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ANALYSIS OF BOUNDARY-VALUE PROBLEMS

DESCRIBING THE NON-ISOTHERMAL PROCESSES

OF ELASTOPLASTIC DEFORMATION

TAKING INTO ACCOUNT THE LOADING HISTORY

A. Yu. Chirkov UDC 539.3

We discuss the theory and approximate methods for solving boundary-value problems of thermo-

plasticity in a quasi-static formulation when the process of non-isothermal elastoplastic deformation

of a body is a sequence of equilibrium states. In this case, the stress-strain state depends on the

loading history, and the process of inelastic deformation is to be observed over the whole time

interval being studied. The boundary-value problem is stated as a non-linear operator equation in

the Hilbertian space. The conditions that provide the existence, uniqueness and continuous dependence

of the generalized solution on the applied loads and initial strains are defined. A convergence of the

methods of elastic solutions and variable elastic parameters is studied to solve the boundary-value

problems describing the non-isothermal processes of active loading taking into account the initial

strains dependent on the deformation history and heating.

Keywords: theory of plasticity, stress and strain deviators, non-isothermal processes, elastoplastic deformation, simple

loading, thermomechanical surface, boundary-value problem, iterative methods, convergence, accuracy.

Introduction. In the investigation of non-isothermal processes of elastoplastic deformation, the stress, strain

and displacement components at each loading stage are determined by solving a set of non-linear equations for

increments in the sought-for values during a loading stage. To solve the non-linear boundary-value problem stated in

increments, approximate methods are used with the aid of which the problem of thermoplasticity at each stage of

loading is reduced to a sequential solution of auxiliary linear problems. In this case, the accuracy satisfying the

resolving equations for complete values of stresses, strains and displacements are to be controlled, since the

boundary-value problem is solved approximately for the increments in these values, and therefore, in their

summation, an error can be accumulated [1]. In addition, the use of the constitutive relationships in increments

assumes a higher degree of smoothness of the approximating functions for stress–strain diagrams since, for the

computing process to be stable, it is necessary to provide the continuity of tangential moduli. It should also be taken

into account that in the statement of the boundary-value problem in increments, the loading stage duration should be

sufficiently short. Therefore, the use of numerical methods for solving the problem in a three-dimensional statement

can result in unacceptable computation costs.

An alternative approach consists in integrating the equation of state for a loading stage in order to obtain a set

of resolving equations for complete stress, strain and displacement components, and not in increments [1, 2]. This

makes it possible to avoid difficulties connected with computation of tangential moduli from stress–strain diagrams

and accumulation of errors in the numerical solution of the problem in increments, which contributes to the

computing process stability [1]. In this case, the duration of the loading stage can be sufficiently long if, within the

stage of loading, the deformation of all points of the body occurs along the trajectories close to rectilinear. In the

cases where the loading trajectory is a broken line composed of rectilinear segments, the solution of the
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boundary-value problem can be obtained at enlarged time steps, which considerably reduces the computation cost in

the numerical modeling.

It is apparent that in devising the efficient approximate methods for solving the problems of thermoelasticity,

it is necessary to have clear information on the conditions of existence and properties of accurate solutions for the

problem under consideration. It may be considered that the boundary-value problem is stated correctly if the existence

and uniqueness of its solution in a certain class of functions are proved, the solution stability with respect to small

perturbations of initial data and its continuous dependence on external effects in the process of loading is established.

This paper presents the results of analysis of the boundary-value problem of thermoplasticity that describes

the processes of deformation along the trajectories consisting of rectilinear segments of the broken line or close to

them. The emphasis is on a generalized statement and the investigation of the convergence of approximate methods

for solving the boundary-value problem.

Main Statements of the Phenomenological Model. Let σ σ( ) ( ( ))t tij= ( , )1 3≤ ≤i j be the stress tensor

presented in the form of two components: σ σ σ( ) ( ) ( ),t t tS D= + with σS t( ) being the spherical tensor and σD t( )

the stress deviator. By analogy with the stress tensor, the small strain tensor ε ε( ) ( ( ))t tij= ( , )1 3≤ ≤i j allows the

expansion of the form ε ε ε( ) ( ) ( ),t t tS D= + with ε S t( ) being the spherical tensor and εD t( ) the strain deviator. The

solution of the non-isothermal elastoplastic problem is based on the following main statements.

It is assumed that the variation in the body volume over the whole range of stresses and strains is of an elastic

character, i.e., there exists a linear dependence between σS t( ) and ε S t( ):

ε σ εS S S

T
t

k T t
t t( )

( ( ))
( ) ( ),= +

1

0
(1)

where k T t0 ( ( )) is the modulus of the total volumetric expansion dependent on the temperature T t( ) and ε
S

T
t( ) is

the tensor of unconstrained thermal strains.

