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EFFECT OF BOUNDARY FORM DISTURBANCES ON THE FREQUENCY RESPONSE

OF PLANAR VIBRATIONS OF PIEZOCERAMIC PLATES.

ANALYTICAL SOLUTION

P. Shakeri Mobarakeh,
a,1

V. T. Grinchenko,
b

UDC 539.3

and B. Soltannia
c

The general solution of the boundary problem of planar vibrations of parallelogram-shaped

piezoceramic plates is constructed. The solution is presented as infinite series, with each term

satisfying the motion equations of a piezoceramic plate element. The series coefficients are

determined with functional equations, generated by the boundary conditions of the problem. These

equations can be solved using the two approaches, based on minimization of the standard deviation

and the collocation method. In the case of practical application of finite sums, both approaches lead

to the search of solving the systems of linear algebraic equations. Quantitative estimates of the

dynamic characteristics of piezoceramic plates are obtained, their analysis permits of evaluating the

plate geometry effect. This method provides high accuracy of calculation results.

Keywords: planar vibrations, piezoceramic plates of non-canonical shape, superposition method, collocation method,

standard deviation minimization method, reduction method, natural frequency spectrum.

Introduction. Piezoelectric effect-incorporated materials provide a means for easy excitation of vibrations in

elastic solid bodies. Studies on such vibrations are of interest both for understanding the general behavior of elastic

waves in bounded regions and for elaboration of recommendations on solving the design problems in the

development of electromechanical transducers [1, 2]. At present particular emphasis is placed upon the development

of microtransducers of various types termed as MEMS (Micro Electro Mechanical Systems) [3].

One way of controlling the dynamic characteristics of active MEMS elements is the piezoelectric element

shape change, which makes the studies on elaboration of solution methods for the dynamic problems of electro-

elasticity currently central for the elements of different geometry. The analytical method of solving the boundary

electroelasticity problems for parallelogram-shaped piezoelectric plates is presented below. The change in their shape

may be considered as the excitation of the shape of rectangular plates.

Special attention is drawn to elaboration of the analytical solution method for boundary problems. The

analytical solution provides the basis for an in-depth analysis of vibratory system properties. Such potentials may be

illustrated by investigation results for the edge resonance phenomenon in elastic plates, including piezoceramic ones.

The fact that all amplitudes of inhomogeneous waves reach their maximum at the edge resonance frequency is

important for proper understanding of this phenomenon.

The construction of the analytical problem solution for a parallelogram-shaped plate makes use of the

method based on the superposition of motion equation solutions represented as infinite series and set so to satisfy

arbitrary conditions at the parallelogram boundary. The validity and efficiency of such an approach are outlined in

[4–7].
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Determining the coefficients of series, entering into the representation of general solutions of boundary

problems, results in the infinite systems of algebraic equations. In addition to the direct accuracy evaluation of

fulfilling the boundary conditions, the possibility of getting the numerical solution is realized and the results of two

calculations are compared. Such a comparison is helpful both for additional verification of analytical estimates and

elaboration of recommendations on the choice of necessary discretization steps in numerical calculations.

Basic Relations of the Theory of Planar Vibrations for Thin Electrodeposited Piezoelectric Plates with

Thickness Polarization on the Electric Field Excitation. Planar vibrations of thin piezoceramic plates with

thickness polarization are described with the vector equation of motion in displacements (Lame equation), which for

the case of solid electrodes, coating face flat plate surfaces takes on the following form [2]:

2

1
2 1

11

2

2
�

� � �

�

� �

�

�

graddiv rot rotu u
u

s

t

E
( ) , (1)
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The two-dimensional stress tensor components for thin piezoceramic plates are expressed as [2]
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where 
 x , 
 y , and 
 xy are the strains [8], d31 is the piezoelectric constant, E E tz z� ( ) is the component of the

electric intensity vector E, which has only one nonzero component in the Oz axis direction normal to the electrode

plate coatings.

