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DETERMINATION OF THE EFFECT

OF A MODE I SURFACE CRACK CROSS-SECTIONAL SHAPE

ON THE CHARACTERISTICS OF THE FORCED BENDING VIBRATIONS

OF A CANTILEVER BEAM

E. O. Onyshchenko,
1
A. P. Zinkovskii, UDC 620.179.1

and V. V. Matveev

The results of computational experiments for determining the effect of a mode I surface fatigue

crack cross-sectional shape in a rectangular cantilever beam on the characteristics of its free and

forced bending vibrations with varying cross-sectional dimensions of the crack and its longitudinal

position are presented. Finite-element models of beams with 8-node 3D finite elements were

developed for carrying out investigations. Three types of a breathing crack cross-section were

considered: rectangular, triangular, and trapezoidal one, with the solution of a contact problem to

ensure the non-penetration of crack edges. Plots of relative change in the natural frequency of

vibration, the amplitudes of the first and second harmonics and their ratios at the main, super- and

subharmonic resonances versus the shape, relative area and location of the crack were obtained. It

is shown that when bending vibrations of the beam with a rectangular crack, are excited along the

axis Oy, there arise displacements only in the direction of driving force, while in the case of

triangular and trapezoidal cracks, there arise additional displacements along the axis of minimum

stiffness, Oz. It was found that the change in the natural frequency of the beam, as well as the ratio

of the amplitudes of dominant harmonics during the recording of vibrations along the excitation

axis at the main, super- and subharmonic resonances increase with increasing relative area of the

crack cross-section. Under this condition, their largest value was characteristic of a rectangular

crack, and the smallest of a triangular one. It was noted that a characteristic indicator of the

asymmetric shape of the crack was the appearance of vibrations in the plane perpendicular to the

excitation plane.

Keywords: rectangular, triangular, trapezoidal breathing crack, bending vibrations, main, super- and subharmonic

resonances, vibration amplitude.

Problem Statement. The nucleation and development of surface fatigue cracks in structural elements is a

complex process, which depends on many factors, such as the presence of stress concentrators, load type, operating

conditions and time, etc. But, regardless of the conditions of the occurrence and growth rate of such damages, their

timely detection will allow to avoid further negative consequences associated with the failure of machine parts. In

order to solve this urgent scientific and technical problem, intensive research is carried out, as evidenced by the large

volume of publications. However, the results of their analysis show that today there is no universal way to diagnose

the presence of such fatigue cracks.
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The most effective methods include vibrodiagnostic methods, which are based on the inter relationship

between the characteristics of the crack (depth or sectional area, location) and change in the stiffness of structural

elements and, as a consequence, change in the natural frequency and mode of vibrations [1–3], dissipative properties

[4], as well as the appearance of nonlinear effects upon the excitation of forced vibrations [5–7].

The Pisarenko Institute of Problems of Strength of the National Academy of Sciences of Ukraine proposed

approximate analytical and numerical methods for determining the vibration diagnostic parameters indicating the

presence of a mode I breathing crack in beams of rectangular cross-section and showed their significant dependence

on the crack size and location, and the features of bending vibration excitation [8–10]. However, the methods have

been developed under the condition that the front of the fatigue crack is a straight line parallel to the neutral line of

the beam cross-section, that is, its shape is rectangular. In the general case, the crack front can represent a straight

line at an angle to the neutral line or a curve, such as a parabola [11, 12].

Papers [13–16] present the results of computational and experimental studies to determine the influence of

the rectangular and trapezoidal shapes of cracks on the natural frequencies of the vibrations of a cantilever beam of

rectangular cross-section in a wide range of varying their dimensions and location along the beam length. Note that

in these works, when modeling the crack, only its influence on the change in the elastic properties of the beam was

taken into account. However, taking into account the change in the inertial characteristics of the beam due to the

presence of a crack makes it possible to establish more generalized laws of formation of its natural frequencies of

vibrations [17]. In addition, note that in [17], as well as in [13–16], the nonlinearity of the beam vibrations caused by

the presence of a breathing fatigue crack was not studied.

The possibility of nonlinear effects under forced vibration of a beam with fatigue crack and their influence

on its natural frequencies and the vibration amplitude spectrum were considered in [1–11, 18, 19].

Analysis of the known results of studies of forced vibrations of beams with fatigue cracks shows that the

influence of the geometry of the front on the formation of their characteristics has not been studied enough.

The aim of this study is to computationally investigate the influence of the position of the mode I fatigue

crack front as a straight line relative to the neutral line of a solid beam on its characteristics of free and forced

vibrations when varying the cross-sectional dimensions of the crack and its longitudinal position.

