
Strength of Materials, Vol. 44, No. 4, July, 2012

STRENGTH ASSESSMENT FOR COMPOSITE AND METAL-COMPOSITE CYLINDERS

UNDER PULSE LOADING. PART 1. RULES OF CHOOSING VARIOUS STRENGTH CRITERIA

FOR ANISOTROPIC MATERIAL AND COMPARATIVE ANALYSIS OF SUCH CRITERIA

V. A. Romashchenko UDC 539.3

The author formulates the rules one should follow when choosing strength criteria for a composite.

A comparative analysis of Ashkenazi and Tsai–Wu strength criteria is performed for a specific

orthotropic material, and the criteria are shown to agree with each other. An update of the Tsai–Wu

criterion is put forward for composites that have uniform tension and compression strength.
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During the design of explosionproof chambers (EPC) special attention is given to choosing appropriate

structural materials for load-bearing shells. For that purpose, along with metals (steel, titanium alloys, etc.) it is

sometimes recommended to use oriented fiber-reinforced composites [1–5] which often feature a pronounced

anisotropy. These materials are usually orthotropic or, if unidirectionally reinforced or uniformly reinforced in plane,

transtropic ones [4]. Single- or multilayer composite or metal-composite cylindrical shells are used as load-bearing

elements of EPC. In this case, “layer” is hereinafter used to mean a part of the structural element (even if such part

has been technologically fabricated through multi-ply winding), within which the elastic characteristics and

directions of principal anisotropy axes can be assumed to be constant.

The composite layers which are usually produced by winding, represent spirally orthotropic (often spirally

transtropic) bodies [2–5]. The internal isotropic metallic layer is an auxiliary one: it sets a shape for the shell during

its fabrication, partially insulates the composite layer to protect it against thermal overloading, blocks its dynamic

instability (by taking off its elastic energy) and absorbs a portion of explosion energy to plastic deformation. This

improves the structural reliability – such a multilayer metal-composite shell is more energy-intensive with a smaller

mass in comparison to an all-metal one. In this case, it is the first half-period of vibrations, which presents the

greatest danger from the standpoint of strength [2]. Therefore, to numerically predict strength of such structural

elements under dynamic loading is currently quite an important task.

The publication [5] outlines numerical methods and results of investigation of axisymmetrical stress-strain

state (SSS) and strength of single- and two-layer composite cylinders with various spiral reinforcement configurations

under internal pulse loading. The Ashkenazi criterion [4] was applied as a strength criterion for an orthotropic body.

However, this criterion is seldom used nowadays and only by researchers in CIS countries. In most cases,

contemporary researchers prefer using the Tsai–Wu failure criterion [6–9]. In this connection, it would be important

to compare the Ashkenazi and Tsai–Wu failure criteria for an anisotropic material, update the numerical method and

an application software package (ASP) [5] for the use of the Tsai–Wu criterion, which would enable one to assess

SSS and strength of composite and metal-composite cylinders under internal pulse loading. These are the tasks the

present work is intended to accomplish.

This investigation dealt with multilayer finite-length cylinders with free ends, which were subjected to

internal loading with an axisymmetrical pressure pulse. We will use cylindrical coordinates x r, , .� The origin of

coordinates is placed at the center of symmetry of the shell. In the case of a spirally orthotropic layer, one of the
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principal axes of anisotropy coincides with the direction of the radial coordinate r and two others ( �x and �� ) can be

rotated with respect to the global coordinate axes x and � through the reinforcement angle � which is constant

within the layer under consideration. The extreme cases � � 0 and � � � �90 correspond to the axial and

circumferential reinforcement, respectively, with the spiral orthotropy degenerating into a cylindrical one. Isotropic

layers are considered to be a particular case of spirally orthotropic ones, provided that the appropriate identical

equality expressions are met for a series of elastic, plastic, and strength characteristics of the material, the

reinforcement angle being arbitrary.

