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SCIENTIFIC AND TECHNICAL SECTION

VIBRODIAGNOSTIC PARAMETERS OF THE PRESENCE
OF A SEMIELLIPTIC BREATHING CRACK IN CIRCULAR BARS
UNDER SUPER- AND SUBHARMONIC RESONANCES

V. V. Matveev and E. A. Onishchenko UDC 620.178,620.179

The paper addresses the methods and results of approximate analytical and numerical calculation
of vibrodiagnostic parameters of the presence of a closing semielliptic surface crack in a circular
cantilever bar under super- and subharmonic resonances of the lower natural mode of bending
vibrations at force and kinematic excitation. The dependences of vibrodiagnostic parameters on crack
location and relative depth and on the point of load application are presented. The amplitude-
frequency response under the strong superharmonic resonance is shown to differ from those under
the weak superharmonic resonance and subharmonic resonance. The reasons why the results of the
analytical solution differ from the numerical one obtained by using a finite-element model of the bar
have been clarified.

Keywords: semielliptic breathing crack, finite-element model, vibrodiagnostics of fatigue damage, sub- and
superharmonic resonances.

Introduction. In further elaboration on the works [1, 2], where consideration was limited to beams of
rectangular cross section with an edge crack, we will present here the results of analytical and numerical solutions to
determine vibrodiagnostic parameters of the presence of a breathing semielliptic surface crack in a circular bar under
various types of harmonic excitation of 2-order superharmonic resonance and 1/2-order subharmonic resonance in
any jth mode of bending vibration due to the crack-induced initial nonlinearity of the vibrating system.

Analytical Solution Procedure. For the main vibrodiagnostic parameter of the presence of a semielliptic
surface crack in any section x, of a bar (Fig. 1) we use the following harmonic amplitude ratios: between the second
(resonating) amplitude and the first one under superharmonic resonance (22/1 =4 / A;s ), and between the first

(resonating) amplitude and the second one under subharmonic resonance (4;,, = 4/ Ay5). They are determined in

terms of the nonlinearity parameter o and the logarithmic decrement & of the system by the formulas [1, 3, 4]

Ay 2058(a/d)hy;  for Ay, <09, (1a)

Ay 207250 ;\Jafs  for Ay, >009, (1b)
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Fig. 1. A circular bar with a semielliptic surface crack, which is loaded with an exciting harmonic force.

where A,; is the ratio between the amplitude of the first harmonic of the jth mode 4;; and the peak-to-peak
amplitude of the first harmonic A4y for an intact bar under forced vibration at a superharmonic resonance frequency,
A is the ratio of the peak-to-peak amplitude of the second harmonic A5 to the amplitude of the second harmonic
of the jth mode 4,; for an intact bar under forced vibration at a subharmonic resonance frequency.

The parameter a is equal to a possible relative change of the bar bending stiffness due to the crack opening
under fundamental forced vibrations by the jth mode until its resonance occurs, among other excitable modes at a
frequency of super- or subharmonic resonances, and is determined via the energy characteristic of damage :

o=t 3)

The characteristic y is computed, using the data of calculation of fundamental steady-state forced vibrations
of an intact bar, as a ratio of the crack-induced possible increment of potential energy of the bar deformation AIT ;.
in vibrations by the jth mode under consideration, among other excitable modes, to the potential energy of the bar
deformation IT; in the jth-mode vibration at a super- or subharmonic resonance:

=" “

The forced vibrations of the bar will be calculated by the normal mode method or the method of principal
coordinates of the linear vibration theory. Considering that it is acceptable to neglect the difference in the phase shift
of vibrations along the principal coordinates at frequencies of the resonances under study and the possible levels of
damping, the amplitude function of the bar deflections is represented in the form of the finite sum of natural-mode
deflection amplitudes:

N
y) =2y (). (5)

i=1

In the case of a mode I crack of surface area S and contour I' (Fig. 2) present in the bar cross section, the
increment of potential energy AIl ;. is determined in terms of the normal stress intensity factor K; by the formula

[3]
1 _
AIL ;. :E HKfSp cos0drl,
()

(6)

where dp is the vector of a possible displacement of a point of the crack front contour I and 0# is the angle
between dp and the normal to the crack contour.

