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SHORT-TERM CREEP AND STRENGTH OF FIBROUS POLYPROPYLENE STRUCTURES

N. K. Kucher, M. P. Zemtsov, UDC 539.376

and E. L. Danil’chuk

The short-term creep and strength of fibrous polypropylene structures are investigated. On the basis

of these characteristics, we develop the models of linear and nonlinear viscoelastic deformation of

materials, specify the fields of their applicability, and study criteria used for the evaluation of the

static strength and durability of these composites.
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Introduction. Fibrous structures and frames produced according to the technologies used in the textile

industry are now more and more extensively applied in various fields of the national economy, namely, in machine

building, light industry, transport, civil engineering, materials science (for the development of new composite

materials), production of consumer goods, etc. Elements of machine parts and mechanisms produced by using these

structures decrease the consumption of materials and the amount energy required for manufacturing the products,

improve their functional parameters, increase their reliability and service life, and decrease the cost of production.

As source materials for the major part textile structures, it is customary to use polyamide (capron and anid),

polyester (lavsan), and staple threads. A thread is a linear combination of fibers (filaments) in the form of a

continuous strand whose properties are typical of textile materials, including high tensile strength and flexibility. It

may consist of a single fiber or of a family of continuous or discontinuous fibers. To avoid the possibility of sliding of

the fibers and form a functional thread, the fibers are twisted or woven.

The mechanical properties of threads depend on the properties of fibers or monofibers and the structure of the

thread. The serviceability of the thread is determined by the packing density of the fibers, their geometric dimensions,

the length of the segment of a fiber between the points of linking, its mobility, and the orientation of fibers about the

axis of the thread. The structure of the thread plays the principal role in the mechanism of transformation of the

properties of fibers into the properties of the thread.

The structure of threads and its influence on the mechanical characteristics of the materials for different types

of thermal and force loading were especially comprehensively investigated in [1–7]. Thus, it was indicated that, for

each thread (depending on its design), it is possible to choose the optimal thickness of filaments allowing one to get a

substantial improvement of the initial moduli of longitudinal elasticity and shear, ultimate strength, ultimate fracture

strain, wear resistance, fatigue strength under multicycle loading, etc.

Numerous models were proposed for the prediction of the stress–strain diagrams of twisted threads according

to their structure and the mechanical properties of constituents [7]. However, only for systems formed by continuous

fibers, it is possible to attain satisfactory agreement between the numerical results and the experimental data. For

threads made of short of mixed fibers consisting of two or more types of filaments, the numerical analysis is possible

only under the assumptions of small strains and the validity of Hooke’s law.

Numerous experimental data [1, 2, 4, 6, 7] show that the influence of strain rate on the mechanical properties

of the major part of textile structures is significant. Hence, in the development of the mathematical models aimed at
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the description of the processes of deformation in fibrous systems, it is necessary to take into account the existing

rheological effects.

The aim of the present work is to study the regularities of short-term creep and strength of LIPOLA/A-10

polypropylene thread and use these regularities to deduce the effective equations of state of hereditary type. To solve

the posed problem, we use the models of linear and nonlinear theory of viscoelasticity and determine the fields of

their applicability.

The LIPOLA/A-10 thread consists of 148 continuous filaments. Its thickness is equal to 11 tex. The analyzed

structure is an untwisted thread. The density of polypropylene is equal to 993.6 kg/m
3

. Threads of this sort are

produced in the Ukraine and mainly used for stitching the products and manufacturing the ropes and packing means.

1. Experimental Procedure and Results. To study the reaction of fibrous structures at room temperature,

we performed the experimental investigation of their mechanical behavior according to the standard specifications

[8]. In the static tests of specimens in an Instron-1126 testing machine, the strains were measured by analyzing the

displacements of the crosspiece of the machine. To improve the results of measurements of the effective

instantaneous modulus of longitudinal elasticity E0 , ultimate strength σ u and the corresponding ultimate strain ε u ,

and the approximate instantaneous tensile stress–strain diagram of the thread, the tests were performed on five

specimens and then the accumulated results were averaged. Note that the instantaneous stress–stain diagram was

reconstructed from the series of isochronous creep curves. The data of tensile tests enable us to plot only the curve of

“rapid deformation” practically independent of the strain rate and sufficiently close to the instantaneous diagram.

