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MODIFIED KT-DIAGRAM FOR STRESS RAISER-INVOLVED

FATIGUE STRENGTH ASSESSMENT

O. M. Herasymchuk UDC 539.4

The model for evaluating the fatigue strength of specimens and structure elements with sharp-edged

and deep stress raisers (notches) or defects, which can be treated as initial cracks, is advanced. The

model is based on the modification of known fracture mechanics approaches with employing the

modified Kitagawa–Takahashi diagram. The model starts from the fact that cyclic loading of

sharp-edged notch-containing specimens over the nominal stress span below the endurance limit of

smooth specimens results in a crack penetrating to a certain size from the root of the notch, with its

further arrest due to the two basic factors: descending gradient of local stresses ahead of the notch

root and gradually growing effect of crack closure behind its tip. The crack size is dependent on the

stress span and notch depth. The model permits of calculating the boundary curve of threshold

stress spans and corresponding tolerable crack sizes for a sharp-edged notch of any depth, using

only the characteristics of static strength and microstructure of the initial material. The model

reliability was verified with experimental results taken from the literature, the calculation and

experiment were in good agreement. The model need not long-term and labor-consuming fatigue

and fatigue crack resistance tests to get parameters necessary for the model implementation. The

model calculations would require only the data on static strength characteristics (elastic modulus,

Poisson’s ratio, and proportionality limit), obtained from short-time tensile tests of standard

specimens from an examined material, and microstructure characteristics (grain size, Taylor factor,

and Burgers vector), determined from microstructure analysis of the initial material.

Keywords: fatigue strength, stress raisers (notches), boundary curve of threshold stress spans, KT-diagram, fatigue

crack.

Notation

b – Burgers vector (

�

b) module

d – grain size, maximum size of a microstructurally short crack

D – notch depth

E – elastic modulus

h – spacing between neighboring parallel slip planes in the crystal lattice

�Kth – threshold stress intensity factor span

�Kth d, – threshold stress intensity factor span for a microstructurally short crack d deep

�Kth eff, – effective threshold stress intensity factor span

�Kth LC, – threshold stress intensity factor span for long cracks
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K – stress intensity factor

K f – effective stress concentration factor

Kt – theoretical stress concentration factor

Kth d, , Kth LC, – threshold stress intensity factors in terms of the load cycle maximum

l – crack size (depth)

lc – critical distance parameter, material characteristic, which describes the surface layer depth

with mechanical properties differing from those of the rest of the material

lD – size additional to the short crack size in the El Haddad equation

ls – material characteristic, which describes the depth of a physically small crack on the change

in its propagation mechanism at a stress level maximally close to the endurance limit of smooth

specimens

M – Taylor factor

R – stress ratio

rp – cyclic plastic region size

Y – geometrical factor (stress intensity factor correction)

Y1 – geometrical factor in the deepest point of the half-penny front of the plane surface crack

against M

Y2 – geometrical factor in the deepest point of the half-penny front of the plane surface crack

perpendicular to the direction of applied tensile stress

� – Poisson’s ratio

� – notch root radius, crack tip radius

�� – cycle stress span

�� e – endurance limit of smooth specimens in terms of the stress span

�� R – endurance limit at R in terms of the stress span

�� th – threshold stress span in the presence of a crack

� – tensile stress

� e – endurance limit of smooth specimens in terms of the maximum cycle stress

� f – internal friction stress in the crystal lattice

� max , � min – maximum and minimum cycle stresses

� max,R – endurance limit at R in terms of the maximum cycle stress

� p – proportionality limit

� �1 – endurance limit under symmetrical cycling (amplitude or maximum cycle stresses)

� �1,e – endurance limit of smooth specimens under symmetrical cycling (amplitude or maximum cycle

stresses)

� 0 2. – yield stress at 0.2% strain (yield limit)

� nom – nominal stress

� peak – maximum (peak) local stress at the notch root for the elastic distribution of local stresses

