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LIMITATIONS OF SOME STRENGTH CRITERIA

FOR COMPOSITE MATERIALS

V. A. Romashchenko UDC 539.3

Based on an analysis of four different types of stress state, the incorrectness of application of the

maximum stress strength and maximum strain strength criteria, which are widely used in the world

practice and modern commercial application packages, for the strength analysis of isotropic,

transtropic and composite materials with at least one plane with low degree of anisotropy is

theoretically proved. For the composites with the plane of medium-degree anisotropy, the application

of these criteria can also result in significant errors. This incorrectness is due to the non-fulfilment

of invariance conditions in the plane of isotropy, if any, and can lead to the fact that the value of the

strength function at the same stress-strain state can change by a factor of almost two (and perhaps

more) depending on the rotation of the coordinate system. It is pointed out that these two criteria

are conceptually constructed so that it is very difficult, if not impossible, to modify them to avoid the

above incorrectness. They can be used, with a certain degree of reliability, only for essentially

orthotropic composites. It is shown that the quadratic generalized von Mises strength criterion,

which is also commonly used in applications, is void of these disadvantages and can be correctly

used in the strength analysis of both orthotropic and trans- and isotropic materials if the invariance

conditions are met. Other quadratic Tsai–Wu strength criteria, one of whose particular cases is the

generalized von Mises criterion, will also be correct if the necessary and sufficient conditions for

the existence of a limiting failure surface and invariance conditions are met.

Keywords: orthotropy, transtropy, isotropy, maximum stress criterion, maximum strain criterion, the Tsai–Wu

strength criterion, generalized von Mises strength criterion, invariance conditions.

Introduction. Composite materials (CM) are widely used in modern industries. CM is usually a

heterogeneous continuum. When calculating the stress-strain state (SSS) and strength of structures and structural

elements made using CMs, the heterogeneous continuum is often replaced, in some approximation, by an equivalent

homogeneous continuum to simplify the mathematical model and calculations. In many practically important cases,

this homogeneous continuum is well described by an orthotropic material model, from which follow, as particular

cases, a transtropic body model (e.g., unidirectional fiber-reinforced composites) and an isotropic body model

(randomly scattered inclusions in the binding matrix, isotropic fillers, traditional structural metals, etc).

To estimate the strength of CMs, phenomenological strength criteria for orthotropic material are widely

used. A survey of publications showed [1, 2] that two criteria: maximum stress criterion and maximum strain

criterion, which are written in the principal anisotropy axes x, y, z, are used more often than others. These criteria

have the simplest mathematical formulation and are included, in particular, in modern commercial application

packages (ABAQUS, ANSYS, LS-DYNA, NASTRAN, etc) for the calculation of the static and dynamic SSS, as

well as of the strength of structures and structural elements made using CMs.
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The maximum stress criterion for the general case of triaxial SSS is given by
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where � i and � ij are stress tensor components, � i

t
and � i

c
are the ultimate strengths in uniaxial tension and

compression, respectively, in the ith principal direction of anisotropy, and � ij

b
is the ultimate strength in pure shear

in the principal plane of anisotropy ij, i j x y z, , , ,� i j� .

To specify (1) for an orthotropic CM, nine experiments must be made: three uniaxial tension experiments,

three experiments on compression along the corresponding three principal axes of anisotropy, and three experiments

on pure shear in the three principal planes of anisotropy. For a transtropic composite, the number of required

experiments is reduced to six and for an isotropic one to three.

The limiting surface of strength, �
�

�1, in 6D stress space is a closed 6D parallelepiped, inside which (1)

holds, strength is provided, and there is no failure; outside it, (1) is violated, strength is not provided, and the material

fails. For the composites of the same tensile/compressive strength, the center of the parallelepiped coincides with the

origin of coordinates, and for the composites of different strength, it does not coincide.

According to (1), the strength margin S
�

can be estimated thus

S
� �

� � � �( ) %1 100 0� (2)

and the overload F
�

can be estimated in a similar way:

F S
� � �

� � � � � �( ) % .� 1 100 0 (3)

If (1) holds, we have a certain positive strength margin (there is no overload, F
�


 0). Otherwise we have an

overload (S
�


 0).

