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EFFECT OF BOUNDARY FORM DISTURBANCES ON THE FREQUENCY RESPONSE

OF PLANAR VIBRATIONS OF PIEZOCERAMIC PLATES.

EXPERIMENTAL INVESTIGATION
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Experimental results for forced planar vibrations of parallelogram-shaped piezoceramic plates are

presented. The concept of this study is to evaluate the potentials of controlling the spectrum of

natural frequencies and electromechanical coupling coefficients of plates by changing their shape.

The results permit of supporting the data on analytical and numerical investigations of dynamics of

piezoceramic plates and establishing the consistency between the physical properties of a real plate

and the assumptions of the ideal computational model in the solution of practical problems.

Comparison of calculated and experimental data for the spectrum of natural frequencies of the plate

over their rather wide range can demonstrate this consistency. The experimental procedure was

tested in studying the vibration behavior of SM111 ceramic square and parallelogram-shaped

plates with different side slopes. The frequency range of investigations is limited from above with

140 kHz, which provides effective excitation of a sufficient number of natural vibrations. The

structure of an experimental complex and excitation mode of vibrations at actual values of the

quality factor permit of considering the external voltage source as the infinite power one. The

excitation of asymmetric vibration modes on the change in geometry of a rectangular plate is

natural. As was shown, high-order modes (very low electromechanical coupling coefficients in

rectangular plates) can be effectively excited in parallelogram-shaped plates with maintaining a

uniform electrode coating. It needs the traditional estimates of electromechanical coupling coefficients

in piezoelectric plates to be refined with regard to inhomogeneous stress and strain fields.

Keywords: piezoceramic plates of uncanonical shape, planar vibrations, electromechanical coupling coefficient,

spectrum of natural vibrations.

Introduction. Piezoceramic materials are widely used in the design of electromechanical transducers [1–7].

The spectrum of natural frequencies, natural vibration modes, and electromechanical coupling coefficients are their

most important characteristics. Specified properties can be provided by varying the shape of a vibrating element and

choosing the pattern of electrode coating [4].

Experimental studies on the amplitude-frequency response (AFR) of piezoceramic plates of uncanonical

shape would corroborate the initial concepts of the mathematical model constructed with the method of superposition

[8–10] that is applied to the derivation of planar vibration problem solutions. Moreover, the experiment can create a

clear view of the natural vibration modes of those plates over a wide range of frequencies. Numerous problems

stemming from different modes of vibration processes are observed in applied fields, e.g., in acoustics. The issue of
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parasitic vibrations in parallelogram-shaped resonators, in frequency filters or in MEMS (MicroElectroMechanical

Systems) sensors, in wide-band acoustical emission transducers [17] is still currently central. The requirements and

functions of those instruments dictate the material and shape of the resonator in use.

The method of studying the dynamic characteristics of a parallelogram-shaped piezoceramic plate under

planar vibrations was proposed in [15].

As calculated data on different excitation levels of the boundary form (parallelogram angle) show, the

proposed algorithms provide high accuracy of quantitative estimates.

Such algorithms can be effectively used in the solution of applied problems for designing mechanotronics

equipment. In particular, they can be put to search of optimum electrode shapes to get high electromechanical

coupling coefficients at certain vibration modes.

However, the solution of practical problems are always associated with the correspondence of physical

properties of a real plate and the assumptions of the ideal computational model. In this case, the comparison of

theoretical and experimental data for the spectrum of natural frequencies of the plate over their rather wide range can

confirm the above correspondence. The comparison, performed in this study, shows that the properties of materials

and quality of the electrode coating of real plates are in quite good agreement with the assumptions of the

computational model. It is also important that the advanced experimental technique provides necessary accuracy of

finding required dynamic characteristics.

This study presents the results of experimental investigations of planar vibrations in piezoceramic plates that

illustrate the potentials of controlling the above characteristics through the excitation of a square plate, which is

transformed into the parallelogram-shaped ones by removing the portion of the material with different side slope

angles, while the electrode coating covers the whole plate surface.

The square plate was chosen as the object of geometry transformation. The evolution of its frequency

spectrum and normal modes was investigated during its successive transformation into parallelograms with 2 and10�

shear angles. The studies on those geometries are aimed at the search of vibration modes with the maximum intensive

two-component motion kinematics of acute angles of plates to be used in piezoelectric ultrasonic friction engines.

