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SCIENTIFIC AND TECHNICAL SECTION

ON VIBRODIAGNOSTICS OF THE PRESENCE OF A CLOSING EDGE CRACK

IN A BEAM WITH AMPLITUDE-DEPENDENT DAMPING CAPACITY

UNDER SUPERHARMONIC RESONANCE

V. V. Matveev, O. E. Boginich, E. A. Sinenko, UDC 620.178.5: 620.179

and A. P. Yakovlev

The paper summarizes the results of approximate calculation of the influence of amplitude-

dependent damping capacity of a vibrating system on vibrodiagnostic parameters of the presence of

a closing mode I edge crack in a cantilever beam of rectangular cross section for various methods

of excitation of the second-order resonance in the lowest natural bending mode.
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Introduction. It was mentioned earlier in [12] that researchers’ attention was still focused on clarifying an

interrelation between vibration parameters of beam-like structures and their damages in the form of a closing fatigue

crack under super- and subharmonic resonances. However, the currently available solutions – both analytical and

numerical ones – are limited to addressing vibration of an elastic system taking into account the linear viscous

friction only. In [2] we provided the results of analytical determination of vibrodiagnostic parameters of the presence

of a closing mode I edge crack in beams of rectangular cross section under the conditions of excitation of

subharmonic resonance allowing for the amplitude-dependent damping.

In further elaboration on the work [2, 3], we will consider here, for the case of a cantilever beam of the same

cross section and with the same crack (Fig. 1), the results of calculation of the influence of the above-mentioned

damping on the vibrodiagnostic parameters of the crack presence under the second-order superharmonic resonance in

any jth bending mode, i.e., at an excitation frequency � equal to half the natural frequency of the jth mode of the

damaged beam �0 j .

Type of Inelastic Resistance. Consider characteristic types of inelastic resistance as a function of the

amplitude A j of displacement (deflection) of the beam free end during the beam deformation by the resonance-

inducing jth bending mode (see Table 1).

Table 1 gives also the respective expressions for the beam logarithmic decrement � �n j jA( , ),0 which are

easily represented by a single relationship
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Procedure of Calculation of Vibrodiagnostic Parameters of a Damaged Beam. According to the findings

[3], in the case of tuned subharmonic resonance in the jth mode, for the main vibrodiagnostic parameter of the

presence of a closing crack in a beam section x xc� we can take the ratio between the maximum amplitude of the

second (resonant) harmonic A j2 with a frequency �0 j and the amplitude of the beam fundamental forced vibration

with a frequency (1/2)�0 j , i.e., the amplitude of the full first harmonic A1

: A A Aj j2 1 2 1/ ( ) �



. In the formulas [3]

for the parameter A A A2 2 1� , which correspond to the solution of the differential equation of vibration of a

single-mass system, the exciting load q can be expressed in terms of the first harmonic amplitude A j1
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1� , and thus, these formulas can be written in the following form for a distributed parameters system:

A

k A
j

j

n

n
n2 1

1

1

0 58

/ ( )

.
�

�

��




(3)

for a weak resonance (A2 0 9� . ), and
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for a strong resonance (A2 0 9� . ), where � j is equal to the ratio between the amplitudes of the first harmonic of the

fundamental forced vibration in a single resonant jth mode ( )A j1 and in a finite number of modes to be considered

( ),A1

i.e., � j ijA A� 1
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TaBLE 1. Types of Inelastic Resistance

Type of inelastic resistance Vibration decrement

Viscous resistance proportional

to the nth power of velocity
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Fig. 1. Schematic representation of a cantilever beam of rectangular cross section with an edge crack

under conditions of forced harmonic excitation of bending vibrations.



In this case, the formula for a weak resonance should be used when
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In formulas (3)–(5), � is the parameter that represents the initial (i.e., prior to the resonance occurrence)

nonlinearity of the vibrating system during its deformation by the fundamental forced vibration in the resonant jth

mode among other modes [1].

According to [1], � is determined in terms of the energy characteristic of beam damage � [� � �� �( )1 ],

which is computed using the values of the normal stress intensity factor K1 for the crack located in the specified

section x xc� with a given crack relative depth � � a h, and the amplitude functions of the deflection line of the

intact beam y x A xi i( ) ( )� 1 in a limited number N of its bending modes (1� �i N ) by the formula
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where
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For the case of the cantilever beam at hand, the amplitude function of of the deflection line is given by the

formulas
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� �� j 2, k li is the ith root of the frequency equation, EI is the bending stiffness of the beam section, m is the unit

mass of the beam length, and � j is the natural frequency of the jth mode.

