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POWER LAW OF CRACK LENGTH DISTRIBUTION

IN THE MULTIPLE DAMAGE PROCESS

S. R. Ignatovich
a,1

and N. I. Bouraou
b,2

UDC 669:539.4.015.1

Multiple fatigue damage, which is characterized by crack initiation and propagation processes, is

considered. We proposed two models of multiple damage, which imply random crack initiation and

further propagation, with the exponential dependence between their length on the number of

loading cycles. Crack initiation is modeled by the stationary Poisson flow with a constant intensity,

while crack propagation is characterized by the rate parameter controlling the dependence of crack

propagation rate and its length. The first model describes the deterministic case of multiple crack

propagation at a fixed value of the above rate parameter, while the second one predicts their

propagation by random trajectories according to distribution of the rate parameter. In the former

case, crack length distribution is shown to be the Pareto power law with the exponent, which is

defined by the ratio of kinetic parameters of initiation and propagation of defects. In the latter case,

the rate parameter is uniformly distributed, in accordance with experimental data, so that the

power-law distribution of crack length is close to the Pareto distribution. The respective distribution

exponent also depends on the ratio of kinetic parameters of multiple damages and tends to drop

during damage accumulation to the threshold level (namely, reaches the value of 2). This finding

complies with experimental data on multiple damages of various classes of materials, including

metals and rock masses. We also substantiated the range of ratios of kinetic parameters of defect

initiation and propagation, which ensure the Pareto law of cracks length distribution and can be

used to estimate the critical state of cracked bodies.

Keywords: multiple damages, initiation and propagation of fatigue cracks, Pareto distribution.

Introduction. When assessing the strength and durability of structures, dimensional indicators of defects are

crucial. While the critical state of a solid body with a single crack is successfully assessed by multiple mature

criteria, the presence of a large number of defects, which have usually random sizes, makes prediction of the bearing

capacity of real structures quite problematic.

In the case of multiple damage, which is characterized by the processes of initiation and propagation of

scattered defects [1, 2], the size a distribution of defects of different nature and size level (from micro- to

mesoscale) was generally assumed to described by the power function in the form a
� �

, where � is the distribution

parameter. Moreover, it was proved that there is a scale invariance (scaling) of the distribution curves: regardless of

the type of material, loading conditions, size of defects, and damage degree, these distributions can be reduced to the

following single dependence with the general index � [1, 2].

The power distribution of a hyperbolic type f x A x( ) �

�

, where f x( ) is the frequency of occurrence of the

random variable x, and A and � are constants, is usually referred to as the Zipf or Zipf–Mandelbrot law. This is a

kind of non-Gaussian distributions, which is used to describe a wide range of complex systems, including the

Bradford law in scientometrics, the Lotka law in bibliometrics, the Pareto law in economics, the Yule law in natural
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history; the Auerbach law in social geography, etc. [3]. The application of hyperbolic distributions is also quite

lucrative for the description of physical phenomena, in particular, phase transformations [4]. For example, in the

multiple fracture mechanics, the application of such distributions to the statistical description of a set of defects is

expedient for the following reasons.

Power distributions is the only class of scale-independent distributions, which remain unchanged regardless

of the scale, in which the random variable is described. Therefore, they are also referred to as scale-invariant

distributions [4], which can describe the above-mentioned scale invariance of the curves of defect size empirical

distributions in multiple damage processes.

The characteristic feature of power-law distributions is the presence of the so-called heavy/fat tails. This

means that the number of events with an extremely large random variable x decreases slowly at x � �. When

analyzing Gaussian distributions, the largest values of x located in the rapidly decreasing tail are usually neglected.

In the case of the power-law distribution, it is not recommended to neglect large, but rare events. Moreover, in some

cases, only the tail should be considered, neglecting the distribution behavior at small x. This finding necessitated the

application of power-law distributions to the damage description in catastrophic events and risk assessment [4, 5].

With regard to multiple fractures, a heavy tail of the distribution makes it possible to predict the appearance of

defects with maximum sizes.

The universality of power-law distributions when describing statistics for a wide range of phenomena (social

and natural) and their large-scale invariance allows one to assume that they can be related to fundamental

manifestations of similarity at the evolution of complex systems, namely, with their fractal indicators.

