarasovska,1           UDC 539.4 
and O. S. Beiner 

The effect of the metallic layer thickness on the stress-strain state and strength of metal-composite 
cylinders of the total constant thickness under internal dynamic pressure produced by the explosion 
of a charge evenly distributed along its axis in air at the constant total-to-running charge mass ratio 
ߦ ൌ	1.421 mm was numerically investigated. The strength of the cylinders was evaluated by the 
generalized Mises criterion. The strength of shells with a unidirectionally circularly reinforced outer 
composite layer for the composites of low tensile strength in the isotropy plane is shown to be mainly 
governed by the wave processes across the shell width. Under this condition, its dependence on radial 
and axial stresses is much higher than on the circumferential ones, which are usually much larger 
than the first two components of the stress tensor. The four composites and two designs of the 
cylinders: thin-walled and medium-thickness are examined. The cylinders are double-layered: the 
inner layer is steel (St20) and the outer layer is a circularly reinforced composite. At given ߦ and the 
total constant cylinder thickness ܪ, the optimum in strength terms ratio ߚ௢௣௧ of the metalliclayer 

thickness ݄ to ܪ is strongly dependent on ܪ, a composite (i.e., its physicomechanical characteristics) 
and varies within 0.4–0.7 for thin-walled cylinders and 0.6–0.7 for medium-thickness ones. 
Irreversible plastic energy losses in the inner steel layer have a significant impact on the shell 
strength, as a result the shock wave travelling to the outer composite layer is of lower intensity and 
the strength of the object as a whole can be ensured. The inclusion of the plastic steel layer 
deformation in thin-walled cylinder calculations significantly changes the dynamics of objects 
qualitatively but insignificantly increases the strength quantitatively, the Mises strength function can 
be reduced by less than 5% compared to an ideally elastic calculation. If the plastic metal 
deformation is accounted for medium-thickness cylinders, it significantly changes the wave patterns 
both qualitatively and quantitatively, the strength function can be reduced by almost 50% compared 
to the elastic calculation. 

Keywords: metal-composite cylinder, internal explosive loading, unidirectionally reinforced composite layer, strength, 
stress-strain state, numerical methods. 

Introduction. The dynamic stress-strain state and strength of hollow multilayer wound rotational metal-
composite (MC) shells on the internal explosion of a spherical charge in air are little investigated, with a small number 
of theoretical and experimental studies devoted this problem. The literature review is given in the previous paper of 
the authors [1], there it is noted that to date, the thickness of elastoplastic metal layers and the mechanical characteristics 
of composite layers that provide the best carrying capacity of MC cylinders under internal explosive loading have not 
been determined. 
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The one-dimensional dynamic stress-strain state and strength of wound MC cylinders were numerically 
studied and the thickness of elastoplastic metallic layers that provide the highest carrying capacity of cylinders under 
internal explosive loading in air was evaluated in [1]. At the same time, only one specific composite was studied as the 
outer layer of the MC cylinder. This investigation is going on with a study [1] to determine the optimum thickness in 
terms of strength for elastoplastic metallic layers and mechanical characteristics of composite layers from four different 
composites. As in [1], the explosive loading is simulated using the CONWEP program [2, 3] and the generalized Mises 
strength criterion [4], the simplest of the Tsai–Wu ones, is correct (i.e., satisfies the necessary and sufficient conditions 
for the strength surface existence), it can also adequately assess the composite strength at the lowest costs spent for 
criterial experiments. 

The object of the study is: to numerically investigate the strengthening behavior of an MC cylindrical double-
layer (metal–composite) shell of the total constant thickness ܪ under internal dynamic pressure from the explosion of 
a spherical charge located in the center of cylinder symmetry at the constant total-to-running charge mass ratio, to 
identify the best thicknesses of metallic layers and physicomechanical characteristics of composites that provide the 
highest carrying capacity of the double-layer MC cylinder. The inner layer is isotropic elastoplastic steel, and the outer 
layer is a circularly reinforced cylindrically transtropic elastic composite. The dynamic problem is solved in the 1D 
statement of the plane strain state at the cylinder ends to obtain the most qualitative and illustrative results. 