For excitation of plate vibrations 2h thick from the voltage generator with the output potential difference

2 0V t( ), applied to the electrode coatings on its face, we have

E
V t

h
z � �

0 ( )
. (5)

Correspondingly the stress vector components Fn on the elementary area with the unit normal n are

expressed as [2]
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When setting the stress conditions at the boundary, the normal and tangential stress vector components are

usually considered

F F n F n

F F n F n

n nx x ny y

nx y ny x

� �

� � �

,

.
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(7)

General Solutions in Potentials. Motion equation in displacements (1) is rather complicated, thus, in some

cases, also in analytical studies, the elastic displacement field u u� ( , , )x y t is convenient to calculate passing on to

the Helmholtz representation via the scalar �( , , )x y t and vector � ( , , )x y t potentials [1]

u � �grad rot� �, div� � 0. (8)

In this two-dimensional case, the vector potential � possesses the only nonzero component � �z � in the

Oz axis direction. In terms of this, substituting (8) into (1) and considering that div grad� ���
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where the first and second ones describe the propagation of longitudinal and transverse waves in the plate plane,

respectively, with the velocities
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In view of (10), Eqs. (9) take on the form
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With the computation rules of vector operations grad( )� and rot( )� as well as with � �� k ( , )x y in the plane

problem, where � �( , )x y z� is the scalar function, � x � 0, � y � 0, and for the components of initial vector field of

displacements u i j� �u ux y , we get expressions for the displacement components by Eq. (8)
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On the excitation of harmonic plate vibrations with the ac field from the voltage generator, assume the

harmonic time dependence of the examined values

u u� ( , )exp( ),x y i t� � � �� ( , )exp( ),x y i t � � �� ( , )exp( ),x y i t (13)

where i � �1 is the imaginary unit, � �� 2 f is the circular frequency (rad/s), and f is the natural (Hertzian)

frequency, Hz.

Then the harmonic multiplier exp( )i t� is omitted, and by the u, �, �, etc. values are meant their

amplitudes. Thus, substituting (13) into (11), we obtain the Helmholtz scalar equations
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where k1 and k2 are the wave numbers of the longitudinal and transverse waves in the plate
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The transformation of stress tensor components for plane problem (3) in accordance with the representation

of displacement vector components via Helmholtz potentials (12) in view of Cauchy formula for strains (4) and

expression for the loading electric field (5) results in the equalities
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On setting the normal Fn and tangential F
�

stresses at the plate contour, the boundary conditions take on

the following form:
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where G is the shear modulus, G
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in the right side of equality (17a) appears as a

result of the relation between electric and mechanical fields, it is also proportional to the piezoelectric constant d31

and amplitude of the external electric field intensity. Then denote it as Fn

Veq
. Notice that the terms in the left side of

(17) correspond to the normal and tangential stress vector components related to elastic strain, which may be

designated 	 n

def
and 	

�

def
.

Equation (17) may be rewritten in the reduced form as
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Statement of the Problem. Within the above model, examine the problem of harmonic vibrations of a thin

piezoceramic plate with mechanical stress-free edges, OBCD parallelogram-shaped with the angles $ in the O and

C apexes and side sizes OD BC a� � , OB CD b� � (Fig. 1). The conditions for the stresses at the parallelogram

boundary take the form (17) at

Fn � 0, F
�

� 0. (19)
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Enter the two systems of Cartesian coordinates Ox y1 1 and Ox y2 2 with their origin in the point O (Fig. 1).

The relation between the coordinates in those systems has the form
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The solution for � and � may be presented as the sum (superpositions) of potentials that are the solutions

of Helmholtz equations (14)
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where '1 �GB and ' 2 � FD (Fig. 1).
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The form of series (22) was chosen so that at ith sides of the parallelogram, �i and � i represented the

series expanded by the complete trigonometric bases.

Substituting � j and � j ( j �1 4, ) into Helmholtz equations (14), we come to the system of independent

homogeneous differential equations of second order with the constant coefficients relative to the functions A
i

j( )
and

B
i

j( )
entering into representations (22). Solving these equations and choosing the solutions of the differential ones,

from the considerations of independence of basis functions and exponent damping inwards from the parallelogram

sides, we get the explicit expressions for A
i

j( )
and B

i

j( )
against the relations ( �n n a� and ) �m m b� and wave

numbers k1 and k2 (15) for each n and m:
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Thus, series (22) for �i and � i in view of (23) are the series in terms of the two-dimensional basis

functions, which would be denoted ,ij k kx y( , ) and -ij k kx y( , ) for short with the coefficients Aij and Bij

( , ,i �1 4 k �1 2, ), respectively.