The main parameter of the power distribution is the exponent �. For many natural phenomena, the following

inequality is applicable 2 3� �� [4]. However, there are distributions, for which this parameter can vary within a

wider interval ( ).1 10� �� It is quite obvious that with decreasing �, the distribution of the random variable x shifts

to the field of larger values; the frequency of occurrence of such events f x( ) increases. In relation to the extent of

defects in the loaded body, this implies strength reduction. Therefore, � can be used as an indicator of the critical

state, in the case of multiple failures [6, 7]. It is necessary to establish a physical dependence between this parameter

and fracture characteristics, which can be defined analytically or experimentally.

In study [8], on the basis of the proposed model of multiple fracture and experimental data on the initiation

and distribution of fatigue cracks, it was shown that the defect size distribution can be described by the Pareto power

law.

The purpose of this study is to justify the power law distribution of the defects’ size, in case of multiple

damages of materials, to determine the parameters of such distribution, and to establish their relation with kinetic

indicators of damage.

Models of Dimensional Stochasticity of Defects. The basic premise for modeling the dimensional

stochasticity of defects during multiple failure process is to consider two main damage factors, such as initiation and

propagation of defects which are realized in a stressed body in the loading process. In [7], the discrete model was

proposed based on the Yule* process, in which the exponent � was described by the following dependence:

� � �1
n

m
, (1)

where n and m are the numbers of acoustic emission pulses accumulated during the damage processes at initiation

and propagation stages of defects, respectively.

The parameter n m is interpreted as the energy ratio of new defects’ initiation and their distribution.

According to this discrete model, the variation of indicator � in (1) is defined by the ratio of these processes.

Let us consider the initiation model of probabilistic distribution of the fatigue cracks length, taking into

account their continuous initiation and propagation in time.
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* The Yule process that models the formation of genus from species is the fundamental law substantiating the nature

of power distribution laws [4].



The Deterministic Crack Propagation Model. The deterministic crack propagation is defined by the general

and constant trajectory of their distribution. The stochasticity of cracks’ sizes is caused by the random value of the

cyclic loading time before their initiation.

To elaborate the above model, we made the following assumptions.

1. The dependence of the crack length a on the number of loading cycles N is exponential:

a a h N N� �0 0exp[ ( )], (2)

where a0 is the initial size of the crack during cyclic loading N 0 and h is the parameter of crack propagation rate.

It should be noted that the exponential propagation of fatigue cracks at the initial distribution stage is typical

for a constant level of cyclic stress [9], as well as for the cyclic loadingal (block) load spectrum [10].

2. Propagation of all cracks occurs with the same value of h.

3. The initiation of defects with an initial crack size a0 is random and represents the stationary Poisson flow

with a constant intensity 	. Then, the probability of occurrence of at least one crack in the interval of the cyclic

loading time N Ni j... of cycles will have the following form:

Pr{ ( , ]} exp[ ( )],N N N N Ni f j i0 1
 � � � �	 (3)

where Pr{ }� is the event probability.

Using Eq. (2), we introduce the relative size parameter y related to the number of cycles N by the linear

relation:

y
a

a
hN hN� � � �ln ,

0

0 (4)

where hN 0 is a constant value for the particular crack.

We define the distribution function of the parameter y at the fixed value h. Obviously, this function is

determined by the event probability Y y� , where Y is the random parameter value y.

According to the accepted assumptions, for arbitrary values �N and �y and the constant value h (solid line

in Fig. 1), the parameter of any crack size y at the time of cyclic loading �N will be less than �y if it is formed in

the cyclic loading time interval ( �N 0 , �N ) (dashed lines in Fig. 1). Therefore, for any crack, the probability of an

event Y y� � is determined by the probability of its initiation in the cyclic loading time interval

� � � �

�

N N
y

h
0 . (5)
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Fig. 1. The scheme of crack propagation with the constant value of the velocity parameter h.



Based on formula (3) and taking into account relation (5), the distribution function for arbitrary �y and �N

can be derived as

G y Y y
y

h
( ) Pr{ } exp ,� � � � �



�

�

�

�

�

1
	

(6)

Representing parameter y in (6) by the logarithmic ratio of crack sizes (4), we obtain the crack length

distribution function, which corresponds to the Pareto power law:

P a
a

a
( ) .� �



�

�

�

�

�

1
0

� ��

(7)

The distribution density (7) will be equal to

p a
a

a

a
( ) ,�

�


�

�

�

�

�

�

�

1

0

0
(8)

where

�

	

� �1
h
. (9)

The structure of Eq. (9) is similar to Eq. (1) obtained on the basis of the multiple fracture model by the Yule

process [7]. Comparing Eqs. (1) and (9), we can get direct relations between the parameters of crack initiation 	 and

propagation h and the corresponding indicators of the number of acoustic emission pulses, i.e., 	 ~ n and h m~ . In

Eq. (9), parameter h is considered to be constant for all cracks, while in Eq. (1), there is no such restriction on its

value. Next, we apply the power distribution law to various crack propagation trajectories specified by a random

value of h.

