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ON SIX-DIMENSIONAL QUADRIC HYPERSPACE OF STRENGTH

FOR ORTHOTROPIC MATERIALS

V. A. Romashchenko UDC 539.3

For the general case of a stress state, the necessary and sufficient conditions have been strictly

derived. These conditions should be satisfied by undetermined coefficients of quadratic strength

criteria for orthotropic materials, so that the limiting quadric hypersurface of strength in the

six-dimensional space of stresses has a physical meaning.

Keywords: orthotropy, strength criteria, limiting quadric hypersurface of strength, quadratic form, six-dimensional
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Composite materials (CM) are widely used in various state-of-the-art technologies. Usually, these materials

feature a structural irregularity (heterogeneity) and, in many cases, a considerable anisotropy of physical-mechanical

properties. To assess strength of CMs under a complex stress state one should know the limit state criteria (the

strength criteria) that specify the allowable stress limits within which the material will be able to work without

failure. The limit states are the states whereby CM undergoes a transition from the elastic (or elastoplastic) state to

fracture. More often than not, strength of CMs is analyzed through the phenomenological macrostructural approach

which considers a heterogeneous composite as a continuous, generally anisotropic medium. A mathematical model of

this medium is constructed on the basis of experimental findings. The majority of modern CMs are quite adequately

described by a model of a homogeneous orthotropic body or by some particular cases of this model.

Phenomenological strength criteria are not derived analytically, they are postulated or put forward based on

generalization of experimental data. Recently, quadratic strength criteria for an orthotropic body have been widely

accepted [1–8]; in available publications they are called the Tsai–Wu criteria [8]. They take into account the

difference between tensile and compression strengths, offers the maximum possible flexibility, contain no redundant

parameters, make it possible to easily determine the principal axes of strength, etc.

It would be natural to assume that the principal axes of anisotropy õ, ó, z of an orthotropic material are

simultaneously the principal axes for both the elastic and strength characteristics. Moreover, in the most cases the

shear strength of a composite is independent of the tangential stress sign. Thus, the linear-quadratic strength criterion

in the coordinates õ, ó, z is written as [1–8]
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where � i and  ij are the stress tensor components, S i

�
and S i

�
are the ultimate strengths in tension (�) and

compression (�) along the ith principal direction of anisotropy, and Tij are the ultimate strengths in pure shear in the

respective principal planes of anisotropy ij ( , , , , ).i j x y z i j� �
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Criterion (1) has been defined concretely on the basis of nine simplest experiments: three in uniaxial tension,

three in uniaxial compression, and three in pure shear. It identically satisfies (becomes equal to unity) these nine

experimental (reference) points in the six-dimensional space of stresses at any values of three parameters aij . These

parameters, in turn, must meet certain conditions so that the limiting hypersurface of strength � �1 has a physical

meaning: it should be a simply connected and closed surface or, in extreme case, should allow existence of maximum

one direction (a ray or a straight line) with infinite strength. The issues regarding the mathematically rigorous

substantiation of the necessary and sufficient conditions (the so-called stability conditions) as well as conditions for

bulging, simple connectedness, closedness or openness, possible and allowable geometrical shapes of the six-

dimensional limiting hypersurface of strength for an orthotropic material (1) have not been adequately explored so

far. In particular, in the well-known publications [1–7], based on the biaxial plane stress analysis for principal planes

of anisotropy the authors derive only the necessary stability conditions which, as shown below, do not always ensure

the existence of physically allowable hypersurface of strength in the six-dimensional stress space for the general case

of triaxial stress state.

From the multitude of six-dimensional quadric surfaces there are only three surfaces which satisfy the

above-mentioned requirements: ellipsoids (closed and convex), elliptic paraboloids (one-sidedly open and convex),

or elliptic cylinders (double-sidedly open and almost convex). The objective of the present work is to strictly define

the necessary and sufficient conditions which should be satisfied by undetermined coefficients aij in (1) so that the

limiting hypersurface � �1 should belong to one of the three above-mentioned physically substantiated types.

