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COMPARATIVE ANALYSIS OF NONLINEAR RESONANCES OF A MECHANICAL SYSTEM

WITH UNSYMMETRICAL PIECEWISE CHARACTERISTIC OF RESTORING FORCE

A. P. Bovsunovskii UDC 620.178; 620.179

We present results of a numerical comparative analysis of superharmonic resonances of the order

2/1–1/5 and subharmonic resonance of the order 1/2 of a mechanical single degree-of-freedom

vibrating system with unsymmetrical characteristic of restoring force at different ratios of system

rigidities in half-cycles and under the conditions of considerable change in vibration damping level

in the system.
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Introduction. In the case of cyclic deformation of an elastic body, fatigue crack has the property of opening

in the extension half-cycle and closing in the compression half-cycle (closing crack). At the instants of crack closure

and opening, an abrupt change in the rigidity of the body takes place, which gives rise to a considerable nonlinearity

of its dynamic behavior and, as a consequence, to the so-called nonlinear effects, to which sub- and superharmonic

(nonlinear) resonances belong, as well as to nonlinearity of the vibrational response of the mechanical system

(displacement, velocity, acceleration, strain, etc.) in resonant regimes of vibration.

Periodic change in the rigidity of a mechanical system gives rise to a number of difficulties, which arise in

the analytical solution of the problem of its forced vibrations. Approximate analytical solutions [1–7] are limited by

simplifying assumptions of the properties of vibrating system and consider one or two nonlinear resonances, which

makes it impossible to perform a comparative analysis of super- and subharmonic resonances of different order. The

order of nonlinear resonance is determined by the number of super- or subharmonic in the vibration spectrum, whose

amplitude increases monotonically as its frequency approaches the eigenfrequency of the vibrating system and

reaches a maximum when these frequencies coincide. The superficial resemblance of the phenomenon to resonance

determined its name – nonlinear resonance.

In [5–9] consider superresonance of second order and [10, 11] subharmonic resonance of the order

f pc =1 2 ( f c is vibration eigenfrequency of a cracked body and p is driving-force frequency). Since super-

resonance vibrations of second and third order of a single degree-of-freedom system had been investigated in [1, 2]

without regard to damping, it appears to be impossible to compare the amplitudes of these nonlinear resonances.

In [12–14], the crack opening-closure process was determined by driving-force frequency. This model

describes incorrectly the behavior of vibrating system in the cases of strong superharmonic resonances, where the

higher-harmonic amplitudes reach the values at which the system changes its rigidity more than once within vibration

period [15]. Taking this phenomenon into account is one of the main difficulties in the analytical study of

superharmonic resonances.

Numerical solutions of the problem of forced vibrations of a bar with closing crack by the action of a

harmonic concentrated force, which were obtained by electric simulation [16–20] or by finite-element simulation [15,

21–23], showed its vibrations to be characterized by the presence of superharmonic resonance of second order, whose

amplitude is by an order of magnitude smaller than that of main resonance. It has also been found that under

0039–2316/07/3902–0159 © 2007 Springer Science + Business Media, Inc. 159

Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev, Ukraine.

Translated from Problemy Prochnosti, No. 2, pp. 72 – 87, March – April, 2007. Original article submitted September 7,

2005.



superharmonic resonance, there is a considerable nonlinearity of the vibration process, which is characterized by a

large second harmonic amplitude in the vibration spectrum. Moreover, in [16, 17] superresonances of the orders

f pc = 3 1 and 4/1 and subresonance of the order f pc =1 2 were detected, and it was shown in particular that

superharmonic resonance of second order occurs at much lower crack depth values than subharmonic resonance. In

the above works, the possibility of change in damping level as a result of crack initiation was not taken into account

[24]. At the same time, the suppressing influence of damping on nonlinear effects was pointed out, e.g., in [5, 25, 26].

It follows that when studying the interrelation between damage parameters and nonlinear-effect parameters, the

change in damping level in the system because of crack initiation and growth must be taken into account.

The aim of the work was computational investigation and comparative analysis of the peculiarities of the

manifestation of nonlinear resonances of a vibrating system with unsymmetrical piecewise characteristic of restoring

force at different damping levels in the system and sensitivity of nonlinear effects under nonlinear resonances of

different orders to the presence of a damage, such as closing crack, in the mechanical system.