1. Efficiency of Energy Conversion in the Plate at Resonant Vibrations. The most widespread methods

of evaluating the electromechanical coupling coefficients (EMCC) of piezoceramic elements were comparatively

assessed [18], in particular the Mason resonance method [19] and Ulitko accurate energy criterion valid for dynamic

and static nonuniform strains of piezoelectric transducers [20].

Let k
d n,

2
represent the square of “dynamic” EMCC by Mason and ke

2
be the square of a corresponding

value by the Ulitko energy criterion, the so-called “energy” EMCC
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Here f
R n,

2
and f

A n,

2
are the nth resonant and antiresonant vibration frequencies, U

P( )
and U

K( )
are the integrals

of the internal deformation energy function for a given volume V of a piezoelectric element
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calculated under electric boundary conditions for open (upper index P) and shorted (upper index K) electrodes,

having the form, respectively [21]
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where � x , � y , and � xy are the stress components, � x , � y , and � xy are the strain components, and E z and Dz are

the z-components of electric intensity and electric induction vectors.

Notice that outcomes [18] are illustrated by the EMCC k
d n,

2
and ke

2
calculations for the radial vibrations of

a disk and ring-shaped plate as special cases of realizing an examined plane electroelastic state of the plate. At

resonant frequencies of those piezoelectric plates, calculation results for the above coefficients were found to be

coincident if the square of static planar EMCC of the material k d sp

E T2

31

2

11 33
2 1� �[( ) ]� � is assumed to be equal to

0.6. For real materials, this coefficient is much lower. For instance, for examined specimens, it equals k p

2

 0.31, and

exact ke
2

at resonant frequencies is always at least 10% lower than k
d n,

2
.

In practice, the energy EMCC ke
2

assessment, requiring complete analytical description of all characteristics

of the coupled electroelastic field, is not always possible. It should be noted that dynamic EMCC [18] are in

agreement with the energy ones. With the number of a vibration mode, the difference between those coefficients at

least does not increase, which in principle permits the dynamic EMCC k
d n,

2
to be used as the “local” estimate of the

excitation performance for the normal modes of planar vibrations under successive changes of the plate geometry.

The “local” estimate makes no physical sense for the exact calculation of a real energy transfer coefficient as the

ratio of energy capable of conversion to the total accumulated energy of a piezoconverter at nonuniform dynamic

strain.

2. Experimental Procedure. Parallelogram-shaped plate specimens were the objects of investigation. They

were prepared from SM111 piezoceramic square plates with thickness polarization (modified PZT-4, STEMiNC),

having 45 0 45 0 2 8. . .� � mm dimensions, by cutting them with a thin diamond disk under heating temperature control

(no more than 65�C). Physical properties of SM111 piezoceramics are as follows: elastic modulus in the constant

electric field, N/m
2
: c

E

11

10
13 2 10� �. , c

E

12

10
7 1 10� �. , c

E

13

10
7 3 10� �. , c

E

33

10
11 5 10� �. , and c

E

44

10
3 10� � ; piezo-

electric constant, N/(V m)� : e31 4 1� � . , e33 14 1� . , and e15 10 5� . ; relative dielectric constant at � 0

12
8 854 10� �

�

. ,

F/m: � �

11 0 804 6
s

� . and � �

33 0 659 7
s

� . ; material density, kg/m
3
: � � 7900; and mechanical Q-factor: Qm �1800.

The AFR was studied on a test bed, which includes a Kh1-46 curve tracer, consisting of a sweep generator

and display unit, a U7-3 wide-band amplifier, G3-33 (high-voltage output) and G3-117 (spectral purity)

audio-frequency generators, a vibration-damping stage with the test specimen, and shielded connectors, voltmeters

for measuring effective amplitudes of input and output signals, oscillographs for observing signal modes, an N-306

XY-recorder for AFR registration.

The connecting diagram of a piezoceramic plate as well as the resistors R1, R2 , and R3 of 0.1, 1.0, and

10.0 � for measuring current at resonant frequencies and R4 of 1 M� for measuring antiresonant frequencies is

shown in Fig. 1. Here Rout is the output resistance of a generator or amplifier (Rout � 5 �) and Rin is the input

resistance of a meter (Rin � 1 M�).