The maximum strain criterion is determined in the same way, only the stress components in (1)–(3) and in

what follows must be replaced by the corresponding strains and the ultimate strengths by the corresponding ultimate

strains.

The maximum stress criterion, like the maximum strain criterion, is constructed based on the results of nine

experiments, has the simplest mathematical formulation and apparently, therefore, is widely used in the strength

analysis of CMs. For essentially orthotropic composites, formulas (1)–(3) are, at first sight, not without common

sense and look fairly valid and logical. A different situation is observed for transtropic and especially isotropic

materials.

Let us consider a transtropic (e.g., unidirectionally reinforced) composite. For definiteness, let z be the

principal axis of anisotropy (reinforcement), and xy be the plane of isotropy (perpendicular to the z axis). To

specify the maximum stress criterion, six experiments must be made to determine the limiting values:
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In this case, the two mutually orthogonal x and y axes in the plane of isotropy may be chosen arbitrarily.

Transtropy is a particular case of orthotropy: one pricipal anisotropy axis z is determined unambiguously,

and the two others x and y may be chosen arbitrarily perpendicular to z and to each other [3]. Therefore, on the

degeneration of orthotropy into transtropy, any mathematically correct strength criterion of an orthotropic body must

become invariant with respect to the rotation of the x and y axes about the z axis by any angle, and on the

transition of orthotropy to isotropy, it must become invariant with respect to any rotation (choice) of coordinate axes

[2, 4].
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Unfortunately, this does not occur neither for the maximum stress criterion nor for the maximum strain

criterion. Let us illustrate this disadvantage with a concrete example. For simplicity and convenience, consider a

plane stress state (PSS) in the isotropy plane xy at � �z yz� � 0 for a transtropic (or even isotropic) material. The

maximum stress criterion (1) simplifies to
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Consider a material of the same tensile/compressive strength with the following ultimate strengths in the

plane of isotropy: � � �
t c b

� � � 400 MPa, �
b

� 230 MPa. Such strength properties are typical of many structural

steels [5, 6], e.g., St1, St2, St3, 10, 15K, 20K steels, etc.

Let us examine particular cases of PSS.

1. Uniaxial tension: � x � 440 MPa, � �y xy� � 0.

Using maximum stress criteria (3) and (4), we obtain an overload of 10%:

�
�

�

�

� � � �
x

b

440

400
11 1. , � �F

�
10%, S

�

 0.

Without changing the SSS, let us rotate the xy axes by 45�. In the new � �x y axes, we shall have [2, 3, 5, 6]:

� � �
� � � �
� � �

x y x y
220 MPa, and from (2) and (4) we obtain that for the same SSS, the strength margin in the rotated

axes is over 4%:

�
�

�

�

� � � 

� �x y

b

220

230
0 9565 1. , � �S

�
4 35. %, F

�

 0.

2. A more illustrative example is pure shear: � xy � 300 MPa, � �x y� � 0. From (3) and (4) we obtain an

overload of over 30%:

�
�

�

�

� � � �
xy

b

300

230
130435 1. , � �F

�
30 435. %, S

�

 0.

By rotating the xy axes by 45�, we obtain: � �
� �
� � �x y 300 MPa, �

� �
�x y 0, and from (2) and (4) we have,

instead of overload, a strength margin of 25%:

�
�

�

�

� � � 
�x

b

300

400
0 75 1. , � �S

�
25%, F

�

 0.

3. Similar pure shear for a material of different tensile/compressive strength: �
t

� 320MPa, �
c

� 500MPa,

�
b

� 230 MPa.

In the “old” xy coordinates, we have the same overload F
�

� 30 435. % and in the rotated � �x y coordinates

the strength margin:

�
�

�

�

� � � 
�x

t

300

320
0 9375 1. , � �S

�
6 25. %.

4. Consider one more example of triaxial SSS of the following form: � � �xy yz� � � 220 MPa; � x �

� �y z� � 0 for an isotropic material of the same tensile/compressive strength (such as steel) with the strength

characteristics as in the first two examples.
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For such materials, the strength criterion (1) takes the form
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and in the x, y, z coordinate axes, we have: �
�

�

�

� � � 

xy

b

220

230
0 9567 1. , � �S

�
4 35. %, F

�

 0, i.e., the strength

margin is over 4%.