Cracked-Body Model. A relatively simple and easy-to-grasp model of elastic body with a closing crack in

the form of a single degree-of-freedom mechanical vibrating system with unsymmetrical piecewise characteristic of

restoring force (Fig. 1) and linear viscous friction is employed. In some cases, this model allows one to describe with

accuracy sufficient for engineering practice the dynamic behavior of complex constructions [27].

Forced vibrations of the above system are described by the differential equation:
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Here α m is viscous friction coefficient, ω is the angular vibration eigenfrequency of an undamaged body, q0 is

driving-force amplitude per unit of generalized mass, C is the generalized rigidity of a system that models an

uncracked body of mass m or in the vibration half-cycle when the crack is closed, and R x( ) is the restoring force,

the equations of which are of the form:
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where Co is the system rigidity in the vibration half-cycle when the crack is open. Using the symbols adopted in Fig. 1,

we have C C Co= + 1.

An exact analytical solution of Eq. (1) can be obtained for the case of free vibrations of the system under

consideration without regard for damping [28] or with allowance for linear viscous friction [29]. For the case of

forced vibrations of the system, approximate analytical solutions have been obtained with due regard for damping [3,

4, 7], which are limited by a number of simplifying assumptions of the properties of the vibrating system.

In the present work, Eq. (1) was solved numerically by the Newmark method [30], which imposes no

restrictions on the nonlinearity level of vibrating system and allows one to obtain solutions with high accuracy [31].
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Fig. 1. Model of a cracked body.



The main problem of adequate modeling of a cracked body is a justified choice of the rigidity ratio of

vibrating system, C Co . In what follows, such a choice was made on the basis of experimental data on the variation

of the longitudinal vibration resonance frequency of a steel specimen with a massive weight at the end as a function

of fatigue edge crack depth [31]. The rigidity ratio of a vibrating system at corresponding values of relative crack

depth γ = a h (a is crack depth and h is specimen cross-section height) is presented in Table 1.

The spectral analysis of vibrations of the system under investigation was performed by means of Fourier

series of the form:
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where A a bk k k
= +2 2

, ϕ k k ka b= arctan ( ), and ωc is the angular vibration eigenfrequency of a cracked body.

Results of Calculations. The amplitude-frequency characteristics (AFC) of the vibrating system under

consideration have been obtained in a wide frequency range at the damping level which corresponded to the value of

the logarithmic vibration decrement of the system, δα = 0 5. %. The dynamicity coefficient β was determined as the

ratio of the sustained forced vibration amplitude of damaged system to the static deflection of undamaged system.

Figure 2 shows as an example AFCs at two rigidity ratio values. As can be seen, when the system rigidity

changes substantially (C Co = 0 913. ), strong super-resonances of second-fifth order and a sub- resonance of the order

f pc =1 2 occur (Fig. 2a). In this case, the amplitudes of sub- and superresonance of second order exceed those of

superresonances of third-fifth order by a factor of over 3.1–4.8. The unusual shape of the AFCs of nonlinear

resonances of odd orders and the fact that these resonant modes do not practically manifest themselves at small

relative change in rigidity (Fig. 2b), which corresponds to a crack of an area of 5% of cross-section, are noteworthy.

The change in the amplitude of subresonance of the order f pc =1 2 and superresonances of second and fourth order

relative to the vibration amplitude of undamages system is still significant and is 2.9-, 1.7- and 1.4-fold, respectively.

At all vibrating system damage levels under consideration, the vibration amplitudes under nonlinear

resonances are by one or two orders of magnitude smaller than the vibration amplitude under main resonance (Table 1).

The difference between the amplitudes decreases with increasing damage level and vibration damping level in the

system, but remains considerable (note that damping affects only slightly the vibration amplitude ratio under main

and subharmonic resonance). The absolute value of the vibration amplitude under nonlinear resonances is low, and

reliable detection of nonlinear resonance by its change may turn out to be problematic. Therefore, the change in

vibration amplitude in the vicinity of nonlinear resonances is of little use for damage diagnostics.
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TABLE 1. Amplitude Ratio of Main Resonance and Nonlinear Resonances

C Co γ = a h S S
1 1 1 2/ /

S S
1 1 2 1/ /

S S
1 1 3 1/ /

S S
1 1 4 1/ /

S S
1 1 5 1/ /

0.998 0.0122 −
−

4215.

−
−
−

574 7.

−
−
−

0.991 0.0500 637 7.

−
280 2

45 5

.

.

550 8.

−
4941

58 2

.

.

595 2.

−
0.983 0.1000 3811.

−
2331

43 0

.

.