� th – threshold stress in the presence of a crack

� th ,max , � th ,min – maximum and minimum endurance limits for a sharp-edged stress notch
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Introduction. Machine elements operating at variable loads experience fatigue damages that can lead to the

nucleation of fatigue cracks, their propagation, and at last to failure. As a rule, the nucleation of fatigue cracks takes

place at the stress concentration sites, determined both by the component construction (holes, fillets, slots, sharp ribs,

etc.) and process engineering defects of the material (inclusions, undissolved precipitates, pores, microcracks, etc.)

for component manufacturing or in-service defects (dents, scratches, corrosion cracks, etc.). Fatigue strength analysis

of specimens and structure elements with stress raisers (notches) relies on different approaches depending on the

notch geometry [1–5]. What those approaches have in common is the postulate that the fatigue strength of

notch-containing specimens is governed by a minimum local stress necessary for the initiation of a fatigue crack near

the notch root, which equals the endurance limit of smooth specimens. At the same time, for the notches of several

types (sharp-edged and deep), the fatigue strength can be dependent on the threshold span of applied stress, which

initiates the fatigue crack near the notch root that penetrates to a certain size and ceases its further propagation due to

the two basic factors: descending gradient of local stresses from the notch root and gradually growing effect of crack

closure (partial closure of edges behind the crack tip).

The above postulate is well illustrated by Fig. 1b where the classical relation of the threshold span of

nominal stresses �� th against theoretical stress concentration factor Kt (Fig. 1a) is presented as the maximum

(peak) local stress span near the notch root Kt th�� vs Kt [6]. As is seen, minimum stresses necessary for the

initiation of a fatigue crack near the notch root at different Kt are at the same level, corresponding to the endurance

limit of smooth specimens.

An ingenious approach was proposed in [7] where the critical distance concept was applied to analyze the

fatigue strength of specimens with blunt and shallow notches (Kt � 4) using the characteristics of static strength and

microstructure of the initial material. The critical distance is the interval from the notch root (in the direction

perpendicular to the applied normal stress) where the span of local stresses reaches the endurance limit of smooth

specimens during the action of nominal stresses, equal to the endurance limit of notch-containing specimens. This

approach suggests that specimens with notches of this type behave similar to smooth specimens at their endurance

limit. In other words, if in the smooth specimens at their endurance limit the cracks can appear whose size does not

exceed the grain size d, i.e., microstructurally short cracks (MSC), as is stated, e.g., in [8], in the specimens with

blunt and shallow notches at their endurance limit, the cracks of the same size can originate that do not further

propagate. Just this behavior is illustrated by Fig. 1a at Kt � 4. Thus, such an approach defines the so-called

endurance limit for the MSC initiation, and its evaluation would require the critical distance and equation for the

curve of local stress distribution from the blunt notch root.

For sharp-edged and deep notches (Kt � 4), many researchers propose the approaches to fatigue strength

analysis based on the Kitagawa–Takahashi diagram (KT-diagram) [9]. The KT-diagram is a powerful tool of fracture

mechanics, which is widely used for the reliability and service life prediction of structure elements with crack-like

defects. This diagram (Fig. 2a) depicts the two boundary (threshold) fatigue criteria: threshold stress for fatigue

fracture, i.e., the endurance limit of a smooth specimen with small crack sizes and threshold stress intensity factor

(SIF) span for the growth of a fatigue crack of larger sizes. Such an approach provides the basis for correlation

between the traditional evaluation of fatigue life by the fatigue curve and its estimation built on fracture mechanics

by the permissible damage concept, i.e., permissible crack sizes.

