ASSESSMENT OF MECHANICAL PROPERTIES AND PHASE-STRUCTURAL STATE IN CORROSION-RESISTANT STEELS UNDER STATIC AND LOW-CYCLE LOADING

V. I. Vitvitskii, V. I. Tkachev, M. F. Berezhnitskaya, and R. V. Chepil'

The use of an austenite stability factor provides (calculated from chromium and nickel equivalents) a quantitative assessment of phase-structural state in corrosive-resistant steels by their chemical composition. Based on the austenite stability factors, a correlation has been established between mechanical properties of the steels under static loading. The low-cycle fatigue life is proposed to be determined from the chemical composition and specimen contraction.

UDC 620.1975

Keywords: corrosion-resistant steels, mechanical properties, low-cycle fatigue life, austenite stability factor.

Introduction. For the development of structural materials, researchers should know quantitative relationships between chemical composition, structure and mechanical properties of alloys. The definition and practical application of the relationships is one of important and first-priority tasks in materials science. As for now, metallic materials and related processes are developed by using expensive empirical approaches. The applicability of the available quantitative relationships is limited to narrow ranges of compositions, structures, and properties. In the case of corrosion-resistant materials, the above-mentioned correlation has been established for low-strength austenitic steels only [1]. Also, some equations have been derived to relate the indices of static and low-cycle loading [2, 3], but there some limitations on their applicability because the discrepancy between experimental and calculated data may be rather significant [3]. Furthermore, the interrelation between static mechanical properties has not been studied properly. The main drawback of the available approaches is that they do not involve any quantitative index that would allow for the phase-structural state in materials based on their chemical composition.

The objective of the present study has been to define, for corrosion-resistant chromium and chromium-nickel steels as an example, an index that would represent phase-structural state in material and to assess its applicability for the determination of a relation between strength and plasticity characteristics as well as between properties of material under static and low-cycle loading.

Investigation Procedure and Results. Definition of a Phase-Structural Index. The main factor that dictates the deformation behavior and service characteristics (ultimate strength σ_b , yield stress $\sigma_{0.2}$, plastic limits δ , ψ , and low-cycle fatigue life N) of a particular material is the bcc or fcc structure. For ternary Fe–Cr–Ni alloys, it is defined from an appropriate equilibrium diagram (Fig. 1) which shows the phase state of steel depending on the chromium and nickel content. For alloys with larger amounts of alloying elements, chromium and nickel equivalents (CrE and NiE) are used instead of Ni and Cr according to Sheffler and Schneider [1]. These equivalents are calculated by the well-known expressions

$$CrE = [Cr] + 2[Si] + 1.5[Mo] + 5[V] + 5.5[Al] + 1.75[Nb] + 1.5[Ti] + 0.75[W],$$
(1)

$$NiE = [Ni] + [Co] + 0.5[Mn] + 0.3[Cu] + 25[N] + 30[C],$$
(2)

where the content of the elements in wt.% is shown in square brackets.

Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine, Lvov, Ukraine. Translated from Problemy Prochnosti, No. 5, pp. 19 – 30, September – October, 2007. Original article submitted March 1, 2006.

0039-2316/07/3905-0466 © 2007 Springer Science + Business Media, Inc.

Fig. 1. Variation of phase state in ternary Fe–Cr–Ni alloys as a function of the amount of Cr(*CrE*) and Ni(*NiE*): (1, 2) determination of NiE_{1B} and NiE_{2B} in the alloys with the coordinates *CrE*, *NiE*, *Cr*₂*E*, and *Ni*₂*E*, the parabola corresponds to the minimum *NiE* values sufficient for producing 100% austenite, γ – austenite, and α – ferrite or transitional structures.

According to these relationships, the influence of 14 elements is reduced to two equivalents (CrE and NiE). Based on them, a phase-structural index was defined. In so doing, we assumed that the location of the phase curve in Fig. 1 was not a structural index. Furthermore, the location of the phase curve in Fig. 1 was assumed to remain unaffected by substitution of CrE and NiE for Cr and Ni and to be described by a parabola,

$$(NiE)_{B} = 0.0512 (CrE)^{2} - 1.843 (CrE) + 28.6.$$
(3)

The material's phase state and thus its deformation mechanism and properties depend on where the point with the phase state coordinates lies relative to the concentration curve that separates the γ and α regions. For each particular alloy with its peculiar chemical composition, we determined the actual chromium and nickel equivalents by expressions (1) and (2). Then, using Eq. (3) we calculated the basic nickel equivalent $(NiE)_B$ corresponding to the particular value of the chromium equivalent on the parabola and compared it to the actual nickel equivalent of the alloy. From the above reasoning, it is proposed to characterize a material using an austenite stability factor $A_{\gamma} = (NiE)/(NiE)_B$ that shows the extent to which the actual equivalent is higher or lower than the basic one. In essence, the factor A_{γ} is a quantitative measure of the excess or deficiency of austenite formers in this material to produce 100% austenite.

Table 1 summarizes the A_{γ} values for some corrosion-resistant steels of the main structural classes. The factor A_{γ} ranges from 0.15 to 0.44 for ferritic structures, from 0.55 to 0.71 for martensitic ones, and from 0.72 to 0.96 for transitional structures. If $A_{\gamma} \approx 1$, the chemical composition coincides with the minimum sufficient amount of elements for the formation of a fully austenitic structure, e.g., a carbon-free steel 00Kh18N12. Stability of this austenite is easily disturbed by any additional strain or thermal effects. By these we mean the $\gamma \rightarrow \alpha$ strain transformations of various kinetics in Cr–Ni and Cr–Ni–Mn steels, low-temperature phase transitions, etc. If $A_{\gamma} > 1$, the γ phase is stable over a wide range of operating conditions, with the following features inherent in the fcc lattice: plastic relaxation reserves, stacking-fault energy, age-hardening ability, which govern the high-temperature, corrosion-resistant and mechanical properties, etc. In general, the data in Table 1 show that A_{γ} varies symbatically with the nickel equivalent of materials: to an increase in the austenite-forming ability of the chemical compositions there corresponds a growth of the austenite stability factor and formation of the related phase-structural states.

Strength and Plasticity. Mechanical properties (σ_b , $\sigma_{0.2}$, δ , and ψ) of steels were determined through static tensile testing of five-fold smooth specimens 5 mm in diameter at 293 K, with a constant head speed of 0.1 mm/min, on a Mod. UMÉ-10TM testing machine. The total ranges of the parameters studied were the following: $\sigma_b = 380-1340$ MPa, $\sigma_{0.2} = 200-1100$ MPa, $\delta = 12-72\%$, and $\psi = 24-83\%$ (Table 1). Steels 1Kh13, 2Kh13, 1Kh12N2VMFBA, 15Kh16N2M, 1Kh18N10T, 04Kh11N43M2T are presented upon various heat treatment operations.