The total strain deviator εD t( ) will be conditionally presented as a sum of elastic ε
D

e
t( ) and plastic ε

D

p
t( )

components:

ε ε εD D

e

D

p
t t t( ) ( ) ( ).= + (2)

The elastic component of the strain deviator is defined by the generalized Hook law which can be presented

for an isotropic body as

ε σ
D

e

Dt
G T t

t( )
( ( ))

( ),=
1

2 0
(3)

where G T t0 ( ( )) is the initial shear modulus dependent on temperature in the general case.

Using relations (3) we obtain

σ ε( ) ( ( )) ( ),t G T t t
e= 3 0 (4)

where σ( )t and ε e
t( ) are the intensities of the stress σD t( ) and strain εD t( ) deviators defined by the following

relationships:

σ σ( ) | | ( ) | | ,t tD=
3

2
ε εe

D

e
t t( ) | | ( ) | | .=

2

3
(5)

Here and below, the scalar product ( , )⋅ ⋅ induced by the convolution of the corresponding tensors and the norm || | |⋅
associated with this scalar product are used.

The plastic component of the strain deviator is defined on the basis of the plastic yielding law [3, 4]

associated with the von Mises yield surface [3]:
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d t
d t

t
t

D

p

p

Dε
ε
σ

σ( )
( )

( )
( ),=

3

2
(6)

where d t
pε ( ) is the intensity of the increments in the plastic strains,

d t d t
p

D

pε ε( ) | | ( ) | | .=
2

3
(7)

We note that in consideration of the processes of deformation along the trajectories of small curvature,

equation (6) can be derived based on the isotropy postulate and the principle of lag formulated by Il’yushin in [5] and

experimentally justified for wide classes of materials at room and elevated temperatures.

Thus, the constitutive equations describing the non-isothermal processes of elastoplastic deformation consist

of a condition for an elastic variation of the volume (1) and relationships (2), (3), (6) which are equivalent to the

Prandtl–Reiss equations of state [6, 7] and are of the following form:

d t d
G T t

t
d t

t
tD D

p

Dε σ
ε
σ

σ( ) (
( ( ))

( ) )
( )

( )
( ).= +

1

2

3

20

(8)

In using equations (8), the whole process of loading is divided into the time steps in such a way that the

instants of time, which make distinction between the stages of loading and unloading, coincide as closely as possible

with the time instants of variation in the deformation process direction from loading to unloading, and vice versa.

Let us integrate expression (8) over a loading stage. As a result, at the end of the mth loading stage we obtain

ε ε σ σD m D m

m

D m

m

Dt t
G T t

t
G T t

( ) ( )
( ( ))

( )
( ( ))

(− = −−
−

1
0 0 1

1

2

1

2
t t

d t

t
m D

p

t

t

m

m

− +
−

∫1

3

2
1

) ( )
( )

( )
.σ

ε
σ (9)

Using relationships (3) we find

ε ε σ σ
ε
σD m D

p

m

m

D m D

p

t t
G T t

t t
d t

( ) ( )
( ( ))

( ) ( )
( )

(
− = +−1

0

1

2

3

2 t
t

t

m

m

)
.

−

∫
1

(10)

At the end of the mth loading stage, the plastic strain deviator ε
D

p

mt( ) is determined using the formula

ε σ
ε
σ

ε
D

p

m D

p

D

p

m

t

t

t t
d t

t
t

m

m

( ) ( )
( )

( )
( ).= + −

−

∫
3

2
1

1

(11)

Denote the increment in the plastic strains at the end of the mth loading stage by Δm D

pε :

Δm D

p

D

p

m D

p

mt tε ε ε= − −( ) ( ).1 (12)

Then, according to formulas (11) and (12) we have

Δm D

p

D

p

t

t

t
d t

t
m

m

ε σ
ε
σ

=
−

∫
3

2
1

( )
( )

( )
. (13)
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Let s s t= ( ) be the arc length of the plastic strain path determined by the expression given below:

s t d t
d t

dt
dt

D

p

t

D

pt

( ) | | ( ) | | | |
( )

| | .= ′ =
′

′
′∫ ∫ε

ε

0 0

(14)

Suppose that at the loading stage, the arc length of the plastic strain trajectory increases monotonically during

the deformation process. Since during the time dt, the arc length s s t= ( ) gets the increment

ds t
ds t

dt
dt d t

D

p
( )

( )
| | ( ) | | ,= = >ε 0 (15)

then, taking into account the designations s s tm m− −=1 1( ) and s s tm m= ( ), expression (13) can be presented in the

following form:

Δm D

p D

Ds

s
s

s
ds

m

m

ε
σ
σ

=
−

∫
( )

| | ( ) | |
.