Mathematical Formulation and Solution Method. Consider the plane strain state of a double-layer cylinder 
under axisymmetric internal dynamic pressure from the explosion of a charge evenly distributed lengthwise and located 
in line with the axis of symmetry. In this case, the pressure pulse corresponds to the explosion of a spherical charge of 
a certain mass ܯ in air at a distance equal to the inner radius of the cylinder. The inner layer is isotropic elastoplastic 
steel of full strength in tension–compression (the equations of the Prandtl–Reuss nonhardening material flow theory 
were used [5]). The outer layer is a circularly reinforced cylindrically transtropic fully elastic composite of unequal 
tensile–compression strength with the ideal layer-to-layer contact. The problem is numerically solved by the finite 
difference method (FDM) in the cylindrical Eulerian coordinates ݔ, ߮  in view of the axial symmetry and plane strain ,ݎ ,
state on any end planes ݔ ൌ const. The finite-difference Lagrangian mesh is frozen in the medium and moves in space 
and time with it. Thus, we have the computational domains for the 1D problem: ܴ ൑ ݎ ൑ ܴ ൅ ݄ for the inner and ܴ ൅
݄ ൑ ݎ ൑ ܴ ൅  for the outer layers of the cylinder, where ܴ is the inner radius of the inner cylinder, ݄ is the thickness ܪ
of the inner steel layer, ܪ is the total thickness of the cylinder, and ܪ െ ݄ is the thickness of the outer composite layer. 
The complete system of differential equations together with initial, boundary, and contact conditions is given in [1]. 

The strength of a double-layer cylinder is estimated by the generalized Mises criterion [4], which for a 
circularly remforced cylindrically transtropic composite at the plane strain state is as follows: 
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where    and    are the ultimate strengths of the circular reinforcement direction in tension–compression, 

respectively,   and  are the same in the isotropy plane xr (߮ = const), Φ is the strength function, and  ,x  ,r , 

and   are the stress tensor components. If (1) is fulfilled, the strength is maintained. Otherwise, (Φ ൒ 1), the strength 

criterion is not satisfied, and the material is fractured in this point. The cases of isotropic and/or materials of full 
strength in tension–compression are easily obtained from (1) as partial (degenerate). Note that in all further 
calculations, the inner (first) layer is made of isotropic steel of full sirength in tension-compression and for it, the Mises 
criterion (1) degenerates into the classical fourth theory of strength [6]. 

The dynamic 1D boundary problem is numerically solved with the application package earlier developed by 
the authors  [7]. The solution method is the Wilkins time-explicit finite-difference integro-interpolation algorithm [8], 
modified by the authors for anisotropic materials and included in this package. The strength, i.e., Φ  function, is 
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calculated at each time step in each finite-difference element of the computational domain. If its maximum value over 
the entire volume of the computational domain Φ௠௔௫ was less than unity, the object was recognized as strong; 
otherwise, the strength of the cylinder as a whole was believed to be deteriorated, and the failure was recorded. 

Materials. The inner layer is isotropic elastoplastic St20 steel of full strength in tension–compression with the 
physicomechanical characteristics [6]: density ߩ ൌ	7860 kg/m3, Young’s modulus ܧ ൌ	212000 MPa, Poisson’s ratio 
ߥ ൌ	0.3, yield strength ߪ௒ ൌ	250 MPa, and ߪା ൌ ିߪ ൌ ௨ߪ ൌ	420 MPa.  

The outer layer is a cylindrically transtropic circularly reinforced elastic composite of unequal tensile–
compression strength. The four composites were examined: 

C No. 1: T300/5208 graphite epoxy with the volume fiber content ܸ ൌ	70% and physicomechanical 
characteristics [9]: ߩ ൌ	1583 kg/m3, ܧ ൌ	14,900 MPa, ߥ ൌ	0.386, ܧఝ ൌ	162,000 MPa, ߥఝ ൌ	0.283, ߪା ൌ	52.6 MPa, 

ିߪ ൌ	260 MPa, ߪఝା ൌ	1744 MPa, and ߪఝି ൌ	1650 MPa. Here, ܧఝ is Young’s modulus in the circumferential direction, 

 .ఝ is Poisson’s ratio corresponding to the circumferential direction [1, 4, 10]ߥ

C No. 2: T300/5208 graphite epoxy with the volume fiber content ܸ ൌ	40% and physicomechanical 
characteristics [9]: ߩ ൌ	1406 kg/m3, ܧ ൌ	7900 MPa, ߥ ൌ	0.436, ܧఝ ൌ	94,100 MPa, ߥఝ ൌ	0.309, ߪା ൌ	49.5 MPa, ିߪ ൌ