	No.	Material, heat treatment temperature and time,	Structure	CrE	NiE	Aγ	σ_{b} ,	σ _{0.2} ,	δ, %	ψ, %	Reference
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		and quenching medium					MPa	MPa			
1 08Kh17E, $T = 1033$ K, water F 20.84 1.90 0.153 440 40 200 7.0 7.0	1	2	3	4	5	6	7	8	9	10	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	08Kh17E, $T = 1053$ K, water	F	20.84	1.90	0.153	460	260	37.0	66.0	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							404		37.0	72.0	
3 IKh13(f), $T = 1273$ K, 120 min, air; F 14.60 4.40 0.349 638 422 350 77.0 [2] 4 Kh25N6M F 2900 8.00 0.439 630 320 280 77.0 [2] 5 IKh17N2Sh, $T = 1263$ K, 120 min, water M<+F	2	1Kh13(II)	F	14.60	4.40	0.349	$\frac{620}{572}$	390	$\frac{23.8}{27.0}$	$\frac{6/.3}{710}$	[2]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	1Kh12(I) T = 1272 K 120 min air:	E	14.60	4.40	0.340	638	420	35.0	77.0	[2]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$T = 1022 \ K = 120 \ \text{min}, \ \text{air},$	1	14.00	+0	0.549	$\frac{300}{701}$	429	$\frac{29.0}{29.0}$	$\frac{77.0}{77.0}$	[2]
r r <td>4</td> <td>I = 1055 K, 120 mm, an Kh25N6M</td> <td>F</td> <td>29.00</td> <td>8.00</td> <td>0.439</td> <td>620</td> <td>380</td> <td>28.0</td> <td>57.0</td> <td></td>	4	I = 1055 K, 120 mm, an Kh25N6M	F	29.00	8.00	0.439	620	380	28.0	57.0	
5 IKh17N2Sh, $T = 1263$ K, 120 min, oil; T = 823 K, 120 min, water M + F 18.20 6.60 0.549 912 840 707 16.9 550 [2] 6 2Kh13, $T = 1323$ K M 13.20 7.30 0.53 1215 1080 18.0 550 [4] 7 2Kh13, $T = 1323$, 843 K M 13.20 7.30 0.551 1215 1080 16.60 640 962 17.0 15.0 [4] 8 15Kh16N2M, $T = 1313$, 943 K M 17.80 6.80 0.566 1200 900 18.0 540 [4] 9 15Kh16N2M, $T = 1293$, 1033 K M + C 14.85 14.85 0.665 970 845 18.5 595 - 10 IKh12N2VMF, $T = 1293$, 933 K M + C + 1 15.73 8.75 0.710 1105 14.5 645 - 17.0 640 - 12 IKh12N2VMFBA, $T = 1293$, 873 K M + C + 1 15.73 8.75 0.710 1104 1115		KII251VOW	1	27.00	0.00	0.757	676	500	32.0	62.0	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	1Kh17N2Sh, <i>T</i> = 1263 K, 120 min, oil;	M + F	18.20	6.60	0.549	912	707	16.9	55.0	[2]
6 2Kh13, $T = 1323$ K M 13.20 7.30 0.553 1000 1005 850 17.0 65.0 [4] 7 2Kh13, $T = 1323$, 843 K M 13.20 7.30 0.553 1215 1080 16.0 68.0 [4] 8 15Kh16N2M, $T = 1313$, 933 K M 17.80 6.80 0.566 980 800 18.0 41.0 9 15Kh16N2M, $T = 1293$, 1033 K M + C 17.80 0.566 1000 18.0 54.0 54.0 10 1Kh12N2VMFBA, $T = 1293$, 1033 K M + C 14.85 14.85 0.635 970 17.5 59.0 [4] 11 1Kh12N2VMFBA, $T = 1293$, 873 K M + C + 1 15.73 8.75 0.710 1105 970 17.5 59.0 [4] 12 1Kh12N2VMFBA, $T = 1293$, 873 K M + C + 1 15.73 8.75 0.710 1134 1115 14.5 64.5 - 12 1Kh12N2VMFBA, $T = 1293$, 873 K M + C + 1 17.0 7.70 </td <td></td> <td>T = 823 K, 120 min, water</td> <td></td> <td></td> <td></td> <td></td> <td>840</td> <td></td> <td>19.0</td> <td>48.0</td> <td></td>		T = 823 K, 120 min, water					840		19.0	48.0	
Image: constraint of the second state of t	6	2Kh13, <i>T</i> = 1323 K	М	13.20	7.30	0.553	1000	850	17.0	65.0	[4]
7 2kh13, $T = 1323, 843$ K M 13.20 7.30 0.553 1237 1080 16.0 63.0 [4] 8 15kh16N2M, $T = 1313, 933$ K M 17.80 6.80 0.566 980 800 18.0 17.0 53.0 [4] 9 15kh16N2M, $T = 1313, 843$ K M + C 17.80 0.566 1200 900 12.0 50.0 [4] 10 1Kh12N2VMF, $T = 1293, 1033$ K M + C 14.85 14.85 0.635 970 865 18.5 95.5 - 11 1Kh12N2VMFBA, $T = 1293, 933$ K M + C + I 15.73 8.75 0.710 1130 64.0 64.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 7.70 7.70 67.0 7.70 67.0 7.70 67.0 7.70 67.0 7.70 67.0 7.70							1025		18.0	59.0	
1 1	7	2Kh13, <i>T</i> = 1323, 843 K	М	13.20	7.30	0.553	1215	1080	$\frac{16.0}{10.0}$	$\frac{68.0}{68.0}$	[4]
8 15Kn16N,M, $t = 1513, 935$ K M 17.80 6.80 0.366 962 800 17.0 55.0 11.1 9 15Kh16N2M, $T = 1313, 843$ K M + C 17.80 0.566 1200 900 12.0 50.0 14.1 10 1Kh12N2VMF, $T = 1293, 903$ K M + C 14.85 14.85 0.635 970 865 18.5 59.5 - 11 1Kh12N2VMFBA, $T = 1293, 903$ K M + C + 1 15.73 8.75 0.710 1105 970 16.0 60.0 - 12 1Kh12N2VMFBA, $T = 1293, 873$ K M + C + 1 15.73 8.75 0.710 1140 1115 14.5 64.5 - - 71.0 - - 71.0 - 17.0 60.0 - - 17.0 65.0 - - 17.0 65.0 - - 17.0 60.0 - 17.0 60.0 - 17.0 60.0 - 18.0 62.0 - 17.0 <t< td=""><td></td><td>151/11/2020 E 1212 022 K</td><td>N</td><td>17.00</td><td>6.00</td><td>0.566</td><td>1287</td><td>000</td><td>13.0</td><td>63.0</td><td>E 41</td></t<>		151/11/2020 E 1212 022 K	N	17.00	6.00	0.566	1287	000	13.0	63.0	E 41
9 15Kh16N2M, T = 1313, 843 K M + C 17.80 17.8 17.80 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9	8	15Kn16N2M, $T = 1313$, 933 K	M	17.80	6.80	0.566	$\frac{960}{062}$	800	$\frac{10.0}{17.0}$	$\frac{41.0}{55.0}$	[4]
Interformation Interf	9	15Kh16N2M T - 1313 843 K	M + C	17.80	17.80	0.566	1200	900	17.0	50.0	[4]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Í	15101010200, T = 1515, 045 K	WI + C	17.00	17.00	0.500	1063	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18.0	54.0	ניין
Image: constraint of the state of	10	1Kh12N2VMF, <i>T</i> = 1293, 1033 K	M + C	14.85	14.85	0.635	970	865	18.5	59.5	_