The thick-walled cylindrical shells have the following geometrical dimensions: inner radius R1 � 0.1 m,

outer radius R2 � 0.12 m, cylinder length L � 0.4 m. The shells were loaded using a spherical charge of

trotyl-hexogen explosive, which was located along their axis of symmetry. According to data [5, 10, 11], the pressure

at the cylinder’s inner surface was specified as follows:

P x t P R l H l a t( , ) ( ) ( ),� �0 1
3

0 (1)

P qM Rch0 1

3
0 35� . , a q0 0 35� . ,

where t is time, a0 is the characteristic velocity, a0 � 6310 m/s, P0 is the nominal pressure at a distance R1 from

the charge center, l is the distance from the charge center to a point under consideration, l R x x� 	 �
1

2
0

2
( ) , x0 is

the axial coordinate of the explosive charge center, and H t( ) is the Heaviside function. The value a0 � 6310 m/s

corresponds to the explosive’s calorific value q � 4.877 MJ/kg. The nominal pressure P0 is directly proportional to

the charge mass M ch , for M ch � 0.1 kg it is 170.7 MPa [5, 10, 11].

The mathematical statement of a boundary-value problem of the determination an axisymmetrical SSS and

the numerical finite-difference method for solving thereof were detailed in [5]. Therefore, we will dwell on the

strength aspects. Note that the dynamic SSS in the problems to be considered will be quite diverse: depending on

time and spatial coordinates it can be uniaxial, biaxial, and triaxial (where all of the six stress tensor components 

�õ ,


 � �
, 
 r , � �� �x , �� �r

, and � rx�
are simultaneously nonzero and of the same order of magnitude). Therefore, when

choosing strength criteria we will use those designated to describe the most general SSS type, i.e., the triaxial one.

The strength of a thick-walled cylinder in the process of variation of its dynamic triaxial SSS was assessed

by the Ashkenazi or Tsai–Wu strength criteria. The Ashkenazi criterion is valid only for composites that have

uniform strength in tension and compression, and in the principal anisotropy axes �õ , �� , r for a general case of

triaxial SSS it is written as [4, 5]
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, and 
 ur are the ultimate tension or compression strength values along the respective principal directions

of anisotropy, � �uõ� �
, � �u r�

, and � urx�
are ultimate pure-shear strength values in the respective principal planes of

377



anisotropy, and 

�uõ� �

( )
,

45



�u r�

( )
,

45 and 

urx�

( )45 are the ultimate strength values along the diagonal direction at an angle of

45� to the symmetry axis in the principal plane of anisotropy corresponding to the subscripts.

Thus, the limiting surface under the Ashkenazi criterion (2) is plotted by the data from nine independent

experiments: six uniaxial tension (or compression) experiments and three pure-shear ones. It identically satisfies

these experimental (reference) points: the function � in them is identically equal to unity.

Since the Ashkenazi criterion implies uniform strength of a composite material (CM) in tension and

compression, which is rarely the case for real materials, in recent years the Tsai–Wu criterion has been used more

often for strength analyses. This criterion is free from the above-mentioned drawback, and in the principal axes of

anisotropy of the material it is written as [6–9]

�  1, (3)
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where the superscripts “	” and “�” denote ultimate strength in tension and compression, respectively:

Fij
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(4)

The limiting surface (3) is also plotted by the data of nine experiments which, however, are slightly different

from those outlined above for the Ashkenazi criterion; namely: three experiments in pure shear and three in uniaxial

tension in the principal planes and directions of anisotropy, respectively, as in the case of criterion (2). Moreover,

three experiments in uniaxial compression along the principal directions of anisotropy were performed. Surface (3),

much like the one given by (2), identically satisfies the experimental points: the function � therein becomes equal

to unity, doing so for any three arbitrary values of constants Fij . Depending on the method of redefining these

constants, one can construct various strength criteria. In particular, if these constants are defined by formulas (4), we

arrive at a strength criterion which is conventionally referred to as the Tsai–Wu criterion in the publications [8, 9].