Let us introduce the dimensionless variables

�i
i

i iS S

�
� �

�
, �ij

ij

ijT
�


, i j x y z i j, , , ,� �

(2)

and represent the limiting hypersurface � �1 as

� � � � � � � � � � � �� � � � � � � �x y z xy x y yz y z zx z x xy yzA A A
2 2 2 2 2

2 2 2 � � � � �� � � �zx x x y y z zB B B
2

2 2 2 1, (3)

where

A a S S S Sij ij i i j j�
� � � �

, B S S S Si i i i i� �
� � � �1

2
( ). (4)

1. Consider a case of no tangential stresses:

� � �xy yz zx� � � 0. (5)

In view of (5), the limiting hypersurface (3) takes on the classical quadratic form – the quadric surface in the

three-dimensional space of normal stresses in rectangular coordinates �x , � y , and � z :

� � � � � � � � � � � � � �
�

x y z xy x y yz y z zx z x x x y yA A A B B
2 2

2 2 2 2� � � � � � �2 1B z z� , (6)

and it can be analyzed through the use of the well-elaborated theory of quadric surfaces [9, 10].

Considering the surface �x � 0 we can easily derive the necessary condition | | .A yz � 1 When it is violated,

the surface (6) will a fortiori belong to none of the three above-mentioned physically allowable types [1–8].

Following the same procedure for the other two planes � y � 0 and � z � 0, we arrive at the necessary conditions for

three coefficients:

| | .Aij � 1 (7)

Due to (4), the coefficients Bi are subject to no limitations on physical grounds and can be take any values.

Hereinafter, this statement will be proved through exact mathematical reasoning.
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In the well-known publications [1–7], the quadratic strength criteria under consideration are bounded by the

conditions (7) (they are called the stability conditions). However, as shown here below, they are not sufficient for the

limiting failure surface to belong to the three above-mentioned types.

Following the procedure [9, 10], we write four invariants of Eq. (6):
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(8)

It can be shown that I1 0� and, due to (7) we have I 2 0� ; the invariant I 3 should meet the requirement

I 3 0� . (9)

Otherwise, as follows from [9, 10], the surface � �1 would have a shape of a hyperboloid or a cone, which is

inadmissible.

1.1. Consider the case

I 3 0� . (10)

It can be easily shown that to satisfy (10) and (7) simultaneously the following condition should be met:

| | .Aij � 1 (11)

We introduce the function

f X Y Z X Y Z A XY A YZ A ZXxy yz zx( , , ) .� � � � � �
2 2 2

2 2 2 (12)

Let us prove that the quadratic form (12) subject to conditions (10) and (11) is a positively definite one. For

this form, the first three invariants of type (8) will be strictly positive; the fourth one for the equation

f X Y Z( , , ) �1 (13)

will be written as I I4 3 0� � � .

According to [9, 10] the surface (13) is ellipsoid-shaped and thus

f X Y Z( , , ) .� 0 (14)

We will demonstrate that the surface

f X Y Z B X B Y B Zx y z( , , ) � � � �2 2 2 1 (15)

is also ellipsoid-shaped at any Bi values.
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Since condition (10) is fulfilled, the surface (15) will be central and its center (X 0 , Y0 , Z0 ) will be

unambiguously defined from the set of equations

X A Y A Z B

A X Y A Z B

A X A Y

xy zx x

xy yz y

zx yz

0 0 0

0 0 0

0 0

� � � �
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� �

,

,

Z B z0 � �

�

�

�

�

�
.

(16)

The origin of coordinates is placed at the center of symmetry of the surface

X X XN � � 0 , Y Y YN � � 0 , Z Z ZN � � 0 . (17)

It can be easily shown that in new coordinates (17) the surface (15) is rearranged, in view of (16), to the

form

f X Y Z f X Y ZN N N( , , ) ( , , ).� �1 0 0 0 (18)

Due to (14) the quantity in the right-hand part of (18) is not less than unity. For the surface (18), like for

(13), the first three invariants of type (8) will be strictly positive, the fourth one will be given by I I4 3 1� � �[

f X Y Z( , , )] ,0 0 0 0� therefore, the surface (18), and hence the surface (15) too, are ellipsoid-shaped.

Thus, the situation (10) and (11) is allowable; in this case, the strength surface (6) has the shape of an

ellipsoid.

1.2. Consider the case

I 3 0� (19)

with condition (7) satisfied. For the first three invariants from (8) we have

I1 0� , I 2 0� , I 3 0� , (20)

while for the fourth one in view of (19) we can easily arrive at the following expression:

I B A B A B Ax yz y zx z xy4

2 2 2 2
1 1 1 0� � � � � � � � �[ ( )] . (21)

1.2.1. The absolute value of one of Aij is 1. Assume that for the sake of definiteness we have

Axy � �1. (22)

Then, it follows from (19) that

A Ayz zx� � . (23)

In this case, the situation

| | | | | |A A Axy yz zx� � �1 (24)

is inadmissible because we will have

I1 0� , I 2 0� , I 3 0� , I 4 0� , (25)

and according to [9, 10] the surface will be either a parabolic cylinder or a pair of parallel planes.