Crack Propagation Model by Random Trajectories. As in the previous model, the exponential propagation

of cracks (2) with a random value h is considered. Additionally, we use the following assumptions.

1. The initiation of cracks with the initial size a0 is random and continuous in the cyclic loading interval

[ , ].0 N The function F Ni ( ) and density f Ni ( ) of the distribution of cyclic loading to crack initiation are known.

2. The distribution of cracks is stationary. Stationary is understood as the constant random value h for each

crack during the entire period of its propagation. The distribution function of this parameter F hh ( ) is known.

When h � 0 the crack à0 in length is non-distributing.

Let the crack be formed in a sufficiently small time interval [ �N 0 , � �N dN0 ], where �N 0 is the random

variable. The probability of such an event will be equal to �( ) ,�N dN0 where �( )N is the function of the crack

initiation intensity, which depends on the cyclic loading and is defined by the relation [11]

�( )
( )

( )
.N

f N

F N

i

i

�

�1
(10)

The arisen crack grows at the random value h, and while cyclic loading �N ( )� � �N N 0 its size will be equal

to a random value Y (Fig. 2). Let us determine for such a crack the conditional probability of the event Y y� �,

where �y is the arbitrarily chosen parameter of the crack size while cyclic loading �N (Fig. 2). Obviously, this event

will be carried out at the crack distribution with the velocity parameter

h h
y

N N
� � �

�

� � �

0

, (11)

In this case, the probability of such an event is determined by the parameter distribution function h F hh� �( ).
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Then, the conditional distribution function of the parameter y for the crack formed at the moment of cyclic

loading �N 0 and growing with the velocity parameter h h� � is defined by the relation

G y N N Y y N N N dN F
y

N N
h( ; | ) Pr{ ; | } ( ) .� � � � � �

� �



�

�

�

�

�

�

�

0 0 0

0

� (12)

Since cracks can form within entire considered cyclic loading interval N N0 0
[ , ], for the unconditional

distribution function of the parameter y, based on (12), we get

G y N N F
y

N N
dNh

N

( ; ) ( ) .�

�



�

�

�

�

�

�

�
�

� 0

0 0

0 (13)

Let us consider a special case of distribution (13), when the cyclic loading time to crack initiation

corresponds to the exponential distribution law F N Ni ( ) exp ( ),� � �1 	 where 	 is the intensity of crack initiation.

In this case f N Ni ( ) exp ( ),� �	 	 and from formula (10) we get � 	� .

In Eq. (13), we replace the variable N 0 on h using the relation (11). Then, expression (13) takes the form

G y N y h F h dhh

y N

( ; ) ( ) .

/

�

�

�

�

	

2

(14)

The function F hh ( ) can be specified explicitly not for all distributions of random variables. Therefore, in

(14), it is expedient to replace function F hh ( ) by the distribution density f hh ( ).

The partial integration of Eq. (14), yields

G y N NF
y

N
y

f h

h
dhh

h

y N

( ; )
( )

.

/

�



�

�

�

�

�

�

�

�

	 	 (15)
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Fig. 2. The scheme of crack propagation at the random value.



Differentiating (15) by y, we obtain the expression for the distribution density of the crack length parameter:

g y N
f h

h
dh

h

y N

( ; )
( )

.

/

�

�

�

	 (16)

Let us consider the parameter range h in relation to propagation of fatigue cracks. If it is limited on the left

by the value h � 0, the arisen crack with an initial size a0 does not extend. When h � �, it is unstable that leads to

instant destruction. Therefore, for the actual propagation of the fatigue crack, the range of parameter h should be

limited on the right to the maximum possible value hm .

To justify hm , we should use Eq. (2), which was obtained by solving the equation da dN ha� . We write

this equation in the form

da

a
hdN� . (17)

From (17) follows that the parameter h represents the relative propagation (lengthening) of the crack da a

per one loading cycle. For the elastoplastic propagation of fatigue cracks, the maximum possible value h can be

limited by the size of the plastic deformation zone s at the crack tip:

h
s

a
s

Y

� �



�

�

�

�

�

�

�

�

�

�

�

2

, (18)

where �� is the stress range per cycle, �Y is the yield strength of material, and � is coefficient (� � 1).