	220 MPa, ߪఝା ൌ	1013 MPa, and ߪఝି ൌ	940 MPa. 

C No. 3: E-glass epoxy with the volume fiber content ܸ ൌ	65% and physicomechanical characteristics [9]: 
ߩ ൌ	2112 kg/m3, ܧ ൌ	15,300 MPa, ߥ ൌ	0.332, ܧఝ ൌ	48,000 MPa, ߥఝ ൌ	0.315, ߪା ൌ	27.8 MPa, ିߪ ൌ	150 MPa, ߪఝା ൌ

	1297 MPa, and ߪఝି ൌ	820 MPa. 

C No. 4: E-glass epoxy with the volume fiber content ܸ ൌ	40% with physicomechanical characteristics [9]: 
ߩ ൌ	1750 kg/m3, ܧ ൌ	8300 MPa, ߥ ൌ	0.395, ܧఝ ൌ	30,900 MPa, ߥఝ ൌ	0.327, ߪା ൌ	27.1 MPa, ିߪ ൌ	140 MPa, ߪఝା ൌ

	798 MPa, and ߪఝି ൌ	480 MPa. 

For convenience and shortening the text, the composites to be calculated will be specified by the above 
numbers. 

Object Geometry. The inner radius ܴ of the cylindrical MC shell remained constant in all calculations, viz 
ܴ ൌ	150 mm. The three versions of MC double-layer shells classified under their total thickness ܪ are examined: 

(i) thin: ܪ ൌ	10 mm, ܪ ܴ⁄ ൌ	0.067; 
(ii) medium thickness: ܪ ൌ	20 mm, ܪ ܴ⁄ ൌ	0.133; 
(iii) thick: ܪ ൌ	40 mm, ܪ ܴ⁄ ൌ	0.267. 
The thickness of the inner steel layer ݄ varied within (0–0.8)ܪ. Thus, the  thickness ratio of the metal ߚ ൌ

݄ ⁄ܪ  varied  within 0–0.8. At ߚ ൌ 0, we have a single-layer composite shell; at ߚ ൐ 0, we have a double-layer MC 
shell.  There was no point to discuss the ߚ ൐ 0.8 cases as unattractive in terms of their practical application. 

Loading. As in [1], the explosive charge mass in the TNT equivalent ܯ was dependent on ܪ and ߚ so that the 
mass ratio ߦ ൌ ܯ ݉⁄  remained constant for each of the three shell versions. Here, ݉ is the running mass (per unit 
length) of the shell: 

݉ ൌ ሺ2ܴߚ௠ߩሾܪߨߨ ൅ ሻܪߚ ൅ ௖ሺ1ߩ െ ሻሺ2ܴߚ ൅ ܪ ൅ ሻሿ, (2)ܪߚ
 
where ߩ௠ is the metal density and ߩ௖ is the composite density. 

Thus, ܯሺߚሻ in each case was calculated by the formula 
 

ሻߚሺܯ ൌ (3) ,݉ߦ
 
where ݉ሺܪ,ߚሻ is determined from (2). 

Hereinafter ξ is constant and equal to ߦ ൌ	1.421 mm = const. The ܯ calculations were carried out by scheme 
(2)–(3). Since the 3 ܪ values (10, 20, and 40 mm), the 4 composites (ߩ௖ discretely varied from 1406 to 2112 kg/m3) 
and a wide ߚ interval (0–0.8) were discussed, the charge mass ܯ was also examined over a fairly wide range, from 
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19.46 g for the thin-walled (ܪ ൌ	10 mm) single-layer (ߚ ൌ 0) composite cylinder [C No. 2] to 400.86 g for the thick-
walled (ܪ ൌ	40 mm) double-layer (ߚ ൌ	0.8) MC cylinder [St20; C No. 3]. 