548 2.

−
445 5

57 5

.

.

594 4.

−
0.965 0.2000 194 0.

−
179 6

36 5

.

.

525 3

54 9

.

.

412 0

55 4

.

.

5810.

−
0.913 0.4000 77 3

62 9

.

.

124 0

27 7

.

.

3801

52 9

.

.

387 9

48 7

.

.

504 3

57 7

.

.

0.723 0.6000 219

212

.

.

70 0

17 7

.

.

277 8

34 4

.

.

3614

39 0

.

.

314 7

461

.

.

Note. Over the line are given the values corresponding to δα = 0 5. % and under the line

the values corresponding to δα = 5 0. %.



The possibility of exciting exact resonances and hence of practical application of nonlinear effects as

diagnostic signs of damage depends on the width of resonance curves. As is known, in the case of sharp resonance, a

high discreteness of driving-force frequency variation is required for the accurate determination of resonance curve

parameters.

Resonance curves of the same shape as in Fig. 2 have been obtained for the values of system rigidity ratio

listed in Table 1. The width of the resonance curves was determined directly from AFCs at an amplitude that was

equal to the half amplitude of main resonance (Δ1 1), subresonance of the order f pc =1 2 (Δ1 2 ) and super-

resonances of second-fifth order (Δ2 1, Δ3 1, Δ4 1, and Δ5 1, respectively). The results of the measurement are listed

in Table 2.
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a

b

Fig. 2. Amplitude-frequency characteristics of a damaged (solid lines) and an undamaged (dashed

lines) vibrating system: (1) C Co = 0 913. , γ = 0 4. , δα = 0 5. %; (2) C Co =1 0. , γ = 0, δα = 0 5. %;

(3) C Co = 0 991. , γ = 0 05. , δα = 0 5. %.



As can be seen, the widths of the resonance curves under main and subharmonic resonances are purely

comparable. In both cases, there is a tendency to some increase in the width of AFCs with crack growth. A more

complex dependence exists under superharmonic resonance of second order: the width of AFCs increases with

decrease in crack size to γ = 0 05. , but remains a factor of 2.1–37.8 smaller than under main resonance. This

conclusion agrees qualitatively with the results obtained for a single degree-of-freedom system, but at higher C Co

values and a higher damping level [5]. Thus, it is more difficult to excite an exact superharmonic resonance of second

order than main resonance or subharmonic resonance of the order f pc =1 2.

In contrast to superharmonic resonance of second order, the width of resonance curve increases in direct

proportion to the crack size under superharmonic resonance of fourth order (Table 2). In this case, its width remains

small for small and medium cracks (we adopted the following conventional classification of cracks by their size:

γ ≤ 0 1. , small cracks; 0 1 0 3. . ,< ≤γ medium cracks; γ > 0 3. , large cracks).

Due to the special shape of resonance curves under odd superharmonic resonances, it appears to be

impossible to accurately determine their width. The data obtained for these regimes of vibration at C Co = 0 913. are,

strictly speaking, conventional; it can be concluded, however, that the width of AFCs under nonlinear resonances of

third and fifth order is approximately half as large as that under main resonance.

As is evident from Table 3, as the crack becomes larger the frequencies of main resonance and nonlinear

resonances of the system decrease monotonically (to 8% in the crack size range in question). This is also evidenced

by AFC shift towards lower frequencies under main resonance (Fig. 2).

In [5] it was shown that the frequency of exact superresonance of second order is somewhat lower than the

frequency at which the second harmonic, which predominates in the vibration spectrum under the above conditions,

reaches the highest value. Therefore, in addition to the exact frequency value of main resonance and nonlinear

resonances, the frequencies at which the amplitude of the predominant harmonic in the vibration spectrum reaches a

maximum have been calculated (Table 4). The subharmonic whose frequency is half as high as driving-force

frequency is predominant in the spectrum of subharmonic resonance of the order f pc =1 2, and the second-fifth

harmonics are predominant in the spectrum of superresonances of second-fifth order, respectively.

A comparison of the data listed in Tables 3 and 4 showed that the frequencies of exact resonances really

differ, though only slightly, from the frequencies of the amplitude maxima of the predominant harmonies: under

subresonance, this difference reaches 0.0008% and under superresonances of second, third, fourth and fifth order

0.0031, 0.18, 0.069, and 0.052%, respectively. The frequencies of exact superresonances of second-fourth order are

lower than those of the amplitude maxima of the predominant harmonics, and the frequencies of exact subresonance

of the order f pc =1 2 and exact superresonance of fifth order are higher. The above analysis did not take account of

data for the rigidity ratio C Co = 0 723. since due to a considerable nonlinearity of the vibrating system, AFCs have a

break under superresonance of fourth order (Fig. 2a). It is known [31] that the second-harmonic amplitude in the

vicinity of main resonance has no extremum: it decreases monotonically when the driving-force frequency increases.