Depending on the strength criterion used, function � from (2) or function � from (3) determines a region

at the boundary of which SSS is critical: if the condition �� 1 (or �� 1) is met no fracture happens; otherwise, the

fracture does occur and strength is not fulfilled. Since criteria (2) and (3) are written in the coordinate system

coinciding with the principal anisotropy axes and SSS is computed in a global cylindrical coordinate system, during

the determination of stresses involved in (2) or (3) the stress tensor should be rotated through an appropriate

reinforcement angle � using the known relations [5, 12]. The strength verification procedure should be carried out

for every finite-difference cell of the design region, at every time step. Thus, if the condition �� 1 (or �� 1) is

obeyed within the whole region and over the entire time range, the structure is strong. If the said condition is not met

at least at a single point and at any instant of time, the strength does not hold.

The Tsai–Wu limiting surface (3), (4) is the classical quadric and convex surface in which is also convex in

the six-dimensional space of stresses. The difference between the CM’s tensile and compressive strength is allowed

for by both squared and linear terms in (3) and leads, in particular, to a shift of the surface center with respect of the

origin of coordinates. The Ashkenazi limiting surface (2) is always centrally symmetric, representing also a particular

case of a quartic surface without any linear or cubic terms; it can have an alternating-sign curvature and consist of

convex, concave, and saddle-shaped segments that interface with each other in a perfectly smooth manner [4].

The absence of stresses is an optimum (sometimes not the only one) of the Ashkenazi strength function �

from (2): with the stress tensor being zero, the function � reaches its global minimum (�min � 0). On the other hand,
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the minimum of the Tsai–Wu function � from (3) is almost never reached with the stress tensor being zero, except

in the degenerated case where a composite has uniform strength along all the principal directions of anisotropy and

then �min � 0 and this optimum is not the only one. As evident from (3), the presence of linear terms (even if a

single one) results in a situation that with some nonzero stresses the function � will be negative and its minimum

will be negative too and attained at a location other than the origin of coordinate in the six-dimensional space. Thus,

from the standpoint of strict mathematics the total absence of stresses will almost never represent a strength-optimal

SSS as per the Tsai–Wu criterion (3) and will always be an optimum (not always a single one) as per the Ashkenazi

criterion (2).

If in (3) we take
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we will arrive at the well-known Hoffman failure criterion [7, 8]. This criterion suffers a number of drawbacks and is

used much more rarely in comparison to the Tsai–Wu criterion. In particular, for the whole, quite wide class of

essentially anisotropic materials the Hoffman criterion (5) fails to meet the necessary stability conditions [7]:

| | ,Fij

ui ui uj uj
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i j x r i j, , , ; ,� � � ��
(6)

which are automatically satisfied by the Tsai–Wu criterion due to (4). Nevertheless, despite the fact that the

necessary stability conditions are identically satisfied, the Tsai–Wu limiting surface (3), (4) in the six-dimensional

space is an open one – it represents an elliptic paraboloid or, in degenerated cases, a cylinder [7].

For the Ashkenazi criterion (2) the appropriate necessary stability conditions are written as

4 1 1 1 2

45

 
 
 � 
 


uij
ui uj uij ui uj

( )
,� � � � i j x r i j, , , ; .� � � �� (7)

As in the case of the Tsai–Wu criterion, the fulfillment of conditions (7) ensures only the simple

connectedness of the Ashkenazi surface (2) but not its being closed. Since surface (2) is centrally symmetric, it can

be either closed or open on two sides. In case the necessary stability conditions (6) or (7) are not met, one cannot

apply the respective strength criterion to the given anisotropic material.

Furthermore, for linear-quadratic criteria of type (3) in the case of a transtropic CM in the isotropy plane ij

the condition of the criterion’s invariance to the rotation of axes should be met for any two mutually orthogonal

directions in this plane can be considered as principal axes of anisotropy [6]:
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1 2

2
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(8)

naturally, the fulfillment of the condition 
 
ui uj

	 	
� and 
 
ui uj

� �
� is mandatory in this case.

Thus, despite the fact that the constants Fij in (3) are formally used as free parameters, in fact they are not

such parameters because (I) they must meet the stability conditions (6) and (ii) for transtropic materials the respective

constant is quite a uniquely determined quantity (8) rather than a free parameter. Clearly, the correct mathematical

(formulaic) determination of the constants Fij during the limiting transition from orthotropy to transtropy or

isotropy must identically satisfy condition (8). Unfortunately, the Tsai–Wu (4) and Hoffman (5) determinations have

no such property (unlike the Ashkenazi criterion).
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In view of (4), the condition (8) for the Tsai–Wu criterion is written as
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and for the Hoffman criterion, in view of (5), it takes the form:
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while the Ashkenazi criterion (2) for transtropic CMs is identically invariant with respect to choice of coordinates in

the isotropy plane ij by definition without any restrictions like (9) or (10) for the respective ultimate strengths.