Finite-Difference Mesh Parameters. With the application package [7], the mesh step along the radial 
coordinate was constant and equal to ݀ݎ ൌ	0.1 mm. This ensured sufficient and equal calculation accuracy for all three 
shell versions. Thus, at ܪ ൌ	10, 20, and 40 mm,  the cylinder was partitioned across its width into 100, 200, and 400 
finite-difference elements, respectively. The contact surface should always coincide with the node of the computational 
domain, so the thickness ݄ of the inner steel layer could discretely change with the step ݀ݎ ൌ	0.1 mm. The time step 
was chosen automatically subject to the Kurant stability condition. The calculations were carried out to the point in 
time of 100–200 µs to fit ܪ and ߚ values and cover the first half-period of radial shell vibrations, the most dangerous 
in terms of strength [4]. If the dynamics (vibrations) of cylinders in a wider time range were of interest, some 
calculations were sometimes performed on a half as fine (and more accurate) finite-difference mesh with ݀ݎ ൌ	0.05 
mm. Hereinafter the notation is adopted: Φ௠௔௫஼ is the maximum value of the Mises strength function Φ, which is 
achieved across the  whole width of the outer composite layer at the first half-period of radial vibrations for the total 
calculated time interval ݐ௖௔௟௖, i.e., the global Φ maximum in the open rectangle (ܴ ൅ ݄ ൏ ݎ ൏ ܴ ൅ 0 ;ܪ ൏ ݐ ൏  .(௖௔௟௖ݐ

Numerical Results. 
Thin-Walled Cylinders. 
Determination of Optimum ߚ (hereafter ߚ௢௣௧) and an Outer Composite Layer of Optimum Strength. Thin-

walled (ܪ ൌ	10 mm; ܪ ܴ⁄ ൌ	10/150 = 0.0667) double-layer MC cylinders [St20; C] were examined for four outer 
composite layers and nine ߚ values,  from 0 to 0.8 with a step of 0.1 (at ߚ ൌ	0, we have single-layer composite 
cylinders). The data obtained were used to plot Fig. 1, where the solid, dashed, dot-and-dash, and dotted curves 
correspond to the MC cylinders of [St20; C No. 1], [St20; C No. 2], [St20; C No. 3], and [St20; C No. 4], respectively. 
As is seen, the MC cylinders [St20; C No. 1] and [St20; C No. 2] are of higher strength than [St20; C No. 3] and [St20; 
C No. 4]. Even single-layer (ߚ ൌ	0) shells [C No. 1] and [C No. 2] possessed quite a high safety margin in contrast to 
similar [C No. 3] and [C No. 4]. At the same time, if the MC cylinder [St20; C No. 3] started to satisfy the strength 
condition already at ߚ ൒	0.02, [St20; C No. 4] only at ߚ ൐	0.3. The MC cylinders [St20; C No. 2] were found to be of 
the highest strength, while [St20; C No. 3] were the most dangerous. Although the corresponding strength limits in C 
No. 1 are higher than those in C No. 2, and those in C No. 3 are higher than those in C No. 4, the MC cylinders [St20; 
C No. 2] are stronger than [St20; C No. 1], and [St20; C No. 4] are stronger than [St20; C No. 3]. The reason is that 
the strength of such composttes under explosive loading is primarily determined by the tensile strength ߪା in the 
isotropy plane, i.e., in the radial (ݎ) and axial (ݔ) directions. With an increase in the volume content ܸ of reinforcing 
fibers from 40 to 70% in C No. 1 compared to C No. 2 and from 40 to 65% in C No. 3 compared to C No. 4, these 
strength limits increased insignificantly compared to the density of the composites. Therefore, at fixed ߦ, the growth 
of the mass ܯ of the explosive charge will occur faster than the growth of the corresponding strength limits ߪା, and 
thus, the strength of the MC cylinder will decrease. 

From Fig. 1, determine the optimum thickness ratio ߚ௢௣௧ of the steel layer in which the  corresponding Φ௠௔௫஼ 

are minimum: 

for MC shell [St20; C No. 1] ߚ௢௣௧ ൌ	0.4; Φ௠௔௫஼൫ߚ௢௣௧൯ ൌ min ൌ	0.2138<<1; 

for [St20; C No. 2] ߚ௢௣௧ ൌ	0.5; Φ௠௔௫஼൫ߚ௢௣௧൯ ൌ min ൌ	0.1988<<1; 

for [St20; C No. 3] ߚ௢௣௧ ൌ	0.7; Φ௠௔௫஼൫ߚ௢௣௧൯ ൌ min ൌ	0.7072<1; 

for [St20; C No. 4] ߚ௢௣௧ ൌ	0.7; Φ௠௔௫஼൫ߚ௢௣௧൯ ൌ min ൌ	0.4176<<1. 