Computer Simulation of Plate Vibrations. The prime object of mathematical simulation of physical

vibrations is evaluating their quantitative characteristics against the geometric parameters of the domain of their

existence and boundary conditions. As a rule, it may be reached with several iterative processes, e.g., with an

increase in the number of Fourier series terms used for the representation of a desired function. Effective realization

of the iterative processes would require such characteristics that provide the process stability and getting reliable

quantitative estimates. Note that the superposition method, allowing for the construction of general solutions of

boundary problems, just exhibits such properties. The stability and convergence of computational procedures on

its realization are effected by the completeness of fundamental properties used for representing the function values .
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For obtaining the quantitative stress and displacement estimates for the plates, we go in representations (22)

from the infinite series to the finite sums in terms of n and m to N �1 and M �1, respectively (reduction method)

[9–12]. Further the problem solution is reduced to evaluating 4( )N M� unknown coefficients in reduced functional

representations (22) based on approximate satisfying single collocation points or on the standard deviation

minimization method (projection method) for the boundary conditions at the parallelogram sides OD I( ), BC II( ),

CD III( ), and OB IV( ) (Fig. 1).

Collocation Method. The solution of the problem of planar vibrations for a parallelogram-shaped

piezoceramic plate with the free edge with the collocation method would require to fulfill preset conditions for

normal and tangential stresses (17), (19) in some boundary points (collocation points), they [8] may be chosen as

mid-sections of uniform division into N parts of boundaries I and II and M parts of boundaries III and IV (Fig, 1).

Thus, we have 2( )N M� collocation points with the coordinates (x yi

c

i

c
, ), in each of them the outward normal

vector with the components nx , n y is preset. As a result, for each collocation point, the two linear algebraic

equations are formed against the coefficients Aij , Bij of truncated series. Solving this system and substituting the

computed values of the coefficients into corresponding representations for �i , � i (22) as well as calculating their

superposition by formulas (21), we get a required approximate solution of an examined boundary problem in

potentials. After that, the necessary components of displacements and stresses are computed with (12) and (16).

Similar transformations were performed earlier [13, 14].

Standard Deviation Minimization Method. Another method of approximate satisfying the boundary

conditions for solving the boundary problem consists in successive multiplication of residuals of the conditions at

boundaries I , II and III , IV (Fig. 1) by independent functions from the functional bases, used for the solution

representation, and integration of the products over corresponding boundaries I–IV , i.e., computation of scalar

products (projection) of residuals by the basis functions, equalled zero [12]. As a result, the system of linear algebraic

equations is obtained against the coefficients of series expansions Aij , Bij . In this case, the trigonometric functions

are chosen as the projected ones that enter as cofactors into the two-dimensional basis functions ,ij k kx y( , ),
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,m M� �0 1 (Fig. 1). In the majority of cases, the accuracy of approximate

solutions, obtained by this method, is somewhat higher than with the collocation method.

Theoretical models became the basis for software elaboration to numerically simulate the planar plate

vibrations, realizing both the collocation and standard deviation minimization methods in approximate satisfying the

boundary conditions. In many cases, it is convenient to pass on to dimensionless boundary conditions for stresses,

normalizing them in (17) by the shear modulus G.

Numerical simulation was carried out for piezoceramic plates from a PZT-4 material, its characteristics are

cited in [2, 15]: s
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For getting the amplitude-frequency characteristics of examined piezoceramic plates with solid two-sided

electrodepositing, the dimensionless equivalent exciting load Fn

Veq
was assumed to be equal to �1.

Calculation results for the above characteristics of a parallelogram-shaped plate of the dimensions a �

34.54 mm, b � 45.69 mm and the angle $ � /80 by the collocation method for N M� � 60 are presented in Fig. 2.

The amplitude-frequency characteristics obtained by numerical simulation with the collocation method at

N M� � 90 and the standard deviation minimization method at N M� � 60 and 90 as well as resonant frequencies

do not practically differ from the data cited in Fig. 2.

The closeness of those values corroborates high accuracy of the analytical method and its efficiency in

solving practical problems of dynamics research for piezoceramic plates of non-canonical shape.