1

(16)

Let us integrate (16) using the formula of rectangles. As a result, we get

Δm D

p D m

D m s

s
s

s
ds

m

m

ε
σ
σ

≈
−

∫
( )

| | ( ) | |
.

1

(17)

The error of this formula satisfies the estimate

σ
σ

σ
σ

D

Ds

s

D m

D m s

s
s

s
ds

s

s
ds

m

m

m

m( )

| | ( ) | |

( )

| | ( ) | |
− ≤

− −

∫ ∫
1 1

1

2
1

2

1

| | max
( )

| | ( ) | |
.s s

d

ds

s

s
m m

s s s

D

Dm m

− −
≤ ≤−

σ
σ (18)

Since the small strains are considered, the estimate | |s sm m− <<−1
2

1 is valid. Moreover, if within the

loading stage, the directing stress deviator σ σD Ds s( ) | | ( )| | varies sufficiently smoothly with reference to the

argument s, it seems likely that the use of formula (17) does not introduce a great error.

Suppose that a simple loading is realized at each stage [5]. Considering that under simple loading

σ σD Ds s( ) | | ( )| | ,= const expression (13) takes the following form:

Δm D

p D m

m

p

t

t
t

t
d t

m

m

ε
σ
σ

ε=
−

∫
3

2
1

( )

( )
( ). (19)

In accordance with (10), (19) we obtain

ε ε σD m D

p

m

m

D mt t
G t

t( ) ( )
( )

( ),− =−1

1

2
(20)

Δm D

p

m m

D m
G t G T t

tε σ= −
⎛
⎝
⎜

⎞
⎠
⎟

1

2

1 1

0( ) ( ( ))
( ), (21)

where G tm( ) is the scalar function defined by the following expression:
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1 1 3

0
1

G t G T t t
d t

m m m

p

t

t

m

m

( ) ( ( )) ( )
( ).= +

−

∫σ
ε (22)

Based on (12), (20), and (21), we write

σ ε εD m m D m D

p

mt G t t t( ) ( ) ( ( ) ( )),= − −2 1 (23)

ε ε σ
D

p

m D m

m

D mt t
G T t

t( ) ( )
( ( ))

( ).= −
1

2 0
(24)

Moreover, using relationships (21) and (22) we find

d t
G t G T t

tp

t

t

m

p

m m

m

m

m

ε ε
σ

( )
( ) ( ( ))

( )
,

−

∫ = = −
⎛
⎝
⎜

⎞
⎠
⎟

1

1 1

30

Δ (25)

where Δm

p

ε is the intensity of the deviator of the increments in the plastic strains at the end of the mth loading stage

Δ Δm

p

m D

pε ε=
2

3
| | | | . (26)

Thus, the constitutive relationships describing the non-isothermal simple processes of elastoplastic deformation

can be presented in the following way:

σ ε ξ ε ξ( ) ( ( )) ( ( ) ( )) ( ) ( ( ) (t k T t t t G t t tm m S m S m m D m D m= − + −0 2 )), (27)

where ξ ξ( ) ( ( )),t tm ij m= 1 3≤ ≤i j, is the initial strain tensor that corresponds to the spherical unconstrained

thermal strain tensor ε
S

T

mt( ) and the plastic strain deviator ε
D

p

mt( )−1

ξ ε ε( ) ( ) ( ).t t tm S

T

m D

p

m= + −1 (28)

The plastic strains at the end of the mth loading stage are determined from relationships (24) which, in view

of equations (23), can be written in the following way:

ε ε ε ε
D

p

m

m

m

D m D

p

mt
G t

G T t
t t( )

( )

( ( ))
( ( ) ( ))= −

⎛
⎝
⎜

⎞
⎠
⎟ − +−1

0
1 D

p

mt( ).−1 (29)

Denote the deviator of the active strains ε
D

a

mt( ) that occur in the body element in addition to the plastic

strains by ε
D

p

mt( )−1 :

ε ε ε
D

a

m D m D

p

mt t t( ) ( ) ( ).= − −1 (30)

Then, relationships (23) and (29) can be presented as

σ εD m m D

a

mt G t t( ) ( ) ( ),= 2 (31)
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Δm D

p m

m
D

a

m

G t

G T t
tε ε= −

⎛
⎝
⎜

⎞
⎠
⎟1

0

( )