It should be mentioned that for the composites that have uniform strength in tension and compression the

Tsai–Wu limiting surface (3), (4) degenerates into an elliptic cylinder:
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where the respective dimensionless stresses are given by
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Since the left-hand part of criterion (11) contains squared intensity of dimensionless stresses (12), for such

materials it would be more logical to represent (11) as

�  1. (13)

Thus, in the left-hand part of (13) we have written an analog of a ratio of some generalized equivalent stress to some

generalized allowable one, which is given in the form (2) as in the case of the Ashkenazi criterion. For isotropic

materials that have uniform strength in tension and compression, subject to the condition

� 
u u� 3 (14)

the Tsai–Wu criterion in the form (13) automatically passes into the fourth theory of strength – the criterion for

specific potential distortion energy [13]:


 
i unt  1, (15)

where 
 int is the stress intensity, 
 u and � u are the ultimate uniaxial tension and pure-shear strengths,

respectively. In this case, condition (14) is the invariance condition (8) for an isotropic material with uniform

strength in tension and compression.

For materials whose ultimate tensile and compressive strengths differ, the Tsai–Wu strength condition in the

form (13) becomes absurd because for such materials the global minimum of function � will always be below zero,

i.e., the function may take positive as well as negative values. In such case, the Tsai–Wu criterion should be used in

the form (3), (4). In doing so, one can perform only an alternative strength assessment to answer the question: will

the material fail under the given SSS or not? To carry out a quantitative assessment of strength margin or, inversely,

of the degree of increasing the allowable stress limits would be rather problematic because mathematically even the

complete absence of stresses would not be optimal for criterion (3).
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The foregoing suggests that a comparative analysis of the Ashkenazi (2) and Tsai–Wu failure criteria makes

sense only for CMs with uniform strength in tension and compression, and in that case the last-mentioned criterion

should be used in the form (13). For such composites the Ashkenazi limiting surface will identically satisfy the

results of nine independent experiments, while the Tsai–Wu surface will do so only six experiments. By definition of

(11) and (12) the Tsai–Wu criterion may fail to satisfy the results of three experiments in uniaxial tension

(compression) at an angle of 45� to the principal axes i j, of anisotropy ( )
( )



uij

45 in the planes of these axes. This

loading is equivalent to the following plane stress state (PSS) along the principal anisotropy axes: 
 
 �i j ij� � � �
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.

45
2 In this case, the function � from (2) identically becomes unity, while according to the Tsai–Wu criterion

(11)–(13) we have
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It is obvious that to have a satisfactory agreement between the Ashkenazi criterion (2) and Tsai–Wu criterion

(11)–(13) it is desirable that the following six conditions are met simultaneously:
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ui

	

�
�1, � ij �1, i j x r i j, , , ; .� � � �� (17)

The greater is deviation of the quantities in the left-hand parts in (17) from unity, the worse is the agreement

between the criteria. Even an accurate fulfillment of conditions (17) will not always guarantee their good matching.

The identical satisfaction of the last three requirements � ij �1 from (17) can be attained if for the composites

with uniform strength in tension and compression instead of using Tsai–Wu formulas (4) one re-defines the constants

Fij as follows:

Fij
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2 2 2 45 2
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,
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(18)

i.e., to concretize criterion (3) in this case one will need the same number (nine) of experiments as in the case of