Consider two variants of a possible change of the crack front. In the first one, the crack front is assumed to
undergo changes at a constant ratio of semiaxes, i.e., at a/b = const. From the schematic representation in Fig. 2,
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Fig. 2. Geometry of a semielliptic surface crack in a circular bar.

with the radius vector p preset in polar coordinates (p and ¢), we have cos6 = p%, op :%db, and d¢ = a—zbd(p,
p
and formula (6) takes on the form
24 0% 2
AT, =22 j j K bdbde. (7
Eby

For the crack case at hand, the normal stress intensity factor is found, according to [6, 7], by the formula
Kl :ch\/EFlﬂ (8)

where 6 ; is the nominal maximum normal stress in the crack location section x =x. in the case of the bar bending
by the jth mode of its deformation, among other modes (hereinafter denoted by an asterisk) of forced vibrations

d*y;
Gy = Er[ );j J , ¢ is the half the length of the arc of a circle of the section that encloses the crack (c=rB,),
dx
X=X,

and F) is the dimensionless intensity factor.

Using the tabulated values [6, 7] for F; at points 4 and C of the crack contour for different ratios b/a and
b/r as well as the diagrams of F; vs. the relative angle ¢ =@/¢,., we can write, as an approximation for the given
values of the ellipse semiaxes @, b and the bar cross-sectional radius 7, the factor F; as a function of two variables:
the relative angle ¢ that varies from 0 to unity and the relative current crack depth z = b / r that varies from zero to

b/r,
Fi(z §) = Fi; (2) + 0.511AF, — L5 11AF,§2, )

where AF| =F,(z)-Fic(2), F|4 and F|- are given in the form of power series of the variable z.
For instance, for the first variant of the crack front variation with a/b=2.5 we have

Fy,(2)=0.56—0.027z —0.058z% +0.3822>,

(10)
Fic (2) =4.4262 —20.92% +4518z° —437z% +15752°,
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for the second variant with a/r=1 we have

Fiy (2) =0.4505 +0.44572 —0.4252% +0.05212°,

(11)
Fic (2)=0.8186z +0.332% +0.037z".

In view of the orthogonality condition of natural modes of vibration, the potential energy of the bar
deformation by the jth mode, among other vibration modes, is determined as if this mode is isolated,

a2y Y a2y, Y
nj:EE,AI -7 :j S| ldx. (12)
8 0 dx? 0 dx?
Then, we find
2+ )2
d”y;
a blr I . de .
=167 [ 200 (2B ()] (Fi (2 9))° dedgp———, (13)
0 0 d?y.
J );’ dx
o\ dx
where
-1 a’(a®
¢, (z) = arccos S~ 1—\/1+b2[b2—1}2 , (14)
—
b2
B.(z)=arccos(l — zcos @,). (15)

By way of example, let us consider a bar with a crack of relative depth b/7=0.4 and an ellipse semiaxes
ratio b/a=0.4.
The integration of the functions of z and ¢ in (13) using (10), (14), and (15) gives

2
2 *
d Y
dx?
X=X,

x =0.4224r — (16)

2 &
The value of [);J] is determined, as in [1] earlier, for the case of the bar deformation by the jth mode,
dx

among other vibration modes considered, by the formula

d>y; ? d?y; V(a2 .
S e e ) an
dx dx i=1\ dx
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For the amplitude functions of deflection y;(x), in the case of a cantilever bar, we have

e 1) =—FL X )X o (18)
EI(k;D*

for the vibrations excited by a point force Psinv¢ applied in the section x =xp, and

243 i
yi) = 2L ] X o, (19)
0

EI(k;1)

for the displacement of the restraint (x =0) B sinv¢, where

kl4 2]
T A
SRR

cosh k;l+cosk;l , . .
——————(sinh k;x —sin k;x),
sinh &, 1+ sin 1 O K ) (20)

X;(x)=(coshk;x —cosk;x)—

k;I is the ith root of the frequency equation, m is the mass of the bar unit length, and E/ is the cross-sectional
bending stiffness.

For the second variant of the crack front variation (a/r = const), disregarding the second-order (of smallness)

terms, we have op z#db, and formulas (7) and (13) become
b(1 + tan? )

zabq)c ) 1
All ;. =— K= ——dbdo, 21
/e EJ(;'([ 11+ta1n2(p @D
£ \2
bir ! 2 dx*
Fi(z, =X,
r=16a [ 0o ()] —HED g e )
0 ol +tan” (e, (2)¢) g2y,
J‘ Yj dx
dx?
0
where
_ - _
a)| _ 2
_ )
¢, (z) = arccos z 1- 1+(rj |} (23)
z

Fi(z, ¢) and B.(z) are found from expressions (9) and (15).
For the example a/r=1 and b/r=0.4 under consideration, after the functions of @ and z in (22) have
been integrated using (11), (15), (23) we have
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Crack front

Fig. 3. The finite-element model of a bar with a semielliptic surface crack.