The composite of optimum strength for the outer layer was C No. 2, and the most dangerous was C No. 3. 
Effect of Plastic Deformation of the Inner Metallic Layer on the Stress-Strain State and Strength of the Outer 

Composite Layer. In all the above cases of  examining the MC cylinders (0.1൑ ߚ ൑0.8), the inner steel layer underwent 
significant plastic strains. Let us prove it by specific numerical calculations. 
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Fig.  1. The Φ௠௔௫஼ vs ߚ for four composites in the outer layers of thin-walled MC cylinders: 
(1) [St20; C No. 1], (2) [St20; C No. 2], (3) [St20; C No. 3], and (4) [St20; C No. 4]. 

 
Denote the maximum radial displacement and circumferential strain by ݑ௠௔௫ and ߝఝି	௠௔௫ ൌ ሺݑ௠௔௫ ܴ⁄ ሻ ൈ

100%, respectively, of the inner steel layer surface ݎ ൌ ܴ reached at the first half-period of radial vibrations of the 
MC cylinder. With ߚ from 0.1 to 0.8, the following results for the MC cylinders were obtained: 

[St20; C No. 1]: ݑ௠௔௫ monotonically increases from 0.3272 to 0.567 mm, ߝఝି	௠௔௫ monotonically increases 

from 0.218 to 0.378%; 
[St20; C No. 2]: ݑ௠௔௫ monotonically increases from 0.4293 to 0.6182 mm, ߝఝି	௠௔௫ monotonically increases 

from 0.286 to 0.412%; 
[St20; C No. 3]: ݑ௠௔௫ monotonically increases at 0.1൑ ߚ ൑0.3 from 0.6814 to 0.6868 mm and then at 0.3൑

ߚ ൑0.8 monotonically decreases from 0.6868 to 0.6759 mm; ߝఝି	௠௔௫ monotonically increases at 0.1൑ ߚ ൑0.3 from 

0.4543 to 0.4579% and then at 0.3൑ ߚ ൑0.8 monotonically decreases from 0.4579 to 0.4506%; 
[St20; C No. 4]: ݑ௠௔௫ monotonically decreases from 0.7985 to 0.6922 mm, ߝఝି	௠௔௫ monotonically decreases 

from 0.5323 to 0.4615%. 
The global minimum and maximum of ݑ௠௔௫ (and hence ߝఝି	௠௔௫ as well) for the MC cylinders are as follows: 

ሺݑ௠௔௫ሻ௠௜௡ = 0.3292 mm and ሺߝఝି	௠௔௫ሻ௠௜௡ ൌ	0.218% for [St20; C No. 1] at ߚ ൌ	0.1; 

ሺݑ௠௔௫ሻ௠௜௡ ൌ	0.7985 mm and ሺߝఝି	௠௔௫ሻ௠௜௡ ൌ	0.5323% for [St20; C No. 4] also at ߚ ൌ	0.1. 

For these two extreme cases at ߚ ൌ 0.1, Fig. 2 for [St20; C No. 1]) and Fig. 3 for [St20; C No. 4]) are plotted. 
They depict the time variations of the radial displacement ݑ and circumferential stress ߪఝ of the inner steel layer surface 

ݎ ൌ ܴ. As is seen, the plastic steel deformation is responsible for a significant difference in the curves, even for the 
“weakest” case [St20; C No. 1] in terms of the plastic flow (Fig. 2). For [St20; C No. 4], the displacements and strains 
were almost 2.5 times larger than those in [St20; C No. 1], and the corresponding plots differ much more (Fig. 3).  The 
plastic deformation brings about an increase in ݑ௠௔௫ at the first half-period of radial vibrations, but then their amplitude 
and frequency become smaller compared to ideally elastic solutions. The reason is that elastoplastic steel is more 
pliable than ideally elastic, and at the first half-period, when the pressure pulse from the explosion acts on the inner 
surface, it receives a larger deflection (more precisely, buckling). Starting from the second half-period and further, the 
explosive loading has practically no effect, but in the elastoplastic layer, the  irreversible energy losses for its plastic 
deformation have managed to occur and, therefore, the vibration amplitude will be smaller than for the ideally elastic 
case in which there are no energy losses by definition and vibrations occur without damping. As regards ߪఝ, starting 

from the first half-period and further in the elastoplastic problem, their amplitude is much smaller than in the ideally 
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elastic one since for the case of the nonhardening material flow theory [1, 5], the stress intensity can never exceed 
௒ߪ ൌ	250 MPa. 