Thus, if (22) has been fulfilled, condition (23) is satisfied too. Moreover, we have

| | | | ,A Ayz zx� � 1 (26)

and the invariants have the following signs:
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I1 0� , I 2 0� , I 3 0� , I 4 0� . (27)

If, in this case, the condition

I 4 0� (28)

is met, we have a quite allowable type of surface – an elliptic paraboloid. If

I 4 0� , (29)

we will also have an allowable type of the strength surface.

Let us prove this statement by analyzing the sign of the semi-invariant [9, 10]:
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It can be demonstrated that

K I B B B B B B Ix y y z z x3 2

2 2 2

2� � � � � � � � � � �(| | | | ) (| | | | ) (| | | | ) 0, (31)

and thus the surface at hand will have the shape of an elliptical cylinder [9, 10].

So, the situation (19), (22), (23), and (26) is permissible. Through permutation of subscripts x y z, , we will

have two more allowable situations.

1.2.2. The absolute values of all Aij are less than 1:

| | ,Axy � 1 | | ,A yz � 1 | | .Azx � 1 (32)

In this case, we have the allowable types of surfaces – elliptic paraboloids or cylinders. This can be proved

in the same way as in Subsection 1.2.1 above, i.e., the situation (19) and (32) is permissible.

Upon a simple generalizing analysis of the data given in Section 1, the following statement can be made.

The sought-for necessary and sufficient conditions, which should be satisfied by the coefficients of the quadratic

form (6) so that the limiting surface of strength for an orthotropic material in the three-dimensional space of normal

stresses has a physical meaning, are as follows:

A A A A A Axy yz zx xy yz zx

2 2 2
1 2 3� � � � � , (33)

if in (33) the first unstrict inequality is replaced with a strict one we will have the necessary and sufficient conditions

for the limiting surface � �1 to be an ellipsoid. If the equality expression in the left-hand member of (33) is obeyed,

we will have elliptic paraboloids or cylinders depending on the coefficients of linear terms in (6).

2. The general case of stress state: all the six stress tensor components can take nonzero values, the equation

for the limiting six-dimensional hypersurface of strength has the form (3).

It is evident that Eq. (3) has already been reduced to the canonical form in terms of variables �xy , � yz , and

� zx . Accordingly, let us transform the coordinates in the space of normal stresses �x , � y , and � z , namely: turn the

coordinate system, translate its origin and multiply by a positive normalization factor; then, we write Eq. (3) in the

canonical form. If conditions (33) are met, we may arrive at only three forms [9, 10]:
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1) six-dimensional ellipsoid:
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2) six-dimensional elliptic paraboloid:
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3) six-dimensional elliptic cylinder:
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All the three types [(34)–(36)] of the hypersurface of strength are physically allowable. Therefore, the conclusion

made for the case of no tangential stresses is also valid for the general case of stress state.

Sections 1 and 2 have covered all the possible stress state cases for a composite material. Let us state the

final outcome.

Inequality expressions (33) represent the necessary and sufficient stability conditions which should be

satisfied by the coefficients of the quadratic form (3) or (1) so that the limiting six-dimensional hypersurface of

strength for an orthotropic material has a physical meaning. If in (33) the first unstrict inequality is replaced with a

strict one we will have the necessary and sufficient conditions for the limiting surface � �1 to be a six-dimensional

ellipsoid. If the equality expression in the left-hand member of (33) is satisfied, we will have elliptic paraboloids or

cylinders depending on the coefficients Bi or bi of linear terms in (3) or (1), respectively. Requirements (33) are

independent of Bi (and, hence, of bi either); therefore, if they are met we will arrive at physically allowable

hypersurfaces of strength for any values of the coefficients of linear terms in (3) or (1).

In conclusion, note that conditions (33) are essentially stronger than the conventionally used stability

conditions (7) or, when enhanced, (11). For instance, the case

A A Axy yz zx� � � �2 3 (37)

satisfies both (7) and (11), but the requirements (33) are not met in this case. Looking at the situation (5) and

analyzing the signs of the first three invariants in (8), it can be easily demonstrated [9, 10] that equality expressions

(37) will lead to physically absurd surfaces of strength – hyperboloids or cones – which allow for the existence of an

unlimited set (sheaf) of lines with infinite in the three-dimensional space of normal stresses. This pertains to the

six-dimensional limiting hypersurface because (5) represents a particular case (a null measure subset) of six-

dimensional space (set) of normal and tangential stresses. The latter statement can be easily proved in a way similar

to that in Section 2.
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