11 1Kh12N2VMFBA, $T = 1293, 933$ K M + C + I 15.73 8.75 0.710 1105 970 17.5 590 [4] 12 1Kh12N2VMFBA, $T = 1293, 873$ K M + C + I 15.73 8.75 0.710 1130 1115 14.5 [44] 13 20Kh14N3M2B, $T = 1383$ K, oil; T = 923 K, 120 min, air A + M + C 17.0 8.70 0.722 [1000] 790 17.0 65.0 - 14 02Kh11N11MF, $T = 1223$ K, 15 min, 523 K Amin + M + Imin 15.78 9.80 0.799 1010 200 64.0 [2] 15 02Kh10N9T2M2 A + M 16.66 10.55 0.871 1110 1010 200 64.0 [2] 16 03Kh12N9MT, $T = 1273$ K, 60 min, 823 K A + M + Imin 14.34 11.86 0.933 1050 950 17.0 60.0 - 17 03Kh10N8K4MFD A + M + I 12.05 13.29 0.961 1100 1000 18.0 65.0 - 18 Kh5CrNi 18-12 (like 05Kh19N10), T = 1323 K, water A + M ₈ 18.80 12.01 1.061 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1051</td> <td></td> <td>16.0</td> <td>63.0</td> <td></td>							1051		16.0	63.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	1Kh12N2VMFBA, T = 1293, 933 K	M + C + I	15.73	8.75	0.710	1105	970	17.5	59.0	[4]
12 IKh12N2VMFBA, $T = 1293$, 873 K M + C + 1 15.73 8.75 0.710 1244 1115 14.5 64.5 - 13 20Kh14N3M2B, $T = 1383$ K, oil; A + M + C 17.20 8.70 0.722 1000 790 17.0 65.0 - 14 02Kh11N11MF, $T = 1223$ K, 15 min, 523 K $A_{min} + M + I_{min}$ 15.78 9.80 0.799 1000 950 17.0 65.0 - 15 02Kh10N9T2M2 A + M 16.66 10.55 0.871 1110 1010 20.0 64.0 [2] 16 03Kh12N9MT, $T = 1273$ K, 60 min, 823 K A + M + I_min 14.34 11.86 0.933 1050 950 17.0 66.0 - 17 03Kh10N8K4MFD A + M + I 12.05 13.29 0.961 1100 1070 18.0 65.0 - - 18 Kh5CrNi 18-12 (like 05Kh19N10), $T = 1323$ K, water A + M ₈ 18.80 12.10 1.004 600 72.0 65.0 65.0 - 20 1Kh18N10T, $T = 1323$ K,							1125		16.0	60.0	
13 20Kh14N3M2B, T = 1383 K, oil; T = 923 K, 120 min, air A + M + C 17.0 8.70 0.722 1000 961 790 17.0 65.0 - 14 02Kh11N11MF, T = 1223 K, 15 min, 523 K $A_{min} + M + I_{min}$ 15.78 9.80 0.799 1000 950 17.0 65.0 - 15 02Kh10N9T2M2 A + M 16.66 10.55 0.871 1110 1010 20.0 64.0 [2] 16 03Kh12N9MT, T = 1273 K, 60 min, 823 K A + M + I min 14.34 11.86 0.933 1050 950 17.0 65.0 - 17 03Kh10N8K4MFD A + M + I 12.05 13.29 0.961 1100 1007 18.0 65.0 - 18 Kh5CrNi 18-12 (like 05Kh19N10), T = 1323 K, water A + M_s 19.20 12.70 1.051 650 250 71.0 650 250 71.0 650 250 72.0 65.0 - - 650 650 250 71.0 65.0 -	12	1Kh12N2VMFBA, $T = 1293, 873$ K	M + C + I	15.73	8.75	0.710	$\frac{1340}{1244}$	1115	$\frac{14.5}{17.0}$	$\frac{64.5}{-1.0}$	-
13 20kh14N3M2B, $T = 1333$ K, oit; $A + M + C$ 17.20 8.70 0.722 1000 17.0 60.0 - 14 02Kh11N11MF, $T = 1223$ K, 15 min, 523 K $A_{min} + M + I_{min}$ 15.78 9.80 0.799 1000 950 17.0 60.0 - 15 02Kh10N9T2M2 A + M 16.66 10.55 0.871 11100 1010 20.0 64.0 [2] 16 03Kh12N9MT, $T = 1273$ K, 60 min, 823 K A + M + I_min 14.34 11.86 0.933 1050 950 17.0 60.0 - 17 03Kh10N8K4MFD A + M + I 12.05 13.29 0.961 1100 1070 18.0 65.0 - 18 Kh5CrNi 18-12 (like 05Kh19N10), T = 1323 K, water A + M _s 18.80 12.10 1.004 600 72.0 50.0 [5] 20 1Kh18N10T, $T = 1423$, 1023 K, 600 min A + M _s 19.20 12.70 1.051 650 250 71.0 53.6 [2] - 21 08Kh18N10 (0.022% N), $T = 1323$ K, water A + M _s 18.00 12.95	12			17.00	0.70	0.700	1244	700	17.0	71.0	
Image: Interpret of the system of	13	20Kh14N3M2B, $T = 1383$ K, oil;	A + M + C	17.20	8.70	0.722	061	790	$\frac{17.0}{17.0}$	$\frac{03.0}{60.0}$	-
14 02Kh11N11Mr, $T = 1223$ K, 15 min, 525 K $A_{min} + M + I_{min}$ 15.78 9.80 0.799 1000 950 17.0 64.0 - 15 02Kh10N9T2M2 A + M 16.66 10.55 0.871 1110 1010 20.0 64.0 [2] 16 03Kh12N9MT, $T = 1273$ K, 60 min, 823 K A + M + I min 14.34 11.86 0.933 1050 950 17.0 60.0 - 17 03Kh10N8K4MFD A + M + I 12.05 13.29 0.961 1100 1070 18.0 65.0 - 18 Kh5CrNi 18-12 (like 05Kh19N10), T = 1323 K, water A + M _s 18.80 12.10 1.004 600 200 72.0 55.0 [2] 19 1Kh18N10T, $T = 1323$ K, water A + M _s 19.20 12.70 1.051 650 250 71.0 65.0 - 20 1Kh18N10T, $T = 1323$ K, water A + M _s 18.00 12.95 1.078 590 220 67.0 62.0 - 21 08Kh18N10 (0.022% N), $T = 1323$ K, water A + M _s 18.00 12.95 </td <td></td> <td>T = 923 K, 120 min, air</td> <td>A</td> <td>15.50</td> <td>0.00</td> <td>0.700</td> <td>1000</td> <td>0.50</td> <td>17.0</td> <td>75.0</td> <td></td>		T = 923 K, 120 min, air	A	15.50	0.00	0.700	1000	0.50	17.0	75.0	
15 02Kh10N9T2M2 A + M 16.66 10.55 0.871 1110 1010 20.0 64.0 [2] 16 03Kh12N9MT, T = 1273 K, 60 min, 823 K A + M + Imin 14.34 11.86 0.933 1050 950 17.0 60.0 - 17 03Kh10N8K4MFD A + M + I 12.05 13.29 0.961 1104 18.0 65.0 - - 18 Kh5CrNi 18-12 (like 05Kh19N10), A + Ms 18.80 12.10 1.004 600 200 72.0 50.0 [5] 19 1Kh18N10T, T = 1423, 1023 K, water A + Ms 19.20 12.70 1.051 650 250 71.0 53.6 [2] 20 1Kh18N10T, T = 1323 K, water A + Ms 19.20 12.70 1.051 650 250 71.0 53.6 [2] 21 08Kh18N10 (0.022% N), T = 1323 K, water A + Ms 18.00 12.95 1.078 590 74.0 [6] 22 03Kh13AG19, T = 1273 K, water <td< td=""><td>14</td><td>02Kn11N11MF, $I = 1223$ K, 15 min, 523 K</td><td>$A_{min} + M + I_{min}$</td><td>15.78</td><td>9.80</td><td>0.799</td><td>$\frac{1000}{1075}$</td><td>950</td><td>$\frac{17.0}{16.0}$</td><td>$\frac{73.0}{64.0}$</td><td>-</td></td<>	14	02Kn11N11MF, $I = 1223$ K, 15 min, 523 K	$A_{min} + M + I_{min}$	15.78	9.80	0.799	$\frac{1000}{1075}$	950	$\frac{17.0}{16.0}$	$\frac{73.0}{64.0}$	-
10 10.00 1	15	02Kh10N9T2M2	A + M	16.66	10.55	0.871	1110	1010	20.0	64.0	[2]