Ashkenazi criterion (2), and the coincidence of these two criteria at the experimental (reference) points would be

complete. Thus, for the composites that have uniform strength in tension and compression we can recommend an

updated criterion to replace the Tsai–Wu criterion (11)–(13). If represented in terms of dimensionless variables (12)

the updated criterion is written as

�  1, (19)
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The last-written inequality in (20) represents the necessary stability conditions (6) for criterion (19). For the

composites for which the condition | |� ij " 2 is met for at least one combination of i and j one cannot use the

updated criterion (19). Like the Ashkenazi criterion (2), the criterion (19) identically satisfies the requirement for

invariance with respect to the choice of coordinates in the isotropy plane, without any restrictions on strength

characteristics.
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The drawback of the criterion (19) is that it is acceptable only for the materials with uniform strength in

tension and compression, for which the Ashkenazi criterion (2) has been proved effective. The Tsai–Wu criterion is

used, first of all, to allow for just the difference (sometimes quite significant) between tensile and compressive

strengths of a CM, which is the case with the majority of real composites. For such materials the definition of Fij by

formula (18) makes no sense because while satisfying the experimental data in one quadrant (for the sake of

definiteness, let is be tension–tension) it will thereby introduce a considerable error into other quadrants, in

particular, compression–compression. To simultaneously satisfy the test data in all the quadrants, the constants Fij

should undergo a stepwise change when passing from quadrant to quadrant; in that case, the number of additional

independent experiments grows from three to twelve. The difficulties associated with an optimal definition of the

constants Fij were repeatedly mentioned in earlier publications [6, 7]. If we restrict ourselves to the minimum

number of independent simplest experiments, namely, nine, then perhaps the Tsai–Wu expressions (4) would be

optimal for solving such a problem. For the materials with uniform strength in tension and compression we can

recommend an update of the Tsai–Wu criterion according to (19) and (20).

Thus, let us state the rules one should follow when choosing among the four CM strength criteria as outlined

above.

1. An orthotropic material with nonuniform strength in tension and compression.

1.1. The Ashkenazi criterion (2) is inapplicable.

1.2. The Tsai–Wu criterion (3) and (4) is applicable.

1.3. The Hoffman criterion (3) and (5) can be used if the stability conditions (6) are met.

1.4. The updated criterion (19) is inapplicable.

2. An orthotropic material with uniform strength in tension and compression.

2.1. The Ashkenazi criterion can be used if the stability conditions (7) are satisfied.

2.2. The Tsai–Wu criterion (3) and (4) can be applied, preferably in the form (13).

2.3. The Hoffman criterion (3) and (5) can be used, preferably in the form (13), if the following stability

conditions are met:

| | ,Fij

ui uj

�
2


 

i j x r i j, , , ; .� � � �� (21)

2.4. The updated criterion (19) is applicable if the stability conditions (20) are satisfied.

3. A transtropic material with nonuniform strength in tension and compression.

3.3. See clause 1.1.

3.2. The Tsai–Wu criterion (3) and (4) can be used if the invariance condition (9) is met.

3.3. The Hoffman criterion (3) and (5) is applicable if the stability conditions (6) and the invariance

condition (10) are satisfied.

3.4. See clause 1.4.

4. A transtropic material with uniform strength in tension and compression.

4.1. See clause 2.1.

4.2. The Tsai–Wu criterion (3) and (4) can be used, preferably in the form (13), if the following invariance

condition is met: in the isotropy plane ij we have

� 
uij ui� 3. (22)

4.3. The Hoffman criterion (3), (5) is applicable, preferably in the form (13), if the stability conditions (21)

and the following invariance condition are satisfied: in the isotropy plane ij we have
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4.4. See clause 2.4.

5. An isotropic material with nonuniform strength in tension and compression.

5.1. See clause 1.1.

5.2. The Tsai–Wu criterion (3) and (4) can be used if the following invariance condition is met:

�

 


u
u u

�

	 �

3
. (24)

5.3. The Hoffman criterion (3), (5) is identified with the Tsai–Wu criterion (3) and (4); see clause 5.2.

5.4. See clause 1.4.

6. An isotropic material with uniform strength in tension and compression.

6.1. The Ashkenazi criterion (2) is applicable if the following stability condition is satisfied:

� 
u u# 4. (25)

6.2. The Tsai–Wu criterion (3) and (4) can be used, preferably in the form (15), if the invariance condition

(14) is met.