Authors [9] believed that the arrest of a surface fatigue crack was defined by the constant threshold SIF

value for the cracks larger than ~ .0 5mm. Below this size, the transition takes place at which the stress that equals the

endurance limit of smooth specimens is more likely than threshold SIF to be the critical condition for the propagation

of very small crack-like defects. Later in [10], the boundary curve equation for the threshold stress spans �� th

(Fig. 2b, curve 1) was proposed that represents this gradual transition, using the additional fictitious/intrinsic size lD

to the crack size l as follows:

� �� 	th th LC DK Y l l
 �, ( ( ) ). (1)

Here lD is calculated by the formula
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where �Kth LC, is the threshold SIF span for long cracks (LC), which characterizes their minimum motive force,

�� e is the endurance limit of smooth specimens, and Y is the geometrical factor for the crack. The region on the

diagram under curve 1 is the domain of arrested cracks (Fig. 2b).

The boundary curve for LC (Fig. 2b, curve 2) is described by the following equation:

� �� 	th th LCK Y l
 , ( ). (3)

Horizontal line 3 (Fig. 2b) defines the endurance limit of smooth specimens, which is described by the

equation � �� �th e
 . In the correct construction of the diagram [11], boundary curve 1 intersects line 3 at x d
 ,

pointing to the presence of the crack of just this size at the endurance limit of smooth specimens.
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a b

Fig. 1. Threshold span of nominal stresses �� th (a) and threshold span of maximum (peak) local

stresses at the notch root Kt u�� (b) vs theoretical stress intensity factor Kt [6].

a b

Fig. 2. KT-diagram: (a) Kitagawa–Takahashi experimental results [9]; (b) schematic KT-diagram [11]

[(1) plot of Eq. (1), (2) plot of Eq. (3), and (3) plot of the equation � �� �th e
 ].



The object of the present study is the application of the modified KT-diagram to the assessment of the

fatigue strength of specimens and structure elements with deep and sharp-edged stress notches. Modification of

known approaches [8, 12] resulted in the model, which can be used to calculate the boundary curve of threshold

stress spans and corresponding admissible crack sizes for the notches of any depth, only with the characteristics of

static strength and microstructure of the initial material. Reliability of the advanced model was verified with

experimental results taken from the literature.

Model Construction. As experimental results of many researchers demonstrate [2, 8, 12], the threshold

stress spans for physically small cracks (PSC) can be much smaller than those calculated by Eq. (1). It is determined

by the incompletely evolved closure of PSC edges in contrast to LC. Thus, Eq. (1) provides the nonconservative

prediction for PSC. In [8], the model for calculating �� th was advanced where an increase in the crack closure level

with its size is accounted for after the exponential law, hence the KT-diagram is modified

�
� � �

�

	
th

th d th LC th d

k l d
K K K e

Y l



� � �

� �

, , ,

( )
( )( )1

at l d� , (4)

where �Kth d, is the threshold SIF span for MSC of the d size

� �K Y dth d e, ,
 � 	 (5)

k is the parameter that defines the crack closure evolution

k
K

d K K

th d

th LC th d



�

�

� �

,

, ,( )
.

4
(6)

The expression in the numerator of Eq. (4) is the approximation of the so-called fatigue crack resistance

curve, or simply the resistance curve (R-curve), and the coefficient of d in Eq. (6) is the fitting one. In [8], it was

suggested that coefficient 4 gave the best agreement between the calculation by Eq. (4) and experimental data for

examined materials. The boundary curve constructed in the logarithmical coordinates by Eq. (4) is depicted in Fig. 3

(curve 4). As is seen, boundary curve 4 also intersects horizontal line 3 at x d
 , and for LC, it is consistent with

boundary curves 1 {Eq. (1) [10]} and 2. In the PSC range, curve 4 narrows down the region of arrested cracks, as

compared to curve 1. Thus, the threshold stress span �� th defined for PSC by model (4) [8] would require

experimental evaluation of the material characteristics �� e , �Kth LC, , and d.

