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CONSTRUCTION OF TWO-LEVEL INTEGRATION SCHEMES

FOR THE EQUATIONS OF PLASTICITY IN THE THEORY OF DEFORMATION

ALONG THE PATHS OF SMALL CURVATURE

A. Yu. Chirkov UDC 539.3

The construction of a set of two-level integration �-schemes for the equations of the flow theory of

plasticity, describing anisothermic loading processes along the deformation paths of small curvature,

is described. In this case, a stress-strain state is dependent on thermomechanical loading history,

and inelastic deformation should be followed over the whole examined time interval in step solving

the boundary problem. Basic concepts of the phenomenological model are built upon the Prandtl–

Reuss equations of plasticity and the Huber–Mises yield condition. The loading process is divided

into several time steps. The equations of plasticity are integrated in a loading step. The general

procedure of transformations to construct a set of two-level integration �-schemes for the equations

of plasticity is proposed. The conditions for the agreement between the considered equations of

plasticity and the principle of work irreversibility with plastic strain increments and Drucker’s

hardening postulate are formulated. As an example, illustrating the properties of these equations,

the deformation problem is solved for a thin-walled round pipe subject to axial tension and torsional

moment. Results of solving the model problem, obtained with different two-level integration schemes,

are presented. Practical recommendations as to the choice of the parameter � are given.

Keywords: theory of plasticity, stress and strain deviators, anisothermic processes, elastoplastic deformation,

deformation paths of small curvature, proportional loading, thermomechanical surface, Drucker’s postulate.

Introduction. For investigations of anisothermic elastoplastic deformation, the process of loading is divided

into several time steps. Stress-strain kinetics is examined by successive analysis of thermomechanical loading history

when at each subsequent loading step the problem is solved, accounting for the solution obtained at the previous one.

The choice of a loading step duration is dependent on active external load and temperature field variation patterns.

The evolutionary elastoplastic problem based on incremental theories is determined from stress, strain, and

displacement components at each loading step and from the solution of the system of nonlinear equations against

increments of desired values in a loading step. The nonlinear boundary problem in increments is determined by

approximate methods, which are used to reduce the thermoplasticity problem at each loading step to the successive

solution of auxiliary linear problems.

However, it should be taken into consideration that for the solution of the elastoplastic problem in

increments at each loading step, it is necessary to control accuracy of the satisfaction of resolving equations written

for the full values of stress, strain, and displacement components since the boundary problem is solved approximately

for the increments of these values and, thus, their summation may result in the accumulation of errors.

Moreover, the use of constitutive equations in increments suggests greatly smoothed approximating

functions for generalized deformation diagrams of the material since the computation process stability would require

the continuity of tangential moduli of these diagrams.
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It should also be taken into account that the step-iterative procedure of solving the elastoplastic problem in

increments may be accompanied by the so-called “false unloading” effect when under active plastic deformation,

unloading in some body points on successive iterations occurs by the elastic law. For eliminating this effect, it is

necessary to greatly reduce load increment steps or have the means of its detection available for the possibility of

advancing along the deformation curve in the opposite direction. The first procedure extends considerably the time of

problem solution, the second one complicates the computational algorithm and is inconvenient from the point of

view of program realization.

The alternative approach consists in integrating the equations of plasticity in a loading step to derive the

system of resolving equations not in increments but for the full values of stress, strain, and displacement components.

This approach is used by Yu. N. Shevchenko and his disciples in Timoshenko Institute of Mechanics, National

Academy of Sciences of Ukraine, e.g., in [1, 2] the defining relations, obtained by step-by-step integration of the

equations of plasticity, are examined.

In this connection, the calculation procedure for stress-strain kinetics in welded structures, developed in

Paton Electric Welding Institute, National Academy of Sciences of Ukraine, should be mentioned [3, 4].

The above approach to the solution of the elastoplastic problem allows difficulties to be circumvented, the

latter are associated with the account of the false unloading effect, computation of tangential moduli from the

deformation diagrams and accumulation of errors in the numerical solution in increments that contributes to the

stability of the computation process. The duration of a loading step can be rather long if within the time step,

deformation of all body points takes place along the paths of small curvature, which reduces considerably

computational efforts in numerical analysis.

At the same time, consideration must be given to the solution of the elastoplastic problem [3, 4], assuming

that at each time step, direction stress deviator components do not change under loading and are approximated by

corresponding values at an examined loading moment. Note that the case in point is only approximation of direction

stress deviator components in the equations of plasticity but not realization of proportional loading at each time step

[5].

It is evident that piecewise-constant approximation of stress deviator components greatly simplifies the

integration of the equations of plasticity. Nevertheless, the assumption for the direction stress deviator remaining

unchanged under loading at each time step may be constrained. In particular, the description of plastic deformation

under multiaxial loading can require a rather large number of time intervals for computations, which extends the time

of solving the elastoplastic problem.

Note [1, 2] that the integration of equations of plasticity in a loading step is based on the Lagrange theorem

of mean, known from analysis [6], and the assumption for the direction stress deviator components remaining

unchanged under loading is not used.

Mathematical verification of the correctness of defining relations, obtained by the integration of equations of

plasticity in a loading step [1–4], as well as analytical results for approximate methods of solving corresponding

nonlinear boundary problems are absent in those studies. The above equations of plasticity can be correct if certain

general principles used as the basis for the theory of flow of any kind are not violated. Thus, it is necessary to

determine conditions of the agreement between the equations of plasticity and the principle of work irreversibility in

plastic strain increments and Drucker’s hardening postulate [7]. If these conditions are satisfied, the one-to-one

correspondence between stress and strain deviators are in existence, so within a loading step stresses can always be

expressed as strains and vice versa. Moreover, the correctness of defining relations is used as the basis for

mathematical analysis in studies on the solvability conditions of the nonlinear boundary problem, corresponding to

the adopted deformation model, as well as on the proof of agreement between approximate solutions and the exact

solution of the problem.

The conditions of existence and uniqueness of the solution of the boundary problem, describing anisothermic

elastoplastic deformation along the paths of small curvature, were formulated in [8]. The boundary problem was

stated on the basis of defining relations obtained by integrating the equations of plasticity in a loading step with the

rectangular formula [9], which is equaivalent to the assumption for the direction stress deviator remaining unchanged
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under loading at each time step. Thus, cited results [8] of analysis of the boundary elastoplastic problem point to the

correctness of defining relations for deformation along the paths of small curvature in the form of equations used in

[3, 4].