For one more diagnostic parameter we can consider the ratio of the amplitude A j2 to the maximum

amplitude A j0 of the fundamental harmonic under the principal resonance (� �� 0 j ) in the jth mode (A Aj j2 0 �

A j2 0/ ( ) ). This ratio is given by
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under the strong superharmonic resonance, where Qs and Q0 are the amplitudes of the forcing load (P, M , Bm�
2
)

under the superharmonic and principal resonances, respectively.

It is evident that with n '1, in the case of a strong superharmonic resonance, the values of A j2 0/ ( ) , as well as

those of the parameters A j2 1/ ( ) (3) and (4), are not relative characteristics for they depend on absolute values of the

amplitude A j0 or A1

and thus on the exciting load level Q0 or Qs, and on the choice of the place where the

deflection is to be recorded. Also, formulas (3), (4), and (9) include the coefficient kn whose value generally differs

for different exponents n of the amplitude dependence of the decrement � n .

In this context, let us consider the parameter A j2 1/ ( ) when selecting the kn value from the condition that

the maximum deflection amplitude at any section x
*
under the principal resonance for the specified jth mode and

exciting load amplitude Q0 should be equal to that in the linear viscous friction (n �1) with a specified decrement

value �1 1� k :
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for the vibrations excited by a concentrated force, moment, or displacement of restraint, respectively.

In this case, with the same method of excitation of the superharmonic resonance with a load amplitude Qs

whereby A
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whose values are independent of the absolute level of Q0 and Qs.

656



Assessment of the Fit between the Results of the Analytical and Numerical Solutions. Before proceeding

to a study of the influence of the amplitude-dependent damping parameters, we will compare the results of

calculation by the procedure outlined above and the data of numerical solution for the beam vibration excited by a

concentrated force under the linear viscous friction conditions (n �1, kn � �1), where the vibrodiagnostic parameters

(3), (4) and (8), (9) depend neither on the absolute value of the loads Q0 and Qs, nor on their ratio.

For the purpose of comparison, we considered the available data obtained through the use of the beam

finite-element model, where the variation of stiffness of the element with a crack during the crack opening was

determined in terms of the stress intensity factor [4], and the results of the solution run by means of ANSYS software

package [5] using a linear eight-node finite element (Solid45), where a breathing crack was represented in the form

of a mathematical cut with appropriate contact problem conditions. The resulting nonlinear system of differential

equations is solved by time integration followed by the Fourier transform.

Figures 2 and 3 compare, for the case of the first resonant mode ( j �1), the respective functions of the

parameters A2 1/ and A2 0/ vs. the location of the exciting force application (x lP ) for a beam with a ratio

h l ) 0 085. and relative crack depth � � 0.2, the crack being located in sections x lc � 01 and 0 5. ,l with �1 � 0.01,

which were plotted by calculation and by the data of numerical solutions. For the parameter A2 0/ the ratio between

the exciting force amplitudes under the superharmonic resonance Ps and principal resonance P0 is 100. It is

obvious that the results are in good agreement.

Noteworthy is the characteristic feature that makes the difference between the weak superharmonic

resonance and strong one. For instance, the results of the numerical solution for the single-mass model whose forced

vibration is described by the equation

�� � [ , ( )] sin ,y h y y y q t� � � � �2 1 0 5 11

2
� � �sign
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Fig. 2 Fig. 3

Fig. 2. The vibrodiagnostic parameter À2 1/ vs. the point of application of the exciting force (x lP ) for a

beam containing a crack of relative depth � � 0.2 in the sections x lc � 01. and 0 5. .l (Here and in Fig. 3:

solid lines are the calculated results, dash lines are data of numerical solutions, and dash-and-dot lines are

data provided in [4].)

Fig. 3. The vibrodiagnostic parameter À2 0/ vs. the point of application of the exciting force (x lP ) for a

beam containing a crack of relative depth � � 0.2 in sections x lc � 01. and 0 5. .l



demonstrate that under the weak superharmonic resonance the amplitude-frequency response of the second harmonic

almost corresponds to the principal resonance, with the maximum amplitudes being equal (A A2 0� ), while in the

case of the strong superharmonic resonance the resonance peak is much narrower (Fig. 4). This certainly makes

difficult finding the resonance.

The Influence of the Trend of the Amplitude Dependence of Vibration Decrement on Vibrodiagnostic

Parameters. As in the above discussion, we will restrict our consideration to the case of excitation of the first

resonant mode ( j �1).

When using formulas (3), (4), and (9), e.g., for the vibration excited by a concentrated force applied to the

section x lP � , and measuring the deflection in the section x l
*

� , we should know, in addition to the parameter

� � �� �( ),1 where � is given by (6), the absolute value of A1

or A01 for a given amplitude of the exciting force

Ps or P0 :
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Fig. 4. The amplitude-frequency response of a vibrating system under the weak (� � 0.014, À2 1/ � 0.776)

and strong (� � 0.2, À2 1/ � 3.20) second-order superharmonic resonances.
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while (9) will take the form
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It follows from (16)–(18) that the variation of the beam damage assessed by the parameters A2 1/ and A2 0/

is advisable to be determined with the same value of the exciting load amplitude for the chosen method of excitation

and place of vibration recording, or an adjustment should be made for a difference in these values.