Computation ( f comp ) and experimental ( f exp ) studies on the vibrations of a piezoelectric plate resulted in the

following resonant frequency values (kHz): f comp � 31.69, 34.93, 41.52, 51.54, 56.77, 66.69, 78.82, f exp � 31.05,

34.35, 40.40, 49.55, 55.72, 65.14, 77.33.
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When comparing calculation and experimental data on natural frequency spectra, the following should be

considered. The computations were performed for the model of an ideally elastic material. In the experiment, the

material exhibits its true properties, in particular internal damping. As regards the natural frequencies, the damping

results in resonant frequency drift. Moreover, for such a case, the difference in natural frequencies by angular

velocities and drifts should be considered since those are resonances of different types.

It is complicated by the fact that the damping is greatly dependent on the frequency. This should be taken

into account in the comparison of results. It is also important that it is impossible to experimentally realize the

boundary conditions preset exactly in the computation scheme.

For evaluating the accuracy of solution results, the errors of satisfying the boundary conditions are depicted

in Figs. 3 and 4:

	 	

	 	

�
�

n

err

n

def comp

n

Veq

err def comp

F� �

�

( )

( )

,

,
(24)

where comp denotes computed values and err means error values.

In the construction of error spectra by the collocation method, the data in the vicinity of angular points in

Fig. 3 are presented incompletely since here the error is somewhat growing, but does not surpass 10
3�

loads preset

at the boundary. Analysis of results demonstrates their good agreement since both methods neglect the contribution

from higher harmonics in satisfying the boundary conditions, such residual behavior, viz high variability along the

coordinate, is quite natural.

Comparison of results for the two systems of collocation points (60 and 90) shows that an increase in their

number results in higher accuracy of satisfying the boundary conditions. The same is valid for an increase in the

number of projection functions in the case of the standard deviation minimization method. However, with a similar

number of terms, the accuracy of results is somewhat higher.

Of interest is a relatively high error within very narrow regions near the ends of boundary segments. This is

apparently the specific feature of the collocation method (Fig. 3). However, the application, e.g., of the projection

method eliminates this shortcoming (Fig. 4). In evaluating such integral characteristics of the vibratory system, as

natural frequencies, both methods provide practically the same accuracy at a similar number of hold terms in infinite

series.
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Fig. 2. Amplitude-frequency characteristics of a parallelogram-shaped piezoceramic plate (	 	 	

0

� �x y

is the modulus of the sum of dimensionless principal stresses in the plate center).
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a b

c d

Fig. 3. Comparison of errors of satisfying the boundary conditions for the normal 	 n

err
(a, b) and tangential 	

�

err
(c,

d) stresses at boundary I of a parallelogram-shaped piezoceramic plate by the collocation method: (a, c) N M� � 60;

(b, d) N M� � 90.

a b

c d

Fig. 4. Comparison of errors of satisfying the boundary conditions for the normal 	 n

err
(a, b) and tangential 	

�

err
(c,

d) stresses at boundary I of a parallelogram-shaped piezoceramic plate by the standard deviation minimization

method: (a, c) N M� � 60; (b, d) N M� � 90.



Conclusions. Calculation results for the dynamic characteristics of parallelogram-shaped piezoelectric plates

demonstrate that the method of analytical electroelasticity problem solution for the non-canonical domain provides

their reliable quantitative estimates. The quantitative estimates of vibrating plate characteristics by both proposed

algorithms are shown to be practically similar. At the same time, the collocation method would require a smaller

body of analytical transformations.

Thus, expressions (22) offer an exact general solution of the boundary problem of planar vibrations of a

piezoceramic plate in the form of infinite series. The number of hold terms is essential for a required accuracy level

to get the quantitative estimates of physical values. For evaluating the necessary coefficients, the boundary problem

conditions were used. The corresponding functional equations for the finite number (N and M) of hold terms may be

transformed into algebraic relations by the two different methods. The two approaches to the solution of functional

equations, expressing the boundary problem conditions, are proposed. One of them is known in applied mechanics as

the collocation method [12] when the functional equation is transformed into the algebraic equalities for a certain

system of points at the boundary. In terms of computability, it is a rather simple method of deriving the algebraic

relations. From our viewpoint, another method of deducing the algebraic relations, more adequate for the traditional

statement of boundary problems in mechanics, is based on the principle of standard deviation minimization in the

fulfillment of boundary conditions. Quantitative estimates were obtained using both methods, with the comparison of

the results.

Comparison of the results with experimental frequency characteristics of vibrations of parallelogram-shaped

piezoceramic plates, which would be presented in the next study, corroborated a high accuracy of the proposed

analytical approach to the investigation of planar vibrations of plates of non-canonical shape.
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