The present study examines the construction of a set of two-level integration �-schemes for the equations of

the flow theory of plasticity, describing anisothermic loading along the deformation paths of small curvature. The

integration problem for the equations of plasticity and the Cauchy problem are formulated for ordinary differential

equations with the initial condition, with the length of a deformation path in the space of plastic strains assumed as

the argument (parameter characterizing the loading process). The general procedure of formal transformations is

proposed to construct a set of two-level integration �-schemes for the equations of plasticity, and the conditions were

examined for these equations to agree with the principle of work irreversibility in increments and Drucker’s

hardening postulate.

Basic Concepts of the Phenomenological Model. Let � �( ) ( ( ))t tij� (1 3� �i j, ) be the symmetric stress

tensor represented as the two components

� � �( ) ( ) ( ),t t tS D� �

where � S t( ) is the spherical tensor, � D t( ) is the stress deviator, and t is the time or any other parameter,

characterizing the variation of loads experienced by the body.

The tensor of small strains � �( ) ( ( ))t tij� (1 3� �i j, ) by analogy with the stress tensor allows for the

expansion as

� � �( ) ( ) ( ),t t tS D� �

where � S t( ) is the spherical tensor and �D t( ) is the strain deviator.

The statement of the anisothermic elastoplastic problem is based on the following concepts.

The body volume changes over the whole range of stress and strain variations are of elastic nature, i.e., the

tensors � S t( ) and � S t( ) are linearly related

� � �S S S

T
t

k T t
t t( )

( ( ))
( ) ( ),

( )
� �

1

0

(1)

where k T t0 ( ( )) is the modulus of uniform volumetric expansion against the temperature T t( ) and �
S

T
t

( )
( ) is the

tensor of thermal strains.

The deviator of the total strains �D t( ) is taken as the sum of the elastic and plastic components

� � �D D

e

D

p
t t t( ) ( ) ( ).

( ) ( )
� � (2)

The elastic component of the strain deviator is determined by the generalized Hooke law, which can be

represented for the isotropic body as

� �
D

e

Dt
G T t

t
( )

( )
( ( ))

( ),�

1

2 0

(3)

where G T t0 ( ( )) is the initial shear modulus, temperature-dependent in the general case.

The stress � D t( ) and strain �D t( ) deviators in terms of their intensities � ( )t and � ( )t are determined by

the relations given below

� �( ) | | ( )| | ,t tD�

3

2
� �( ) | | ( )| | .t tD�

2

3
(4)

Here and below the following designations are used: ( , )� � is the convolution of two arbitrary stress and strain tensors

and | | | |� is the tensor modulus, determined with the tensor convolution.
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We have for the arbitrary stress � ( )t and strain �( )t tensors

( ( ), ( )) ( ) ( ),

,

� � � �t t t tij ij

i j

�

� �

	

1 3

| | ( )| | ( ( ), ( )),� � �t t t� | | ( )| | ( ( ), ( )).� � �t t t�

According to the elastoplastic model of the medium with isotropic hardening, the loading surface under

plastic deformation is determined by the Huber–Mises yield condition [7] and is described by the equation

( ( )) ( ( ), ( ), ..., ( ), ) ,� t q t q t T t t
2 2

1 2 0
 �� (5)

where �( ( ), ( ), ..., ( ), )q t q t T t t1 2 is the scalar functional, characterizing the material hardening, and q t q t1 2( ), ( ), ...

are the hardening parameters.

The plastic component of the strain deviator is defined by the law of plastic flow [7] associated with the

loading surface [Eq. (5)]

d t
d t

t
t

D

p

p

D�

�

�

�
( )

( )

( )
( )

( )
( ),�

3

2
(6)

where d t
p

�

( )

( ) is the intensity of infinitesimal increments of plastic strains,

d t d t
d

dt
t dt

p

D

p

D

p
� � �

( )
( ) ( )

( ) | | ( )| | | | ( )| | .� �

2

3

2

3

In the case of deformation along the paths of small curvature, the equations of plasticity [Eqs. (6)] can be

derived without resorting to the loading surface concept, which with the account of creep strains loses its

significance.

According to the theory of elastoplastic processes developed by A. A. Il’yushin, the relations for

deformation along the paths of small curvature can be deduced from the isotropy postulate and delay principle [5]

and experimentally substantiated for the materials of different classes at room and elevated temperatures.

Among the above processes are those with the least radius of deformation path curvature much larger than

the trace of delay of material vector properties at developed plastic strains [5]. In accordance with the principle of

delay, the stress deviator vector may be directed at a tangent to the path of plastic strains. In this case, the relations of

deformation along arbitrary flat paths are greatly simplified and transformed into Eqs. (6).

Thus, the constitutive equations, describing anisothermic processes of elastoplastic deformation along the

paths of small curvature, include condition of elastic volume change (1) and relations (2), (3), and (6), which are

equivalent to the Prandtl–Reuss equations of state [7, 10]

d t d
G T t

t
d t

t
tD D

p

D� �

�

�

�( )
( ( ))

( )
( )

( )
(

( )

�

�



�
�

�

�

�
�
�

1

2

3

20

). (7)

Relations (6) and (7) are usually termed the equations of the theory of flow with isotropic hardening under

anisothermic loading. Applicability of these equations is depicted by their self-explanatory name “dependences of

deformation processes along low-curvature paths.”

Integration of Equations of Plasticity. When Eqs. (7) are used, the loading process is divided into the time

steps in a way that calculated time moments, separating loading and unloading steps, were coincident whenever

possible with the time moments of changing the deformation direction of body elements from loading to unloading

and vice versa [1].
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Integrate equations of plasticity (6) in a loading step. As a result, the equality is obtained

� m D

p

t

t

D

p

t
t

d t

dt
dt

m

m

�

�

�

�( )

( )

( )
( )

( )
,�




�

3

2

1

1

(8)

where � m D

p
�

( )
is the increments of plastic strains in the end of an mth loading step,

� m D

p

D

p

m D

p

mt t� � �
( ) ( ) ( )

( ) ( ).� 


1 (9)

From relations (2), (3), and (9), we find

� � � �D m D

p

m

m

D m m D

p
t t

G T t
t( ) ( )

( ( ))
( ) .

( ) ( )

 � �


1

0

1

2
� (10)

The construction of the constitutive equations relative to the full values of stress and strain tensor

components would require the derivation of explicit analytical relations for plastic strain increments in a loading

step.

As follows from the analysis given below, such analytical formulas can be obtained with different

approximate (numerical) methods of integrating equations of plasticity (6). Although they are solved with numerical

integration methods, their approximate solution can always be represented as an analytical recurrent formula. This

formula may be used to derive the explicit analytical relations for plastic strain increments in a loading step. If these

relations are substituted in Eq. (10), the defining relations for deformation along the paths of small curvature would

be obtained relative to stress, total and plastic strain deviator components.