The Object of the Study and Its Finite-Element Modeling. We consider a cantilever beam of rectangular

cross-section with appropriate geometric parameters: l 0.23 m, h 0.02 m, and b 0.004 m (Fig. 1). The material

properties are as follows: elastic modulus E 2 10
11

Pa, density 7800 kg/m
3
, Poisson’s ratio 0.3,

logarithmic decrement of vibration 0.01, and friction coefficient f 0.2.

To solve the problem, modern software packages based on the finite element method allow one to consider

different types of modeling the research object (linear, two-dimensional or three-dimensional ones) and to take into

account its loading conditions, close to operational ones, as well as the full interaction of the crack edges in the

vibration process according to the results of solving the contact problem.
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Fig. 1. FE model of a cantilever beam of rectangular cross-section with a breathing fatigue crack: x0 and

xc are the site of recording vibration characteristics and the crack position, respectively.



When creating a finite-element (FE) calculation model of the beam, we used eight-node elements. Each node

of had three degrees of freedom, which made it possible to determine the displacements in any node of the beam

along each of its axes.

The breathing crack was constructed in the form of a mathematical cross-section, i.e., two surfaces (crack

edges) with zero distance between them, which had a common section line – the front as a straight line at an arbitrary

angle to the median plane of the beam. It was assumed that during its vibrations, the cross-sectional dimensions of

the crack remained unchanged. The mechanism of alternating crack opening and super closure was taken into

account by solving a contact problem. Considering this, contact elements are imposed on the crack edges. To ensure

FE contact, the mesh on both surfaces must be identical. The crack edges were considered as a contact pair, which

consisted of a target surface and a contact surface with a given coefficient of friction, which ensured their mutual

non-penetration. So, in the process of vibrations, the stiffness of the beam changed depending on the contact of the

crack edges. If the surfaces were not in contact, the crack was completely open, when they were in direct contact, the

crack was closed, and the beam behaved as a solid body. If the surfaces were partially in contact, there was a

transient crack opening and closure process.

Since we considered a cantilever beam, any displacement of its end elements at the position x 0 were zero.

The forced vibrations of the beam were excited by a harmonic force P tsin( ), where P is the driving force

amplitude, and is the excitation frequency applied to the free end.

The Main Principles of Numerical Calculation of the Forced Vibrations of a Beam. To carry out the

research on determining the characteristics of the forced vibrations of a beam with a breathing fatigue crack, we used

a numerical method of calculation using the created FE model of the beam. The forced bending vibrations of the FE

model of the beam are described by the differential equation

[ ]{ } [ ]{ } [ ]{ } { ( )},M u D u K u P t (1)

where [ ]M and [ ]D are the inertial and dissipative matrices of the system, [ ]K is the stiffness matrix, { },u { },u and

{ }u are the column vectors of displacement, velocity, and acceleration, respectively, and { ( )}P t is the column vector

of the external harmonic load. The stiffness matrix [ ]K depends on the mutual position of contacting crack surfaces

and is determined using the Newton–Raphson method. The dissipative matrix [ ]D is represented in the form of the

Rayleigh model, which in the case of internal energy dissipation, has the form

[ ] [ ],D K (2)

where

2
2

0

for the decrement of vibration , which is independent of the amplitude of deformation, 0 is the

natural frequency of beam vibrations.

The solution of Eq. (1) was carried out by time integration using Newmark’s method [20] with the following

initial conditions: { } ,u 0 0 { } ,u 0 0 and { } .u 0 0 The vibrations of the beam were studied in the 1s time interval,

which was approximately 300 periods of vibrations. This number of periods at the decrement of vibration

0.01 was sufficient to fix steady-state vibrations (Fig. 2).

The fast Fourier transform (FFT) procedure was used to determine such characteristics as the resonant

frequency and amplitude spectrum of beam vibrations.

Results of Numerical Studies. According to the problem statement, three types of the cross-section of a

breathing fatigue crack were considered (Fig. 3).

The geometric dimensions of the crack cross section for the three values of its relative area F bhc , are

given in Table 1, where Fc is the area of the crack.

Numerical studies of forced vibrations of the beam were carried out at a disturbing force P amplitude of 1

N for the main resonance and 100 N for the super- and subharmonic resonances.

Let us analyze the influence of the crack model on the resonant frequency of the beam at the main

resonance. The amplitude-frequency characteristics (AFC) of an intact beam and a beam with an open and a
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breathing triangular crack with a relative cross-sectional area 0.125 and the location x lc 01. were determined

(Fig. 4). For the beam with a breathing crack, the conditions of contact of its edges were set after the calculation of

the natural frequencies of vibrations of the intact beam and the beam with an open crack, after which the problem of

its forced vibrations was solved. The vibration excitation frequency of such a beam was chosen between the natural

frequencies of the first two beams.