Therefore, the data relating to main resonance are not given in Table 4.

The occurrence of nonlinear resonances is a qualitative sign of the presence of a damage, such as fatigue

crack, and the amplitudes of these resonances allow one to judge the damage level. It is known that vibration

processes are essentially nonharmonic (are distorted nonlinearly) under nonlinear resonances; this can also be utilized

for the qualitative and quantitative assessment of damage. The cause of considerable nonlinear distortions of
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TABLE 2. Width of Resonance Curves (δα = 0 5. %)

γ = a h Δ
1 2/

Δ
1 1/

Δ
2 1/

Δ
3 1/

Δ
4 1/

Δ
5 1/

0.0122 – 0.00277 0.00069 – 0.00030 –

0.0500 0.00235 0.00279 0.00132 – 0.00063 –

0.1000 0.00238 0.00276 0.00124 – 0.00065 –

0.2000 0.00245 0.00277 0.00055 – 0.00088 –

0.4000 0.00256 0.00281 0.00020 0.00122 0.00170 0.00128

0.6000 0.00306 0.00302 0.00008 – – –



vibrations under nonlinear resonances is that in these regimes, a harmonic whose frequency coincides with the

main-resonance frequency appears in the vibration spectrum. The amplitude of this harmonic is comparable to or in

large excess over the fundamental harmonic amplitude under exact nonlinear resonance. Under superharmonic

resonances of the order f pc = 2 1, 3 1, 4 1, etc., the second, third, fourth, etc, harmonics, respectively, and under

subharmonic resonance of the order f pc =1 2, the first subharmonic prevail in the vibration spectrum. Therefore, the

ratio of the predominant-harmonic amplitude in the vibration spectrum to the fundamental harmonic amplitude may

be used as a sign of damage, neglecting other components of the spectrum.

Let us confine ourselves to analysis of three nonlinear resonances which are of the greatest practical interest:

subharmonic resonance of the order f pc =1 2 and superharmonic resonances of the orders f pc = 2 1 and 3 1. Let

us use the ratio of the predominant-harmonic amplitude in the vibration spectrum (A1 2 , A2 1, and A3 1) to the

first-harmonic amplitude (A1) and the ratio of the amplitude of exact nonlinear resonance (S1 2 , S2 1, and S3 1) to the

forced-vibration amplitude of undamaged system at the same frequency (S) as diagnostic signs of damage.

As follows from Fig. 3, under subharmonic resonance, crack growth in the range 0 1 0 6. .< ≤γ leads to a

considerable increase (of almost two orders of magnitude) in both diagnostic signs of damage in question. Under

superharmonic resonances of second and third order, the analogous changes are by one and two orders of magnitude,

respectively, smaller. Whereas under superharmonic resonance of second order the diagnostic signs of damage change

materially when there are medium and large cracks, as is the case with subharmonic resonance, under superharmonic

resonance of third order, they do so only when there are large cracks.

The dependences of relative changes in predominant harmonics and vibration amplitudes on the crack size in

corresponding regimes of vibration are qualitatively identical. This means that the amplitude of exact nonlinear

resonances is mainly determined by the amplitude of the predominant harmonic in the vibration spectrum, whose

frequency coincides with the main-resonance frequency. The fractional increase in nonlinear-resonance amplitude is

quantitatively somewhat larger than that of the predominant harmonics. The reason of this is that both characteristics

were determined at exact-resonance frequencies, which, as was shown above, do not coincide with the frequencies at

which the amplitudes of the predominant harmonics reach maximum values.
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TABLE 3. Frequencies of Main Resonance and Nonlinear Resonances (δα = 0 5. %)

γ = a h ω
1 2/

ω
1 1/

ω
2 1/

ω
3 1/

ω
4 1/

ω
5 1/

0.0122 – 0.999486 0.499723 – 0.249817 –

0.0500 1.995469 0.997724 0.498835 0.331933 0.249384 0.199607

0.1000 1.991416 0.995695 0.497823 0.331503 0.248878 0.199126

0.2000 1.982175 0.991079 0.495514 0.330163 0.247705 0.198261

0.4000 1.954481 0.977238 0.488592 0.325693 0.244171 0.195489

0.6000 1.838169 0.919077 0.459532 0.306334 0.230217 0.184278

Note. The subscripts on ω denote the order of nonlinear resonance.