Therefore, the following problem is stated: construct adequate integration schemes for equations of plasticity

(6) and derive explicit analytical relations for determining plastic strain increments in a loading step. “Adequate

integration schemes” imply that governing equations, which correspond to these integration schemes, should have a

correct formulation.

Let s s t� ( ) be the deformation path arc length in the space of plastic strains defined by

s t
d

dt
t dt

t

D

p
( ) | | ( )| | .

( )
�

�

� �
�

0

�

Assume that at the loading step the plastic strain path arc length extends monotonically under deformation,

i.e., in the time dt, the arc length s s t� ( ) gains the increment

ds t
ds t

dt
dt d t

D

p
( )

( )
| | ( )| | .

( )
� �� 0

Thus, the stress and strain tensor components may be considered not only as the time (t) functions but also as

the path length (s) functions.

Introduce the direction stress deviator
�

� D s( )

�

�

�

�D

D

Ds
s

s( )
| | ( )| |

( ).�

1

(11)

Then Eqs. (6) may be represented as kinetic differential relations, describing deformation in the space of

plastic strains
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d

ds
s s

D

p

D� �
( )

( ) ( ).�

�

(12)

So the mathematical model of plastic deformation is the Cauchy problem for ordinary differential equations

(12) supplemented with the initial condition

� �
D

p

D

( ) ( )
( ) ,0

0
� (13)

where �
D

( )0
is the deviator of initial irreversible strains in the elastoplastic body.

Exact analytical solutions of the Cauchy problem for Eqs. (12) and (13) can be obtained for loads of several

classes, e.g., for simple loading processes. For the mogority of problems of practical interest, Eqs. (12) and (13)

cannot be solved by analytical methods.

The objective of the present study is to describe the adequate methods of construction of approximate

solutions of the Cauchy problem based on the one-step integration of equations (12).

Initial conceptual grounds for the construction of approximate solutions of Eqs. (12) and (13) may be

different. By now the three approaches with common specific features can be recognized.

The first approach is based on the Taylor expansion of plastic strain deviator components [6] and the use of

finite difference methods. The explicit Euler method of the first order of accuracy is the simplest numerical scheme

of the methods of this class [9]. Among other difference methods, the Runge-Kutta method of the second order of

accuracy should be mentioned [9].

The second approach is built upon the integration of differential equations (12) in a loading (deformation)

step, which leads to the computation of integrals relative to the direction stress deviator components. If different

approximations are used for their computation, the corresponding integration schemes for Eqs. (12) are obtained. The

simplest approximation procedure is the application of numerical integration formulas [9], another one is the use of

piecewise-polynomial interpolation of the direction stress deviator components followed by exact integration of the

interpolating polynomial [9].

The third approach is apparently the most general one, it is based on the construction of approximate

solutions for Eqs. (12) and (13) with a procedure of projection methods [11]. For this, the left-hand and right-hand

sides of differential equations (12) are multiplied by the arbitrary continuous function �( )s and the increment ds, and

then the equalities in a deformation step are integrated. As a result, the integral identity is obtained

d

ds
s s ds s s ds

D

p

s

s

D

s

s

n

n

n

n

� � � �
( )

( ) ( ) ( ) ( )
�



�

�

�

� �


 


� �

1 1

�

, (14)

where

s s tn n
 

�1 1( ), s s tn n� ( ).

Integral identity (14) was obtained by the “projection” of equations of plasticity (12) on the multitude of the

admissible functions �( ).s Note that the projection form of integral identity (14) is close to the equalities of the

Petrov–Galerkin projection method and the Bubnov–Galerkin method [11].

If within the examined deformation range, the plastic strain deviator �
D

p
s

( )
( ), direction stress deviator

�

� D s( ), and function �( )s are approximated by their values at the range boundaries [s sn n
1, ], a set of two-level

integration �-schemes for equations of plasticity (12) are obtained

~
( ( ) ( ) ( )) ,

( )
� n D

p

D n D n

s

s

s s ds

n

n

� �� � �� � 







�

� �

1 1

1

(15)

where � is the weighting factor, its value determining an integration scheme.
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As regards the choice of the weighting factor �, we assume that it cannot take on negative or infinitely large

values. Moreover, only those integration schemes (15) would be examined where admissible values of the weighting

factor � are bounded by the inequality
�

� �� � 1, (16)

where
�

� is the lower threshold value of the factor �, which is necessary to be estimated.

Cite several versions, following from Eq. (15), as the special cases of a set of integration �-schemes for

Eqs. (12).

Thus, if the function �( )s in integral identity (14) is assumed to be equal to unity and the direction stress

deviator
�

� D s( ) is approximated with the relation

� �

� �D D ns s( ) ( ),�

we arrive at the Petrov–Galerkin method, which results in implicit integration scheme (15) with the weighting factor

��1, used by V. I. Makhnenko.

Moreover, if in identity (14) �( )s �1 is assumed and the direction stress deviator
�

� D s( ) is approximated

with the linear interpolation

� � �

� � �D
n

n n

D n
n

n n

D ns
s s

s s
s

s s

s s
s( ) ( ) ( ),�







�
















1

1

1

1

(17)

we get the integration scheme of the Runge-Kutta method with the weighting factor ��1 2 known in the theory of

finite difference methods as the Crank–Nicholson scheme of the second order of accuracy [9]. Integration formula

(15) with the weighting factor ��1 2 is used by Yu. N. Shevchenko.

The more general approach is built upon the application of linear interpolation of the plastic strain deviator

�
D

p
s

( )
( ), direction stress deviator

�

� D s( ), and function �( )s within the examined deformation range.

When linear interpolation of the plastic strain deviator �
D

p
s

( )
( ) is used, we get the following equation for the

derivative

d

ds
s

s s
s s

D

p

n n
D

p

n D

p

n� � �
( ) ( ) ( )

( ) ( ( ) ( )).�













1

1

1 (18)

It should also be considered that the values of the deviator components �
D

p

ns
( )

( )

1 and

�

� D ns( )

1 are known

and, thus, the function �( )s is set as

� �( ) ( ).s
s s

s s
s

n

n n

n�













1

1

(19)

If relations (17)–(19) are substituted in integral identity (14), the integration scheme of the Bubnov–Galerkin

method with the weighting factor �� 2 3 is obtained.

Other approaches to the construction of integration schemes for equations of plasticity (12) are also possible,

however, they are not examined in this study.