Since the Q-factor of examined piezoceramic plates Qm �1800, their impedance Z at resonant frequencies

can reach several tens of ohms. Therefore, the resonance state registration by a current level is effected by connecting

the piezoceramic plate via the resistor of several ohms. Under such experimental conditions, there is no need to

consider power limitations of an external energy source.

Vibration modes are visualized with the method of Chladni figures. The sharp image of modes is reached

only in the case of sufficiently intensive plate vibrations. Small electromechanical coupling coefficients can lead to

undesirable plate overheating, which would require stringent temperature control on the excitation of vibrations at

resonant frequencies.

Resonant frequencies were measured at room temperature (~ 20�C). Amplitude voltages applied to electrodes

did not exceed 0.1 V and 10 mA current, which allowed dissipative plate heating to be avoided. The plates were

fixed with thin wires 0.07 mm in diameter soldered to the electrodes with minimum solder quantities to insure against

the effect of “attached weight.”
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The frequency of measurements was restricted with f � 140 kHz since the square plate (with account of

dimensions) displays six resonant frequencies, and the parallelogram-shaped plates cut out from the former exhibit an

essential increase in their number. For instance, a parallelogram with a 10� shear angle already shows about 20

resonant frequencies, which is caused by the effective excitation of asymmetric modes.

3. Amplitude-Frequency Response and Electromechamical Coupling Coefficient of a Square Plate and

Parallelograms.

3.1. Amplitude-Frequency Response and EMCC of a Square Plate. Experimental AFR of a square

piezoceramic plate is shown in Fig. 2. The resonant f R n, and antiresonant f A n, frequences and electromechanical

coupling coefficients k
d n,

2
(Eq. 1), calculated by the Mason formula [19], which is an important characteristic of

vibratory systems with piezoceramic elements [18–20], as well as the resonant frequencies f
R n

comp

,
, calculated by a

method [15], are summarized in Table 1.

The first resonance is excited at a frequency of f R , .1 41 077� kHz, the closed nodal line is located in the

center of the plate, which can correspond to the “quasiradial” mode typical of radial vibrations of a circular disk. The

second intensive vibration mode occurs at a frequency of f R , .2 60 394� kHz, in this case, the nodal lines are

diagonally distributed. The third vibration mode at a frequency of f R , .3 112 406� kHz possesses five nodal lines and

is an overtone of the first mode, the fourth one at a frequency of f R , .4 116 964� kHz exhibits diagonal symmetry

with nine nodal lines, and the fifth one at f R , .5 132 505� kHz displays central symmetry. As expected, the intensity

of displacements ux and u y of the medium plane of the square plate is equal for all vibration modes, which gives

rise to this sequence of modes with axial and diagonal symmetry.

The energy characteristics of those vibration modes can be described in the following way. The highest

value k
d ,

.
1

2
0 27
 is reached at the first resonance, with this, the width of a resonance curve and both displacements

ux and u y would be at their maximum. Then the k
d n,

2
values for the modes of higher order decrease essentially,

except for the third mode with k
d ,

. .
3

2
0 05
 This EMCC behavior corresponds to earlier results [18], and the

differences in the intensity of vibration amplitudes at different frequencies correlate with the width of a resonance

curve and k
d n,

2
value for each normal mode.

3.2. Amplitude-Frequency Response and EMCC of a Parallelogram-Shaped Plate (Case 1). The AFR of a

parallelogram-shaped plate with an 88� acute angle, i.e., with a 2� shear angle is presented in Fig. 3. Accurate

experimental evaluation of several antiresonant frequencies did not turn out well, which did not greatly influence the
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Fig. 1. Simplified connecting diagram of a piezoceramic plate.



procedure. Comparison of data (Figs. 2 and 3) shows that the general structure of the resonant frequency spectrum

was maintained, i.e., the most intensive resonances are observed near 40 and 60 kHz as well as in the range of

110–120 kHz. However, the frequency spectrum displays new resonances as compared to the square plate. The

frequencies of resonances, antiresonances, and EMCC values as well as calculated resonant frequencies are

summarized in Table 2.

The three resonance peaks of inconsiderable intensity at f R , .1 28 6� kHz, f R , .2 32 39� kHz, and f R ,3 �

37.03 kHz with EMCC k
d ,

. ,
1

2
0 01
 k

d ,
. ,

2

2
0 007
 and k

d ,
.