( ( ))
( ). (32)

By substituting the components of the stress deviator (31) into the expression of the stress intensity (5) we

obtain

G t
t

t
m

m

a

m

( )
( )

( )
,=

σ

ε3
(33)

where ε a

mt( ) is the intensity of the active strain deviator ε
D

a

mt( ) which is equal to

ε εa

m D

a

mt t( ) | | ( )| | .=
2

3
(34)

Using relationships (4), (25), (33) we find

ε εe

m

m

m

a

mt
G t

G T t
t( )

( )

( ( ))
( ),=

0

Δm

p m

m

m

G t

G T t
tε εα= −

⎛
⎝
⎜

⎞
⎠
⎟1

0

( )

( ( ))
( ), (35)

whence it follows

ε ε εa

m

e

m m

p

t t( ) ( ) .= + Δ (36)

The Odquist parameter q tm( ) that characterizes the accumulated plastic strain at the end of the mth loading

stage is calculated from the following relationships:

q t d d d q tm

p p p

t

ttt

m m

p

k

m

mmm

( ) ( )= = + = + =
−

−

∫∫∫ −ε ε ε ε
1

1

00

1 Δ Δ ε
p

k

m

=
∑

1

. (37)

Equations (31), (32) are characterized by the functional dependence

σ ε= Ψ ( , ),
a

T (38)

which is specified on the basis of the following equation of the instantaneous thermomechanical surface:

σ ε= f T( , ), (39)

where by the strain ε is meant the pure force component, i.e., the total strain minus pure thermal one. It is assumed

that functional dependence (39) is independent of the hydrostatic pressure, stress deviator type and is found from the

simple tension test data for cylindrical specimens.

Note that functional dependence (39) describes the material elastoplastic deformation taking into account the

hardening by the time of the beginning of the loading stage. The argument in this equation is in effect the active

strain, namely, the total strain minus the initial plastic strain. Therefore, the value of the accumulated plastic strain by

the beginning of the loading stage is taken as a measure of the hardening. In other words, under re-loading and

subsequent loadings, equation (38) takes into account the dependence of the generalized stress–strain curves on the

value of the accumulated plastic strain. On this basis, we present functional dependence (38) in a more general form:

σ ε= Ψ ( , , ),
a

q T (40)
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where the parameter that characterizes the material hardening by the beginning of the current loading stage is taken as

an additional argument q. Here, the dependence of the hardening parameter q on the deformation process takes into

account the loading history. The simplest assumption about the hardening character is that the value of the

accumulated plastic strain, i.e., the Odqvist parameter is taken as a measure of hardening. For isothermal processes,

equation (40) can be interpreted as a surface of deformation with initial hardening. For non-isothermal processes, it

describes many thermomechanical processes as a function of the hardening value. For fixed values of the hardening

parameter q, Eq. (40) can be interpreted as an instantaneous thermomechanical surface with initial hardening.

To specify functional dependence (40), we use equation of a thermomechanical surface (39). In uniaxial

tension of a specimen, the total strain ε is related to the active strain ε a by the relationship: ε ε= +a
q, where q is

the initial plastic strain. Then, taking into account the linear dependence at the elastic portion of deformation we

obtain

Ψ ( , , )
( ) , ( , ),

( , ), ( , )
ε

ε ε ε
ε ε ε

a

a a

p

a a

p

q T
G T q T

f q T q T
=

≤
+ >

3 0

,

⎧
⎨
⎪

⎩⎪
(41)

where ε p q T( , ) is the strain corresponding to the instant limit of proportionality σ p q T( , ) dependent on the

accumulated plastic strain q and temperature T .

Since the dependence between σ p q T( , ) and ε p q T( , ) is taken to be linear, we obtain the following

equation for determining ε p q T( , ):

f q T q T G T q Tp p( ( , ) , ) ( ) ( , ).ε ε+ = 3 0 (42)

In the active process of loading starting from the natural non-deformed state, it should be assumed that

ε εa = and q = 0. In addition, σ p T( , )0 and ε p T( , )0 are the limits of proportionality determined from equation of a

thermomechanical surface (39). Then, using relationships (33) and (41) we have

G t

G T t t T t

f t T t

p

( )

( ( )), ( ) ( , ( )),

( ( ), ( ))1

0 1 1 1

1 1

0

3

=
≤ε ε

ε
ε ( )

, ( ) ( , ( )),
t

t T tp

1
1 10ε ε>

⎧
⎨
⎪

⎩⎪
(43)

with the value of ε p T t( , ( ))0 1 being determined by the following expression:

ε
σ

p

p
T t

T t

G T t
( , ( ))

( , ( ))

( ( ))
.0

0

3
1

1

0 1

= (44)

Under unloading and re-loading, we have

G t

G T t t t

f t q t T tm

m

a

m p m

a

m m
( )

( ( )), ( ) ( ),

( ( ) ( ), (=
≤

+ −

0

1

ε ε
ε m

a

m

a

m p m

t

t t
))

( )
, ( ) ( ),

3ε
ε ε>

⎧

⎨
⎪

⎩
⎪

(45)

where the quantity ε p mt( ) is the root of the equation

f t q t T t G T t tp m m m m p m( ( ) ( ), ( )) ( ( )) ( ).ε ε+ =−1 03 (46)

Let us assume that for the fixed temperature T tm( ), the piece-wise linear approximation f t T tm m( ( ), ( ))ε
is used as a function of strains ε ( ).tm For this purpose, the whole interval of variation in ε ( )tm is divided into

segments [ ( ), ( )]ε εn m n mt t−1 and within each of them the following linear interpolation is given:
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f t T t f t T t g T t tm m n m m n m m( ( ), ( )) ( ( ), ( )) ( ( )) ( ( )ε ε ε= + −−1 3 εn mt−1 ( )), (47)

where g T tn m( ( )) is the linear hardening module on the segment [ ( ), ( )],ε εn m n mt t−1

g T t
f t T t f t T t

t
n m

n m m n m m

n m

( ( ))
( ( ), ( )) ( ( ), ( ))

( (
=

− −ε ε
ε

1

3 ) ( ))
.

− −εn mt1
(48)

Based on formulas (46)–(48), we obtain the relationships by using which the value of ε p mt( ) is determined:

ε εp m m mt t q t( ) ( ) ( ),*= − −1 ε
σ

*
*

*

( )
( )

( )
,t

t

G t
m

m

m

=
3

ε ε εn m m n mt t t− −≤ ≤1 1( ) ( ) ( ),* (49)

with

σ ε* ( ) ( ( ), ( )) [ ( ( )) ( ) ( (t f t T t G T t q t g T tm n m m m m n= + −− −1 0 13 m n m

m m n m

t

G t G T t g T t

)) ( )],

( ) ( ( )) ( ( )).*

ε −

= −

1

0

(50)

For the steady-state creep, functional dependence (40) can be approximately determined with the help of the

creep diagrams obtained for fixed values of stresses and temperature by way of plotting isochronic curves of creep

[1, 8]:

σ ε= f T t t( , ( ), ). (51)

Using the isochronic curves of creep (51), we present functional dependence (40) in the following form:

σ ε= Ψ ( , , ( ), ),
a

q T t t (52)

where by the plastic (inelastic) strain is meant the irreversible strain including both creep strain and instantaneous

plastic strain. In this case, the value of the accumulated irreversible strain before the beginning of the loading stage is

taken as the hardening parameter q. Thus, the solution of the viscoplastic problem is reduced to that of the

elastoplastic one wherein the generalized stress–strain curves of the material are dependent on the value of the

accumulated irreversible strain, time and temperature [1, 8].

Generalized Statement of the Boundary-Value Problem. Let the body under consideration occupy the

region Ω ⊂ R
3

and have a regular boundary. We will consider the vector functions that describe the displacement of

the body points u t( ) as elements of the functional set U . Denote by X the set of admissible tensor functions for the

stresses σ( ),t total ε ( )t and initial ξ ( )t strains. We assume that U and X are the Hilbertian spaces with the scalar

products ( , )⋅ ⋅ U and ( , )⋅ ⋅ Õ , respectively. Denote by U
*

the space conjugate to U and determine ρ ( ),t v as a value

of the continuous linear functional ρ ( )
*

t U∈ at the element v U∈ . Then, in the investigation of non-isothermal

processes of elastoplastic deformation in the quasi-static statement, the generalized boundary-value problem can be

presented by the following set of equations:

( ( ), ) ( ( ), ) ,ε η ηt Bu tX X= ∀ ∈η X ,

( ( ), ) ( ( ( ), ( ), ) ( ( ) ( )), ) ,σ χ ε ξ ε ξ χt D t t t t tX X= − ∀ ∈χ X ,

( ( ), ) ( ), ,σ ρt Bv t vX = ∀ ∈v U ,

(53)

where B is the continuous linear differential operator acting from the space U into the space X , i.e., the operator for

calculating small strains from the specified displacements, D is the nonlinear operator that maps X into itself and

establishes the interrelation between stresses and strains, and ρ ( )
*

t U∈ is the linear functional associated with the

work of loads applied to the body at possible displacements v U∈ .
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The operator D : X X→ is determined with the help of mapping