16 03Kh12N9MT, $T = 1273$ K, 60 min, 823 K A + M + I _{min} 14.34 11.86 0.933 1050 1025 950 17.0 19.0 60.0 61.0 - 17 03Kh10N8K4MFD A + M + I 12.05 13.29 0.961 1100 1104 1070 18.0 18.0 65.0 62.0 - 18 Kh5CrNi 18-12 (like 05Kh19N10), T = 1323 K, water A + M _s 18.80 12.10 1.004 600 520 200 72.0 63.0 53.0 [5] 19 1Kh18N10T, $T = 1423$, 1023 K, 600 min A + M _s 19.20 12.70 1.051 650 638 250 71.0 72.0 53.6 63.0 [2] 20 1Kh18N10T, $T = 1323$ K, water A + M _s 20.18 13.00 1.060 660 723 74.0 73.0 65.0 79.0 - 21 08Kh13N10 (0.022% N), $T = 1323$ K, water A + M _s 18.00 12.95 1.078 590 577 224 78.0 73.0 74.0 59.0 [6] 22 03Kh13AG19, $T = 1273$ K, water A 14.70 13.95 1.110 890 66.0 68.0				10.00	10.55	0.071	1092		18.0	68.0	[~]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	03Kh12N9MT, T = 1273 K, 60 min, 823 K	$A + M + I_{min}$	14.34	11.86	0.933	1050	950	17.0	60.0	
17 03Kh10N8K4MFD A + M + I 12.05 13.29 0.961 1100 1104 1070 18.0 18.0 $\frac{65.0}{62.0}$ - 18 Kh5CrNi 18-12 (like 05Kh19N10), T = 1323 K, water A + Ms 18.80 12.10 1.004 $\frac{600}{520}$ 200 $\frac{72.0}{83.0}$ $\frac{50.0}{53.0}$ [5] 19 1Kh18N10T, T = 1423, 1023 K, 600 min A + Ms 19.20 12.70 1.051 $\frac{650}{638}$ 250 $\frac{71.0}{72.0}$ $\frac{53.6}{65.0}$ [2] 20 1Kh18N10T, T = 1323 K, water A + Ms 19.20 12.70 1.051 $\frac{650}{723}$ $\frac{67.0}{64.0}$ $\frac{62.0}{75.0}$ - 21 08Kh18N10 (0.022% N), T = 1323 K, water A + Ms 18.00 12.95 1.078 $\frac{590}{577}$ $\frac{74.0}{73.0}$ [6] 22 03Kh13AG19, T = 1273 K, water A 14.70 13.95 1.110 $\frac{890}{626}$ $\frac{381}{65.0}$ $\frac{63.0}{65.0}$ $\frac{74.5}{64.0}$ - 23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), T = 1323 K, water A 18.00 18.90 1.573 $\frac{785}{837}$ $\frac{433}{53.0}$ $\frac{56.0}{53.0}$ $\frac{70.0}{53.0}$ 56							1025		19.0	61.0	
Image: constraint of the second state in t	17	03Kh10N8K4MFD	A + M + I	12.05	13.29	0.961	1100	1070	18.0	65.0	-
18 Kh5CrNi 18-12 (like 05Kh19N10), T = 1323 K, water A + M _s 18.80 12.10 1.004 $\frac{600}{520}$ 200 $\frac{72.0}{83.0}$ $\frac{50.0}{53.0}$ [5] 19 1Kh18N10T, T = 1423, 1023 K, 600 min A + M _s 19.20 12.70 1.051 $\frac{650}{638}$ 250 $\frac{71.0}{72.0}$ $\frac{53.6}{65.0}$ [2] 20 1Kh18N10T, T = 1323 K, water A + M _s 20.18 13.00 1.060 $\frac{660}{723}$ 290 $\frac{67.0}{64.0}$ $\frac{62.0}{75.0}$ - 21 08Kh18N10 (0.022% N), T = 1323 K, water A + M _s 18.00 12.95 1.078 $\frac{590}{577}$ 224 $\frac{78.0}{73.0}$ $\frac{74.0}{74.0}$ [6] 22 03Kh13AG19, T = 1273 K, water A 14.70 13.95 1.110 $\frac{890}{848}$ 381 $\frac{63.0}{66.0}$ $\frac{74.5}{74.0}$ - 23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), T = 1323 K, water A 21.73 15.30 1.202 $\frac{600}{600}$ 250 $\frac{68.0}{65.0}$ $\frac{63.0}{74.0}$ [5] 24 08Kh18N10 (0.26% N), T = 1323 K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433							1104		18.0	62.0	
T = 1323 K, water T = 1323 K, water A + M _s 19.20 12.70 1.051 $\frac{650}{638}$ 250 $\frac{71.0}{72.0}$ $\frac{53.6}{65.0}$ [2] 20 1Kh18N10T, T = 1423, 1023 K, 600 min A + M _s 20.18 13.00 1.060 $\frac{660}{723}$ 290 $\frac{67.0}{64.0}$ $\frac{62.0}{75.0}$	18	Kh5CrNi 18-12 (like 05Kh19N10),	$A + M_s$	18.80	12.10	1.004	$\frac{600}{520}$	200	$\frac{72.0}{82.0}$	$\frac{50.0}{52.0}$	[5]
19 1Kh18N10T, $T = 1423$, 1023 K, 600 min A + M _s 19.20 12.70 1.051 $\frac{650}{638}$ 250 $\frac{71.0}{72.0}$ $\frac{53.6}{65.0}$ [2] 20 1Kh18N10T, $T = 1323$ K, water A + M _s 20.18 13.00 1.060 $\frac{660}{723}$ 290 $\frac{67.0}{64.0}$ $\frac{62.0}{75.0}$ - 21 08Kh18N10 (0.022% N), $T = 1323$ K, water A + M _s 18.00 12.95 1.078 $\frac{590}{577}$ 224 $\frac{78.0}{73.0}$ $\frac{74.0}{59.0}$ [6] 22 03Kh13AG19, $T = 1273$ K, water A 14.70 13.95 1.110 $\frac{890}{848}$ 381 $\frac{63.0}{66.0}$ $\frac{74.5}{68.0}$ - 23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), $T = 1323$ K, water A 21.73 15.30 1.202 $\frac{600}{626}$ 250 $\frac{68.0}{65.0}$ $\frac{83.0}{64.0}$ [5] 24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433 $\frac{56.0}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ $\frac{420}{55.0}$		T = 1323 K, water					520		83.0	53.0	
20 1Kh18N10T, $T = 1323$ K, water A + Ms 20.18 13.00 1.060 $\frac{660}{723}$ 290 $\frac{67.0}{64.0}$ $\frac{62.0}{75.0}$ - 21 08Kh18N10 (0.022% N), $T = 1323$ K, water A + Ms 18.00 12.95 1.078 $\frac{590}{577}$ 224 $\frac{78.0}{73.0}$ $\frac{74.0}{59.0}$ [6] 22 03Kh13AG19, $T = 1273$ K, water A 14.70 13.95 1.110 $\frac{890}{848}$ 381 $\frac{63.0}{66.0}$ $\frac{74.5}{68.0}$ - 23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), $T = 1323$ K, water A 21.73 15.30 1.202 $\frac{600}{626}$ $\frac{250}{65.0}$ $\frac{68.0}{64.0}$ $\frac{83.0}{64.0}$ [5] 24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ $\frac{433}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ 420 $\frac{54.0}{53.0}$ $\frac{62.0}{74.0}$ - 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$	19	1Kh18N10T, $T = 1423$, 1023 K, 600 min	$A + M_s$	19.20	12.70	1.051	$\frac{000}{600}$	250	$\frac{71.0}{72.0}$	$\frac{33.0}{65.0}$	[2]
