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SCIENTIFIC AND TECHNICAL SECTION

APPROXIMATE ANALYTICAL DETERMINATION OF VIBRODIAGNOSTIC PARAMETERS

OF A CRACKED ELASTIC BODY UNDER SUBHARMONIC RESONANCE.

PART 2. STRONG RESONANCE

V. V. Matveev and O. A. Bovsunovskii UDC 534.08;620.175.5

Using the approach proposed in Part 1, an approximate calculation of vibration parameters is made

for an elastic body with a closing crack, in the region of a strong 1/2-order subharmonic resonance

with the lower-harmonic amplitude of free vibration spectrum larger than the main amplitude of

forced vibrations.

Keywords: nonlinear vibrations, subharmonic resonance, fatigue damage vibrodiagnostics.

Introduction. Using the approach detailed in Part 1, we will discuss here an approximate calculation of

vibration parameters of an elastic body with a closing crack, in the region of a strong 1/2-order subharmonic

resonance where the lower-harmonic amplitude of the free vibration spectrum is larger than the main amplitude of

forced vibration.

Calculation Procedure. Neglecting some difference between the vibration modes of a cracked elastic body

in alternating half-cycles [1], the forced vibration of an equivalent single-mass nonlinear system is described by the

differential equation

d u

dt
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u u q t
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where ω is the intact body natural frequency in the vibration mode at hand, α is the parameter that integrally

represents a relative change in the body rigidity in the case of an open crack,

α =
−K K

K

cr
, K Kcr < , (2)

where K is the intact body rigidity corresponding to that of a body with a closing crack (in this case, with u < 0), and

Kcr is the rigidity of a body with an open crack (u > 0).

Natural frequency of a body with a closing crack is taken as [2]

ω
α
α
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2 1

1 1

=
−

+ −
. (3)

Assuming that with ν ω≈ 2 0 there arise – in addition to the forced-mode fundamental harmonic – the

vibrations with a spectrum of natural-mode harmonic components, which were defined earlier by the asymptotic
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method of nonlinear mechanics [3], a solution to equation (1) in the superharnomic resonance region is sought for in

the form [1]
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In order to find the unknown parameters À1 2/ and γ 1 2/ by the method proposed in [1], we substitute

solution (4) into equation (1), requiring its fulfillment for the instants ti when the u ti( ) displacement sign that

dictates the elastic response value is known. In the case of the strong subharmonic resonance at hand (A A1 2 1/ > ),

the above instants are taken as

ν β γ ν π β γ
ν π β γ
′ = + ′ = + +
′′= − −

t t

t
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( 2 2 1 24 2 2), ( )./ν π β γ′′ = − −t
(6)

At the harmonic with a forced-mode half-frequency, to these instants (6) there correspond the points ′1 , ′′1 ,

′2 , and ′′2 in Fig. 1. The value of β angle in (6) meets the condition A A1 2 1/ sinβ > and can be chosen in the range

β β π0 2≤ ≤ , where β0 satisfies the condition A A1 2 1/ sinβ = .

It is evident that according to the adopted law of rigidity variation points ′1 and ′′1 , for which u > 0,

determine the free frequency value ( ) ,1
2−α ω while points ′2 and ′′2 yield ω2

(Fig. 1).

Substitution of solution (4) for the chosen instants (6) into equation (1) yields two pairs of input equations,
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(7)

where

Δγ γ γ= −2 1 2 1/ . (8)

For convenience of discussion, equations (7) have been additionally numbered as per notation of points in Fig. 1. The

superscripts refer to equations ( ′1 ), ( ′2 ) and the subscripts to equations ( ′′1 ), ( ′′2 ).
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For averaging the trigonometric functions of angle β over the interval of its possible variation (from β0 to

π 2), we replace them with the average values,
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Considering that the amplitudes of higher harmonics (n > 2) of the free vibration spectrum are small,

equations (7) take into account only the second harmonic amplitude of which is equal to 2 9α π. Then, using at the

algebraic sum of equations [( ′1 ) + ( ′′1 )] – [( ′2 ) + ( ′′2 )] we find the lower-harmonic relative amplitude A A A1 2 1 2 1/ /= ,
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while in the case of the algebraic sum of equations [( ′1 ) – ( ′2 )] – [( ′′1 ) – ( ′′2 )] we have
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We equate expressions (10) and (11) and arrive at the formula for the phase displacement difference,
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To use the above expressions one should know the value β0 meeting the condition sin /β0 1 1 2≈ A A .

Let us consider the previously presented expressions for β0 0= :
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We preset the values of α and h ω δ π= 2 (δ is the logarithmic decrement of free vibration) and determine

Δγ and À1 2/ for the case of tuned subresonance ν ω α α= − + −4 1 1 1( ) using formulas (13) and (14). With the

approximate value of À1 2/ available, we calculate β0 1 21= arcsin( )/A and then find Δγ again by (12) and À1 2/ by

(10) or (11). To further refine the À1 2/ value, β0 has to be determined such that sinβ0 should be equal to the

resultant À1 2/ value, and so forth.