Estimate the error of formula (15) in computation of plastic strain increments in a deformation step. For this,

the equalities are written

� �n D

p

n D

p

D D n D ns ds s s� � � �� � �
( ) ( )~

( ) ( ( ) ( ) ( )
 � 
 � 




� � �

1 1 ds

s

s

s

s

n

n

n

n





��

11

� 
 � 
 







[ ( ( ) ( )) ( )( ( ) ( ))]� � � � � �

� � � �

D D n D D n

s

s s s s ds

n

1 1

1

sn

�
,

with the account of error estimates for the rectangular formula [9], we find
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| |
~

| | | | | | max
( ) ( )

� �n D

p

n D

p

n n
s s s

s s

n

� � �
 � 
 




� �



1

2
1 2 1

2

1 n

k s| ( )| , (20)

where k k s� ( ) is the parameter of deformation path curvature in the space of plastic strains, determined by the

relation

k s
d

ds

s
D

p
( ) | | ( )| | .

( )
� �

2

2
�

Since the processes of deformation along the paths of small curvature are examined, the upper bound is set

on the value of the parameter | ( )| ,k s thus, according to estimation (20), formula (15) possesses the second order of

accuracy relative to the increment of the plastic strain path length in a deformation step.

The error of formula (15) in the computation of the plastic strain deviator �
D

p

ms
( )

( ) in the end of an mth

deformation step is estimated by the equality

� � � �
D

p

m D

p

m n D

p

n D

p

n

m

s s
( ) ( ) ( ) ( )

( )
~

( ) (
~

),
 � 


�

	 � �

1

with the account of the triangle inequality [9] and estimation (20), we find

| | ( )
~

( )| | | | (
~

)| | | |
( ) ( ) ( ) ( )

� � � �
D

p

m D

p

m n D

p

n D

p
s s
 � 
 �� � � �n D

p

n D

p

n

m

n

m

n ns s� � �
( ) ( )~

| | | | | | max
 � 
 


��


		

11

1

21

2
1 2

s s s
n

m

n n

k s



� �

�

	
11

| ( )|.

Therefore, the estimate is valid

| | ( )
~

( )| | | | max |
( ) ( )

,...,

� � �
D

p

m D

p

m
m

n m
ns s

s
s
 � 
 


�2
1 2

1

s k sn
s sm




� �

1
0

| max | ( )| . (21)

According to estimation (21), the computation of the plastic strain deviator with integration formula (15)

introduces the error of the first order relative to a maximum increment of the plastic strain path length in a

deformation step.

On the basis of estimation (21) and the equality

| ( )| | | ( )| | ,k s
d

ds
sD�

�

�

the following remark can be made. If the direction stress deviator
�

� D s( ) under deformation varies “rather smoothly”

relative to the argument s, formula (15) does not apparently introduce large errors.

It should also be noted that the Crank–Nicholson integration scheme with the weighting factor ��1 2

provides the plastic strain deviator computation of the second order of accuracy with formula (15).

Statement of Constitutive Equations. The statement of defining relations for deformation along the paths

of small curvature should consider a set of two-level integration �-schemes for equations of plasticity (12). For

determining the increments of plastic strains in a loading step, formula (15) is used where the upper symbol “~” is

omitted to simplify the representation of equations.

On the basis of formula (15), the equation for plastic strain increments in a loading step can be represented

as

� m D

p

m

D m

m

D m
t

t
t

t
d

�

�

�

�

�

�

�
( )

( )
( )

( )
( )� �


�



�
�

�

�

�
�







3

2

1

1

1

�

( )

( )
.

p

t

t
t

dt
dt

m

m




�

1

(22)
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Introduce the positive scalar function G ts m( ), dependent on the parameter � and determined from the

relation

1 1 3

0
1

G t G t t

d t

dt
dt

s m m m

p

t

t

m

m

( ) ( ) ( )

( )
.

( )

� �




�

�

�

�

(23)

According to formulas (22) and (23), we find

� m D

p

s m m

D m D m
G t G t

t t� � �
( )

( ) ( )
( ( ) ( )� 


�



�
�

�

�

�
�

�



1

2

1

2 0

1

�

), (24)

where
�

� D mt( )

1 is the deviator of “additional” stresses,

�

�

�

�

�

�

�D m
m

m

D mt
t

t
t( )

( )

( )
( ).









�




1

1

1

1

(25)

According to Eqs. (10) and (24), we have
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from (26) follows the equation for the stress deviator � D mt( )

� � �D m s m D m D

p

m

s m m

t G t t t
G t G t
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�

� D mt 1 (27)

On the basis of relations (1) and (27), the constitutive equations of the theory of plasticity can be represented

as

� � � � �( ) ( ( ))( ( ) ( )) ( )( ( ) (t k T t t t G t t tm m S m S m s m D m D� 
 � 
0 2 m )), (28)

where �( )tm is the tensor of initial strains,

� � �( ) ( ) ( )
( ) ( )

( ) ( )
t t t

G t G t
m S

T

m D

p

m

s m m
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�
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1

0

1

2

1

2
�

�
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�

� D mt( ).1 (29)

Notice that the form of Eqs. (28) is coincident with that of the equations of the theory of simple deformation

processes, in particular the theory of small elastoplastic strains [5]. Nevertheless, such coincidence is entirely formal.

The initial strains in Eqs. (28) are obtained from (29) and determined not only by nonuniform heating of the body but

also by elastoplastic deformation history.

Assume that �
D

a

mt
( )

( ) is the deviator of active strains arising in the body element in addition to the initial

strains �D mt( ) in the end of an mth loading step

� � �
D

a

m D m D mt t t
( )

( ) ( ) ( ).� 
 (30)

Then Eqs. (28) can be written as

� �D m s m D

a

mt G t t( ) ( ) ( ).
( )

� 2 (31)
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If substitute Eq. (31) in formula for the intensity of the stress deviator (5), we get

G t
t

t
s m

m

a

m

( )
( )

( )

,
( )

�

�

�3
(32)

where �
( )

( )
a

mt is the intensity of the active strain deviator �
D

a

mt
( )

( ),

� �
( ) ( )

( ) | | ( )| | .
a

m D

a

mt t�

2

3
(33)

It follows from (32) that at the fixed intensities of stress deviators and active strains, the scalar function Gs

can be interpreted as the “secant shear modulus” of the material. However, such interpretation of Eq. (32) is formal

since the intensity of the active strain deviator is also determined with the secant shear modulus, which is evident

from Eqs. (29), (30), and (33).

So the nonlinearity of Eqs. (28), (29), and (32) is dependent on the two factors. The first one is defined by

the relation between the secant shear modulus and the intensities of stress deviators and active strains, which follows

from Eq. (32). The second one is controlled by the relation between the deviator of initial strains and the intensity of

the stress deviator and the secant shear modulus, which follows from Eqs. (25) and (29).

The intensity of the stress deviator may be expressed in terms of the intensity of the active strain deviator

with the functional relation describing the material hardening. In such a case, the secant shear modulus and deviator

of initial strains would depend only on the intensity of the active strain deviator. Nevertheless, by the start of the

loading step, the intensity of the active strain deviator for the examined loading step is the unknown function, which

leads to the nonlinearity of Eqs. (28), (29), and (32).