20 A + Ms 20.18 13.00 1000 $\frac{330}{723}$ $\frac{230}{64.0}$ $\frac{340}{75.0}$ $-$ 21 08Kh18N10 (0.022% N), $T = 1323$ K, water A + Ms 18.00 12.95 1.078 $\frac{590}{577}$ 224 $\frac{78.0}{73.0}$ $\frac{74.0}{59.0}$ [6] 22 03Kh13AG19, $T = 1273$ K, water A 14.70 13.95 1.110 $\frac{890}{848}$ 381 $\frac{63.0}{66.0}$ $\frac{74.5}{68.0}$ - 23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), $T = 1323$ K, water A 21.73 15.30 1.202 $\frac{600}{626}$ 250 $\frac{68.0}{65.0}$ $\frac{83.0}{64.0}$ [5] 24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433 $\frac{56.0}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ $\frac{420}{55.0}$ $\frac{52.0}{55.0}$ $\frac{70.0}{70.0}$ - 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{51.0}$ -	20	1Kh18N10T T - 1323 K water	$\Lambda + M$	20.18	13.00	1.060	660	200	67.0	62.0	
21 08Kh18N10 (0.022% N), $T = 1323$ K, water A + M _s 18.00 12.95 1.078 $\frac{590}{577}$ 224 $\frac{78.0}{73.0}$ $\frac{74.0}{59.0}$ [6] 22 03Kh13AG19, $T = 1273$ K, water A 14.70 13.95 1.110 $\frac{890}{848}$ 381 $\frac{63.0}{66.0}$ $\frac{74.5}{68.0}$ - 23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), $T = 1323$ K, water A 21.73 15.30 1.202 $\frac{600}{626}$ 250 $\frac{68.0}{65.0}$ $\frac{83.0}{64.0}$ [5] 24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433 $\frac{56.0}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ 420 $\frac{54.0}{53.0}$ $\frac{62.0}{70.0}$ - 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{70.0}$ -	20	TKIII δ NI 01 , $T = 1525$ K, water	$A + W_{I_S}$	20.10	15.00	1.000	$\frac{000}{723}$	290	$\frac{67.0}{64.0}$	$\frac{32.0}{75.0}$	-
22 03Kh13AG19, $T = 1273$ K, water A 14.70 13.95 1.110 $\frac{890}{848}$ 381 $\frac{63.0}{66.0}$ $\frac{74.5}{68.0}$ 23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), $T = 1323$ K, water A 21.73 15.30 1.202 $\frac{600}{626}$ 250 $\frac{68.0}{64.0}$ $\frac{83.0}{64.0}$ [5] 24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433 $\frac{56.0}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ 420 $\frac{54.0}{55.0}$ $\frac{62.0}{70.0}$ $-$ 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{51.0}$ $-$	21	08Kh18N10 (0.022% N), $T = 1323$ K, water	$A + M_s$	18.00	12.95	1.078	590	224	78.0	74.0	[6]
22 03Kh13AG19, $T = 1273$ K, water A 14.70 13.95 1.110 $\frac{890}{848}$ 381 $\frac{63.0}{66.0}$ $\frac{74.5}{68.0}$ - 23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), $T = 1323$ K, water A 21.73 15.30 1.202 $\frac{600}{626}$ 250 $\frac{68.0}{65.0}$ $\frac{83.0}{64.0}$ [5] 24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433 $\frac{56.0}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ 420 $\frac{54.0}{55.0}$ $\frac{62.0}{70.0}$ - 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{51.0}$ -			5				577		73.0	59.0	
Image: constraint of the constrated of the constraint of the constraint of the constraint of the	22	03Kh13AG19, $T = 1273$ K, water	А	14.70	13.95	1.110	890	381	63.0	74.5	-
23 Kh2CrNiMo 18-12 (like 08Kh18N14M2), $T = 1323$ K, water A 21.73 15.30 1.202 $\frac{600}{626}$ 250 $\frac{68.0}{64.0}$ $\frac{83.0}{64.0}$ [5] 24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433 $\frac{56.0}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ 420 $\frac{54.0}{55.0}$ $\frac{62.0}{70.0}$ - 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{51.0}$ -							848		66.0	68.0	
$T = 1323$ K, water 626 65.0 64.0 24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433 $\frac{56.0}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ 420 $\frac{54.0}{55.0}$ $\frac{62.0}{70.0}$ - 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{51.0}$ -	23	Kh2CrNiMo 18-12 (like 08Kh18N14M2),	А	21.73	15.30	1.202	$\frac{600}{600}$	250	$\frac{68.0}{(5.0)}$	$\frac{83.0}{64.2}$	[5]
24 08Kh18N10 (0.26% N), $T = 1323$ K, water A 18.00 18.90 1.573 $\frac{785}{837}$ 433 $\frac{56.0}{53.0}$ $\frac{70.0}{74.0}$ [6] 25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ 420 $\frac{54.0}{55.0}$ $\frac{62.0}{70.0}$ - 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{51.0}$ -		T = 1323 K, water					626		65.0	64.0	
25 06Kh12G20AN5, $T = 1273$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ 420 $\frac{54.0}{55.0}$ $\frac{62.0}{70.0}$ 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{51.0}$ -	24	08Kh18N10 (0.26% N), $T = 1323$ K, water	А	18.00	18.90	1.573	/85	433	$\frac{56.0}{52.0}$	$\frac{70.0}{74.0}$	[6]
25 00Kn12G20ANS, $I = 12/3$ K, water A 15.50 20.25 1.642 $\frac{800}{809}$ $\frac{420}{55.0}$ $\frac{54.0}{70.0}$ $\frac{62.0}{70.0}$ 26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{50.0}$ $\frac{50.0}{51.0}$ -		0(1/1 10(20 ANS # 1272 V		15.50	20.25	1 (42	837	420	53.0	62.0	
26 00Kh19N23V2T, $T = 1323$ K, water A 23.22 22.80 1.700 $\frac{550}{526}$ 220 $\frac{48.0}{51.0}$ $\frac{50.0}{51.0}$ -	25	UOKN12G2UANO, I = 12/3 K, water	A	15.50	20.25	1.042	800	420	55.0	$\frac{02.0}{70.0}$	_
25.22 22.00 1.700 $\frac{210}{526}$ $\frac{210}{500}$ $\frac{100}{510}$	26	00Kh19N23V2T $T = 1323 K$ water	А	23.22	22.80	1.700	550	220	48.0	50.0	_
						1.700	526		50.0	51.0	