We determine the principal stresses from a cubic equation corresponding to the given SSS [6]: �
3

�

3 2
2 3

� � �� , by solving which we find: � �1 2 440� � MPa, � � �2 3 220� � � � � MPa. Thus, in the principal axes

of stresses we have: �
�

�

�
� � �

1

2

440

400
11. , � 
S

�
0, F

�
� �10% the overload reaches 10%.

Moreover, there are also � � �x y z axes where �
� �

max �
�

�
�

�
1 3

2

440 220

2
330 MPa will act, and in these

axes we obtain: �
�

�

�

� � � �
max

. ,
b

330

230
1435 1 � 
S

�
0, F

�
� �43 5. % overload of over 43%, i.e., without changing

the SSS and only rotating the coordinate axes, we obtained in this example either a strength margin of � 4% or an

overload of � 43%.

There are rather many paradoxical examples similar to these. They prove the fact that both the maximum

stress criterion and the maximum strain criterion are mathematically constructed incorrectly. One of the basic

requirements to the strength criteria: invariance with respect to any rotation in the plane of isotropy, if any, is not

satisfied. The maximum stress and strain criteria cannot be used to calculate the strength of transtropic CMs, not to

mention that they are unsuitable for isotropic materials, when all the three x, y, and z axes may be chosen

arbitrarily, and the function �
�

for the maximum stress criterion or �
�
for the maximum strain criterion must not

change in this case.

Even for orthotropic CMs, for which these criteria were proposed in the form of (1), they can be used only

after a preliminary analysis of the degree of anisotropy of the composite and the type of SSS. If the composite is

orthotropic, but has a plane of weak anisotropy, i.e., the material in it is close to isotropic one, these criteria cannot

be used either. Indeed, in the plane of weak anisotropy, the strength function, which determines the strength margin

or overload, must weakly depend on the rotation of the corresponding coordinate axes and show close results

independent of how they are rotated, and in the limit (weak anisotropy changes into isotropy), it must not depend at

all on the rotation of the axes; in fact, this is not the case, which follows from the most illustrative examples:

depending on the rotation of the xy axes, we have situations from the strength margin of 25% to the overload of

� 30% in example 2 and from S
�

� 4% to F
�

� 43% in example 4.

From the above examples it is seen that on rotating the axes in the plane of isotropy, the strength function

�
�
(and similarly �

�
) can change by a factor of almost two and for other CMs and types of SSS (are not considered

here), perhaps by a factor of more than two. Therefore, the use of the maximum stress and strain criteria for the

orthotropic materials having at least one plane even with a medium degree of isotropy, when the ultimate strengths

change by a factor of no more than two or three on rotation by 90�, becomes rather problematic.

These criteria can be used, with a certain degree of reliability, only for essentially orthotropic CMs. In these

composites, three principal axes and hence three planes of anisotropy are unambiguously determined, in which case

in each of the three principal axes of anisotropy, the maximum and minimum strength characteristics and, as a rule,

elastic characteristics differ greatly under rotation by 90�, and the use of the maximum stress criterion in the form of

(1), which is written only in the principal axes of anisotropy and in no others (and similarly the maximum strain

criterion), becomes at least logically justified.

The incorrectness of the maximum stress and strain criteria is a direct consequence of the ideology of their

construction: both criteria are written in the principal axes of anisotropy of CMs and have the simplest mathematical
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formulation. Whereas this is somehow logically justified for essentially orthotropic materials, this is illogical for

weakly anisotropic, transtropic and especially isotropic materials. If the CM is transtropic, then there are no principal

directions of anisotropy in the plane of isotropy (more precisely, there is an infinite set of them), and in this plane,

maybe the principal stresses �1 and � 2 , and � � �max ( )� �1 2 2 corresponding to them can give some

information on strength. If the material is isotropic, then there are no axes of anisotropy at all (or they may be chosen

arbitrarily), and maybe the three principal stresses �1, � 2 , and � 3 , and � � �max ( )� �1 3 2 corresponding to them

can give an information on strength (at least in some reasonable approximation). Unfortunately, the maximum stress

and strain criteria are conceptually constructed so that it is very difficult, if not impossible, to correctly modify them

in order that the degeneration from orthotropy to transtropy and especially isotropy may be continuous.