The global minimum and maximum of the largest deflection (buckling) of the inner surface are reached for 
the MC cylinders with the thinnest (ߚ ൌ	0.1) inner steel layer. Therefore, for completeness of examination, Fig. 4 is 
constructed, similar to Figs. 2 and 3 with the only difference that it corresponds to the MC cylinder [St20; C No. 4] 
with the thickest (ߚ ൌ	0.8) of the  inner steel layers. At ߚ ൌ	0.8, this MC shell was most buckled among the four ones: 
௠௔௫ݑ ൌ	0.6922 mm൐0.6759 mm for [St20; C No. 3]	൐0.6122 mm for [St20; C No. 2]	൐0.567 mm for [St20; C No. 1]. 

a b 

Fig.  2. Variations of ݑሺݐሻ (a) and ߪఝሺݐሻ (b) of the inner surface of the thin-walled MC cylinder [St20; C No. 1] 

at ߚ ൌ	0.1. [Here and in Figs. 3, 4, 7, 8, and 9: the solid line corresponds to the elastoplastic inner steel layer 
௒ߪ) ൌ 250 MPa), and the dashed one corresponds to the case when St20 was considered ideally elastic (ߪ௒ ൌ
∞).] 

a b 
Fig.  3. Variations of ݑሺݐሻ (a) and ߪఝሺݐሻ (b) of the inner surface of the thin-walled MC cylinder 

[St20; C No. 4] at ߚ ൌ	0.1. 
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a b 

Fig.  4. Variations of ݑሺݐሻ (a) and ߪఝሺݐሻ (b) of the inner surface of the thin-walled MC cylinder 

[St20; C No. 4] at ߚ ൌ	0.8. 
 

Figure 4 turned out to be most representative: it clearly shows the residual plastic deflection (buckling) of 
about 0.44 mm in the elastoplastic formulation around which harmonic vibrations of the shell occur after the drop of 
looding. Strictly speaking, the residual deflection was also in other elastoplastic formulations, perhaps, somewhat 
smaller and not so clearly defined. 

In conclusion of this discussion, take a look at the effect of plastic deformation of the inner steel layer on the 
strength of the outer composite one. Let us consider the most durable and the most dangerous MC cylinders in their 
optima, i.e., at their ߚ ൌ ߚ ௢௣௧. These are, respectively, MC cylinders [St20; C No. 2] atߚ ൌ	0.5, where in the 

elastoplastic formulation Φ௠௔௫஼൫ߚ௢௣௧ ൌ 0.5൯ ൌ min ൌ	0.1988 and [St20; C No. 3] at ߚ ൌ	0.7, where in the 

elastoplastic formulation Φ௠௔௫஼൫ߚ௢௣௧ ൌ 0.7൯ ൌ min ൌ	0.7072. Time variations of Φ௠௔௫஼ for [St20; C No. 2] at ߚ ൌ

	0.5 and [St20; C No. 3] at ߚ ൌ	0.7 are shown in Fig. 5. 

a b 

Fig.  5. Variations of Φ௠௔௫஼ሺݐሻ for the optimum thin-walled MC cylinders [St20; C No. 2] (a) and [St20; C No. 3] (b). 
(Here and in Fig. 10: solid lines are elastoplastic calculation and dashed lines are ideally elastic one.) 
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The curves of the elastic and elastoplastic calculations qualitatively differ significantly from each other. With 
this, either the most dangerous points ݎ ൌ ݐ ௖௥ or the corresponding critical moments of timeݎ ൌ  ௖௥ did not alsoݐ
coincide. The quantitative difference is insignificant: 

for [St20; C No. 2] at ߚ ൌ	0.5, Φ௠௔௫஼ was equal to 0.1988 in the elastoplastic and 0.1996 in the elastic 
formulations. The relative excess of the elastic calculation over the elastoplastic one equals: ߜ ൌ	(0.1996 – 
0.1988)×100%/0.1988 = 0.4024% < 0.5%; 

for [St20; C No. 3] at ߚ ൌ	0.7, Φ௠௔௫஼ was 0.7072 in the elastoplastic and 0.7414 in the elastic formulations. 
The relative excess of the elastic calculation over the elastoplastic one equals: ߜ ൌ (0.7414 – 
0.7072)×100%/0.7072 = 4.836% < 5%. 