Calculated Results. Figure 2 shows the functions of the relative amplitude À1 2/ ( )α as calculated by

formulas (13) and (14) with ν ω= 2 0 for various values of the logarithmic decrement δ, while Fig. 3 gives the

À1 2/ ( )δ functions for various α values. As an example, the dash-and-dotted lines in Fig. 2 indicate the À1 2/ ( )α
functions for δ = 0.01 and 0.005, which were obtained using (10) and (11) during the determination of β0 from the

condition β0 1 21≈ arcsin( )./A Clearly, expressions (13) are suitable for practical applications, which makes

calculations much simpler.

With the ratio α δ ≤10 the relative amplitude À1 2/ turns out to be directly proportional to the value of α for

a given δ value and inversely proportional to δ for a given α. These À1 2/ regions are shown with solid lines in Fig.

2.

Analysis of the results obtained reveals that for the case of tuned resonance with α δ <10 the functions

A f1 2/ ( , )= α δ are adequately described – as in the case of a weak resonance – by the formula

A1 2
2

/ ,=
π α
δ

(15)

with the coefficient of proportionality being the same.

For the determination of the lower-harmonic relative amplitude À1 2/ in subharmonic resonance for a specific

structural element, it is necessary to find α which depends on the type, relative size and location of a normal-rupture

crack as well as on the relative dimenions and vibration mode of the structural element. For example, for a beam of

rectangular cross section with a single transverse edge crack the parameter α is given by [4]
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where P x( ) is the axial force in longitudinal vibrations or the bending moment in bending vibrations of a beam, S1

is the cross-sectional area in longitudinal vibrations or the axial moment of inertia in bending vibrations, S2 is

cross-sectional area in longitudinal vibrations or section modulus in bending vibrations, b and h are the width and

height of the beam cross section, l is the beam length, xcr is the coordinate of the cracked section, γ is the crack

relative depth, and F1 ( )γ is the dimensionless function of the crack relative depth, which is involved in the

expression for the normal stress intensity factor.

Using the data on F1 ( )γ function as provided in [5], we arrive at the following expressions:

for longitudinal vibrations

H1

2 3 4 5
0 6272 0 17248 5 92134 10 70538 31 5( ) . . . . .γ γ γ γ γ= − + − + 6845 67 47602

6 7γ γ− .

+ − +139 12342 146 6824 92 35521
8 9 10

. . . ,γ γ γ

and for bending vibrations

H1

2 3 4 5 6
0 6295 1 0472 4 602 9 9752 20 2948( ) . . . . .γ γ γ γ γ γ= − + − + − 32 9933

7
. γ

+ − +47 0408 40 6933 19 6
8 9 10

. . . .γ γ γ

The value of D h l xcr( , ) depends on the relative height of the beam cross section (h l), crack location ( ),õcr

beam vibration mode (i) and, for an example, for a cantilever beam in longitudinal vibration, is given by
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Fig. 2 Fig. 3

Fig. 2. Lower-harmonic relative amplitude A1 2/ as a function of α with an excitation frequency

ν ω= 2 0 for various δ values: solid and dashed lines – calculation by formulas (13) and (14);

dash-and-dotted lines – calculation by (10), (11), and (12) with β0 determined from the condition

sin arcsin( )./β0 1 21≈ A

Fig. 3. The functions of the lower-harmonic relative amplitude A1 2/ vs. the logarithmic decrement δ,

which were calculated by (13) and (14) for various α values.



and in flexural vibration by
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−π( )
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The D h l xcr( , ) function is constant for the beam vibration mode at hand and given values of h l and xcr ,

and the trend of the dependence of À1 2/ on the relative crack depth is governed by the dependence of the Í1 ( )γ
function on γ and may deviate significantly from a linear function.

Using expressions (10)–(12) or (13), (14) we can determine the amplitude-response and phase-response

characteristics of the system under consideration in the subharmonic resonance region.

By way of illustration, Fig. 4 shows the above functions for α = 0.08 and δ = 0.02011. For comparison, the

dash-and-dotted line represents the amplitude-response characteristic for the principal resonance region. The functions

have been plotted in relative coordinates A À À= =1 2 1 2 02/ /( ) ( )ν ν ω and ν ν ω= 2 0 for a subharmonic resonance

and À À À= =( ) ( )ν ν ω0 and ν ν ω= 0 for the principal resonance.

Reliability Assessment of the Proposed Procedure. To assess the reliability of calculated results, we

compare them with the data of numerical solution as obtained by the acceleration averaging method [6, 7].

For the case of a tuned subharmonic resonance with δ = 0.00503, Fig. 5 shows the A1 2/ ( )α function

calculated by (13) and that plotted by the numerical solution data. It is evident that for α < 0.1, which corresponds to
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Fig. 4. Frequency response (solid lines) and phase response (dashed line) functions in the subharmonic

resonance region, which were determined by formulas (13) and (14), with α = 0.08 and δ = 0.02011.