Computation of Plastic Strains. Plastic strains in the end of an mth loading step are calculated by Eqs. (2)

and (3), hence the formula follows

� � �
D

p

m D m

m

D mt t
G T t

t
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( ) ( )
( ( ))

( ),� 


1

2 0

which with regard for Eqs. (28) can be written as
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1 tm ), (34)

where �
D

m

mt
( )

( ) is the modified strain deviator defined by the equation

� � � �
D

m

m D m D

p

m

m

D mt t t
G t

t
( ) ( )

( ) ( ) ( )
( )

( ).� 
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1

0

1

1

2

�

(35)

Computation of the Odquist Parameter. The Odquist parameter q tm( ), characterizing accumulated plastic

strains in the end of an mth loading step, is determined by the relation

q t
d t

dt
dtm

ptm

( )
( )

.

( )

�
�

�

0

(36)

It is evident that this parameter has a simple geometrical meaning, viz with an accuracy to the multiplier

2 3 it is equal to the deformation path arc length in the space of plastic strains.
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If in Eq. (36) the additivity property of a definite integral is considered, we obtain

q t q q t qm n m m

n

m

( ) ( ) ,� � �



�

	� �1

1

(37)

where the increment � n q is calculated by Eq. (23)

� n

p

t

t

s n n

q
d t

dt
dt

G t G t

t

n

n

� � 


�



�
�

�

�

�
�




�

� �

( )

( )

( ) ( )

(

1

1 1

0

n )
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(38)

With relations (3), (32), and (38), we find

� �
( ) ( )

( )
( )

( ( ))
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e

n
s n

n

a

nt
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G T t
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�
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�

1

0

( )

( ( ))

( )
,

( )
�

�

(39)

hence the equality follows whereby the interrelation between the intensities of active and elastic strains and the

increment of the Odquist parameter

� � �
( ) ( )

( ) ( ) .
a

n

e

n nt t q� � � (40)

According to equality (40), the intensity of the active strain deviator can be represented as the sum of the

intensity of the elastic strain deviator and a certain part of the Odquist parameter increment, which is dependent on

the weighting factor of the integration scheme [Eq. (22)].

The geometrical interpretation of relations (32) and (40) is presented in Fig. 1.

Construction of the Functional Relation of the Material Hardening. In the incremental theories of

plasticity, it is usually presumed that the intensity of the stress deviator � ( )t for an examined material is the

functional of the Odquist parameter q t( ), temperature T t( ), and, probably, time t:

� ( ) ( ( ), ( ), ).t q t T t t� � (41)
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However, constitutive equations (28), (29), and (32), would require the construction of another, different

from (41) functional relation that characterizes the material hardening under plastic deformation.

It is assumed [Eq. (32)] that for an examined material, the intensity of the stress deviator � ( )t is the

functional of the intensity of the active strain deviator �
( )

( ),
a

t temperature T t( ), and time t:

� �( ) ( ( ), ( ), ).
( )

t t T t t
a

� � (42)

It is obvious that such a definition is not exaustive since no account is taken in the effect of hardening

acquired by the material under prior plastic deformation. For the examined time moment t at the corresponding

temperature T t( ), the intensity of the stress deviator � ( )t is dependent not only on the intensity of the active strain

deviator �
( )

( )
a

t at a given time moment t but also on the material hardening at the time moment �� t.

It follows that functional relation (42) should describe elastoplastic deformation with regard to the initial

material hardening, viz. the material hardening by the start of a loading step. From this, represent functional relation

(42) in the more complete form

� � �( ) ( ( ), ( ), ( ), ),
( )

t t q T t t
a

� � �� t, (43)

where the parameter, characterizing the material hardening by the start of a current loading step, is taken as the

additional argument q( ).� Note that the hardening parameter q( )� is determined by deformation history, therefore,

in Eq. (43) this parameter may describe loading history. The simplest assumption for the hardening behavior of the

material is that the value of accumulated plastic strains, i.e., the Odquist parameter, is taken as the measure of

hardening.

Under isothermic loading, functional (43) may be interpreted as the deformation surface with the initial

hardening. Under anisothermic loading, it describes the multitude of thermomechanical surfaces against the

hardening level. For the fixed values of the hardening parameter q( ),� functional (43) may be interpreted as the

thermomechanical surface with the initial hardening.

For the concrete definition of functional relation (43), the deformation parameter e t( ) is used that

characterizes the material hardening under elastoplastic deformation in each body point. It is determined as the sum

of accumulated plastic strains and the intensity of the elastic strain deviator

e t q t t
e

( ) ( ) ( ).
( )

� � � (44)

We find with Eqs. (37), (40), and (44)

e t q q t q t q
e a

( ) ( ) ( ) ( ) ( ) ( ) ,
( ) ( )

� � � � � � 
� � � � �� �1

with the account of second formula (39), we get

e t q t t
a

( ) ( ) ( ) ( ),
( )

� �� � � (45)

where the term �( )t is set as

�

�

�

�

( )
( )

( ( ))
.t

G t

G T t

s
� 



1 1

0

(46)

Analysis of Eqs. (44) and (45) may lead to the following comments. According to Eq. (44), the parameter

e t( ) characterizes the total accumulated strain under elastoplastic deformation of the material in each body point. As

follows from Eq. (45), this parameter can be determined with the parameter of initial hardening q( )� and the

intensity of the active strain deviator �
( )

( )
a

t .
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Thus, functional relation (45) can be presented as

� ( ) ( ( ), ( ), ).t e t T t t� � (47)

Assume that functional (47) does not depend on the path curvature, hydrostatic pressure, or a stress deviator

and is determined from uniaxial tensile tests of cylindrical specimens at different fixed temperatures. The defining

relations of the theory of plasticity in the form of Eqs. (28), (29), and (32) should be supplemented with functional

relation (47). The constitutive equations are written in a unified form irrespective of a loading process, which allows

their use in the description of simple active loading, deformation along the paths of small curvature, unloading and

reloading.

Further derivation of functional relation (47) is based on the equation of the instantaneous thermomechanical

surface

� �� f T( , ), (48)

where by the strain � is meant only a pure mechanical component, i.e., the total strain minus the thermal one. Note

that the equation of the instantaneous thermomechanical surface is the locus of deformation diagrams plotted at

different fixed temperatures. It confirms that stresses in the specimen are the function of strains and temperature.