3

3
0 005
 appeared below the most intensive resonance at a

frequency of f R , .4 42 88� kHz, which corresponds to the first one of the square plate f R , .1 41 077� kHz. The

resonance at a lower frequency f R , .1 28 6� kHz is consistent with the diagonal vibration mode.

It should be noted that the three low-frequency resonances of the parallelogram-shaped plate are most likely

of metrological significance, associated, e.g., with experimental evaluation of elastic moduli of the piezomaterial.

However, their practical application as any intensive modes, e.g., in actuators or frequency filters, is quite difficult.

The corresponding resonance at f R , .5 62 19� kHz with a very close value k
d ,

.
5

2
0 024
 is observed at a

somewhat higher frequency as compared to the second resonance of the square plate ( f R , .2 60 394� kHz). Still

further a weak resonance is revealed at f R , .6 74 8� kHz with a negligible k
d ,

. .
6

2
0 006


The spectrum of very weak resonances f R , .7 92 73� kHz, f R , .8 95 77� kHz, f R , .9 97 93� kHz, and

f R , .10 102 45� kHz does also appear over the range of ~90–100 kHz, unfortunately, antiresonant frequencies and

EMCC could not be reliably determined. Moreover, the parallelogram-shaped plate exhibits resonances at f R ,11 �

110.98 kHz and f R , .13 114 83� kHz with very small values k
d ,

.
11

2
0 005
 and k

d ,
.

13

2
0 004
 as well as the resonance

at f R , .12 111 93� kHz with a mach higher k
d ,12

2

 0.02.
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TABLE 1. Experimental Resonant and Antiresonant Frequencies, EMCC, and Calculated Resonant

Frequencies of the Square Piezoceramic Plate

Resonance No. Experiment Calculation

f
R n,

, kHz f
A n,

, kHz k
d n,

2
f
R n

comp

,
, kHz

1 41.077 48.066 0.26960 42,83

2 60.394 60.916 0.01706 61.25

3 112.406 115.216 0.04818 116.27

4 116.964 117.664 0.01186 119.60

5 132.505 132.625 0.00180 133.67

Fig. 2. Amplitude-frequency response of the square piezoceramic plate. (Here and in Figs. 3 and 4:

Numbers near resonance peaks refer to measured resonant frequencies, Arel is the relative voltage

amplitude at output (3) – Fig. 1.)



The vibration mode with f R , .14 119 05� kHz and k
d ,

.
14

2
0 016
 corresponds to the third resonance of the

square plate at f R , .3 112 406� kHz. An adjacent resonance is located at f R , .15 120 43� kHz with practically the same

k
d ,

. .
15

2
0 017


Analysis of planar vibrations of the parallelogram-shaped plate and comparison of the results with those for

the square plate demonstrate that the number of excited resonances for the former one grows greatly over the whole

examined frequency range.

3.3. Amplitude-Frequency Response and EMCC of a Parallelogram-Shaped Plate (Case 2). The AFR of

the parallelogram-shaped plate with a 10� shear angle, i.e., with an 80� acute angle is presented in Fig. 4. Comparison

of the data with those in Fig. 3 shows that with an increase in the shear angle, all resonant frequencies are still

somewhat increasing. The corresponding frequencies of resonances, antiresonanses, EMCC as well as calculated

resonant frequencies are summarized in Table 3.
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TABLE 2. Experimental Resonant, Antiresonant Frequencies, EMCC, and Calculated Resonant

Frequencies of the Parallelogram-Shaped Plate (Case 1)

Resonance No. Experiment Calculation

f
R n,

, kHz f
A n,

, kHz k
d n,

2
f
R n

comp

,
, kHz

1 28.60 28.78 0.012469 29.03

2 32.39 32.52 0.007979 32.76

3 37.03 37.09 0.004843 37.75

4 42.88 49.86 0.262163 44.57

5 62.19 62.88 0.024310 63.28

6 74.80 75.04 0.006386 75.87

7 92.73 – – 93.90

8 95.77 – – 97.23

9 97.93 – – 98.86

10 102.45 – – 105.15

11 110.98 111.26 0.005026 115.81

12 111.93 112.97 0.018327 117.03

13 114.83 115.09 0.004513 122.58

14 119.05 120.02 0.016098 125.50

15 120.43 121.47 0.017050 130.21

Fig. 3. Amplitude-frequency response of the parallelogram-shaped plate.