The analysis of the experimental instantaneous stress–strain diagram enables us to conclude that, at room

temperature and low strains (up to 5%), the investigated threads have linear tensile stress–strain diagrams and, hence,

can be regarded as a linear viscoelastic material. The effective instantaneous longitudinal modulus of elasticity E0 is

set equal to 6208.2 MPa. The tensile strength and the corresponding ultimate strain are equal to σ u = 629 7. MPa and

ε u = 21 07. %, respectively.

To study the long-term characteristics of the composition, we also performed the uniaxial creep tests of the

specimens for a constant level of the acting stresses. The displacements of the reference points of the specimens in the

process of deformation were measured for a gauge length of100 10± mm with the help of a KM-8 cathetometer with a

scale factor of 0.01 mm.

The tests were performed for 10 constant values of stresses σ σk up= , where p = 0 16. , 0.23, 0.30, 0.37, 0.40,

0.51, 0.58, 0.65, 0.70, and 0.77. The obtained time dependences of the total strain ε σ( , )t k for different fixed levels

of stresses σ k are presented in Fig. 1. As approximating functions used to describe the experimental values, we took

functions of the form ε = ab t
t d

, where a, b, and d are parameters of the creep curve.

As follows from Fig. 1, two segments (of unstable and steady-state creep) are typical of the presented curves.

The absence of the third stage with accelerated creep enables us to ignore the presence of defects in the material in

deducing the equations of state.

According to the experimental data obtained for each level of acting stresses σ k , we also plotted the

compliance functions J tk ( ) given by the formula

J t
t

k

k

k

( )
( , )

.=
ε σ

σ (1)

2. Determination of the Region of Linearity of Viscoelastic Strains for a Thread. For the description of

the processes of deformation of fibrous structures, we use the approaches of linear and nonlinear theory of

viscoelasticity [9, 10]. The determination of the region of linearity of viscoelastic strains is an urgent problem for the

choice of the equations of state and description of the rheological behavior of materials.

In the one-dimensional case, the equation of state of the linear theory of viscoelasticity for the case of low

strains takes the form

ε
σ

τ σ τ τ( )
( )

( ) ( ) ,t
t

E E
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1

0

1
(2)
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where σ is a level of stresses, ε ε ε= +å ñ
is the total strain including the elastic and creep components, E0 is the

instantaneous modulus of elasticity, and K t1 ( ) is the creep kernel or the function of influence.

Let us now analyze the creep of a thread subjected to the instantaneous action of tensile stresses

σ σ( ) ( ),t h tk= k n=1 2, , ..., , (3)

where h t( ) is the Heaviside function and σ k = const.

Under the action of constant stresses σ k , relation (2) reduces to the following determining equation of creep

for a linearly viscoelastic material:

ε σ
σ

τ τ( , ) ( ) ( ) .t
E

h t K dk
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As the necessary condition of linearity of viscoelastic strains, we can use the invariance of the compliance

function under the action of the stresses σ k . In this case, the condition of linearity takes the form

J t
t t t n

n

( )
( , ) ( , )

...
( , )

.= = = =
ε σ

σ
ε σ

σ
ε σ

σ
1

1

2

2

(5)

However, in view of the statistical nature of the mechanical properties of materials, the experimental

compliance curves plotted for each level of stresses σ k are separated according to representation (5). In this case, we

can speak about their coincidence with the compliance function only with a certain error and probability.

Following [11, 12], any material is treated as a linear viscoelastic material with an error 2 10δ = % if all

experimental compliance curves lie in the interval bounded by the values ± δ relative to its sample mean.

The sample mean of the compliance function J t j( ) for small sizes of the samples (n < 50) most often

encountered in practice is given by the formula [13]

J t
n

J tj k j

k

n

( ) ( ),=
=

∑1

1

j m=1 2, , ..., , (6)
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Fig. 1. Primary short-term creep curves for the LIPOLA/A-10 thread. (Experimental values of strains

are marked by the dark symbols.)



where J tk j( ) is the experimental value of the compliance function at time t j under the action of the stress σ k , n is

the number of compliance curves, and m is the number of reference points in each compliance curve. Then the true

value of the compliance function at time t j is given by the formula J t J tj j( ) ( ).=

In Fig. 2, we present the plots of compliance functions for the LIPOLA/A-10 thread for the values of stresses

characterized by the linear behavior of strains. The results of approximation of the experimental data of J tk ( ) are

presented in the form of thin solid lines. On the basis of these approximations, we compute the mean-square values of

the compliance function J t j( ) depicted in Fig. 2 as the thick line. The dotted lines mark bounds of the range

corresponding to the maximum values of the error δ for the values of J t j( ).