If for the concrete definition of functional relation (47) equation of the instantaneous thermomechanical

surface (48) is used, it would be necessary to establish the agreement between a multiaxial stress-strain state of the

body element and uniaxial tension of the specimen. Assume that in uniaxial tension of the specimen, the parameter e

is identified with the total strain � and the parameter q, characterizing the material hardening, is associated with the

plastic strain of the specimen. Then with the account of the linear relation over the elastic deformation range, we

obtain

�( , )
( )( ), ,

( , ), ,
e T

G T e q e e

f e T e e

p

p

�
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�

�

�

�

3 0

(49)

where ep is the strain, corresponding to the instantaneous proportionality limit f e Tp( , ), dependent on the

accumulated plastic strain q and temperature T .

From Eq. (49), we get the equation for ep :

f e T G T e qp p( , ) ( )( ).� 
3 0 (50)

With relations (32) and (50), we find

G e T

G T e e
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0

3�

Comments on Defining the Strain ep with Eq. (50). Assume that at the fixed temperature T , the piecewise-

linear approximation of the function f e T( , ) is used against the strain e. For this, the whole range of e variations is

divided into the portions [e en n
1, ], and within each of them the linear interpolation of the following form is preset

f e T f e T g T e en n n( , ) ( , ) ( )( ),� � 


 
1 13 (51)

where g Tn ( ) is the linear hardening modulus within the portion [e en n
1, ]

g T
f e T f e T
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Then from Eqs. (50) and (51), we obtain the equation for ep :

e
f e T G T q g T e

G T g T
p

n n n

n

�
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( , ) ( ( ) ( ) )

( ( ) ( ))
.

1 0 1

0

3

3

Comments on the Odquist Parameter. Demonstrate that for equations of plasicity (28), (29), and (32), the

increment of the Odquist parameter is not equal to the intensity of plastic strain increments in a loading step. This

statement is formulated more exactly in the following way. If the values of the weighting factor � satisfy the

condition

1

2
1� �� , (52)

then the inequality is valid

� �m m

p

q  �

( )

, (53)

where � m

p

�

( )

is the intensity of plastic strain increments in a loading step,
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p
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(54)

The deviator of active strains can actually be represented as
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where the strain deviator �
D

m

mt
( )

( ) is determined by Eq. (35).

Then in accordance with the triangle inequality, we obtain such estimates
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From (32), (35), (52), and (55), we arrive at the inequalities

2 1 1�
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� �

�
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m D
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According to equality (34), we have

| | | |
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1
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, (57)

and with regard for (39), (54), (56), and (57), we find

( ) .
( )

2 1� �
 � �� � �m m

p

mq q

Thus, we obtain the inequalities

0 2 1� 
 � 
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p

mq q� �

( )

( ) ,
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hence (53) follows. The exception is integration scheme (15) with the weighting factor ��1 for which the equality

� �m m

p

q � �

( )

is valid and the invariability of direction stress deviator components at a loading step is assumed.

Differential Form of Equations of Plasticity. Demonstrate that differential equations of plasticity,

corresponding to defining relations (28), (29), and (32), belong to the equations of so-called singular plasticity,

assuming the existence of a specific point on the loading surface. It is well to bear in mind that the nature of

singularity is dependent not on the physical relationships of deformation of the elastoplastic medium but on

approximate integration of equations of plasticity (6) in a loading step.

Let the body be in the plastic state, which is characterized by the stresses � D at an examined time moment.

Impart the infinitesimal increments d D� to the latter, which leads to additional plastic strains. Compute the

infinitesimal increments of plastic strains at a preset reloading d D� . For this, apply relation (24) for the finite

increments of plastic strains in a loading step, so it follows

d d
G G
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2 0

(58)

where �� D is the deviator of the sum of stresses

� � �� � �D D D

�

. (59)

Differentiate the right-hand side of equality (58). According to the differentiation rules for complicated

functions, we have
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(60)

Moreover, accounting for (32), we find
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, (61)

where Gt is the tangent shear modulus of the material,

G
df e

de
t �

1

3

( )
. (62)

Differentiation of relation (44) results in

de d d d
a a a

� � �( ) ( ) ,
( ) ( ) ( )

�� � � � � (63)

where the increment d� is derived from Eq. (46):
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1 1
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. (64)

If (61) is substituted in formula (64) and then the expression for the increment d� is inserted in the

right-hand side of equality (63), we arrive at the relation

d

de

G

G

a

t�

� �

! "

� � 
( ) .1

0

(65)
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With regard for (65), Eq. (61) takes on the form
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where G
�

is the shear modulus in the form of the linear combination

1 1
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. (67)

From Eqs. (60) and (66), we obtain the equation for infinitesimal increments of plastic strains
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Advance the expression for the stress increment d D
�� used in Eq. (68). If the stress deviator �� D is preset

as sum (59), the equality is valid

d d dD D D
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�

. (69)

The increment d D

~
� is determined from (25), hence
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Accounting for (59), (69), and (70), Eq. (68) becomes
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With certain comments on the properties of Eq. (71), represent it in a somewhat different form
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� . (72)

In the case of proportional loading, in Eq. (72) only the first term remains, which is transformed to the basic

equation of the theory of flow on isotropic hardening, i.e., to equation of plasticity (6).

It also follows from Eq. (72) that under neutral/orthogonal reloading, the first term disappears but the second

one remains, so according to Eq. (72), neutral reloading can give rise to the changes in some plastic strain deviator

components.

Thus, under arbitrary reloading, the second term in Eq. (72) governs the increment of plastic strain

deviator components caused by the rotation of principal axes with the infinitesimal increment of stress deviator

components.

Referring to Eq. (71) and following reasonings [12], we notice that the loading surface cannot be smooth

since the direction of the vector of plastic strain increments depends only on the stress vector � D but not on the

reloading vector d D� and the stress vector
~
� D . The first term in Eq. (71) satisfies this condition, the second and

third ones are dependent on the increment vector d D� and the stress vector
~
� D , respectively, so the vector of

plastic strain increments under reloading can change its direction depending on the ratio of the components of the

above vectors. Therefore, the end of the stress vector � D is the angular point of the loading surface.
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However, Eqs. (71) and (72) do not allow for any particular conclusions of a loading surface in the vicinity

of the angular point. As follows from those equations, for certain loadings, other than the proportional one, the

subsequent loading surfaces, bounding the area of elastic unloading, can have the angular point moving along the

loading path together with the stress vector end.

Comments on the Correctness of Constitutive Equations. Present certain quite evident reasonings as to

the applicability conditions for constitutive equations (28), (29), and (32) without their detailed analysis.

It appears reasonable that constitutive equations (28), (29), and (32) would be correct only if some general

principles of any theory of flow are not violated. In this connection, it would be necessary to clarify the conditions of

the agreement between equations of plasticity (28), (29), and (32) and the principle of work irreversibility with

plastic strain increments and Drucker’s hardening postulate.

Verify the fulfilment of the irreversibility condition, which consists in that the increment of plastic form

change work is the positive value

dA dD D

p
� �( , ) .