However, model (4) [8] does not take account of the initial defect (or sharp-edged notch) effect, giving rise

to the crack penetration under cyclic loading below the endurance limit of smooth specimens. As is shown in [2], the

region of arrested cracks narrows down considerably with the depth of such a defect. This effect is considered in the

model proposed in [12]. The equation for calculating the boundary curve against the notch depth takes on the

following form [12]:

�

� � �

� th

th eff th LC th eff i i

i

n

K K K v l l




� � � �




�, , ,( ) exp( )1

1

�

�

�

�

�

�

�Y D l	( )

, (7)

where �Kth eff, is the effective �Kth LC, value (i.e., without account of crack closure), which characterizes the

maximum material resistance to crack propagation, l is the crack size from the notch root, Y is the geometrical

factor for a crack-like notch, li is the crack portion where a certain mechanism of its closure prevails, and vi is the

weight percent. The parameters vi and li are the fitting ones.
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In [12], the sharp-edged notch is thought of as a crack of the D size whose edges do not close under cyclic

loading. Therefore, the threshold SIF span for such a crack equals its effective value �Kth eff, . As in Eq. (4), the

expression in the numerator of Eq. (7) is the approximation of the resistance curve. The calculation by model (7)

would require the experimental resistance curve in the �K lth � coordinates, used for determining all necessary

parameters.

One should distinguish between �Kth d, from Eq. (4) and �Kth eff, from Eq. (7), though they characterize

the same value in those equations, only from different points of view. If the �� th l( ) plot is constructed by Eq. (7) at

D 
 0, it would intersect the horizontal line � �� �th el( ) 
 at x lc
 , which is other than d (Fig. 3, curve 5). Thus, it

may be understood that the arrested crack of the lc size exists at the endurance limit of smooth specimens, which it

is not. This difference is due to different approaches to the description of the behavior of short cracks.

Thus, in determining SIF of a short crack �Kth d, , Eq. (5) is used as for the long one, without account of the

fact that the plastic region ahead of the crack tip is comparable with its size [8]. Therefore, �Kth d, does not

correspond to the true value of threshold SIF for the short crack of the d size, which should equal �Kth eff, since the

closure effect for such a crack is still nonexistent. So, in this case, we have the true crack size but fictitious threshold

SIF at the endurance limit of smooth specimens.

In the other case, the expression to evaluate the threshold SIF �K
th eff,

for the short crack of the d size can

be written with the Dagdale correction for the plasticity of short cracks [13]

�K r F Y dFth eff e e, ( ) ,
 �2 	 	 � (8)

where F is the Dagdale correction for plasticity

F
e

Y



�



�
�

�

�

�
�
�

�

�

�

�

�

�

1

2 2
1sec ,

	�

�
(9)

d is the linear crack size (dF is the linear crack size with the plastic region rp ahead of the crack tip contrary to SIF

for long cracks K Y l
 � 	 , where l is the linear crack size with the plastic region rp ahead of its tip since in this

case r lp �� ), �Y is the yield stress (proportionality limit � p or yield limit � 0 2. may be used), � e is the

endurance limit of smooth specimens in terms of a maximum cycle stress, re is the distance ahead of the crack tip

along which the local maximum stress is considered constant re 
 � 8, where � is the crack tip radius.
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Fig. 3. Modified KT-diagram: (1) boundary curve by Eq. (1), (2) boundary curve for LC by Eq. (3), (3) plot

of the equation � �� �th e
 , (4) boundary curve by Eq. (4) [8], and (5) boundary curve by Eq. (7).



Equation (8) can be rewritten as follows:

�K lth eff c e, .
 � (10)

The identity of Eqs. (8) and (10) can be easily verified if there are experimental data on �Kth eff, , � e , �Y ,

and d, and � is taken to be 0 06. d for an isotropic material or 0 03. d for a strongly textured one [14]. Thus, the size

lc is a fictitious value. So, in this case [Eq. (7)], we have the true value of threshold SIF for MSC, with the fictitious

short crack size at the endurance limit of smooth specimens.