TABLE 4. Frequencies of the Maxima of the Predominant Harmonics in Vibration Spectra

under Main Resonance and Nonlinear Resonances (δα = 0 5. %)

γ = a h ω
1 2/

ω
2 1/

ω
3 1/

ω
4 1/

ω
5 1/

0.0122 – 0.499723 – 0.249822 –

0.0500 1.995468 0.498844 0.332542 0.249385 0.199530

0.1000 1.991411 0.497832 0.331865 0.248882 0.199077

0.2000 1.982159 0.495522 0.330326 0.247738 0.198154

0.4000 1.954361 0.488607 0.325724 0.244339 0.195387

0.6000 1.836734 0.459524 0.307142 0.230503 0.184714

Note. The dashes denote that the corresponding nonlinear resonances are absent.



Damping reduces the sensitivity of all above diagnostic signs to the presence of a damage. The increase of an

order of magnitude in the vibration decrement of the system decreases the subresonance amplitude by a factor of up to

10, the amplitude of superresonance of second order by a factor of up to 2.5, and the amplitude of superresonance of

third order by a factor of up to 1.6, which is due to a corresponding decrease in predominant-harmonic amplitude in

the vibration spectrum. In this case, the trend of the plots of the signs of damage against relative crack size does not

change qualitatively.

Since the diagnostics of small damages is of the greatest practical interest, Fig. 4 shows the same plots as

Fig. 3, but at smaller relative crack size. As can be seen, there is a qualitative difference between sub- and

superharmonic resonances. Subharmonic resonance occurs when the crack reaches a definite value, which agrees with

the results of [16]. For example, at damping levels of δα = 0 5. and 5.0%, a subharmonic appears in the vibration

spectrum at crack sizes of γ = 0 03. and 0.28 respectively. Further crack growth leads to a considerable increase in

subharmonic. The increase in the amplitudes of the predominant harmonics with increasing crack size occurs at a

lower rate under superharmonic resonances, but is observed from the instant of crack nucleation. The absolute value

of this increase under superharmonic resonance of third order is negligible in the region of small racks. At the same

time, the rate of change of the second-harmonic amplitude in the region of small cracks under superharmonic

resonance of second order and at low damping level is sufficiently high for practical application.
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Fig. 3. Plots of relative change in predominant harmonic (a–c) and resonance amplitude (d–f) against

damage size under subharmonic resonance of the order 1/2 (a, d) and superharmonic resonance of the

orders 2/1 (b, e) and 3/1 (c, f). (Here and in Fig. 4: solid lines, δα = 0 5. %%; dashed lines, δα = 5 0. %.)

a b c

d e f



Reliable experimental recording of the diagnostic sign of damage depends on the precision and resolution of

measuring equipment and on the noise level of electronic devices since vibration-based diagnosis of damages is

usually performed at low vibration levels. These factors determine to one extent or another the detection limit of any

damage diagnosis technique, i.e., the minimal damage size that can be reliably detected.

In the further analysis it is assumed conventionally that the relative determination error of one damage

characteristic or another is 20%. It follows that damage can be reliably detected if the change in diagnostic sign

exceeds this value. In Figs. 3 and 4, the assumed error is indicated by dashed lines. As can be seen, allowance for the

experimental-determination error of the sign of damage reduces the sensitivity of both diagnosis methods. Whereas

under subharmonic resonance of the order f pc =1 2 and superharmonic resonance of the order f pc = 2 1 at a low

vibration damping level in the system this reduction is relatively small, under superharmonic resonance of the order

f pc = 3 1 it is so large that it is hardly expedient to use this regime of vibration in practice.