It should be noted that the quadratic strength criteria for orthotropic material (the so-called Tsai–Wu criteria)

are also written in the principal axes of anisotropy, and nevertheless they are correct if, firstly, the necessary and

sufficient conditions for the existence of limiting surface (NSCELS) are met and, secondly, if in the presence of a

plane of isotropy, a certain relation (invariance condition) between their coefficients is satisfied [2, 4]. The Tsai–Wu

criteria are given by
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By choosing aij constants by one or another method, which satisfies the NSCELS and for transtropic

(isotropic) CMs the condition (conditions) of invariance in the plane (planes) of isotropy [2, 4], we obtain different

particular cases of the quadratic strength criteria (generalized von Mises criterion, Hoffman criterion, etc) of an

orthotropic body, and in particular of a transtropic and an isotropic body.

According to [2], the NSCELS are of the form

A A A A A Axy yz zx xy yz zx

2 2 2
1 2 3� � � � 
 , A aij ij i

c

i

t

j

c

j

t
� � � � � , (7)

and the condition of invariance in the isotropy plane ij [2, 4] is

aij i

c

i

t

ij

b
� �

� �
( ) ( ) ,� � �

1 2
2 � �i

c

j

c
� , � �i

t

j

t
� . (8)

For example, the well-known generalized von Mises criterion [1, 2, 4], one of the particular cases of the

Tsai–Wu criteria, is obtained from (6) at aij i

t

j

t

i

c

j

c
� �

�
( ) .

/
� � � �

1 2
2 It is also widely used in applied strength

analyses, the NSCELS for it are met automatically, invariance with respect to the rotation of the coordinate axes (8)

in the plane of isotropy is provided if the equality 3
2

( )� � �
b c t

� in this plane holds [2, 4], and in this case, it will

be correct. For an isotropic continuum of different tensile/compressive strength, it transforms, if these requirements

are met, into a combination of the spherical part of stress and stress intensity and for a continuum of the same

strength, only into stress intensity and becomes the classical fourth theory of strength [5].

CONCLUSIONS

1. The maximum stress and strain criteria are non-applicable for orthotropic CMs: the requirement of

invariance with respect to the rotation of the coordinate axes in the plane of isotropy, if any, is not met.
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2. The above non-applicability of these criteria leads to the fact that, depending on the rotation of the

coordinate axes in the plane of isotropy, the strength function can change by a factor of almost two (and perhaps

more).

3. In the general case of SSS, these criteria cannot be used for isotropic and transtropic composites, as well

as for materials having at least one plane of weak anisotropy. As applied to CMs having a plane with the medium

degree of anisotropy, they can give significant errors and can be used only after a preliminary analysis of the types of

SSS and the degree of anisotropy. In particular, these criteria cannot be used in the strength analysis of such a wide

class of composites as unidirectionally reinforced composites, which are modeled by a homogeneous transtropic

continuum.

4. The range of CMs, to which the maximum stress and strain criteria can be applied with one or another

degree of confidence, narrows to essentially orthotropic materials, namely to those whose maximum and minimum

strength characteristics in each of the principal planes of anisotropy differ greatly under rotation by 90� (cross-

reinforced CMs or CMs reinforced in three mutually perpendicular directions at the same time). For some particular

types of SSS, the range of the CMs, to which the maximum stress and strain criteria can be applied, can be somewhat

widened after a preliminary joint analysis of the type of a particular SSS, anisotropy, and its degree.

5. It has been found [2] that in the presence of a plane (planes) of isotropy, the Tsai–Wu quadratic strength

criteria, in particular the generalized von Mises criterion, are void of this disadvantage, it the NSCELS and

invariance conditions are met, and can be correctly used in the strength analysis of any orthotropic (in the general

case) CMs: of both essentially orthotropic and weakly anisotropic, trans- and isotropic CMs.
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