The analysis of the stress–strain diagram shows that, for stresses lower than 0.4$, the investigated fibrous

structure behaves as a linear viscoelastic material. Similar results for the region of linearity were obtained on the basis

of isochronous creep curves in [12].

3. Explicit Form of the Determining Equations of the Linear Theory of Viscoelasticity. Equation (2)

yields the following inverse relation for stresses:

σ ε τ ε τ τ( ) ( ) ( ) ( ) ,t E t E R t d

t

= − −∫0 0 1

0

(7)

where R t1 ( ) is the relaxation kernel of the material characterizing the degree of forgetting of the preceding histories

of deformation.

The specify the explicit form of the determining relations (2) and (7), it is necessary to choose the type of

hereditary kernels and determine their parameters. The indicated kernels must be [9, 10] positive monotonic functions

summable in the interval [ , ).0 ∞
The creep K t1 ( ) and relaxation R t1 ( ) kernels are chosen in the form of Rzhanitsin fractional-exponential

kernels [9, 10] whose efficiency was demonstrated in analyzing the strain of various materials. Assume that

R t A e t
t
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where Γ ( )α1 is the Euler gamma-function, À1, α1, and β1 are the unknown characteristics of the material.
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Fig. 2. Plots of the compliance functions for a thread, their mean-square values, and confidence limits.



Here, we do not dwell upon the detailed presentation of the procedures of evaluation of the parameters of

singular kernels and refer the reader, e.g., to [14, 15]. Thus, in particular, the required characteristics can be found by

approximating the compliance curve plotted on a logarithmic coordinate system by a linear function with regard for

the coefficient of its linear shift relative to the reference curve [14]. As a result, we get

A1 0 04696= . , α1 = 0 35. , β1 0 01665= . .

The efficiency of these equations can be demonstrated by describing the process of creep of a polypropylene

thread under the action of constant tensile stresses σ k that do not exceed 0 4. σ u as shown in Fig. 3.

The predicted values of creep strains ε σ( , )t k were found according to relations (2) by using the presented

values of the parameters of the Rzhanitsin kernels. To find the definite integrals of the functions with weak

singularities, we use the computational procedure from [16] eliminating these singularities.

As follows from Fig. 3, in the entire analyzed range of acting stresses, we get good agreement of the

numerical results with the experimental data, both in the initial stages of viscoelastic deformation and in the

steady-state regions under significant strains whose values can be as high as 8.5%.

4. Evaluation of the Parameters of the Equations of State of the Nonlinear Theory of Viscoelasticity for

the Investigated Thread. As already indicated, for stresses higher than 0.4σ u , the investigated structure is

characterized by the appearance of nonlinear effects, which can be described by the models of the nonlinear theory of

viscoelasticity [9, 10].

The equations of state of the nonlinear theory of viscoelasticity have the form of different integrodifferential

equations [8, 9, 17, 18].

We now consider the possibility of prediction of the processes of creep for the indicated stress range within

the framework of the cubic theory of viscoelasticity. The equation of state of this theory has the form [10, 18]:

ε σ τ σ τ τ τ σ τ( ) ( ) ( ) ( ) ( ) (t
E

t K t d h K t

t

= + −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ −∫
1

0

1

0

3

3
) ,d

t

τ
0

∫ (9)

where the functions of influence K t1 ( ) and K t3 ( ) are given by the formulas
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Fig. 3. Comparison of the experimental (symbols) and numerical (lines) values of creep strains

computed according to the linear model of viscoelasticity.
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As indicated in [10, 14], the series in relation (10) converges uniformly in t for any finite time interval. For

large values of t, the kernels K ti ( ) admit the following asymptotic representation:

K t A ei
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− −
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Relation (11) yields that the following two cases are possible for sufficiently large t:

(i) if
β

α

α
i

i i

i

A Γ ( )
,>1 then K ti ( ) ;→ 0 (12)

(ii) if
β

α

α
i

i i

i

A Γ ( )
,<1 then K ti ( ) .→ ∞ (13)

In the first case, the creep strain rate at constant stress approaches zero, which corresponds to the case of

limited creep and the level of strains approaches a constant value. In the second case, the strain rate tends to infinity.