Medium-Thickness Cylinders. 
Determination of ߚ௢௣௧ and an Outer Composite Layer of Optimum Strength. Double-layer medium-thickness 

MC cylinders [St20; C] (ܪ ൌ	20 mm; ܪ ܴ⁄ ൌ	20/150 = 0.1333) were examined for four outer composite layers and 
nine ߚ values, from 0 to 0.8 with a step of 0.1 (at ߚ ൌ	0, we have single-layer composite cylinders). The data obtained 
were used to plot Fig. 6. The MC cylinders [St20; C No. 1] and [St20; C No. 2] as well as thin-walled cylinders are of 
higher strength than [St20; C No. 3] and [St20; C No. 4]. Even single-layer (ߚ ൌ	0) shells [C No. 1] and [C No. 2] 
possessed quite a high safety margin in contrast to similar [C No. 3] and [C No. 4]. At the same time, if the MC cylinder 
[St20; C No. 4] started to satisfy the strength condition already at ߚ ൐	0.27, [St20; C No. 4] only at ߚ ൐	0.515. As 
before, the MC cylinders [St20; C No. 2] were the most durable, while [St20; C No. 3] were the most dangerous. The 
MC cylinders [St20; C No. 2] are stronger than [St20; C No. 1] and [St20; C No. 4] are stronger than [St20; C No. 3] 
for the same reasons as for thin-walled cylinders. 
 

 
Fig.  6. The Φ௠௔௫஼ vs ߚ for four composites in the outer layers of medium-thickness MC cylinders: 
(1) [St20; C No. 1], (2) [St20; C No. 2], (3) [St20; C No. 3], and (4) [St20; C No. 4]. 

 
From Fig. 6, determine the optimum thickness ratio ߚ௢௣௧ of the steel layer in which the corresponding Φ௠௔௫஼ 

are minimum: 

for MC cylinder [St20; C No. 1] ߚ௢௣௧ ൌ	0,6; Φ௠௔௫஼൫ߚ௢௣௧൯ ൌ	min = 0.287<<1; 

for [St20; C No. 2] ߚ௢௣௧ ൌ	0.7; Φ௠௔௫஼൫ߚ௢௣௧൯ ൌ	min = 0.2079<<1; 

for [St20; C No. 3] ߚ௢௣௧ ൌ	0.6; Φ௠௔௫஼൫ߚ௢௣௧൯ ൌ	min = 0.8792<1; 

for [St20; C No. 4] ߚ௢௣௧ ൌ	0.7; Φ௠௔௫஼൫ߚ௢௣௧൯ ൌ	min = 0.5773<<1. 

The composite of optimum strength for the outer layer was C No. 2, and the most dangerous was C No. 3. 
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Effect of Plastic Deformation of the Inner Metallic Layer on the Stress-Strain State and Strength of the Outer 
Composite One. In all the above cases of examining MC cylinders (0.1൑ ߚ ൑	0.8), the inner steel layer underwent 
significant plastic strains. Let us prove this by specific numerical calculations: with ߚ from 0.1 to 0.8, the following 
results were obtained: 

[St20; C No. 1]: ݑ௠௔௫ monotonically grows from 0.3026 to 0.5012 mm; ߝఝି௠௔௫ monotonically grows from 

0.202 to 0.334%; 
[St20; C No. 2]: ݑ௠௔௫ monotonically grows from 0.4067 to 0.5402 mm; ߝఝି௠௔௫ monotonically grows from 

0.271 to 0.360%; 
[St20; C No. 3]: ݑ௠௔௫ monotonically decreases from 0.6289 to 0.5853 mm, ߝఝି௠௔௫ monotonically decreases 

from 0.419to 0.390%; 
[St20; C No. 4]: ݑ௠௔௫ monotonically decreases from 0.7235 to 0.5958 mm, ߝఝି௠௔௫ monotonically decreases 

from 0.482 to 0.397%. 
The global minimum and maximum of ݑ௠௔௫ (and hence ߝఝି௠௔௫ as well) for all MC cylinders are as follows: 

ሺݑ௠௔௫ሻ௠௜௡ ൌ	0.3026 mm and ሺߝఝି	௠௔௫ሻ௠௜௡ ൌ	0.202% for [St20; C No. 1] at ߚ ൌ	0.1; 

ሺݑ௠௔௫ሻ௠௜௡ ൌ	0.7235 mm and ሺߝఝି	௠௔௫ሻ௠௜௡ ൌ	0.482% for [St20; C No. 4] also at ߚ ൌ	0.1. 