η ζ μ η ζ μ ζ( ), ( ), ( ) (( ( ), ( )), ) ( ( ) ( ))t t t X D t t t t t∈ → −

= − +k T t t t G t t T t tS S

a

D0 2( ( )) ( ( ) ( )) ( ( ( ), ( )), ( ), ) (μ ζ ε η ζ μ ( ) ( )),t tD− ζ (54)

where G T t t T t t
a a a

( , ( ), ) ( , ( ), )ε ε ε= Ψ 3 is the secant shear modulus and ε a is the intensity of the active strain

deviator,

η ζ ε η ζ η ζ( ), ( ) ( ( ), ( )) | | ( ) ( )| | .t t t t t t
a

D D→ = −
2

3
(55)

To study the conditions of existence and uniqueness of solution of the boundary-value problem, we present

the set of equations (53) in the form of one nonlinear operator equation for displacements:

A u t t t t( ( ), ( ), ) ( )ξ ρ= in U
*

, u t U( ) ,∈ (56)

where A : U U→ * is the nonlinear operator of plasticity theory determined with the help mapping:

A u t t t v U u t t t v X( ( ), ( ), ) : ( ( ( ), ( ), ), ( ))ξ σ ξ ε∈ →

= − =( ( ( ), ( ), ) ( ( ) ( )), ) ( ( ), ( ), ),D Bu t t t Bu t t Bv A u t t tXξ ξ ξ v . (57)

If the operator À : U U→ * has the properties of strong monotonicity and the Lipschitz continuity, i.e.,

there exist real numbers m, M , and M1 such that

A v A w v w m v w v w U

A v A w

U
( , ) ( , ), | | | | , , ,

| | ( , ) ( ,

ζ ζ

ζ ζ

− − ≥ − ∀ ∈

−

2

) | | | | | | , , ,

| | ( , ) ( , ) | | | |

*

*

U U

U

M v w v w U

A v A v M

≤ − ∀ ∈

− ≤ −ζ χ ζ χ1 | | , , ,X X∀ ∈

⎧

⎨
⎪⎪

⎩
⎪
⎪ ζ χ

(58)

then the solution of operator equation (56) exists and is unique, and also is continuously dependent on the applied

loads ρ ( )
*

t U∈ and initial strains ξ ( )t X∈ [9].

Let us determine the non-linear operator Φ : X X→ with the help of mapping:

Φ Φ: , ( , ) ( , ) ( ),η ζ η ζ η ζ η ζ∈ → = −X D (59)

which associates the result of the action of D ( , )η ζ on ( ),η ζ− i.e., the element D X( , ) ( ) ,η ζ η ζ− ∈ with the

arbitrary elements η ζ, ∈X and operator η ζ η ζ, ( , ).→ D

Let the mapping Φ : Õ X→ be Frechet differentiable at each point ( , )η ζ , i.e., there exist the linear

operators ′Φε and ′Φξ such that

lim
| | ( , ) ( , ) ( , ) | |

| | | |
,

lim

μ
ε

χ

η μ ζ η ζ η ζ μ
μ→

→

+ − − ′
=

0
0

Φ Φ Φ X

X

0
0

| | ( , ) ( , ) ( , ) | |

| | | |
,

Φ Φ Φη ζ χ η ζ η ζ χ
χ

ξ+ − − ′
=X

X

(60)
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where ′ =Φ Φε η ζ μ η ζ μ( , ) (( , ), ( , ))d 0 is the Frechet differential of mapping η η ζ→Φ( , ) onto the increment ( , ),μ 0

′Φε η ζ( , ) is the derivative of the Frechet operator Φ at the point ( , )η ζ , ′ =Φ Φξ η ζ χ η ζ χ( , ) (( , ); ( , ))d 0 is the

Frechet differential of mapping ζ η ζ→Φ ( , ) onto the increment ( , ),0 χ and ′Φξ η ζ( , ) is the derivative of the

Frechet operator Φ at the point ( , )η ζ .

Lemma. If Φ : Õ Õ→ is the continuously differentiable mapping and the operators ′Φε η ζ( , ) and ′Φξ η ζ( , )

satisfy the following conditions:

∃ > ′ ≥m mX X
0

2
: ( ( , ) , ) | | | | ,Φε η ζ μ μ μ ∀ ∈η ζ μ, , ,X (61)

∃ > ′ ≤M MX X0: | | ( , ) | | | | | | ,Φε η ζ μ μ ∀ ∈η ζ μ, , ,X (62)

∃ > ′ ≤M MX X1 10: | | ( , ) | | | | | | ,Φξ η ζ χ χ ∀ ∈η ζ χ, , ,X (63)

then the operator À : U U→ * determined from relationship (57) is strictly monotone and Lipschitz continuous.