2
2 *

d y;

dx? .
71 ; 5 €. (24)

d .
I );j dx
o\ dx

For the specified condition a =7 the results obtained by (24) are almost coincident with those found by

¥ =0.425a

(16).

Numerical Solution Procedure. The problem is solved numerically by means of a finite-element (FE)
model of a bar with a breathing crack (Fig. 3), which enables one to take into account the object geometry and
physical-mechanical characteristics. For the FE mesh modeling we use an eight-node finite element Solid45 and its
modifications [8]. The breathing crack is represented in the form of a mathematical cut; the relative positions of the
crack contacting faces are traced by means of surface four-node contact elements Contal74 that exclude mutual
penetrations and collisions of the crack faces.

Thus, the cracked bar system under consideration will be nonlinear for its stiffness, depending on the contact
interaction between the crack faces, varies with time and is found by solving the static equilibrium equation:

[Cl{i} = (P}, (25)

where {u} is the column vector of nodal displacements, [C] is the stiffness matrix, and {15} is the vector of angular

forces arising from contact interaction between the faces.
Vibration of the bar FE model is described by the matrix equation

[M i} + [D]{u; +[Cl(w) = {P(D)}, (26)

where [M ] and [D] are the inertial and dissipative matrices of the system, {P(¢)}, {u}, {u}, and {ii} are the column
vectors of the exciting force, displacement, velocity, and acceleration, respectively.
The dissipative matrix is taken in the form

[D]=n[M], 27

for which, with the decrement & ; (independent of the displacement amplitude) of the resonating jth mode of the bar
vibration under study, the constant n is found by

n=8, L. (28)
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Fig. 4. The parameter o as a function of the relative depth b/r of the crack located in the section
x, =0.1/ (a) and of the crack location x, for the crack relative depth b/r = 0.4 (b), with the vibrations
excited by the force Psinvs applied to in the section xp =/, with a frequency v=0.50; (solid lines)
and v=2m; (dash lines).

For the chosen form of the [D] matrix and the value of 7, the decrement of vibrations in any other ith mode
is derived as

§;=8;—, (29)

Le., with i>; we take §;<3 ;.

Equation (26) is solved by time integrating using the Newmark method.

For processing the obtained time dependence of displacements of the neutral line in the bar free end section,
we apply the fast Fourier transform (FFT) procedure and eventually determine the harmonics of the vibration process
at hand.

Results of Analytical and Numerical Solutions. The solutions were carried out for super- (v/m ; =1/2) and

subharmonic (v/o)j =2) resonances in the first (j =1) mode of bending vibrations for the ratios a/b=2.5, I/r =23,
and values

_n0
%y ()

_Li()
n ()

(30)

Consider the characteristic dependences of the crack-induced nonlinearity of the vibrating system at super-
and sub-harmonic resonances on the relative crack depth 5/r, on the crack location x,, and on the point of
application xp of the exciting force Psinvt.

By way of illustration, Fig. 4 shows the dependence of the nonlinearity parameter a, which is determined by
(3) in view of (13) and (16) for the case of xp =/, on b/r at x, =0.1/ and on x,. at b/r=0.4. Figure 5 gives o vs.
xp at b/r=0.4 and x, =0.1Z In all the cases, the parameter o is seen to depend significantly on b/r, x,, and xp,
and this dependence can be different at super- and subharmonic resonances.

Using the found values of o, we determined [by formulas (1) and (2)] the corresponding dependences of the
vibrodiagnostic parameters 4,,, and A4, on the relative crack depth b/r at x. =0.1/ in the case of super- and

subharmonic resonances excited by a force applied to the section xp =/ (Fig. 6) and in the case of kinematic
excitation (Fig. 7). The dependences of A4,;; and A4, on the crack location x, for the relative crack depth b/r =

0.4 in the force and kinematic excitations are shown in Figs. 8 and 9, respectively.
The dependences of the vibrodiagnostic parameters 4,,; and A;,, on the point of force application xp for

the same crack located in the section x,. =0.1/ are given in Fig. 10 for super- and subharmonic resonances.
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Fig. 5. The parameter a vs. the point of application of the exciting force P with a frequency v=0.5w,

(solid lines) (solid line) and v=2w, (dash line) for a bar with a crack of relative depth b/r=0.4
located in the section x, =0.1/
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Fig. 6. The vibrodiagnostic parameters A4,,, and A4, as functions of the relative crack depth b/r for the
crack location x, =0.1/ at super- (a) and subharmonic (b) resonances excited by a point harmonic force

applied to the section xp =/ (Here and in Figs. 7-10: open symbols are the analytical solution data, solid
symbols are the numerical solution data.)