When the crack grows in each loading cycle, the coefficient � is equal to the constant used to estimate the

plastic deformation zone at the crack tip. For example � ��1 4 , where � � 2 for plane-stress and � � 6 plane-strain

states [12]. With intermittent crack propagation, the value � has the order 1 �N , where �N is the duration of crack

arrest, which precedes its further jumplike increment.

According to the experimental data, during the exponential propagation of fatigue cracks, the uniform

distribution of the parameter h can be accepted [8]. We use the maximum interval of possible values h from

hmin � 0 to h hm s� � , where the coefficient � is defined by the ratio between the distance over which the crack

moves forward in one loading cycle and the size of the plastic deformation zone s (� � 1). Obviously, for any N the

maximum possible crack size in the sample, it will be limited by the value of parameter ym provided that it is

formed at the moment of cyclic loading N � 0 (Fig. 2):

y h Nm m� . (19)

The distribution density of the parameter h for the chosen interval is written as

f h
h

h

m

( ) .�

1

(20)

Substituting f hh ( ) from (20) into Eq. (16), in which the upper limit of integration will be equal to hm , we

obtain

g y N
h

y

ym

m
( ; ) ln ,�

	

y ym
[ , ],0 (21)

where ym varies with the cyclic loading N due to dependence (19).

Taking into account the logarithmic dependence (4), we pass from the distribution of the parameter y in

(21) to the distribution of the crack length a:
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p a
ah

a a

a am

m
( ) ln

ln( )

ln( )
,�

	 0

0

a a ath
[ , ],0 (22)

where am is the maximum possible crack length at the number of cycles N that can be hypothetically reached at

the loading start (at N � 0) and grow at the maximum propagation rate corresponding to hm .

According to relations (4) and (19), we get

a a h Nm m� 0 exp( ). (23)

From the normalization condition for the distribution density (22), we get

	

h a

a a

a a
da

m a

a

m
m
1

1

0

0

0

�

�ln
ln( )

ln( )
, (24)

where the replacement z
a a

a am

�

ln( / )

ln( / )

0

0

reduces the integral to the tabulated form [13]:

ln ( ),
1

0

1
1

z
dz k

k



�

�

�

�

�

�

�

�

�

�( )� is the gamma function.

After integration, from (24) when k � 2 follows:

h a

a

m m

	

� ln .

0

(25)

Substituting relation (25) into formula (22), we obtain

p a
a a

a
( )

( )
,�

� 0

0

(26)

where the function �( )a a0 is given by

�( )
( ) ln( )

ln
ln( )

ln( )
.a a

a a a a

a a

a am

m
0

0 0

0

0

1
� (27)

The calculations by formula (27) for the various values a am 0 show that at a am� for a sufficiently wide

range of crack length changes the dependence of the function �( )a a0 on a a0 in double logarithmic coordinates

is close to linear (Fig. 3). Deviation from the linear dependence takes place at large values of the crack length (in the

distribution tail) at a am� . Therefore, when a am� the function �( )a a0 can be represented as exponential one:

�

�

( )

( )

,a a
A

a a
0

0

�

(28)

where coefficients À and � are determined from the approximation of the curves calculated for different a am 0

(Table 1).

The regression dependence between the coefficients A and � given in Table 1 has the form À �

10013 0 9766. .� � (Fig. 4). Taking into account the natural errors at approximation, we can write

A � �� 1. (29)
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When substituting relations (28) and (29) in formula (26), we obtain the distribution density of the crack

length which corresponds to the Pareto law (8).
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TABLE 1. The Values of the Coefficients in the Formula (28) for Various a am 0

a am 0
A � Correlation coefficient

1.93 4.8771 5.8528 0.9941

2.33 3.8325 4.7990 0.9944

3.01 2.8785 3.8493 0.9965

3.5 2.5985 3.5719 0.9957

4.5 2.1634 3.1260 0.9968

5 1.9856 2.9523 0.9976

10 1.4134 2.3867 0.9977

15 1.1869 2.1658 0.9980

20 1.0795 2.0610 0.9980

Fig. 3. Calculation (symbols) and approximation (lines) of the function (27): (1) a am 0 15� ; (2) a am 0 5� .

(The approximation was carried out by the solid symbols.)

