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ELASTOPLASTIC ANALYSIS OF ULTIMATE BEARING CAPACITY

FOR MULTILAYERED THICK-WALLED CYLINDERS

UNDER INTERNAL PRESSURE
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The elastoplastic analysis based on the unified strength theory was performed to evaluate the

ultimate bearing capacity of double- and multilayered thick-walled cylinders. The theory provides a

new concept and method for the analysis of thick-walled cylinders. The solutions derived herein are

widely applicable and can quantitatively account for different tension-compression strength values

and mean principal stress. The fundamental solutions for single radii, assemblage pressure, and

shrink range are derived with the yield condition of the theory. The traditional existing elastoplastic

results by the Tresca or von Mises yield criteria can be seen as a particular case of the new

solutions that can overcome shortcomings. The strength parameter, tension-compression strength

ratio, radii ratio, and combined cylinder layers were taken as major theory variables for the unified

solutions. The new solutions are versatile and can be adapted to the existing formulas, to more

accurately calculate the structural stress conditions. The strength theory effect due to adopting

different yield criteria is quite significant, which cannot be underestimated.

Keywords: mechanical property, elastoplastic analysis, thick-walled cylinder, intermediate principal stress, unified

strength theory.

Introduction. Thick-walled cylinders are widely used in mechanical engineering, civil engineering,

aerospace, chemical engineering, etc. [1–8]. In mechanical engineering, the shrink fit between a transmission shaft

and sleeve, shaft and hub belong to a combined thick-walled cylinder [9–14]. To improve the ultimate bearing

capacity, the method of increasing wall thickness is limited when the inner radius of a thick-walled cylinder is fixed.

However, two or more thick-walled cylinders are used to form multilayered combined cylinders by means of

interference fit, and the stress distribution is more reasonable than that of a single integral thick-walled cylinder [15].

Multilayered combined thick-walled cylinders are mostly designed with equal strength; that is, when the container

fails, the inner and outer cylinders are simultaneously damaged [16–18]. Many researchers have studied the

optimization design and stress intensity factor for combined thick-walled cylinders by the Tresca yield criterion, but

it is not applicable to tensile-compressive anisotropic materials and does not consider the intermediate principal

stress. Until now, the limit analysis of multiple thick-walled cylinders rarely reported in the literature. The

elastoplastic bearing capacity solutions herein for double-layered and multilayered combined thick-walled cylinders

are presented with unified strength theory (UST), which fully considers the influence of the intermediate principal

stress and strength difference. In addition, the separate radius, assemblage pressure and shrink range fundamental

solutions are derived from the UST.
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1. Theoretical Method.

1.1. Unified Strength Theory. The UST was developed based on orthogonal octahedron of a twin shear

element model, which mathematical expression was introduced in [19]
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F and �F are functions of principal stress

strength theory, �1, � 2 , and � 3 are the major, intermediate, and minor principal stresses, respectively, � t , � c ,

and 
 s are the tensile, compressive and shear yield strengths, respectively, � denotes the tension-compression

strength ratio, and b is a preset parameter of different failure criteria, which range is 0 1� �b .

1.2. Yield Condition. Under axisymmetric plane strain conditions, the tangential stress �
�

and radial stress

� r are the principal stresses �1 and � 3 , respectively; the axial stress � z is the mean principal stress � 2 . If

� � �1 2 3	 	 , the following expression is valid:
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Equation (3) can be rewritten as follows:
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where Eq. (4) is the yield condition of a thick-walled cylinder based on the UST.

2. Fundamental Solutions of Double-Layered Cylinder. A thick-walled cylinder with inner radius ri and

outer radius ro bears inner pressure p1 and outer pressure p2 . The elastic stresses can be derived as in [19]:
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where � r and �
�

are radial and tangential stresses, respectively.
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2.1. Assemblage Pressure. Figure 1a shows a double-layered cylinder made of the same material with an

inner radius ri , outer radius ro , and separate radius rc . Figure 1b and 1c shows a combined cylinder composed of

the inner cylinder (with inner radius ri and outer radius rc � �1) and outer cylinder (with inner radius rc � � 2 and

outer radius ro ), respectively. It is assumed that the material of both cylinders is identical. When assembling, the

outer cylinder needs to be heated to increase it inner radius and place it over the inner one. Upon cooling, a certain

contact (assemblage) pressure between both cylinders is generated.

As shown in Fig. 1b and 1c, the shrink range � in the assemblage zone is determined as

� � �� �2 1. (6)

According to theory of elasticity, the assemblage pressure equation takes the following form [15]:
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where E is the cylinder material’s elastic modulus under plane strain conditions.

Equation (7) implies that the assemblage pressure p can be determined if the shrink range � and separate

radius rc are given; thereby, the assemblage stress generated in the inner and outer cylinders can be obtained.