The disadvantages of the above models for fatigue strength prediction are the use of fitting parameters and

the necessity of performing additional experiments to evaluate the parameters of Eqs. (4) and (7).

Here the model is advanced that is the modification of models (4) and (7) in combination with an earlier

suggested model of PSC growth [15]. The model can be applied to evaluating the fatigue strength of specimens and

structure elements, which contain deep and sharp-edged stress notches or surface defects that can be presented as

initial cracks. The equation of the boundary curve for threshold stresses in terms of a maximum cycle stress under

symmetrical cycling for the notch D deep is set forward as
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With (12)–(14), Eq. (11) takes on the form
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at l d� , (15)

where Y1 is the geometrical factor for MSC single grain d deep, 0 67 0 731. .� �Y against M [7]

Y Y d ls1 2 2 1 1 1
 � �( ( ) ), (16)

Y2 is the geometrical factor for LC, Y2 0 73
 . [16], Y is the geometrical factor for the notch+crack D l� .

The parameter ls similar to lD from Eq. (2) is calculated by the formula [11]:

l
h

M b

ds 

�8 1

12

2 2

2

	 �( )
, (17)

where � is Poisson’s ratio, b is the Burgers vector module, M is the Taylor factor, and h is the spacing between

neighboring parallel slip planes in the crystal lattice depending on a slip system activated in accordance with the
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Taylor factor value. As was shown [11, 15], the parameter ls characterizes the depth of a surface half-penny PSC on

the change of its propagation mechanism in smooth specimens at the uniaxial tensile stress level that exceeds the

endurance limit by an infinitesimal. On the other side, it characterizes this depth at which a maximum closure level

near its tip is reached that corresponds to the LC closure level at the motive force equivalent to �Kth LC, . That is, the

parameter lD from Eq. (2), which in the general case Y is a fictitious value, at Y Y
 2 acquires the physical

meaning and is the material characteristic ls, defined by Eq. (17), in contrast to a wide-spread view that the material

characteristic is the parameter l0 since it does not depend on Y and is determined as

l
Kth LC

e

0

2

1



�



�
�

�

�

�
�	 �

�

�

,
, (18)

or, with (2) and (18)

l l YD0

2

 . (19)

But Eq. (18) is the same Eq. (2), only at Y 
1, i.e., for the central through-thickness crack in the infinite plane of unit

thickness, perpendicular to the direction of uniaxial tensile stress. Thus, l0 is also a fictitious value that has no

physical meaning.

The parameter lc can be calculated with the phenomenological relation of the grain size d [7]

l E b A B E b d A Bc 
 � �
�2 2

4{ arctan [( ) ]} , (20)

where A f p
 �( ) ,� � 2 B p f
 �( ) ,� � 	 � �f ME" � #
� �

[ ( )]2 1 10
1 3

is the internal friction stress in the crystal

lattice, � p is the proportionality limit, and E is the elastic modulus.

As was shown [7], just lc is the critical distance parameter that characterizes the depth of a surface layer

with mechanical properties differing from those of the rest of the material [16] where local plastic strains appear

under cyclic loading. While many authors take l0 or lD as the parameter of critical distance. But such an

assumption is mistaken since these parameters, as was mentioned above, have a different physical meaning. Though

in some cases, ls and lc values can coincide, but such an agreement is accidental that depends, first of all, on the

grain size of the material. Thus, by Eq. (17), for alloys with a hexagonal close-packed crystal lattice ls $ (12–13)d,

for alloys with body-centered and face-centered crystal lattices ls $ (6–8)d. While lc for fine-grained (high-strength)

materials can equal or exceed ls, for coarse-grained (plastic) materials lc cannot even exceed a single grain size.

And the absolute lc value for fine-grained materials is much smaller than for the coarse-grained ones. In other

words, the l ds ratio does not depend on d, and l dc does depend.