This means that the process of creep is unlimited and, beginning with a certain value of t, the creep rate remains

constant and the corresponding part of the creep curve turns into a straight line. Hence, relation (9) can describe both

limited and unlimited creep and both parts of the creep curves taken together depending on the chosen parameters of

the kernels.

As follows from Fig. 1, if the level of acting constant stresses σ k lies within the range [0 4. ;σ u 0 77. σ u ],

then the creep strain rate first decreases to a certain level and then approaches a nonzero value.

In this case, the problem of specifying the explicit form of the determining equations is reduced to the

evaluation of eight parameters Ai , α i , β i , E0 , and h of the two functions of influence from the family of creep

curves.

Equation (9) for the constructed compliance curves with σ σ= k H t( ) takes the form
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We first consider the compliance curves lying inside a narrow band for 0 0 4≤ ≤σ σk u. . For these curves,

relation (14) has the form of a linear equation

ε
σ

τ τ
l

k

l

t
t

E
K t d

( )
( ) ,= + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫

1
1

0

1

0

(15)

where ε l
and σ

k

l
are, respectively, the strains and stresses in the linear region. The parameters of this model have

already been determined by the matching method in Section 3. Knowing Å0 and K t1 ( ), we now represent the

equation of creep (9) in the nonlinear region (σ σ> 0 4. u ) in the form

E
t

K d hE K d
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Denote the expression on the left-hand side of the last equation by I t( ), i.e.,
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Note that the function I t( ) can be regarded as known because ε σ( )t k are measured quantities from the

experimental compliance curve and the remaining parameters have already been found in the previous section. Hence,

relation (17) admits the following representation:

I t hE K d
k

t

( ) ( ) .= ∫0

2

3

0

σ τ τ (19)

By using representation (18), we now plot the function y I t= ( ) on the logarithmic coordinates. To find the

constant h and the parameters A3 , α 3 , and β3 , we use a series of plots of the functions y K di

t

= ∫ 3

0

( )τ τ also

constructed on the logarithmic coordinates for various values of the parameters of the kernel. By matching the

experimental plot y I t= ( ) with the “theoretical” curves (in particular, by their relative horizontal shifts), we choose

in the presented family a plot that coincides with the required function. The shifts of the plots along the abscissa

correspond to transformations of the time scale:

log( ) log( ) log( )t t km e− ≡ or t ktm e= . (20)

The parameters of the established similar “theoretical” curve are assigned to the “experimental” kernel K t3 ( )

in relation (19). Then the value of the parameter h is given by the formula

h
I t

E K d

e

k

te

=

∫
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.

0

2

3

0

σ τ τ

(21)

As a result, we get A3 0 025= . , α 3 0 3= . , h = ⋅ − −
5 8 10

10 3
. MPa , and β3 0 008= − . . Thus, all parameters of

the equation of state (9) are determined. The other approaches to the evaluation of the parameters of the equations of

state of the theory of viscoelasticity are discussed in [9–12, 15, 19, 20].

In Fig. 4, we present the predicted dependences of the total strain ε on time t computed by using the

determining relations of the cubic theory of viscoelasticity for various fixed levels of stresses σ k . It is worth noting

that, in this case, the agreement between the numerical results and the experimental data is not so good, although the

principal trends of the process of deformation are reflected by the equations of state. The predicted distributions of

strains for the linear regions of deformation are not presented here because they almost completely coincide with the

results obtained by using simpler determining relations (see Fig. 3). The correlation between the numerical results and

the experimental data can be made somewhat better if we also take into account the instantaneous plastic strains

readily determined from Fig. 4. It seems likely that, for a more exact description of these deformation processes, it is

necessary to take into account the final strains, which leads to certain difficulties in deducing the explicit form of the

equations of state.
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5. Simplified Relation for the Description of Steady-State Creep for the Polypropylene Thread. The

analysis of the experimental data presented in Fig. 1 shows that the initial period of the diagrams (characterized by the

decrease in the creep rate with time) does not exceed 10–15 min after which the process is stabilized. In the case of

steady-state creep, the strain rate depends on the level of stresses and weakly depends on the prehistory of

deformation. For the analyzed fibrous structures, the creep curves do not contain the third section characterized by

accelerated creep. This facilitates the procedure of prediction of fractures of the composites. Moreover, for the levels

of strains higher than 10% (see, e.g., Fig. 3), it is also necessary to take into account the instantaneous plastic strains

ignored in Sections 3 and 4.