Fig. 4. The relation between the coefficients in the formula (28). (Correlation coefficient is R
2

1� .)



Discussion of the Results. Limiting the speed parameter h to the value hm limits the maximum possible

crack length am . In this case, the tail of the distribution of the random variable a in the field of large values

( )a am� does not correspond to the Pareto distribution, which is typical for the limited range of defect sizes at

a am� (Fig. 3). If we assume that the power distribution is carried out for all cracks in the range [a am0 , ], then the

error in the probabilistic prediction of the presence of large length cracks (a am� ) will go to the safety margin, i.e.,

the predicted size of the defect will exceed actual value. For example, according to formula (27), at a am 0 15� the

value �( )a a0
3

10�

�

corresponds to the relative length of the maximum crack a amax . .0 13 5� If the Pareto

distribution is taken for the entire range of crack sizes, then the predicted value a amax .0 26 3� follows from

Eq. (28) for �( )a a0
3

10�

�

.

In accordance with the results given in Table 1, the exponent distribution index � (8) decreases with

increasing the parameter a am 0 and asymptotically approaches to � � 2 (Fig. 5). The obtained dependence is

approximated by the equation

� � �



�

�

�

�

�

�

�

�

2 10

0

1 5

a

a

m

.

. (30)

Taking into account formula (23), it follows from (30):

� � � �2 10 15exp ( . ).h Nm (31)

According to Eqs. (30) and (31), the minimum threshold value � � 2 is inherent for the Pareto distribution

exponent. This finding has a specific mathematical justification.

For the Pareto distribution, there are special values �, for which it does not have the mean and variance. For

example, the mathematical expectation of the cracks length for the distribution density (8) is defined at � � 2, and the

dispersion – at � � 3 [8]. This means that if the samples of the random variable, which are limited by volume,

distributed due to the power law can have finite mean and variance values for the indicated �, then for the general

population these numerical characteristics are absent (varying), i.e., for one limited sample from the general

population, the mean and dispersion values can be very small, while for another they can be quite large [4]. Such a

feature of the power distribution is caused by the role of the tail with increasing of � [5], which excludes the

possibility of an adequate prediction of extreme values of the random variable, in particular, cracks which are

dangerous in size.

The fatigue damage degree of structures with cracks depends on the loading duration. According to the

formula (31), an increase in the number of loading cycles N , the Pareto distribution exponent � decreases, which is

743

Fig. 5. The dependence of the Pareto distribution degree on the parameter a am 0 . (Correlation

coefficient is R
2

� 0.995.)



consistent with experimental data on multiple damages at the microstructural dimensional level for metallic

materials, as well as for rocks during tectonic events. In [6–8] was noted that on the basis of this phenomenon, the

parameter � is proposed to be interpreted as the limiting state indicator at multiple damages of materials.

The dependence of the indicator � on the ratio of the basic kinetic parameters of multiple damages, namely,

the intensity of the crack initiation and the parameter of their propagation rate, follows from the formulas (30) and

(25):

�

	

� � �



�

�

�

�

�

2 10 15exp . .
hm

(32)

The dependence (32), in contrast to Eq. (9), which was obtained for the deterministic value of the parameter

h, is not linear. However, expressing hm the crack velocity parameters h hm� 2 in (32) via the mathematical

expectation, we obtain the nonlinear dependence, which is quite close to Eq. (9), as seen in Fig. 6.

Therefore, at deterministic and random values h, the crack size distribution is well-described by the Pareto

law, the exponent of which is defined by the ratio of kinetic parameters of multiple damages. In this case, the value

of ratio between the intensity of crack initiation and the parameter of their propagation rate has the order of

1 10� �	 h .

CONCLUSIONS

1. In the case of multiple fatigue damage, which implies a random crack initiation with the constant intensity

and the dependence of cracks’ size on the number of loading cycles described by the exponential rule, the

distribution of cracks’ size is described by the Pareto law. The distribution exponent is defined by the ratio of

parameters characterizing the kinetics of the defects’ initiation and propagation.

2. In case of exponential propagation of fatigue cracks, the Pareto distribution is valid for the constant values

of the velocity parameter for all defects and for the crack propagation by random trajectories.

3. The power distribution of crack lengths can be used to predict the ultimate state of the particular structure

with a large number of cracks (riveted joints for aircraft skin), as well as the parts with one or more cracks that

represent damage of the general population of such components installed and operating in multiple similar machines.
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