2.2. Separate Radius and Assemblage Shrink Range. The optimal solution of the separate radius rc and

shrink range � for assemblage containers made of the same material can be established by utilizing the inner wall of

the inner cylinder and inner wall of the outer cylinder simultaneously to satisfy the yielding condition. It is assumed

that the inner cylinder bears inner pressure p1 and assemblage pressure p at r rc� . To ensure that the inner and

outer cylinders yield at the same time, the inner cylinder at r ri� should have the same pressure as that of the outer

cylinder at r rc� , where the stress at the interface can be expressed from Eq. (4) as
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(1) An inner cylinder comes under internal pressure p1 at the inner wall and external pressure q at the

outer wall. Then, the external pressure q is defined as

q p r r rc
� �

�

� | , (8)

where � r r rc
|
�

denotes the radial stress at r rc� under the internal pressure p1, which is formulated as follows:
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Fig. 1. Double-layered thick-walled cylinder: (a) double-layered cylinder; (b) inner cylinder; (c) outer cylinder.
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(2) An outer cylinder bears inner pressure q at the inner wall and zero pressure at the outer wall, i.e.,

� r r ro
| .
�

� 0 For the inner cylinder, the following equation obtained from Eq. (5) at r ri� is given as
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For the outer cylinder, the stress component is deduced by setting r rc� in Eq. (5) as
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By integrating Eqs. (10) and (11), the following equation can be manipulated as
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where k1, k2 , and k3 are defined as k b1 2 2 2� � � � , k b bm2 2 2 2 2� � � �� � , and k b bm3 6 6 2 2� � � �� � ,

respectively. Then, Eq. (12) can be simplified as
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By substituting Eq. (13) into
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The function equation f has a minimum value, where the function must satisfy df drc � 0. Then, the

separate radius is given as

r r rc o i� . (15)

By introducing Eq. (15) into Eq. (13), the following expression is obtained:
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Then, the assemblage pressure p is generated as
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If the combined cylinder yields, by integrating Eq. (16) and using the yield condition with Eq. (10), that is,

2 2

2 2

2 2

2 2

2 2

1

2

2 2

� �

�

� �

�

�

�

�

b bm

b

r r p r q

r r

bm

b
p

i c c

c i

� � �[( ) ]

1 �� s, the internal pressure p1 can be transmuted as

p
k r k r k r r

k r k r

b
o i o i

o i

s1

3

2

2

2

1

2

1 2

2

2
2 2�

� �

�

�

( )

( ) .� (18)

By integrating Eqs. (5), (15), and (17), the assemblage shrink range can be expressed as
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3. Elastoplastic Analysis of the Double-Layered Cylinder. An infinitely long cylinder with yield strength

� s1 of the inner cylinder and yield strength � s2 of the outer cylinder satisfies � �s s1 2� . Figure 2 shows a

double-layered cylinder with inner radius ra , outer radius rb , and separate radius rc which is subjected to uniform

pressure p1. When both the inner and outer cylinders reach the plastic limit state, the plastic ultimate load of the

combined cylinder can be determined.

The stress equilibrium equation for a thick-walled cylinder can be obtained as [15]
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By combining Eqs. (4) and (20), the following equation is obtained:
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By integration, the radial stress � r is derived as
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where C is an unascertained coefficient.
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With the stress boundary situation, � r p� � 1 and � �s s� 1 at r ri� , the constant C can be expressed as
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where pl is the plastic limit internal pressure. Then, Eq. (22) takes the following form:
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With the outer boundary condition, � r q� � at r rc� , the following formula is given by
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The plastic limit pressure q of the outer cylinder takes the following form [21]:
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After substituting Eq. (26) into Eq. (25), pl is taken as
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It can be seen from Eq. (27) that the plastic allowable pressure of a combined cylinder with different

materials is not a simple superposition of the plastic ultimate bearing capacity of a two-layer cylinder. This result is

different from the analysis result based on the Tresca yield. The plastic allowable bearing capacity of the combined

cylinder with the same material can be obtained by setting � � �s s s1 2� � in the above equation as follows:
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where m is an empirical coefficient, which value is presented by theory and experiment [20]. For simplicity, the

general approximation is m �1, then Eq. (28) is reduce to:
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where the degradation formula in Eq. (29) herein is the same as the corresponding result in [21].

It can be seen from the above equation that the structural plastic ultimate capacity with the same material is

related to the radius ratio r ri o , strength parameter b, and tension-compression ratio � and is independent of the

separate radius rc and assemblage pressure p. That is, a composite cylinder of the same material can be considered a

single-layered cylinder of the same thickness when solving for the plastic limit bearing capacity.

4. Elastic Analysis of the Multilayered Thick-Walled Cylinder. The stress distribution of multilayered

cylinder related to n cylinders is more rational than that of single-layered cylinder. Figure 3 demonstrates a

multilayered cylinder set with inner radii and outer radii ( , ), ( , ), ( , ), ..., ( , )r r r r r r r ri n o1 1 2 2 3 in sequence with the

same material that bears an evenly supported pressure pi .