Z?ﬂ o1 T ZI/? /5
oD
nmm 2 / 20
2.0 ]
15
15 =

N7 I -

\
\
A

N
N\
\
O
\

b/ o o2 04 i

Fig. 7. The vibrodiagnostic parameters 4,, and A, vs. the relative crack depth b/r for the crack location

x, =0.1/ at kinematically excited super- (a) and subharmonic (b) resonances, taking into account the absolute (/)
and relative (2) displacements of the bar by a harmonic with the vibration excitation frequency.
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Fig. 8. The vibrodiagnostic parameters A4,,, and 4;, vs. the crack location for the relative crack

depth b/r=0.4 with the exciting force applied to the section xp =/ in the case of super- (/) and
subharmonic (2) resonances.
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Fig. 9. The vibrodiagnostic parameters A4,, and A4;, vs. the crack location for the relative crack depth

b/r = 0.4, at kinematically excited super- (a) and subharmonic (b) resonances, taking into account the absolute (/)

and relative (2) displacements of the bar by a harmonic with the excitation frequency.
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Fig. 10. The vibrodiagnostic parameter 22/1 (a) and 21/2 (b) as a function of the point of application xp

of the exciting force Psinvt for the crack of relative depth b/r=0.4 in the section x, =0.1/.
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Note that if we take into consideration the bar deformation by only one resonating mode of vibration, i.e.,
[d*y] d*y, - - .
with 5 = 5 , the values of the parameter o, and thus of 4,,, and 4;,,, are independent of the
dx dx

X=X, X=X,

point of application xp of the exciting force or the method of excitation of this resonating mode. The calculated
values of these parameters, which correspond to the above-mentioned condition, for the case of vibrations excited by
a point force are shown by horizontal lines in Figs. 5 and 10.

The results of determination of 4,,, and A4, in kinematic excitation of vibrations are presented for the

cases of computation of amplitudes 4;x or 4,y by the relative displacement of the bar end (x, =/) (points 2 in
Figs. 7 and 9), i.e., by displacements due to deformation of the bar during its vibration, as well as by the absolute
displacement (points /) that consists of the relative displacement and the displacement of the bar as a rigid body due
to the displacement of the restraint. For relative frequencies of the resonances at hand and the possible values of the
decrement the bar displacement due to forced vibrations and its displacement as a rigid body are in the same phase at
superharmonic resonance and in phase opposition at subharmonic resonance. This enables us to consider, much like
in (5), the amplitude functions of deflections and easily determine the amplitude of the absolute displacement.
At subharmonic resonance the amplitude of vibrations of the bar as a rigid body is also influenced by the

resonating second harmonic with an amplitude 4,p = 29—()( A;, which has a phase shift relative to the second one by
T

n/2 and is allowed for by the second term in the radicant in (2) [3]*.
The results shown in Figs. 6-10 demonstrate that the vibrodiagnostic parameters 4,, and 4/, essentially

depend on the crack relative depth b/r and location x, as well as on the point of application xp of the exciting
force. The dependence of these parameters on b/r and x, is mostly monotonic, while their dependence on xp has
extremum points whose number and location essentially depend on the crack location. Noteworthy is also the finding
that the trend of these dependences is mainly governed by the nonlinearity parameter o of the vibrating system.
Figures 6-10 give also the results of numerical solutions — the respective dependences of the parameters
A,;, and A,,, are shown as dark points. It is evident that though these dependences closely correlate in their trend

with the analytical solutions, the values of these parameters differ substantially. For the models considered for these
solutions, the discrepancy in the data is conventionally attributed to the fact that the analytical solution disregards the
change of vibration mode during the crack opening and assumes the crack opening/closing transition to be a stepwise
process.

The numerical solutions performed additionally demonstrate that for the small relative crack depth the
change of the vibration mode is insignificant but the contact of the cut nodes along the crack height occurs, strictly
speaking, nonsimultaneously. This will be taken into account in further investigations.