( )
� � 0 (73)

For this, one should consider that the deviator of additional stresses
~
� D is computed with Eq. (25), hence

� �

�

�

�

� �D D D�


1
| | | | , (74)

where �� D is the direction stress deviator for the preceding loading step with its modulus of unity, i.e., | | � | | .� D �1

The increment of the intensity of the stress deviator d� is preset as

d dD D�

�

� ��

3

2
( , ), (75)

thus, if expression for plastic strain increments (71) with the account of Eqs. (74) and (75) is substituted in Eq. (73),

we obtain
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# � �cos , (76)

where # is the angle from the relation

#
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�

� arccos
( , )

| | | |
.

�

D D

D

(77)

Note that by virtue of the Cauchy–Bunyakovsky–Schwarz inequality [6], the expression in the right-hand

side of equality (77) does not exceed unity, i.e., the angle # was computed correctly.

With regard to relation (67), we have

1 1 1 1

0 0G G G Gt�
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�
, (78)

therefore, Eq. (76) takes on the form
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3
1

0

( ( )cos ) .� � # � � (79)

Make several comments on Eq. (79). For the majority of real materials, the deformation diagram is usually

convex upwards and does not exhibit the inflection points, therefore, the conditions G Gt0 0� � are always fulfilled.

Thus, the first term in the right-hand side of equality (79) is positive.
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Under the reloading d� � 0 and the condition cos ,# $ 0 Eq. (79) results in the inequality dA � 0. From the

inequality cos ,#� 0 we conclude that the condition dA � 0 would be fulfilled only if the values of the weighting

factor � do not contradict the inequality

1
1




�

�

�

#|cos | .

The simplest analysis allows for the following conclusion. The modulus of angle cosine does not exceed

unity, thus, we obtain the condition that sets the lower bound on the choice of admissible values of the weighting

factor �

1
1

1

2




� % �

�

�

�, . (80)

Check on the fulfilment of the inequality stemming from Drucker’s postulate, which implies that the work of

the additional stresses d D� in the whole cycle of additional loading and unloading is positive in the presence of

plastic strains

( , ) .
( )

d dD D

p
� � � 0 (81)

If (71) is substituted in inequality (81), with the account of relations (74), (75), and (78), we get

( , ) ( ) ( , ),
( )

d d dD D

p
� � � & '�

1

3

2
(

where d� is the intensity of stress deviator increments,

d d D� ��

3

2
| | | | ,

(( , )& ' is the trigonometric function, which can be presented in the form

(( , ) cos ( cos ( )cos )& ' & � & � '� 


�



�
�

�

�

�
�

� 
 � 


1 1
1

1 1

0G G G Gt s 0

2�



�
�

�

�

�
�
sin ,& (82)

& and ' are the reloading angles

&

� �

� �

� arccos
( , )

| | | | | | | |
,

D D

D D

d

d
'

� �

�

� arccos
( , )

| | | |
.

�

D D

D

d

d

Examine some typical reloading cases. Under proportional loading, we have & ' #� � � 0, thus, Eq. (82)

takes on the form

(( , ) .0 0
1 1

0

� 


G Gt

(83)

Moreover, under neutral reloading, we have & )� 2, as a result, we arrive at the equality

(

)

'

2

1 1

0

, .
�



�

�

�

� � 


G Gs

(84)

Equations (83) and (84) are positive at G G Gs t0 0� � � , which is usually fulfilled if the material is hardened

monotonically and the deformation curve has no inflection points.
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Accounting for the reloading d� � 0, the estimate cos &� 0 follows from equality (75), so if 0 2� �' ) , we

have cos ,' $ 0 which allows the lower bound on the function (( , )& ' to be estimated with the following

inequality:

(( , ) cos sin& ' � & &$ 


�



�
�

�

�

�
�

� 


�



�
�

�

�

�
�

�

1 1 1 1

0

2

0

2

G G G Gt s

0.

Under the arbitrary reloading d� � 0 and the condition ) ' )2� � but with the limitation on the reloading

angle & in the form of the inequality & ) '� 
 , we get the estimate |cos | cos .' &� In this case, the lower bound on

the function (( , )& ' can be evaluated

(( , ) ( )cos s& ' � &$ 
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in ,
2
&

hence it follows that the inequality (( , )& ' � 0 would be valid if the condition ��1 2 is fulfilled, setting the lower

bound on the weighting factor �.

For all other reloadings, function (82) is written as

(( , ) cos& ' &

�
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hence the necessary and sufficient conditions for the fulfilment of inequality (81) are as follows
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Inequalities (85) set the lower bound on the weighting factor �

� * *� � 
( ) ,1
2

* �







�

1 1

1 1
1

0

0

G G

G G

s

t

. (86)

Thus, the limitations, stemming from the principle of work irreversibility and Drucker’s hardening postulate,

refer to the estimation of the lower threshold
�

� value, introduced above with inequalities (16).

Practical Recommendations for the Choice of the Parameter �. Conditions (85) and (86) narrow the

range of admissible values of the weighting factor � and influence the error of integration formula (15). Really, not

all of the above integration �-schemes for equations of plasticity (6) result in the construction of stable defining

relations, as Eqs. (28), (29), and (32). In particular, explicit integration schemes, e.g., the Euler method with the

weighting factor �� 0 and the Crank–Nicholson integration scheme with the weighting factor ��1 2 of the second

order of accuracy, can lead to the violation of Drucker’s hardening postulate and the principle of work irreversibility

with plastic strain increments, which in its turn, violates the correctness of constitutive equations (28), (29), and (32)

and causes the incorrect statement of the boundary problem.

Results of numerical calculations confirmed that ignoring the condition ��1 2 can induce the degeneracy of

the boundary problem, the loss of stability or violation of convergence of the computation processes. The integration

scheme of the Bubnov–Galerkin method with the weighting factor �� 2 3 and the implicit scheme of the

Petrov–Galerkin method with the weighting factor ��1 can be recommended for practical applications. The

experience of solution of practical problems shows that the integration scheme of the Bubnov–Galerkin method with

the weighting factor �� 2 3 would be advantageous to use for the solution of elastoplastic problems with a

moderate change in the direction of deformation of body elements when passing from a current loading step to the
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next one, e.g., for the solution of heating or cooling problems with a smooth variation of external loads. The

implicit integration scheme of the Petrov–Galerkin method with the weighting factor ��1 can be recommended

for the solution of elastoplastic problems with lumped loading steps and abrupt changes in the directions of

deformation of body elements under loading, e.g., under loading followed by total or partial unloading, or variable

reloading.

Example. For illustrating the properties of equations of plasticity (28), (29), and (32), analyze the

deformation problem for a thin-walled round pipe subject to axial tension and torsional moment.