α δ < 20, there is a fairly good agreement between the functions. Also, this confirms the existence of almost linear

dependence of the lower-harmonic relative amplitude on the α parameters in this α δ range, with the coefficient of

proportionality deviating slightly from the calculated one.

However, as the α parameter increases the discrepancy between the analytical and numerical solutions

grows considerably. Apparently, this is attributable to a possible change in relative amplitude of the harmonic

A t2 1 22 2cos ( )/ν γ− at high α values. Specifically, taking A2 0= , which requires that the coefficient 1.141471 at

α 2
should be replaced with 1.0 in formulas (13) and (14), we have the relationship shown with curve 3 in Fig. 5. It is

possible that the value of the constant component may undergo a change with increasing α. In particular, setting

A A0 1 2 2 2= −/ ( )α α π in place of A A0 1 2= / α π [1], which makes the coefficient at α 2
equal to 0.141471 +

( ) ,2 2−α we arrive at the function À1 2/ ( )α shown with curve 4 in Fig. 5. This explanation makes sense, as the

values of the constant component À0 and the second-harmonic amplitude A2 in the free vibration spectrum were

obtained in [3] by the asymptotic method of nonlinear mechanics, which assumes a low value of the α parameter.

To assess the change in trend of À1 2/ function when switching from the α parameter to the crack relative

depth γ , Fig. 6 gives, as an example, curves of À1 2/ vs. α and γ for the case of δ = 0.00503. The initial curve 1

was calculated by formula (13) using (14), while curve 2 was plotted by the data of numerical solution. For curves 3

and 4 the data on the ratio between α and γ were taken for the case of longitudinal vibration of a beam of

rectangular cross-section, h l = 0.13333 and x lcr = 0.2 [8].

Analysis of the numerical solution data for other values of the logarithmic decrement δ has demonstrated

that for the range of stable values of À1 2/ above unity the results of the proposed approximate calculations with

α δ < 20 have been verified as well. The amplitude À1 2/ is directly proportional to α for a given value of δ and

inversely proportional to δ at a given value of α. Furthermore, the numerical solution is adequately described by a

unified relation A K1 2/ = α δ with the coefficient of proportionality K ≅ 1.34 which is 14.7% lower than the

calculated one.
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Fig. 5 Fig. 6

Fig. 5. The lower-harmonic relative amplitude as a function of α with δ = 0.00503 under subharmonic

resonance: (1) by formula (13); (2) by the data of numerical solution; (3) by formula (13) with the coefficient

at α 2
being equal to 1; (4) by formula (13) with the coefficient being equal to ( ) . .2 2 0 141471− +α

Fig. 6. The functions of the lower-harmonic relative amplitude A1 2/ vs. α (1, 2) and relative crack depth γ
(3, 4) in subharmonic resonance: (1, 3) calculations; (2, 4) numerical solution.



Determination of Absolute Values of Amplitude and Phase Difference for Individual Harmonics. As in

[1, 2], we assume that the first-harmonic amplitude A t1 1sin( )ν γ− corresponds to a solution for forced vibrations of

a linear system with the natural frequency of a body with a closing crack – formula (3),
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while the phase difference γ 1 is determined from the balance of input energy ΔWq and absorbed energy ΔWh per

cycle of vibration with a period of 2 0π ω .

For the present case of single-harmonic excitation and viscous friction we have
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Unlike the weak resonance case, where A A1 2 1/ ,< expression (18) includes also the second harmonic of the

free vibration spectrum, i.e., 2 2 91 2 1 2α ν γ πA t/ /cos( ) ,− thus giving rise to the term 0 02
2

. α .

From the condition Δ ΔW Wq h= in view of (16) and (8), (14) we derive an equation for γ 1,
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where A q1 0 is calculated from formula (16). With Δγ and γ 1 available according to (8) we determine the value

γ γ γ1 2 1 2/ ( ) .= +Δ

CONCLUSIONS

1. We have discussed an approximate method for calculating vibration parameters of an elastic body with a

closing crack, which is modeled by a single-mass system with an asymmetric bilinear characteristic of the restoring

force, in the region of a 1/2-order subharmonic resonance.

2. Analytical expressions have been derived for the determination of the main vibrodiagnostic indicator of a

crack – the lower-harmonic relative amplitude A1 2/ – in the subharmonic resonance region.

3. The results of calculation of the vibrodiagnostic parameter A1 2/ are in good agreement with the data of

numerical solution for α δ < 20.

4. With the ratio α δ ≤10 the lower-harmonic relative amplitude A1 2/ has been found to be directly

proportional to the parameter of nonlinearity of a vibrating system α and inversely proportional to the logarithmic

decrement δ of the system’s vibrations.

5. Function A1 2/ ( , )α δ is described by a unified formula A1 2
2

/ =
π α
δ

with an accuracy sufficient for

practical applications.
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