Therefore, in analyzing the case of steady-state creep [21, 22], it is possible restrict ourselves to simpler

equations of state. It is assumed [21, 22] that the total strain can be represented in the form ε ε ε= +0

ñ
, where ε 0 is

the instantaneous strain including the elastic and plastic components. Furthermore, the creep strains accumulated in

the first part of the are is also included in the instantaneous strains ε 0 , as shown in Fig. 5.

Thus, the level of strains in the steady-state mode is given by the formula

ε ε σ σ( ) ( ) ( ) ,t v t= +0 (22)

where v( )σ is the creep strain rate depending only on the level of stresses.

In this case, we have

ε σ σ0

3
4 753 0 2905 10( ) ( . . )= − + −

and v( ) ( . . )
.σ σ= − −

29 0894 0 0511
1 7428

min
−1

.

The established approximate expressions for strains almost completely coincide with the distributions of

strains for the steady-state sections of the creep curves. By using these formulas, one can fairly exactly predict the

fractures of fibrous structures if the curves of long-term strength of the investigated materials are available.

6. Strength Analysis of the Polypropylene Thread in the Presence of Creep. As a rule, the processes of

creep in which significant levels of strains leading to the violation of the structural integrity of products are

accumulated for relatively short periods of time are regarded as the processes of short-term creep of materials. From

the viewpoint of a designer, the maximum admissible level of strains for metals varies within the range 1–2% and

rarely approaches 5% [21]. The indicated (short) periods of time vary from about 2–3 s to about 20 min. For textile

products, the indicated strain range is not indicated explicitly but, in our opinion, can be somewhat broader.
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Fig. 4. Comparison of the experimental data (symbols) with the numerical results obtained

by using the nonlinear model of viscoelasticity (lines).



The presented numerical results for strains used to describe the process of creep of a thread were accumulated

for a period of 250 min. The creep tests were carried out for the chosen fixed levels of stresses up to the complete

fracture of the specimens. The plot of the dependence of the time t* to fracture of the investigated structure on the

level of acting stresses σ k is shown in Fig. 6 (on the logarithmic coordinates).

It is easy to see that, for the analyzed stress range, all experimental data lie, in fact, in the same straight line.

Hence, the long-term strength diagram of the thread is described by the equation

log log log ,*σ k
m

t n= +
1

(23)

where m = 0 08116. and n = 517 07472. MPa. Further, by taking the antilogarithms of both sides of this equation, we

obtain

t
m nk

*

log( )
.=10

σ
(24)

This formula enables us to find the time to fracture of an element of the thread in the presence of creep (in hours).

CONCLUSIONS

1. The data of the experimental investigation of the mechanical behavior of LOPOLA/A-10 untwisted

polypropylene threads enable us to conclude that indicated thread possesses a linear tensile stress–strain diagram and,

for low strains (up to 5%), can be regarded as a linear viscoelastic material. Under the action of tensile forces, these

structures are characterized by the formation creep strains, which can be found by using the models of mechanics of

hereditary media.

2. The analysis of the experimental data enables us to establish the regularities of short- and long-term

deformation of fibrous structures. It is shown that, under stresses lower than 0.4σ u , the processes of inelastic

deformation can be computed within the framework of the linear viscoelastic model. Under stresses higher than

0.4σ u , we observe the appearance of nonlinear creep effects, which can be described by using more complicated

models of the nonlinear theory of hereditary media.

3. The equations of state of the linear and nonlinear theories of viscoelasticity presented in the explicit form

enable us to give a fairly efficient description of the active processes of deformation of the investigated polymeric

fibrous structures. The proposed approximate diagrams of long-term strength of a thread enable one to predict the

strength of threads in fairly broad ranges of stresses and strains.
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Fig. 6. Long-term strength diagram for the polypropylene thread.
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