� Let η = Bv and μ = Bw for any v w U, ∈ . Then, according to (57) and (59) for arbitrary v w U, ∈ , we

have

A v A w v w X( , ) ( , ), ( ( , ) ( , ), ) ,ζ ζ η ζ μ ζ η μ− − = − −Φ Φ (64)

from which, using the formula of finite increments [10] and inequality (61), we get

A v A w v w( , ) ( , ),ζ ζ− −

= ′ + − − − ≥ − =∫ ( ( ( ) , ) ( ), ) | | | | | |Φε η μ ζ η μ η μ η μ
0

1
2

1p p dp m m vX X
− w

U
| | ,

2 ∀ ∈v w U, , ∀ ∈ζ X . (65)

Moreover, by definition of the norm in the space U
* we have

| | ( , ) ( , ) | | sup
| ( , , ), |

| | | |
*A v A w

A v A w h

hU
h U U

ζ ζ
ζ) − ( ζ

− = =
∈

sup
| ( ( , ) ( , ), ) |

| | | |
,

h U

X

X

Bh

Bh∈

−Φ Φη ζ μ ζ
∀ ∈v w U, , (66)

and, consequently, on the basis of the Cauchy–Bunyakovskii–Schwarz inequality, the finite increment formula and

inequality (63) we find

| | ( , ) ( , ) | | || ( , ) ( , )| |*A v A w
U Xζ ζ η ζ μ ζ− ≤ −Φ Φ

= ′ + − − ≤ − = −∫ | | ( ( ) , ) ( )| | | | | | | | |Φε η μ ζ η μ η μ
0

1

1p p dp M M v wX X | ,U ∀ ∈v w U, , ∀ ∈ζ X . (67)

Using the finite increment formula and inequality (63) we obtain

| | ( , ) ( , ) | | | | ( , ) ( , )| |*A v A v
U Xζ χ η ζ η χ− ≤ −Φ Φ

= ′ + − − ≤ −∫ | | ( , ( ) ) ( )| | | | | | ,Φξ η ζ χ ζ χ ζ χ
0

1

11p p dp MX X ∀ ∈v U , ∀ ∈ζ χ, .X (68)

Based on inequalities (65), (67), (68) we conclude that À : U U→ *
is the strictly monotone and Lipschitz

continuous operator possessing the strictly monotone and Lipschitz continuous inverse operator À
−1

: U U
* → .�
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In order to prove the existence and uniqueness of solution to the boundary-value problem stated in the form

of nonlinear operator equation (56), we make some assumptions about the functional dependence σ ε= f T( , ) that

describes the instantaneous thermomechanical surface.

We assume that for all ε, perhaps, except for a finite number of the isolated points, the function σ σ ε= ( )

describing the material stress–strain curve satisfies the following conditions:

0 1 0< ≤ ≤ ≤ < ∞g g G G( ) ( ) .ε ε (69)

Inequalities (69) are written for isothermal conditions and assume a simple geometrical interpretation. For all

values of ε, the tangential modulus

g
d

d
( )

( )
ε

σ ε
ε

=
1

3
(70)

is strictly positive and does not exceed the secant modulus G ( ) ( )ε σ ε ε= 3 which, in its turn, does not exceed the

initial shear modulus G0 .

If we introduce the temperature T into the functional dependence σ σ ε= ( ) as a second argument, we obtain

the equation of instantaneous thermomechanical surface σ ε= f T( , ). For nonisothermal processes, inequalities (69)

can be presented in a more general form:

0 1 0
< ≤ ≤ ≤ < ∞min ( ) ( , ) ( , ) max ( ) .

T T

g T g T G T G Tε ε (71)

Furthermore, the equation Ψ Ψ= ( , , )ε a
q T describing the instantaneous thermomechanical surface with

initial hardening q, is defined by relationships (41) and thus, on the basis of inequalities (71), we obtain

0 1 0< ≤ ≤ ≤ < ∞min ( ) ( , , ) ( , , ) max ( ) .
T

a a

T

g T g q T G q T G Tε ε (72)

The body under consideration can be nonuniform and its elastic and plastic properties can depend on the

coordinates x ∈Ω . We assume that the functions x x q T
a→ Ψ ( , , , ),ε q x q T

a→ Ψ ( , , , ),ε and T x q T
a→ Ψ ( , , , )ε

are measurable and x G x q T
a→ ( , , , )ε is measurable and bounded on Ω for all ε a

, q, and T . At all points of the

region Ω, perhaps, except for the set of measure zero, the function ε εa a
x q T→ Ψ ( , , , ) is continuous and has a

bounded partial derivative ∂ ε ∂εΨ ( , , , )x q T
a a

that satisfies the conditions of (72).