For these two extreme cases at ߚ ൌ	0.1, Fig. 7 for [St20; C No. 1] and Fig. 8 for [St20; C No. 4] are plotted. 
They depict the time variations of the radial displacement ݑ and circumferential stress ߪఝ of the inner steel layer surface 

ݎ ൌ ܴ. As is seen, the plastic steel deformation is responsible for a significant difference in the curves even for the 
“weakest” case [St20; C No. 1] in terms of the plastic flow (Fig. 7). For [St20; C No. 4], the displacements and strains 
were almost 2.4 times larger than those in [St20; C No. 1], and the corresponding plots differ much more (Fig. 8). The 
qualitative effects of plastic deformation of the inner steel layer are the same as those for the thin-walled cylinders. 

a b 

Fig. 7. Variations of ݑሺݐሻ (a) and ߪఝሺݐሻ (b) of the inner surface of the medium-thickness MC cylinder 

[St20; C No. 1] at β = 0.1. 
 

The global minimum and maximum of the largest inner surface deflection (buckling) are also reached for the 
MC cylinders with the thinnest (ߚ ൌ	0.1) inner steel layer. Therefore, for completeness of examination, Fig. 9 is 
constructed, similar to Figs. 7 and 8 with the only difference that it corresponds to the MC cylinder [St20; C No. 4] 
with the thickest (ߚ ൌ	0.8) of the inner steel layers. At ߚ ൌ	0.8, this MC shell was most buckled among the four ones: 
௠௔௫ݑ ൌ	0.5958 mm൐0.5853 mm for [St20; C No. 3]	൐0.5402 mm for [St20; C No. 2]൐0.5012 mm for [St20; C No. 1]. 
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a b 

Fig. 8. Variations of ݑሺݐሻ (a) and ߪఝሺݐሻ (b) of the inner surface of the medium-thickness MC cylinder 

[St20; C No. 4] at β = 0.1. 
 

As before, Fig. 9 turned out to be most representative: it clearly shows the residual plastic deflection (buckling) 
of about 0.36 mm in the elastoplastic formulation around which the harmonic vibrations of the shell occur after the 
drop of loading. Strictly speaking, the residual deflection was also in other elastoplastic formulations, perhaps, 
somewhat smaller and not so clearly defined. 

a b 

Fig. 9. Variations of ݑሺݐሻ (a) and ߪఝሺݐሻ (b) of the inner surface of the medium-thickness MC cylinder 

[St20; C No. 4] at β = 0.8. 
 

In conclusion of this discussion, take a look at the effect of plastic deformation of the inner steel layer on the 
strength of the outer composite one. Let us consider the most durable and the most dangerous MC cylinders in their 
optima, i.e., at their ߚ ൌ ߚ ௢௣௧. These are, respectively, MC cylinders [St20; C No. 2] atߚ ൌ	0.7, where in the 
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elastoplastic formulation, Φ௠௔௫஼(	ߚ௢௣௧ ൌ 0.7) = min = 0.2079 and [St20; C No. 3] at ߚ ൌ	0.6, where in the elastoplastic 

formulation, Φ௠௔௫஼(	ߚ௢௣௧ ൌ 0.6) = min = 0.8792. Time variations of Φ௠௔௫஼ for [St20; C No. 2] at ߚ ൌ	0.7 and [St20; 

C No. 3] at ߚ ൌ	0.6 are shown in Fig. 10. 

a b 

Fig. 10. Variations of Φ௠௔௫஼ሺݐሻ for the optimum medium-thickness MC cylinders [St20; C No. 2] (a) 
and [St20; C No. 3] (b). 

 
The curves of the elastic and elastoplastic calculations differ significantly from each other both qualitatively 

and quantitatively. With this, either the most dangerous points ݎ ൌ  ௖௥ or the corresponding critical moments of timeݎ
ݐ ൌ ௖௥ݐ  did not also coincide. The quantitative difference in contrast to the thin-walled shells can also be significant: 

for [St20; C No. 2] at ߚ ൌ	0.7, Φ௠௔௫஼ was equal to 0.2079 in the elastoplastic and 0.2702 in the elastic 
formulations. The relative excess of the elastic calculation over the elastoplastic one equals: ߜ ൌ (0.2702 – 
0.2079)×100%/0.2079 = 30%; 

for [St20; C No. 3] at ߚ ൌ	0.6, Φ௠௔௫஼ was 0.8792 in the elastoplastic and 1.314 in the elastic formulations. 
The relative excess of the elastic calculation over the elastoplastic one equals: ߜ ൌ (1.314 – 0.8792)×100%/0.8792 = 
49.454% ≈ 50%. 
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