6.3. The Hoffman criterion (3) and (5) is identified with the Tsai–Wu criterion (3) and (4); see clause 6.2.

6.4. The updated criterion (19) is applicable if the following stability condition is satisfied:

� 
u u# 2. (26)

The above rules impose rather serious restrictions on the applicability of the strength criteria under

consideration. Specifically:

(i) an isotropic material with nonuniform strength in tension and compression, for which the relation (24) is

not obeyed, cannot have its strength verified by any of the four criteria;

(ii) the same can be said about an isotropic material with uniform strength in tension and compression, for

which � 
u u 4;

(iii) also, none of the four criteria is applicable to transtropic materials with nonuniform strength in tension

and compression, if in the isotropy plane ij neither of the invariance conditions (9) and (10) is met.

The cases (i) and (ii) cover all the possible situations for isotropic materials, where none of the four criteria

is applicable (see clauses 5.1–6.4 of the above rules). For transtropic materials, in addition to (iii) there are also other

cases of inapplicability for all of the above-listed criteria; we will not dwell on them for they directly follow from

clauses 3.1–4.4. As to orthotropic composites, the clauses 1.1–2.4 suggest that the Tsai–Wu criterion (3) and (4) for

such materials can always be used for it is stable by definition (4), and there are no grounds for imposing any

additional restrictions [such as invariance conditions (8)] on constants Fij . Speaking about stability, if we compare

(25) with (26) it can be inferred that the Ashkenazi criterion would most likely have a better stability in comparison

to the updated criterion (19).

The above rules were derived through strict mathematical reasoning and represent the prerequisites for the

possibility of using the isotropic material failure criteria – Ashkenazi, Tsai–Wu, Hoffman, and (19). If more than one

criterion are applicable to a given CM, there is no guarantee that the results of the strength analysis will agree well

with each other.

Let us consider an orthotropic CM (organic-plastic material) [14, 15] with the following physical-mechanical

characteristics along the principal anisotropy axes X Y Z, , : density $ �1350 kg/m
3

, E X , EY , and EZ are the

Young moduli along the respective principal directions of anisotropy, E X � 48,600 MPa, EY � 21,300 MPa, and

EZ � 7140 MPa, GXY , GYZ , and GZX are the shear moduli along the respective principal anisotropy planes,

GXY � 930 MPa, GYZ � 900 MPa, and GZX � 850 MPa, 
 uX � 2670 MPa, 
 uY � 1180 MPa, 
 uZ � 390 MPa,
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� uXY � 975 MPa, � uYZ � 800 MPa, � uZX � 607 MPa, 

uXY

( )45
� 1850 MPa, 


uYZ

( )45
� 1600 MPa, 


uZX

( )45
� 1215 MPa,

%XY , %YZ , and %ZX are the Poisson’s ratios such that the following relation [12] should be obeyed:

E Ei ji j ij% %� , i j X Y Z i j, , , ; ,� � (27)

%XY � 0.28, %YZ � 0.26, and %ZX � 0.037.

Note that this organic-plastic material has a very low shear stiffness in comparison to the tension

(compression) stiffness. As evident from the experimental data, this material is subject to clause 2. It is easy to verify

that the requirements under clauses 2.3 and 2.4 are not obeyed (the stability conditions are met for neither the

Hoffman criterion nor the updated criterion), i.e., among the four strength criteria it is only the Ashkenazi criterion

(2) or Tsai–Wu criterion (11)–(13) which can be used for checking strength of this composite. Figure 1 shows limit

curves plotted in dimensionless stresses (12) for three plane stress states (PSS) with absence of any shear stresses

along the principal anisotropy axes, where the solid curve (the ellipse) corresponds to the Tsai–Wu criterion and is

invariant to the choice of axes; the other curves correspond to the Ashkenazi criterion and look different depending

on the choice of axes: dashed line (u S X� , v SY� ), dash-and-dot line (u SY� , v SZ� ), and dotted line (u SZ� ,

v S X� ). It is obvious that the difference in data between the Ashkenazi criterion and Tsai–Wu criterion can be rather

large (up to five-fold). Considering that all the curves are centrally symmetric, they have been plotted only in the

upper half-plane of each of three coordinate systems.