The influence of the exponent n on the vibrodiagnostic parameters is clearly seen from the function A n2 1/ ( )

(Fig. 5) calculated by formula (17) for different values of the coefficient k mn

n
[ ]1

1�

for a beam with a crack of

relative depth � � 0.2 located in the root section, for the following beam dimensions: b � 0.004 m, h � 0.02 m, and

l � 0.23 m; the elastic modulus of the material E � �2 10
11

N/m
2
, the exciting force amplitude Ps �100 N.

Figure 6 shows a similar function of the parameter A2 0/ (18) for the same beam with the ratio P Ps 0 50� ,

P0 2� N.

Finally, let us look at the influence of the trend of the amplitude dependence of vibration decrement on the

vibrodiagnostic parameter A2 1/ (12), (13), which is independent of absolute values of the exciting load amplitudes

Q0 and Qs, but the chosen value of Q0 dictates the value of the vibration amplitude A Q01

1

1 0�

�

�

( , whereby the
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Fig. 5 Fig. 6

Fig. 5. The vibrodiagnostic parameter À2 1/ as a function of the exponent n for different values of the

coefficient kn in the case of vibration excited by a concentrated force applied to the section x lP � .

Fig. 6. The vibrodiagnostic parameter À2 0/ as a function of the exponent n for different values of the

coefficient kn for vibration excited by a concentrated force applied to the section x lP � .
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a b

Fig. 7. The parameter À2 1/ as a function of the point of application of the exciting force in the case of a

crack of relative depth � � 0.2 located in the sections xc � 0 (a) and 0 25. l (b), with different values of the

exponent n of the amplitude dependence of inelastic resistance for different values of the ratio P Ps 0 .

(Solid lines – P Ps 0 1� , dash lines – P Ps 0 10� , dash-and-dot lines – P Ps 0 50� .)

Fig. 8 Fig. 9

Fig. 8. The vibrodiagnostic parameter À2 1/ vs. the relative crack depth �, the crack being located in the beam

root section, for different values of the exponent n in the case of vibration excited by a concentrated force

(solid lines) and moment (dash-and-dot lines) and by displacement of support (dash lines).

Fig. 9. The vibrodiagnostic parameter À2 1/ as a function of the ratio of exciting load amplitudes Q Qs 0 for

different values of the logarithmic decrement �1 and exponent n. (Solid lines – n � 2, dash lines – n � 1.5, and

horizontal lines – n � 1.)



damping capacity of a beam with the nonlinear resistance (n '1) is equal to that with the amplitude-independent

resistance (n �1) as represented by a decrement value of �1.

By way of illustration of the use of formulas (12) and (13), Fig. 7 shows the dependence of A2 1/ on the

location of the exciting concentrated force P application for a beam with a ratio h l � 0.85 and with a crack of

relative depth � � 0.2 located in the sections xc � 0 and x lc � 0 25. , for different ratios P Ps 0 and different trends of

the amplitude dependence of vibration decrement with �1 � 0.01. Figure 8 gives A2 1/ vs. the relative crack depth �,

the crack being located in the root section, for different values of the exponent n in the case of vibration excited by a

concentrated force and moment applied to the section x x lP M� � and by displacement of support at P Ps 0 �

M M B Bs s0 0 1� � .

Through the example of a beam with a relative depth � � 0.2 of the crack located in the root section, Fig. 9

illustrates the influence of the ratio of amplitudes of the forcing loads Q Qs 0 on A2 1/ values for the vibration

excited by a concentrated force applied to the section x lP � for different values of n and �1.

Conclusions. We have considered here the methods (based on the calculation of vibrations of an intact

system) for the determination of the influence of nonlinearity of damping capacity of a beam under the second-order

superharmonic resonance in the lowest natural mode of bending vibration on the vibrodiagnostic parameters of the

presence of an edge closing crack in the beam. For vibrodiagnostic parameters we used the ratio of the maximum

amplitude of the second resonant harmonic to the total amplitude of the first harmonic (A2 1/ ) and to the maximum

amplitude of the principal resonance (À2 0/ ). For the power-law dependence of decrement on amplitude (� n �

k An
n�1

) we have determined the possible dependences of the parameters À2 1/ and À2 0/ on the exponent n at

different values of the coefficient kn , on the crack relative depth �, and location xc as well as on special features of

vibration excitation. Damping capacity of a vibrating system is shown to have an essential effect on the values of the

vibrodiagnostic parameters of the amplitude dependence. However, the trend of their dependence on the crack

relative depth and location and on the method of vibration excitation remains unchanged.
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