The elastic modulus E0 is taken to be 10
5

MPa. Assume that the material is incompressible with the linear

hardening Å Å1 0 2� . The yield stress � s is set to be 200 MPa.

The problem is solved at a plane stress state. Take a unit square, the axial tensile � and tangential � stresses

are applied to its sides according to a preset loading program.

Examine the two paths of step loading, each represents the two broken lines in the space of stresses � �


(Fig. 2).

The first path corresponds to the tension-torsion loading program. The first broken line describes a

monotonic growth of the tensile stress � from zero to 3� s, the second one covers a monotonic increase in the

tangential stress � from zero to � s 3, given that the tensile stress � is constant and equal to 3� s.

The second loading path is an alternative to the first one and describes loading history according to the

torsion-tension program. The first broken line corresponds to a monotonic growth of the tangential stress � from

zero to � s 3, the second one describes a monotonic increase in the tensile stress � from zero to 3� s, given that

the tangential stress � does not change and equals � s 3.

The exact solutions of the problem for the axial �
( )p

and shear �
( )p

components of the plastic strain tensor

in the end of each loading path are based on the following formulas:

first loading path

�
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Fig. 2. Two paths of step loading of a thin-walled pipe.



second loading path
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p
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E E

E E
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.

Since the problem is statically definable, an estimate was made of the summary error + of determining the

plastic strain tensor components in the end of each loading path

+ + +
� �

� �
2 2

, +

� �

�

�
�
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|

| |

,
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p p
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|

| |

,

( ) ( )

( )

p p

p

where
~ ( )
�

p
and

~ ( )
�

p
are the approximate solutions obtained with integration �-schemes.

For the first and second loading paths, the first broken line describes proportional loading, therefore, only

the second one was divided into additional steps.

The solution results, obtained with different values of the weighting factor � and different numbers N of

loading steps of the second broken line, are summarized in Tables 1–6. As is seen, in the case of lumped loading

steps, the application of the integration scheme of the Bubnov–Galerkin method with the weighting factor �� 2 3 to

the solution of the model problem results in the smallest summary error of plastic strain determinations. It is a rather

important argument in favor of practical application of the above scheme since the solution of the elastoplastic

665

TABLE 1. Results of Axial Plastic Strain Calculations (%) for the First Tension-Torsion Loading Path

N �

0.5 0.6 2/3 0.75 1.0

1 0.196410 0.195692 0.195214 0.194615 0.192820

2 0.196307 0.195877 0.195591 0.195233 0.194160

4 0.196257 0.196033 0.195884 0.195698 0.195139

8 0.196243 0.196130 0.196055 0.195961 0.195679

Exact solution: 0.196238

TABLE 2. Results of Plastic Shear Strain Calculations (%) for the First Tension-Torsion Loading Path

N �

0.5 0.6 2/3 0.75 1.0

1 0.023205 0.027846 0.030940 0.034808 0.046410

2 0.029952 0.032153 0.033620 0.035454 0.040995

4 0.031674 0.032760 0.033485 0.034391 0.037108

8 0.032106 0.032648 0.033009 0.033461 0.034815

Exact solution: 0.0322509

TABLE 3. Summary Error (%) of Plastic Strain Determinations for the First Tension-Torsion Loading Path

N �

0.5 0.6 2/3 0.75 1.0

1 28.05 13.66 4.09 7.97 43.83

2 7.13 0.35 4.25 9.94 27.13

4 1.79 1.58 3.83 6.64 15.07

8 0.45 1.23 2.35 3.75 7.95



problem with lumped loading steps can greatly cut computational efforts. With an increase in the number of loading

steps, the problem can be solved more exactly on the basis of the Crank–Nicholson integration scheme with the

weighting factor ��1 2 of the second order of accuracy. According to the results, with any number of loading steps

of the second broken line, a maximum error is characteristic of the implicit integration scheme of the Petrov–

Galerkin method with the weighting factor ��1. Also note that a reduction in the hardening modulus E1 does not

result in essential changes of the solution error–parameter � relation.

Conclusions. The construction of a set of two-level integration �-schemes for the equations of the flow

theory of plasticity, describing anisothermic loading processes along the deformation paths of small curvature, has

been proposed. Basic concepts of the phenomenological model are based on the Prandtl–Reuss equations of plasticity

and the Huber–Mises yield condition. The integration problem for the equations of plasticity was stated as the

Cauchy problem for ordinary differential equations, with the deformation path length in the space of plastic strains

taken as the argument characterizing the loading process. A general scheme of formal transformations for the

construction of approximate solutions of the Cauchy problem on the basis of a set of two-level integration �-schemes

for the equations of plasticity has been discussed. The differential equations of plasticity belong to the equations of

so-called singular plasticity, assuming the existence of a specific point on the loading surface. The conditions of

agreement between the equations of plasticity, constructed with two-level integration �-schemes, and the principle of

work irreversibility with plastic strain increments and Drucker’s hardening postulate have been investigated. As an

example, illustrating the properties of the equations of plasticity, the deformation problem was solved for a

thin-walled round pipe subject to axial tension and torsional moment. The solution results for the model problem,

obtained with different two-level integration �-schemes for the equations of plasticity, are presented and

recommendations for the choice of the weighting factor � are given.

Acknowledgments. The author is thankful to Dr. K. N. Rudakov and Dr. V. A. Romashchenko for analytical

materials and discussion of solution results for the test problem.
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TABLE 4. Results of Axial Plastic Strain Calculations (%) for the Second Torsion-Tension Loading Path

N �

0.5 0.6 2/3 0.75 1.0

1 0.086603 0.103923 0.115470 0.129904 0.173205

2 0.124106 0.131196 0.135923 0.141831 0.159556

4 0.133700 0.137016 0.139226 0.141989 0.150279

8 0.136147 0.137780 0.138868 0.140228 0.144308

Exact solution: 0.136971

TABLE 5. Results of Plastic Shear Strain Calculations (%) for the Second Torsion-Tension Loading Path

N �

0.5 0.6 2/3 0.75 1.0

1 0.259808 0.242487 0.230940 0.216506 0.173205

2 0.245495 0.236762 0.230940 0.223663 0.201830

4 0.241597 0.237061 0.234037 0.230257 0.218916

8 0.240492 0.238197 0.236668 0.234756 0.229020

Exact solution: 0.2401132

TABLE 6. Summary Error (%) of Plastic Strain Determinations for the Second Torsion-Tension Loading Path

N �

0.5 0.6 2/3 0.75 1.0

1 37.67 24.14 16.16 11.10 38.42

2 9.65 4.43 3.89 7.71 22.93

4 2.47 1.27 3.01 5.50 13.13

8 0.62 1.00 1.99 3.26 38.42
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