The first mode frequency, corresponding to the first resonance of the square plate with f R , .1 41 077� kHz,

grows to f R , .4 49 55� kHz and exhibits the highest EMCC k
d ,

. ,
4

2
0 168
 while the second resonance of the square

plate with f R , .2 60 394� kHz is consistent with the mode of f R , .6 65 14� kHz and k
d ,6

2

 0.032. Moreover,

combined excited vibrations generate the mode with the resonant frequency f R , .5 55 72� kHz, which was not

observed before. It possesses a rather high EMCC k
d ,

. .
5

2
0 067


Comparison of the data for the three first resonances of the parallelogram-shaped plate with 2 and 10� shear

angles (Figs. 3 and 4) demonstrates their upward frequency shift: for a 10� shear angle: f R , .1 31 05� kHz,

f R , .2 34 35� kHz, and f R , .3 40 4� kHz and k
d ,1

2

 0.017, k

d ,2

2

 0.037, and k

d ,3

2

 0.011, respectively, i.e., the

intensity of the second resonance became more substantial in comparison with the neighboring ones. As a whole, the

distribution of displacements for those three modes corresponds to those of the plate with a 2� shear angle.
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TABLE 3. Experimental Resonant, Antiresonant Frequencies, EMCC, and Calculated Resonant

Frequencies of the Parallelogram-Shaped Plate (Case 2)

Resonance No. Experiment Calculation

f
R n,

, kHz f
A n,

, kHz k
d n,

2
f
R n

comp

,
, kHz

1 31.05 31.32 0.017167 31.69

2 34.35 35.01 0.037348 34.93

3 40.40 40.63 0.011289 41.52

4 49.55 54.32 0.167914 51.54

5 55.72 57.67 0.066482 56.77

6 65.14 66.22 0.032352 66.69

7 69.85 69.87 0.000572 70.92

8 77.33 77.68 0.008991 78.82

9 81.77 82.06 0.007055 83.41

10 89.27 89.57 0.006687 91.76

11 95.44 95.78 0.007087 97.46

12 102.33 102.67 0.006612 104.30

13 102.67 103.03 0.006976 105.07

14 107.49 108.12 0.011619 109.54

15 112.03 112.94 0.016049 115.78

16 114.84 115.65 0.013958 118.59

Fig. 4. Amplitude-frequency response of the parallelogram-shaped plate.



In the range of frequencies of f R , .7 69 85� – f R , .13 102 67� kHz, the excitation of a large number of

resonances with a relatively low efficiency is observed, coefficients with k
d ,7

2
– k

d ,19

2
do not exceed several

thousandth.

In the high-frequency region, the vibration modes have no specific features, the most intensive ones possess

the following resonant frequencies f R , .14 107 49� kHz, f R , .15 112 03� kHz, f R , .16 114 84� kHz, and k
d ,

.
14

2
0 012
 ,

k
d ,

. ,
15

2
0 016
 k

d ,
. .

16

2
0 013
 The vibrations propagate mainly along the major diagonal of the parallelogram-shaped

plate.

Thus, the parallelogram-shaped plates with a 10� shear angle exhibit the tendency of maintaining the same

vibration modes, as those excited in the plate with a 2� shear angle. Many modes demonstrate rather significant form

stability.

CONCLUSIONS

1. Experimental investigation results for square and parallelogram-shaped piezoceramic plates with uniformly

continuous electrode coating under forced vibrations demonstrate that even a small change in the plate geometry

alters abruptly the spectrum of excited planar resonant vibrations.

2. The modes of higher-order in parallelogram-shaped plates are established to be effectively excited with

maintaining the uniformity of an electrode coating.

3. The data on measuring resonant and antiresonant frequencies were used to calculate dynamic electro-

mechanical coupling coefficients for evaluating energy conversion efficiency at resonant plate vibrations.

4. Experimental results for square and parallelogram-shaped plates in measuring resonant vibration

frequencies and calculated data obtained with an analytical method [15] are in good agreement. It corroborates

efficiency of the analytical approach to simulation of planar vibrations of rectangular and uncanonical parallelogram-

shaped piezoceramic plates.
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