TABLE 1. Materials under Study and Their Characteristics

continued Table 1

1	2	3	4	5	6	7	8	9	10	11
27	06Kh27N16G6A, $T = 1323$ K, water	А	28.67	31.00	1.737	810	470	52.0	66.0	-
						851		50.0	75.0	
28	04Kh12N36Yu3TV, T = 1023 K, 120 min;	A + I	30.78	37.95	1.862	1110	820	31.0	51.0	_
	923 K, 240 min					1115		31.0	50.0	
29	03Kh21N32M3B, T = 1613 K, 120 min	А	28.40	33.89	1.931	640	330	41.0	70.0	-
						642		39.0	72.0	
30	06Kh20N16AG6, $T = 1323$ K, water	А	21.20	24.30	1.938	780	410	52.0	75.0	_
						750		54.0	62.0	
31	06Kh14G20AN10M, T = 1273 K, water	А	19.35	29.60	2.445	810	460	48.0	70.0	—
						767		44.0	50.0	
32	03Kh11N43M2T, T = 1323 K, 120 min,	A + I	28.34	44.09	2.520	1180	770	21.0	24.0	—
	air cooling; 1003 K, 900 min; 963 K, 60 min					1153		41.0	34.0	
33	04Kh11N43M2T, No. $32 + T = 1473$ K,	$A + I_{min}$	28.34	44.09	2.520	815	505	37.0	38.0	-
	cooled to 1273 K, 120 min, air					838		25.0	51.0	
34	04Kh11N43M2T, No. $32 + T = 1473$ K,	A + I	28.34	44.09	2.520	1250	820	29.0	49.0	_
	cooled to 1273 K, 120 min; 1023 K, 480 min;					1270		25.0	35.0	
	923 K, 480 min, air									

Notes: 1. The experimental and calculated data are given above and under the line, respectively. 2. A – austenite, F – ferrite, M – martensite; M_s – strain-induced martensite; C – carbides; I – intermetallides.

A study of the relation between strength and yield stress shows it to be of qualitative nature: materials with almost equal yield stress $\sigma_{0.2}$ may differ in σ_b and A_γ (Fig. 2a). This renders their quantitative assessment impossible. If the austenite stability index A_γ is added to the main characteristics, the materials can be arranged in a certain order and the appropriate quantitative relationships can be established. Here, the sought-for expression is written as $A_\gamma^m a^n = f(A_\gamma^k b^p)$, where *a* and *b* are the indices of the mechanical properties. The function *f* was determined graphically in the coordinates $Y = A_\gamma^m a^n$, $X = A_\gamma^k b^p$. The coordinates and the curve were optimized through iteration of *m*, *n*, *k*, and *p*, so that the approximation equation had the correlation coefficient R > 0.95. The outcome of approximation was considered acceptable if the difference between the actual and calculated values did not exceed the error of experimental results. To plot the relationship between the strength indices we used the coordinates $A_\gamma^m \sigma_b^n - A_\gamma^k \sigma_{0.2}^p$. Following the above procedures and calculations, a diagram of $\sqrt{A_\gamma \sigma_b}$ vs. $\sqrt{A_\gamma \sigma_{0.2}}$ was plotted (Fig. 2b); based on these functions, we obtained four approximation equations (Table 2), each corresponding to a definite range of $\sigma_{0.2}$:

Group I (the lowest strength, 200 MPa $\leq \sigma_{0.2} \leq 330$ MPa): materials in the homogeneous state of a single-phase solution of substitution, with A_{γ} ranging from 0.152 to 2.52, namely, steels Kh5CrNi 18-12, 00Kh19N23V2T, Kh2CrNiMo 18-12, 08Kh18N10 (0.022% Ni), 1Kh18N10T, 08Kh17T, and 03Kh21N32M3B (quenched).

Group II (380 MPa $\leq \sigma_{0.2} \leq 600$ MPa): materials alloyed with substitution elements and strengthened by soluble nitrogen as an interstitial element, namely, steels 1Kh13 (upon high-temperature tempering), Kh25N6M, 03Kh13AG19, 06Kh12G20AN5, 06Kh27N16AG6, 06Kh14G20AN10M, and 08Kh18N10 (0.26% N) and quenched alloy 03Kh11N43M2T.

Materials in the heterogeneous (multiphase) state were included into the following two high-strength groups:

Group III (770 MPa $\leq \sigma_{0.2} \leq 890$ MPa): economically alloyed corrosion-resistant Fe–Ni alloys with a moderate (10–20%) amount of strengthening phases, such as 04Kh12N36Yu8TV, 04Kh11N43M2T upon ageing and overageing, 03Kh21N32MZB; steels with carbide and intermetallic strengthening 2Kh13, 20Kh14N3M2B; 1Kh17N2Sh, 1Kh12N2VMF, 15Kh16N2M.

Strength	Parameter	Approximation equation	Correlation	Mean error,
group			coefficient R	%
	σ_b	$y = \sqrt{A_{\gamma} \sigma_b}; \ x = \sqrt{A_{\gamma} \sigma_{0.2}}$		
Ι		$y = -7.9091 + 2.7649x - 0.0419x^2$	0.9925	7.3
II		$y = -36.82036 + 6.3743x - 0.20032x^2 + 0.00243x^3$	0.9974	5.7
III		$y = -10.50464 + 2.29781x - 0.0466x^2 + 6.27 \cdot 10^{-4}x^3$	0.9918	3.6
IV		$y = -93.33867 + 11.77788x - 0.39621x^2 + 0.00473x^3$	0.9818	4.8
	δ	$y = A_{\gamma} \sqrt{\delta}; \ x = A_{\gamma} \sqrt{\sigma_b / \sigma_{0.2}} \ (\sigma_b - \text{calculated})$		
Ι		$y = 0.0016 + 0.4216x + 0.1507x^2 - 0.0523x^3$	0.9955	5.4
Π		$y = 0.0067 + 0.345x + 0.1718x^2 - 0.0385x^3$	0.9974	8.7
III		$y = 0.223 - 0.2666x + 0.5366x^2 - 0.1106x^3$	0.9938	8.3
IV		$y = 0.0015 + 0.2249x + 0.1917x^2$	0.9582	14.7
	Ψ	$y = A_{\gamma}^2 \sqrt{\Psi}; \ x = A_{\gamma}^2 \sqrt{\sigma_{0.2}/E}$		
Ι		$y = 0.3233 - 1.1932 \log x - 0.99506 (\log x)^2 - 0.14006 (\log x)^3$	0.9986	12.8
II		$y = 0.55021 - 0.91735 \log x - 0.97544 (\log x)^2 - 0.16003 (\log x)^3$	0.9984	13.2
III		$y = 0.8529 - 0.0638 \log x - 0.47625 (\log x)^2 - 0.06397 (\log x)^3$	0.9965	17.8
IV		$y = -23.0781 - 37.3783 \log x - 19.8295 (\log x)^2 - 3.39705 (\log x)^3$	0.9960	6.7