Analysis of the obtained AFCs shows that the maximum value of the amplitude of the main resonance at the

assumed constant decrement of vibrations practically does not depend either on the presence of the crack or on its

model. This means that, in this case, this characteristic of forced vibrations cannot be used as a vibrodiagnostic

indicator of the presence of a crack.
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TABLE 1. Geometric Dimensions of the Cross Section of Cracks under Investigation (m)

Rectangular Triangular Trapezoidal

0.125 à 0 0025. à 0 01.

b
1

0 002.

à
1

0 0045.

a
2

0 0005.

0.1875 à 0 00375. a 0 01.

b
1

0 003.

a
1

0 006.

a
2

0 0015.

0.25 à 0 005. a 0 01.

b
1

0 004.

a
1

0 0075.

a
2

0 0025.

Fig. 2. Time dependence of the displacement of the free end of a cracked rod.

a b c

Fig. 3. Cross-sectional shapes of a breathing crack: (a) rectangular; (b) triangular; (c) trapezoidal.



Under real conditions, some change in the damping properties of the beamin the presence of a crack and,

accordingly, a change in the value of the maximum amplitude are possible. However, it is practically impossible to

estimate the presence and size of the crack from the value of this amplitude, since a number of operational factors,

such as amplitude level, frequency value, cyclic loading time and temperature conditions before performing

vibrodiagnostics, can influence the value of the damping property of the beam before the appearance of a crack of

any size.

In [17, 21], it was shown that the following characteristics of forced vibrations can be used as

vibrodiagnostic parameters indicating the presence of cracks: the change in the natural vibration frequency of the

damaged beam 1 0c , where c is the natural vibration frequency of the beam with a breathing crack, and

the ratio of the amplitudes of dominant harmonics the main resonance À À À2 1 2 1/ . Noteworthy is that under

monoharmonic vibration excitation for the beam in the absence of or with an open crack, we have À2 1 0/ .

Further numerical studies of the forced vibrations of the beam were carried out in the presence of breathing

cracks (Fig. 3). Considering this, a study was performed for three variants of their dimensions, which were chosen so

that for each of them, the relative cross-sectional area of the cracks remained constant.

Figure 5 shows plots of first and second harmonic vibration amplitudes under excitation at the main resonance

of the beamversus the vibration recording site at the relative parameters of the crack 0.25 and x lc 0.1.

As can be seen from the obtained data, the displacements of the beamwith a rectangular crack occur only

along the Oy-axis, that is, in the direction of driving force. In the case of triangular and trapezoidal cracks, there arise

additional displacements along the minimum stiffness axis Oz, which also decompose into two dominant harmonics

(Fig. 5b and c).

Plots of the change in the natural frequency of the rod, , and the ratio of the amplitudes of the dominant

harmonics along each of the axes [A y A y A y2 1 2 1/ ( ) ( ) ( ), A z A z A z2 1 2 1/ ( ) ( ) ( )] under main resonance excitation

for selected shapes of a transverse crack versus its relative area and location x lc were also obtained (Fig. 6).

As can be seen from the above data, the change grows with increasing relative cross-sectional area of the

crack regardless of its shape. In this case, the largest value of is characteristic of a rectangular crack and the

smallest of a triangular one. As the crack moves to the free end of the rod, this value decreases.

The analysis of the obtained plots for the amplitude ratio À2 1/ shows: along the axis Oy, the value of the

parameter À ó2 1/ ( ) for the triangular crack practically does not change with increase in , while for the other two

shapes it slightly increases, but does not exceed 0.012; along the Oz axis, the values of A z2 1/ ( ) significantly

increase and change from 0.06 to 0.2 with increasing . For the trapezoidal crack, they are somewhat larger. When

the crack position along the beam length changes, the largest value of the vibration parameter A z2 1/ ( ) is achieved at

x lc 0 4. . So, the mode of beam vibrations along the Oz-axis changes significantly.
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Fig. 4. AFC of an intact beam(solid line), with an open (dashed line) and a breathing (dash-dotted line)

triangular crack with the relative cross-sectional area 0 125. and position x lc 0.1.
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a b

c

Fig. 5. Plots of the first ( ) and second ( ) harmonics vibration amplitudes versus the site of vibration

recording along the axes Oy (solid lines) and Oz (dashed lines) for rectangular (a), triangular (b) and

trapezoidal (c) cracks with the relative parameters 0.25 and x lc 0.1.

a a

Fig. 6. Plots of the relative change in the natural frequency of vibration ( dashdot lines) and the ratio of the

amplitudes of the dominant harmonics along the axes Oy (solid lines) and Oz (dashed lines) of a beam with

rectangular ( ), triangular ( ), and trapezoidal ( ) cracks versus the relative area at x lc 0.1 (a) and the

location x lc at 0.25 (b).