By assuming a multilayered thick-walled cylinder subjected to internal pressures q q qn1 2, , ..., between

the layers, the following expression can be obtained when the inner surface of each layer yields:
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By adding the above n equations, we can obtain
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If the elastic ultimate pressure can have a maximum value, where the pressure must satisfy
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As shown in Eq. (32), when the radius of each layer satisfies
r

r

o

i

n�

�

�

�

�

�

�

�

�

1

1

, the maximum value of pe can be

established as

p n

r

r

b

r

r

e s

i

o

n

i

o

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

�

�

�

�

�

�

�

�

1

1
1

1

2

1

( )
�

�

�

�

�

2

1n

. (33)

Equation (33) can be reduced to the Tresca criterion solution with � �1 and b � 0 [15].

5. Results and Discussion.

5.1. Degradation Validation of Solutions. The parameter b exhibits the impact extent that the intermediate

principal stress can induce the failure of multiple cylinder. With a specific value of b, the UST can come down to

various existing failure criteria. For instance, the UST simplifies to the Tresca criterion with � �1 and b � 0. The

von Mises criterion can be estimated with � �1 and b � 1/3. When the parameter � varies between 0 and 1, the

Mohr–Coulomb failure criterion is established with b � 0.

The separate radius rc can be determined by Eq. (15) from the known internal and external radii, and this

conclusion is the same as the corresponding result obtained by the Tresca criterion. Equations (17) and (19) are the

unified solutions of the assemblage pressure p and shrink range � with consideration of different tension-

compression strength characteristics. It can be seen from Eq. (19) that the shrink range � is related to the internal

radius ri , external radius ro , and material characteristics. Under the establishment of the above equations, the Tresca

criterion solutions are specified from Eqs. (17) and (19) with � �1 and b � 0 [15].

5.2. Parametric Studies. Supposing that the multiple cylinder is constituted of the same material. The effects

of the tension-compression ratio � (the value is set to 0.2, 0.4, 0.6, 0.8, and 1.0) and the strength theory parameter b

(the value is set to 0, 0.25, 0.5, 0.75, and 1.0) on the plastic limit pressure pl are investigated, as shown in Fig. 4. As

shown in Fig. 4a, the ratio of pl s� decreases with increasing � values. The tensile strength and compressive

strength impact the failure of thick-walled cylinders. pl s� has a minimum value where the coefficient satisfies

� � 1. Figure 4 shows that the ratio of increases with parameter b. The pl s� value is increased by 33.3% when

b �1 compared with that of b � 0 for r ro i � 4.0 and � � 1. The parameter b value represents different strength

theories, which have a large impact on the limit solution of the combined cylinder. Figure 4b illuminates that the

increasing rate of pl s� is relatively obvious for different r ro i values.
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Figure 5 shows the elastic limit pressure pe s� versus the different parameters. As shown in Fig. 5a and b,

the ratio of pe s� improves with increasing b values. The significant differences in the results with various b

values are a clear indication that the intermediate principal stress effect should be rationally considered. In observing
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Fig. 4. pl s� versus the coefficients � and b with different r ro i .

a b

c d

Fig. 5. pe s� versus the coefficient � , b, n, and r ro i .



Fig. 5c, the value of pe s� increases with the increase in the number of cylinder layers n. From Fig. 5a–c, pe s�

is taken as the minimum value when � � 1. A significant difference with various � is a clear indication that the

error might arise if tension-compression ratio is not properly considered. The influence of the tension-compression

ratio � can be better applied to the ultimate load analysis of various materials. According to the solution in this

paper, the effect of the tensile-compression ratio can be discussed, and test guidance can be given. Moreover, Fig. 5d

illustrates that the influence of the radius ratio r ro i on the pe s� value is obvious with an increasing

tension-compression strength ratio.

Conclusions. Considering intermediate principal stress and different tension-compression strengths, the

elastoplastic unified solutions of double-layered and multilayered cylinders are derived on the basis of the UST.

Moreover, the fundamental solutions of the separate radius, assemblage pressure and shrink range are derived for

double-layered thick-walled cylinders. The effects of failure criteria parameter b, tensile-compressive strength ratio

� , radius ratio r ro i , and combined cylinder layers n on the ultimate results are significant. Furthermore, structural

strength potentialities are fully achieved with the UST. The final solutions have general application and are universal

for use. In conclusion, the proposed formulation of allowable limit pressure for multiple cylinder is more consistent

with the true results by considering the intermediate principal stress and cylinder layers. According to the solutions in

this paper, we can discuss the influence degree of the tension-compression ratio and different strength criteria and

solve the related problems of thick-walled cylinder pressure vessels with different criteria.
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