The endurance limit under symmetrical cycling of smooth specimens � �1,e is calculated by the formula [7]

� � 
1, .e cE b l (21)

For the symmetrical load cycle, Eqs. (10) and (21) are identical since, as was shown in [17], �Kth eff, may

be evaluated by the formula

�K E bth eff, .
 (22)

Along with this, lc in Eq. (10) is a fictitious value, with the account of Eq. (8), while in Eq. (21) it has a concrete

physical meaning, as was mentioned above.

Since the ratio 1 1 092 1� �Y Y . is unessential for Eq. (15), it can be neglected, and the final form of the

equation for evaluating the threshold stress with (21) would be as follows:

� th c

s s c
E b l Y d

l d d l l d l

Y D l



� � � � �

�
1

1 1 1 1( ){ exp[( ) (( ) )]}
at l d� (23)
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or

� �th e fK
 �1, , (24)

where K f is the effective stress concentration factor

K

Y d

Y D l

l d d l l d l
f

s s c



�

� � � � �

1

1 1 1 11 ( ){ exp[( ) (( ) )]}

at l d� . (25)

As is seen from Eqs. (24) and (25), for the evaluation of fatigue strength for sharp-edged and deep notches as

well as for blunt and shallow ones, a single approach can also be used with the effective stress intensity factor. The

difference is only in the approaches to determining K f . Moreover, the evaluation by Eq. (23) results in the nominal

stress.

For evaluating the fatigue strength at the stress ratio R in terms of the applied stress span (�� R ) and in

terms of the maximum applied cycle stress ( )max,� R , the empirical formulae can be applied (e.g., [18]):

��
�

� �
R

e

e R R



� � �

�

�

2

1 1 1

1

1 0 2

,

, .( ( )) ( ( ))
, (26)

� �max, ( ),R R R
 �� 1 (27)

Then � max,R is substituted for � �1,e into Eq. (24).

Results and Discussion. The calculations by an advanced model and comparison of the data with

experimental ones are based on the results of [2, 12]. In [2], the specimens from SM41B structural carbon steel in the

form of a strip 45 mm wide and 4 mm thick with a central through-thickness notch 6 mm long and 0.16 mm radius in

the root perpendicular to the loading direction are under investigation. The theoretical stress concentration factor is

Kt 
 8 48. . The specimens were tension–compression loaded under symmetrical cycling. The material possesses the

ferrite-pearlite microstructure with a 64-%m ferrite grain size and the yield limit � 0 2 194. 
 MPa. Thus, for

calculations by model (23) with (17), (20), and (21), the following initial data were used: for SM41B steel

E 
 #21 10
5

. MPa, � 
 0 3. , � �p " 
0 8 155 20 2. .. MPa, d 
 #
�

64 10
6
m, for steels | | .

�

b 
 #
�

2 48 10
10

m [17], then by [15],

we have b b
 � 
| | ( )

�

2 2� 2108 10
10

. #
�

m, M 
 2, i.e., the lowest value is employed (most dangerous case) since data

on the texture of the material are absent, Y1 0 67
 . for M 
 2 [15], | |/ .

�

b h 
1414 for a body-centered crystal lattice

[19], so h 
 #
�

1754 10
10

. m. Since for a given notch Kt 
 8 48. is practically within the diagram section independent

of Kt (Fig. 1a), it may certainly be treated as a crack. In other words, the distribution of local stresses from the notch

root is suggested to be similar to the distribution near the LC tip. This notch can also be considered the edge

through-thickness crack of a depth that is two times smaller than the length of a through-thickness notch, i.e.,

D 
 3 mm. Then the calculation result by Eq. (23) should be doubled. For such a crack, Y 
112. [20].