The presence of multiple harmonics in the forced vibration spectrum at the frequency which is equal to the

resonance vibration frequency of the beam with a breathing crack makes possible the excitation of resonant modes at

multiple frequencies. Therefore, similarly to the main resonance, a study was conducted to determine the effect of
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a b

c d

e f

Fig. 7. Plots of first ( ) and second ( ) harmonic vibration amplitudes versus the site of vibration

recording along the axes Oy (solid lines) and Oz (dashed lines) for rectangular (a, b), triangular (c, d), and

trapezoidal (e, f) cracks during the excitation of super- (a, c, e) and subharmonic (e, d, f) resonances.



selected shapes of transverse crack on the excitation of vibrations at the frequencies of the superharmonic resonance

of order 1/2 and subharmonic resonance of order 2. Figure 7 shows plots of dominant harmonics versus the vibration

recording site at 0.25 and x lc 01. , and Fig. 8 shows the corresponding values of the ratio of the amplitudes of

dominant harmonics: second-to-first one (À À À2 1 2 1/ ) at the superharmonic resonance and first-to-second one

(À À À1 2 1 2/ ) at the subharmonic resonance.

As with the main resonance, the beam with a rectangular crack vibrates only along the axis of vibration

excitation and has the greatest value of the amplitude ratio in both nonlinear resonant modes compared with the other

two crack shapes. The trend of the plots of À2 1/ ( ) for triangular and trapezoidal cracks is almost identical and

differs only quantitatively.

As can be seen from Fig. 8, the ratio of the amplitudes of the dominant harmonics when recording vibrations

along the excitation axis at both super- and subharmonic resonances increases with cross-sectional area of cracks.

However, along the Oz-axis, first an increase in the ratio of the amplitudes of the dominant harmonics, followed by a

decrease for both types of nonlinear resonance are noted.

Let us consider the influence of the crack shape on the percentage change in natural frequency and the value

of the ratio of the amplitudes of the dominant harmonics at the main, super- and subharmonic resonances in the Oy

plane. Thus, at the relative crack area 0.125, 0.1875, and 0.25, the value for the trapezoidal crack reaches

80, 77, and 75%, respectively; for the triangular crack, it is 40, 45, and 50% of the value for the rectangular crack.

For À2 1/ , in the case of trapezoidal crack we get 95, 83, and 70% for triangular crack, 85, 81, and 40%, respectively.

For À2 1/ , in the case of trapezoidal crack we get 90, 81, and 83%, for triangular crack 40, 60, and 66%. For À1 2/ , in

the case of trapezoidal crack we get 80, 65, and 70%, for triangular crack 20, 11, and 45%. That is, these values are

lower and, in some cases, significantly lower than those for the rectangular crack.

A characteristic indicator of the asymmetric shape of the crack, as was shown above, is the appearance of

vibrations in the plane perpendicular to the excitation plane. Taking this into account, at relatively smaller values,

the indicators À2 1/ and À1 2/ in the plane Oz are even higher than those in the plane of excitation for a rectangular

crack. But the ignorance of the crack shape creates a problem in estimating its possible area.

Figure 9 shows plots of the amplitude ratio of the dominant harmonics versus the location of a triangular

crack at 0.25. It can be seen that as the crack approaches the free end of the beam, both at the super- and
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a b

Fig. 8. Plots of the ratio of the amplitudes of the dominant harmonics at the super- (a) and subharmonic (b)

resonances along the axes Oy (solid lines) and Oz (dashed lines) of a beam with rectangular ( ), triangular

( ), and trapezoidal ( ) cracks versus the relative cross-sectional area at x lc 0.1.



subharmonic resonances, the value of the amplitude ratio decreases. Only for the crack x lc 0.4, the value of this

ratio along the Oz axis is higher than along the Oy axis, which can be explained by a significant change in the

mode of vibrations in the presence of a crack in this position. Even in the case of quite a large crack of the size

0.25 in the position near the free end of the rod, this value is very small at both super- and subharmonic

resonances. So, in this case, it is practically impossible to detect a crack using the ratio of the amplitudes of dominant

harmonics.

Conclusions. Based on the results of numerical studies of the forced vibrations of a cantilever beam of

rectangular cross-section with cracks of different configurations, it was established that when a non-uniform

triangular or trapezoidal crack appeared, there arised additional displacements in the plane of minimum stiffness

upon the excitation of bending vibrations. The ratio of the amplitudes of the dominant harmonics of displacements

both at the main resonance and at the nonlinear super- and subharmonic resonances depended largely on the crack

configuration. These ratios reached their maximum in rectangular cracks and minimum in triangular cracks. So, if

these ratios are observed, a problem arises not only in determining the size or location of the crack, but also in

establishing the geometric shape of the damage, since the same values of the vibration characteristics correspond to

different damage values of structural elements.
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