TABLE 2. Results of Approximation of Relationships between Strength and Plasticity Indices for Corrosion-Resistant Steels, Allowing for A_{γ}

Fig. 2. Graphical representation of the relationships between strength and plasticity indices of steels, allowing for A_{γ} (b–d) and without A_{γ} (a). (Figures *I*, *II*, *III*, *IV* denote the respective strength groups.)

Group IV ($\sigma_{0.2} \ge 900$ MPa): complex-alloyed steels 2Kh13, 1Kh12N2VMFBA (two heat treatment operations) and low-carbon martensite-ageing steels 02Kh11N11MF, 03Kh10N8K4MFD, 03Kh12N9MT, 02Kh10N9T2M2.

Note that for Group I – the lowest-strength material – the greatest mean deviation of calculated σ_b values from the experimental ones is 7.3%, while for the other three groups – constructionally efficient alloys – it is less than 4–6% (Table 2).

Analysis of the experimental data demonstrates that as the strength margin increases, so does δ . The hardening coefficient is known to be defined by the ratio $\sigma_b/\sigma_{0.2}$ or $1 - \sigma_{0.2}/\sigma_b$ [1–3]. Here, for each group of materials the relationship between the hardening coefficient and specific elongation is approximated by a separate curve in the coordinates $A_{\gamma}\sqrt{\delta} - A_{\gamma}\sqrt{\sigma_b/\sigma_{0.2}}$ (Fig. 2c, Table 2), while that between the hardening coefficient and specific reduction of area in the coordinates $A_{\gamma}^2\sqrt{\psi} - A_{\gamma}^2\sqrt{\sigma_{0.2}/E}$ (Fig. 2d, Table 2). The modulus of elongation $E = 2 \cdot 10^5$ MPa.

Low-Cycle Fatigue. Flat specimens 2–3 mm thick made of steels Nos. 1, 13, 14, 16, 17, 25–28, 32–34 (Table 1) were subjected to low-cycle pure bending loading with pulsating strain cycles in air on a Mod. IP-2VTD test machine by the procedure [7]. The cycling frequency was 0.5 Hz and the test temperature was 293 K. The strain cycle amplitude ε was 0.8, 1.2, and 1.6%, the test base was varied from $5 \cdot 10^2$ to $5 \cdot 10^4$ cycle. The influence of heat treatment on the low-cycle fatigue was studied for steel 03Kh11N43M2T. The test results are summarized in Table 3.

The low-cycle strength under severe loading is usually calculated by Coffin–Manson equations $\epsilon N^k = C$. The k and C values vary from publication to publication as follows: k = 0.4-0.6 and $C = (0.5-1.2)e_f$ (e_f is the effective elongation to fracture) or $C = 1/2 \ln[1/(1-\psi)]$ [3, 5]. The difference between the experimental and calculated values of the number of cycles to failure according to these equations is as large as 5-10-fold. A comparison (Tables 1 and 3) of behavior of deformation characteristics δ and Ψ and the low-cycle fatigue life N of the materials has demonstrated that of all the static loading indices the specific reduction of area (contaction) ψ is the most sensitive one. However, this correlation is limited to the groups of materials that are in similar phase-structural states. For the materials which have the same ψ but differ in structure, the difference in fatigue life can be significant. For example, for a ferritic steel 08Kh17T and austenitic steel 06Kh26NAG6 we have $\psi = 66\%$ and the fatigue life at $\varepsilon = 1.6\%$ is 800 and 4000 cycles, respectively; i.e., the solely deformational statement, when applied to corrosion-resistant steels, gives considerable errors. To allow for the phase-structural state quantitatively, we used A_{γ} . In the general form, the analytical expression is written as $A_{\gamma}^m N^n = f(A_{\gamma}^k \psi^p)$. A specific solution was sought for by following the algorithm outlined above, for each strain cycle amplitude. Figure 3 shows the relationship $A_{\gamma}^2 \sqrt{N} - A_{\gamma}^2 \sqrt{\Psi}$ for various strain amplitudes. To minimize the gap between the experimental and calculated data, the behavior of transitional structures with $A_{\gamma} < 1$ and austenitic materials with $A_{\gamma} \ge 1$ was described by separate relationships (Table 4). We plotted a diagram in the coordinates $Y = (A_{\nu}\varepsilon)^l \sqrt{N}$, $X = A_{\nu}^2 \sqrt{\psi}$ and determined l = 3/2(Fig. 4) in order to establish a relation between the strain cycle amplitude and life. Each expression in Table 4 represents a relation between the properties of materials under static and fatigue loading, over a wide range of strength (200 MPa $\leq \sigma_{0.2} \leq 1000$ MPa). The life values calculated by formulas (1)–(3), (5)–(7), (4) and (8) (Table 4) are summarized in Table 3.

Discussion. It has been found that one needs only a single index A_{γ} of the γ -phase activity of elements of a material's chemical composition in order to establish a correlation between mechanical properties, with R > 0.95, for the alloys within the strength range 200 MPa $\leq \sigma_{0.2} \leq 1115$ MPa. Materials can be assigned to various strength groups depending on the heat treatment. In particular, the as-quenched alloy 04Kh11N43M2T belongs to group II, while the same alloy upon ageing falls into group III. Heat treatment results in structural alterations, which brings steels 15Kh16N2M, 2Kh13, 1Kh12NV2MF from group III to group IV. Alloying has a similar effect. Steel 08Kh18N10 with 0.022% N qualifies as group I but belongs to group II when its nitrogen content is 0.26%. The migration of the materials from one group to the other is accompanied by a corresponding change in the relationships between their properties as described by the equations in Table 2.