Also, we considered the assumption of a possible difference in values of the mode I stress intensity factor
(SIF) K, which are involved in the analytical solution as per [6, 7] and computed from the crack opening
displacement in the numerical solution for the present FE model of a cracked bar and for its deformation behavior. In
the second case, using the well-known expression for normal displacements v of contacting crack faces near the
crack front in terms of K; [9, 10] and expressing the displacement in terms of the crack opening magnitude Av we
have

* In [3], formula (33) for 21/2 should be written as

— 8o(1+0.60)

2
i, = 1, 1| (o1 +0.60))

% 9 %
3| =, Ao Ony| —, Aicw
\V(z 1cj \V(z ICJ
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TABLE 1. Results of Analytical and Numerical Calculations

Node No. SIF P,N
in Fig. 11 100 200
! K, 258 516
2.0 4.01
AK, — -
-22 -222
2 K, 259 B
1.933 3.867
AK, - -
-25.6 -25.3
3 K, 233 466
1.78 3.564
AK, N R
-23.6 -235
Average K, 25 5.0
1.904 3.81
AK, i -
-23.7 —23.66

Notes: 1) K], MPa~m1/2; 2) AK] = (K1(31) _KI(S) )/KI(S) (%), 3) the data obtained

as per (8) and (31) are given above the line and under the line, respectively.

2 I
Av
2 1
A
L/
| —
Yy

Fig. 11. For determination of stress intensity factors K; by the crack opening displacement Av.

-1
K =2%E [T Gn X2 on—cos? X |, G1)
Tru\8p| 2 2

where p and y are the coordinates of contacting nodes nearest to the crack front nodes (Fig. 11).

The values of K; were computed by (31) from displacements of nodes /', 2', 3’ (Fig. 11) for a bar with its
free end statically loaded by a force (xp = /), with a crack located in the section x, =0.1L

Table 1 gives the K; values found for two force values (100 and 200 N). It is evident that the K; values in
the numerical solutions essentially differ from those involved in the analytical solution using data [6, 7] for the case
of simple bending of a bar element. The computations of K; by means of the FE model of a bar of length 0.2/ with
a crack located in the section x, =0.1/, with the free end nodes loaded by longitudinal forces whose distribution
along the bar height correspond to the distribution of normal stresses in bending, have yielded the data close to those
in [6, 7], the difference being 5.8%.
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Fig. 12. Amplitude-frequency responses of a bar at a weak (a) and strong (b) superharmonic resonances
(Vv =2v/®,). [Dash lines are the amplitude-frequency responses at fundamental resonance (v =v/®, )]

The arithmetic mean of the K; values found by the present FE model is about 76% of that as per [6, 7]. If
we assume, just formally, that in (8) the values of the dimensionless intensity factor F| are 24% smaller than those
actually used, the agreement between the results of analytical and numerical solutions for determination of the
parameters A,,, and 4;, would be significantly improved, even with such a formal refining. In Figs. 6-10, the

refined data are shown by dot-and-dash lines.

The numerical solution has confirmed a characteristic feature (as revealed earlier [11] for a single-degree-
of-freedom system) in the formation of the amplitude-frequency response (AFR) at a strong superharmonic
resonance. Specifically, at a weak resonance (Fig. 12a), much like at any subharmonic resonance, the AFR, if
expressed in terms of relative values of the vibration amplitude A/ A, , almost fully coincides with the fundamental
resonance, while at a strong superharmonic resonance (Fig. 12b) the resonance peak is noted to be more narrow and,
therefore, is more difficult to find.

CONCLUSIONS

1. We have discussed here the approximate methods of determination of the vibrodiagnostic parameters of
the presence of a mode I semielliptic crack in a circular bar at super- and subharmonic resonances: the analytical
solution based on the calculated data of forced transverse vibrations of an intact bar, and the numerical solution by
means of the bar FE model.

2. The results of the calculations for the case of resonance of the first-mode bending vibrations have revealed
a substantial dependence of the vibrodiagnostic parameters on the crack location and relative depth, on the type and
features of vibration excitation. In particular, in the case of vibrations excited by point force the values of the
vibration parameters depend on the location of the force application xp along the bar length and exhibit some
extremum points whose number and locations are governed by the crack location.

3. A good agreement has been found between the data of the analytical and numerical solutions after a
substantiated adjustment was applied to the stress intensity factor values involved in the analytical solution.

4. We have revealed a special feature in the formation of the amplitude-frequency response at a strong
superharmonic resonance, which differs from that at other resonances; this makes it more difficult to find.
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