In [12], the specimens from 25CrMo4 structural steel in the form of a 100 20 6& & -mm strip with a narrow

sharp-edged through-thickness notch of different depths: 0.813, 2.19, and 5.39 mm were studied. The specimens

were loaded in eight-point bending under symmetrical cycling. The material possesses the bainite microstructure and

indistinct texture with d " 50%m [21] and the yield limit � 0 2 512. 
 MPa [12]. Thus, for calculations, the following

initial data are used: E 
 #216 10
5

. MPa, � 
 0 3. , � �p 
 
0 8 4100 2. . MPa, d 
 #
�

50 10
6
m, b 
 #

�
2108 10

10
. m,

h 
 #
�

1754 10
10

. m, M 
 2, Y1 0 67
 . , and Y 
112. . So all the initial data necessary for calculations are available.

The boundary curves, calculated by Eq. (23) with (17), (20), and (21), as compared to experimental data on

crack sizes that formed from the notch root and did not propagate at several load levels are depicted in Fig. 4.

As is seen, the calculated curves of threshold stresses are is good agreement with experimental results, which

corroborates the reliability of the advanced model. The calculation by model (23) results in the conservative
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evaluation, while the calculation by Eq. (7) gives a somewhat overstated, i.e., nonconservative one. Moreover, the

model does not require long-term and labor-consuming fatigue and fatigue crack resistance tests to get parameters

necessary for its implementation. The calculation by model (23) involves only the data on the static strength

characteristics E, �, and � p , obtained from short-time tensile tests of standard specimens from an examined

material, as well as the microstructure characteristics d, M , b, and h, which are determined from microstructure

analysis of the initial material.

The minimum � th ,min and maximum � th ,max endurance limits for examined notches can also be evaluated

by the following simple formulae:

� 	th th effK Y D,min , ( ),
 � (28)

� �th e sD l,max , .
 ��1 1 (29)

Equation (28) can offer a determination of the threshold stress necessary for crack initiation from the notch

root as LC without the closure of its edges. Formula (29) is the so-called ALM model, modified by the author

(l Y0

2
is substituted with ls), for sharp-edged and deep notches, which was obtained in [3] with the KT-diagram.

The calculations by these formulae give approximately the same result as by Eq. (23) for the above notches. The

calculation by Eq. (28) leads to the totally nonconservative result as compared to (23), the error makes up (�0 3. )–

( . )%�13 4 . The calculation by Eq. (29) provides the conservative result in comparison with Eq. (23), the error equals
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a b

c d

Fig. 4. Comparison of calculated boundary curves (lines) with experimental data (points): (a) SM41B

steel specimens, D 
 3 mm; (b, c, d) 25CrMo4 steel specimens, D 
 0 813. , 2.19, and 5.39 mm,

respectively. (Solid lines are Eq. (23), broken lines are Eq. (7) [12], A and B are minimum and

maximum endurance limits for a given notch, respectively.)



�1.9 (Fig. 4a), �3.8 (Fig. 4b), �11.2 (Fig. 4c), and �16.3% (Fig. 4d). Thus, the calculated data are even more

conservative than the experimental ones. While the advantage of Eq. (23), in addition to the conservative prediction

in comparison with experimental data, offers a means of determining arrested crack sizes, which is consistent with

the calculated threshold stress.

CONCLUSIONS

1. The advanced model for fatigue strength evaluation permits of calculating the boundary curve of threshold

stress spans and corresponding admissible fatigue crack sizes for specimens and structure elements with sharp-edged

stress notches (Kt � 4) or defects of any depth.

2. The model does not require long-term and labor-consuming fatigue and fatigue crack resistance tests to

get parameters necessary for its implementation. The calculation by model (23) involves only the data on the static

strength characteristics E, �, and � p , obtained in short-time tensile tests of standard specimens from an examined

material, as well as the microstructure characteristics d, M , b, and h, which are determined from microstructure

analysis of the initial material.

3. The model reliability was verified with the experimental results for SM41B and 25CrMo4 structural steels

taken from the literature, and the data are in good agreement.

4. The practical value of the model lies in prediction of arrested crack sizes at a certain stress span, which is

of prime importance for the assessment of the service life of structure elements after the concept of admissible

damage.
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