Material No.	Low-cycle fatigue life N (cycle) at strain amplitude ε (%)					
as per Table 1	0.8	1.2	1.6			
1	_	_	$\frac{800}{800}$ (925)			
13	$\frac{9000}{9000}$ (7100)	$\frac{3100}{3100}$ (2100)	$\frac{1000}{1000}$ (890)			
14	$\frac{15800}{15800} (12000)$	$\frac{4200}{4200}$ (3560)	$\frac{1300}{1300}$ (1500)			
16	$\frac{26300}{26300}$ (15330)	$\frac{5300}{5300}$ (4540)	$\frac{2100}{2100}$ (1920)			
17	$\frac{17000}{16250}$ (14950)	$\frac{4300}{4470}$ (4430)	$\frac{1700}{1470}$ (1870)			
20	$\frac{12000}{11970}$ (13080)	$\frac{3000}{3000}$ (3870)	$\frac{1800}{2015}$ (1630)			
25	$\frac{27000}{28410}$ (22290)	$\frac{8000}{7870}$ (6600)	$\frac{2600}{2560}$ (2790)			
26	$\frac{20500}{23010}$ (19080)	$\frac{5700}{6350}$ (5650)	$\frac{1850}{2110}(2380)$			
27	$\frac{28000}{31970}$ (25300)	$\frac{8700}{8420}$ (7495)	$\frac{4000}{3550}$ (3160)			
28	$\frac{28000}{24740}$ (20900)	$\frac{6300}{6510}$ (6190)	$\frac{2750}{2760}$ (2610)			
32	$\frac{27500}{27500}$ (27945)	$\frac{4900}{4900}$ (8200)	$\frac{2500}{2510}$ (3490)			
33	$\frac{21700}{20820}$ (21520)	$\frac{4700}{4170}$ (6370)	$\frac{2660}{2620}$ (2690)			
34	$\frac{11600}{12180}$ (13160)	$\frac{2800}{2885}$ (3900)	$\frac{1590}{1660}$ (1645)			

TABLE 3. Experimental and Calculated Values of Low-Cycle Fatigue Life for Corrosion-Resistant Steels

Note. The figure above and below the line are, respectively, the experimental data and the data calculated by formulas (1)-(3), (5)-(7) in Table 4; the values found by formulas (4) and (8) in Table 4 are in brackets.

Fig. 3. Relationship between life N and specific elongation ψ , allowing for A_{γ} for the strain cycle amplitudes ε . Fig. 4. Relationship between strain ε and life N: (1) $A_{\gamma} < 1$; (2) $A_{\gamma} \ge 1$.

Introducing the parameter A_{γ} has enabled us to find relationships between indices of static and low-cycle loading; with these expressions the mean deviation of calculated values from experimental ones does not exceed 9.6% (equations (1)–(3) and (5)–(7), Table 4) and 13.9–20.0% (equations (4) and (8), Table 4). This improvement in prediction accuracy by considering the phase-structural state of materials will in future make it possible to decrease safety factors in the low-cycle strength calculations, and thus reduce the steel intensity and cost of final products.

Αγ	Formula No.	Parameter	Approximation equation	Correlation	Mean error,
				coefficient, R	%
< 1		Ν	$y = A_{\gamma}^2 \sqrt{N}; \ x = A_{\gamma}^2 \sqrt{\psi}$		
	(1)		$\varepsilon = 1.6\%$: $y = -1.1369 + 99.659x - 232.16x^2 + 238.11x^3$	1.0000	0
	(2)		$\varepsilon = 1.2\%$: $y = 30.175 - 58.645x + 143.66x^2$	1.0000	0
	(3)		$\varepsilon = 0.8\%$: $y = 68.928 - 221.33x + 442.1x^2$	1.0000	0
			$y = (A_{\gamma} \varepsilon)^{3/2} \sqrt{N}; \ x = A_{\gamma}^2 \sqrt{\Psi}$		
	(4)		$y = 0.0023 + 0.0709x + 0.0494x^2$	0.9960	20.0
≥1			$y = A_{\gamma}^2 \sqrt{N}; \ x = A_{\gamma}^2 \sqrt{\psi}$		
	(5)		$\varepsilon = 1.6\%$: $y = 121.6 - 187.15x + 127.69x^2 - 17.01x^3$	0.9985	9.6
	(6)		$\varepsilon = 1.2\%$: $y = -74.699 + 176.23x - 13.37x^2$	0.9990	4.2
	(7)		$\varepsilon = 0.8\%$: $y = -91.316 + 256.92x + 0.1217x^2$	0.9982	6.3
			$y = (A_{\gamma} \varepsilon)^{3/2} \sqrt{N}; \ x = A_{\gamma}^2 \sqrt{\Psi}$		
	(8)		$y = -0.0003 + 0.1046x + 0.0007x^2$	0.9851	13.9

TABLE 4. Results of Approximation of Relationships between Specific Elongation and Low-Cycle Fatigue Life for Corrosion-Resistant Steels, Allowing for A_{γ}

In general, by monitoring the values of *m* and *k* in expressions $A_{\gamma}^{m} a^{n} = f(A_{\gamma}^{k} b^{p})$ we can trace the influence of structural factor on the relations between force, strain and fatigue characteristics; in particular, the parameters *m* and *k* are 0.5 in the strength assessment (σ_{b} , $\sigma_{0.2}$), equal to 1 in the calculation of specific elongation (δ), and 2 in the cases of reduction of area (Ψ) and life (*N*).

The result can be helpful for nondestructive testing of the materials that tend to change their properties over the operation period. Using the proposed procedure, the mechanical properties of a metal at its heterogeneous areas can be calculated from a single strength characteristic (e.g., by measuring hardness and then determining σ_b from it) without any significant damage to the metal integrity.

This approach can be useful for improving the reliability of life assessment for structural materials over a wide range of operating conditions, where the material structure is a critical factor: under various loading conditions, temperatures, liquid and gaseous media, including high-pressure service, in the presence of stress raisers, etc.

CONCLUSIONS

1. The phase-structural state of corrosion-resistant chromium and chromium-nickel steels is proposed to be quantitatively allowed for by means of the austenite stability factor A_{γ} .

2. The use of the factor A_{γ} makes it possible to determine σ_b , δ , and ψ from experimental values of $\sigma_{0.2}$ over the interval 200 MPa $\leq \sigma_{0.2} \leq 1115$ MPa and chemical composition of steels and to calculate the low-cycle fatigue life from the chemical composition and specific reduction of area, with peculiar relationships for the materials with $A_{\gamma} < 1$ (steels of transitional class) and $A_{\gamma} \geq 1$ (austenitic steels).

REFERENCES

- 1. F. B. Pickering, *Physical Metallurgy and the Design of Steels* [Russian translation], Metallurgiya, Moscow (1982).
- 2. V. T. Troshchenko, *Deformation and Fracture in Metals under High-Cycle Loading* [in Russian], Naukova Dumka, Kiev (1981).

- 3. N. A. Makhutov, A. Z. Vorob'ev, M. M. Gadenin, et al., *Low-Cycle Strength of Structures* [in Russian], Nauka, Moscow (1983).
- 4. T. N. Kalichak, *Investigation of Some Physical-Mechanical and Electrochemical Properties of Martensitic Stainless Steels* [in Russian], Author's Abstract of the Candidate Degree Thesis (Tech. Sci.), Kiev (1971).
- 5. W. Dahl and P. Belche, "Stress-strain diagram," in: W. Dahl and W. Anton (Eds.), *Static Strength and Fracture Mechanics of Steels* [Russian translation], Metallurgiya, Moscow (1986), pp. 51–133.
- 6. M. E. Pridantsev, N. P. Talov, and F. L. Levin, *High-Strength Austenitic Steels* [in Russian], Metallurgiya, Moscow (1969).
- 7. V. I. Tkachev, V. I. Kholodnyi, and I. N. Levina, *Performance of Steels and Alloys in Hydrogen Service* [in Russian], Vertikal', Lvov (1999).