The minimal damage size that is detected by both diagnosis methods with allowance for measurement error

depends largely upon the vibration damping level in the system. Table 5 lists results of calculations of minimal crack

sizes which were determined at 20% change in the predominant harmonic in the vibration spectrum under

subharmonic resonance of the order f pc =1 2 and superharmonic resonances of the order f pc = 2 1 and 3 1 and

at a change of two orders of magnitude in vibration damping level in the system. An analysis of the results of

calculations showed superharmonic resonance of second order to be more sensitive to the presence of damage. For
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Fig. 4. Plots of relative change in predominant harmonic (a–c) and resonance amplitude (d–f) against

damage size under subharmonic resonance of the order 1/2 (a, d) and superharmonic resonance of the

orders 2/1 (b, e) and 3/1 (c, f) in the region of small cracks.

a b c

d e f



instance, at the lowest vibration damping level studied in the system (δα = 0 101. %), the sensitivity of nonlinear

distortions of vibrations under superharmonic resonance of second order is 7.2 times as high as under subharmonic

resonance and 90.0 times as high as under superharmonic resonance of third order. This difference decreases with

increasing damping level in the system since increase in damping reduces most greatly the sensitivity of super-

harmonic resonance of second order. For example, when the vibration decrement of the system increases by a factor

of 100, the sensitivity of superharmonic resonance of second order decreases by a factor of 96, that of subharmonic

resonance of the order f pc =1 2 by a factor of 32, and that of superharmonic resonance of third order by a factor of

3.5.

An important practical characteristic of diagnosis methods is, in addition to damage sensitivity, the power of

change in the function describing the dependence of the diagnostic sign on the damage size, F ( ),γ on unit increment

of damage size:

V
F

=
∂ γ

∂γ
( )

. (4)

As is seen from Fig. 5, the diagnosis method based on the variation of the predominant harmonic under

subresonance of the order f pc =1 2 is most sensitive to crack growth. The main disadvantage of this method is that

it is insensitive to the presence of crack before it reaches a certain size, which is directly dependent on the vibration

damping level in the system. The threshold of complete insensitivity of this method is the higher, the higher the

damping level in the system. From Table 5 it follows that at a damping level of δα = 2 0. %, the above method is

insensitive to the presence of small cracks.
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TABLE 5. Minimal Crack Sizes Calculated from the Variation of the Predominant Harmonic in the

Vibration Spectrum under Subresonance of the Order 1/2 and Superresonances of the Orders 2/1 and 3/1

δα , % γ
1 2/

γ
2 1/

γ
3 1/

γ γ
1 2 2 1/ /

γ γ
3 1 2 1/ /

0.101 0.013 0.0018 0.162 7.22 90.00

0.503 0.033 0.0090 0.314 3.67 34.89

1.005 0.069 0.0183 0.384 3.77 20.98

2.011 0.120 0.0363 0.440 3.31 12.12

5.027 0.285 0.0895 0.503 3.18 5.62

10.053 0.420 0.1732 0.575 2.42 3.32

Fig. 5. Rate of change of plots of predominant harmonics under subharmonic

resonance of the order 1/2 (1) and superharmonic resonance of the orders 2/1 (2)

and 3/1 (3) against damage size on unit increment of damage( . %).δα = 0 5



We obtained that the change in the predominant harmonic under superharmonic resonance of the order

f pc = 3 1 in comparison with that of the order f pc = 2 1 is more pronounced when the damage size changes no

corroboration of the conclusion [16]. From Fig. 5 it follows that the rate of change of diagnostic sign under

superharmonic resonance of the order f pc = 2 1 in the range of small and medium cracks is higher than under

superharmonic resonance of the order f pc = 3 1.

Conclusions. A peculiarity of vibrations of a mechanical system with unsymmetrical piecewise characteristic

of restoring force is the presence of a number of nonlinear resonances whose amplitudes are much smaller than the

main-resonance amplitude. The width of AFC of odd superharmonic resonances is comparable to that of main

resonance. The width of amplitude-frequency characteristic of even superharmonic resonances is much smaller than

that of main resonance, in view of which the excitation of exact superharmonic resonances of even orders becomes

problematic.

The most sensitive characteristic to the presence of damages of medium and large size is the nonlinearity of

system vibration under subharmonic resonance, which does not occur in the case of small damages. At the same time,

superharmonic resonance of second order is observed from the instant of crack nucleation, and its intensity at low

damping level is sufficiently high for the diagnosis of small cracks.

When 20% measurement error of the predominant-harmonic amplitude in the vibration spectrum is allowed

for, the sensitivity of superharmonic resonance of second order to the presence of a damage is by one or two orders of

magnitude higher than that of subharmonic resonance of the order f pc =1 2 and superharmonic resonance of third

order. When the damping level in the system increases by two orders of magnitude, the difference between the

sensitivities of the above nonlinear resonances decreases, but the sensitivity of superharmonic resonance of second

order remains higher than that of the other nonlinear resonances.
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