For other PSS types the situation will be equally critical. For example, let us consider PSS in the plane ZX

under the condition that 
 
X Z � 2.5 which in the terms of dimensionless stresses (12) is equivalent to

S SX Z � 0.365. In Fig. 2a the limit curves for this PSS have been plotted only first quadrant considering the

simultaneous symmetry of all the curves with respect to abscissa and ordinate axes: solid line by the Tsai–Wu

criterion and dotted line by the Ashkenazi criterion. The data obtained by these criteria are seen to be in a very poor

agreement: the maximum discrepancy is about five-fold. In this case, the Tsai–Wu criterion has turned out to be more

conservative. In Fig. 2b, similar curves have been plotted for PSS in the YZ plane under the condition


 
Y Z � �11. which is equivalent to S SY Z � �0 365. . Based on these data from Fig. 2a it is the Ashkenazi criterion

which has turned out to be more conservative, and the maximum discrepancy is approximately two-fold. It is also

evident that the Ashkenazi limiting surface has an alternating-sign curvature and is made up of mating convex,
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concave, and saddle-shaped segments, while the Tsai–Wu surface is all-convex. For triaxial SSS the agreement

between the criteria can only become worse because PSSs represent partial cases of triaxial stress states.

Let us consider a cylinder made of this material, under loading (1) at P0 222� MPa, x0 0� . The

reinforcement is taken to be as follows: � �x X , � �� Y , and r Z� , the reinforcement angle � will be varied, with

� � 0 corresponding to the axial reinforcement ( � �õ õ) and � � �90 to the circumferential one ( � �õ �). The

calculations show that for any reinforcement angle the most dangerous point as per either of these two criteria is the

point closest to the charge (x � 0, r R� 1). In this case, the most dangerous instant of time was only slightly

dependent on � and the criterion chosen and varied between 10.2 and 16 &s. The values of the maximum strength

functions � and � also depended only weakly on reinforcement angle and varied within the ranges 0.86–1.07

and 0.6–0.62, respectively: while the Ashkenazi criterion pointed to the material failure, the Tsai–Wu criterion

showed that the material had an 40% strength margin. Interestingly, the SSS at the dangerous point essentially

depended on �: the maximum 
 � , 
 x , and � �x varied within the ranges 450–1030, (–380)–365, and (–260)–

300 MPa, respectively. The period of radial vibrations of the cylinder was also significantly dependent on the
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Fig. 2. Further to the comparative analysis of the Ashkenazi and Tsai–Wu criteria.
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reinforcement angle: at � � 0 it was maximum, 2 380T � &s, while at � � �90 it was minimum, 2 260T � &s. In all

the cases the calculations were performed till the instant of time 200 &m in order to cover the maximum of the

possible half-periods of the shell radial vibrations.

Thus, for the reinforcement configuration chosen we observed only a qualitative satisfactory agreement

between the Ashkenazi and Tsai–Wu criteria: they revealed the same dangerous point and almost the same dangerous

instant of time, and the dependence of maximum values of the strength functions � and � on the reinforcement

angle was weak. Quantitatively, the discrepancy between these two criteria was almost two-fold.

If the reinforcement configuration is changed to � �x X , � �� Z, and r Y� , the calculations show that even a

qualitative agreement between the criteria cannot be achieved. These two criteria will diagnose different dangerous

points and different instants of time and the dependence of maximum values of � and � on the reinforcement

angle will be as shown in Fig. 3, where the solid line corresponds to the Tsai–Wu criterion and the dotted one to the

Ashkenazi criterion. Based on the aforesaid, the fact that the curves coincide along the segment 55 90�� � �� is most

likely accidental: at � � �55 the Ashkenazi criterion was far more conservative (up to 70%), while at � # �55 both

criteria coincided closely, whereas the Tsai–Wu criterion is slightly more conservative.

CONCLUSIONS

1. When analyzing strength of a particular CM one can apply only those criteria which comply with the

necessary rules. There are many materials (at least experimental data thereon) to which none of the four strength

criteria is applicable.

2. If more than one criterion simultaneously comply with the said rules, the calculated data on the CM

strength can differ significantly (up to several hundred percent). Therefore, to finally choose the most adequate

strength criterion one should undertake an additional analysis based on specific physical (phenomenological)

considerations.
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