Theorem. If the equation Ψ Ψ= ( , , )ε a
q T describing the instantaneous thermomechanical surface with

initial hardening q satisfies the conditions of (74), the operator Φ : Õ Õ→ defined by relationship (61) satisfies the

conditions of the lemma, i.e., there exist such real numbers as m, M , and M1 for which inequalities (61)–(63) are

fulfilled, and in this case

m g x T

x T

=
∈

2 1vrai min
Ω

min ( , ), M M k x T

x T
1 0= =

∈
vrai max max ( , ).

Ω
(73)

� The above assumptions about the properties of the function Ψ Ψ= ( , , )ε a
q T provide the Frechet

differentiability of the operator D ( , ).η ζ According to (59) and the rules of differentiation of complex mappings, we

have

d dD DΦ Φ(( , ); ( , )) ( , ) (( , ); ( , )) ( ) (η ζ μ η ζ μ η ζ μ η ζ ηε0 0= ′ = − + , ) , , , ,

(( , ); ( , )) ( , ) (( , ); (

ζ μ η ζ μ

η ζ χ η ζ χ η ζξ

∀ ∈

= ′ =

X

d dDΦ Φ0 0, )) ( ) ( , ) , , , ,χ η ζ η ζ χ η ζ χ− − ∀ ∈D X
(74)
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where dD (( , ); ( , ))η ζ μ 0 is the Frechet differential of mapping η η ζ→ D ( , ) at the point ( , )η ζ on the increment

( , )μ 0 and dD (( , ); ( , ))η ζ χ0 is the Frechet differential of mapping ζ η ζ→ D ( , ) on the increment ( , ).0 χ
Based on (54) for arbitrary η, ζ, μ, χ, λ ∈X , we have

dD
dG

d

d

dD

a

a

a

D(( , ); ( , ))
( )

(( , ); ( , )) ,

((

η ζ μ λ
ε

ε
ε η ζ μ λ0 2 0=

η ζ χ λ
ε

ε
ε η ζ χ λ, ); ( , ))

( )
(( , ); ( , )) ,0 2 0=

dG

d

d

a

a

a

D

(75)

where d
aε η ζ μ(( , ); ( , ))0 is the differential of mapping η ε η ζ→ à

( , ) on the increment ( , )μ 0 and d
aε η ζ χ(( , ); ( , ))0

is the Frechet differential of mapping ζ ε η ζ→ a
( , ) on the increment ( , ).0 χ

Using relationship (55) we find

d

d

a D D D

D D

a

ε η ζ μ
η ζ μ

η ζ

ε η ζ

(( , ); ( , ))
( , )

| | | |
,

(( , ); (

0
2

3
=

−
−

0
2

3
, ))

( , )

| | | |
,χ

ζ η χ
η ζ

=
−

−
D D D

D D

(76)

and therefore expressions (75) can be presented in the form

dD
dG

d

a

a

D D D

D D

D(( , ); ( , ))
( ) ( , )

| | | |
η ζ μ λ

ε
ε

η ζ μ
η ζ

λ0 2
2

3
=

−
−

,

(( , ); ( , ))
( ) ( , )

| | | |
dD

dG

d

a

a

D D D

D D

η ζ χ λ
ε

ε

ζ η χ
η ζ

λ0 2
2

3
=

−
− D .

(77)

Then, in view of equalities

dG

d

d

d

g G
a

a a

a

a

a

a

a a
( ) ( ) ( ) ( ) ( )ε
ε ε

ε
ε

ε
ε

ε ε
= −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−1 Ψ Ψ
ε a

(78)

based on formulas (55), (74), (77), and (78) we obtain

′ = −
−

−
− +Φε η ζ μ

η ζ μ

η ζ
η ζ η ζ( , ) ( )

( , )

| | | |
( ) ( , )2

2
g G D

D D D

D D

D D μ

η ζ χ
η ζ χ

η ζ
η ζ ηξ

,

( , ) ( )
( , )

| | | |
( ) ( ,′ = −

−

−
− −Φ 2

2
G g D

D D D

D D

D D ζ χ) .

(79)

Therefore, for arbitrary η, ζ, μ, χ, λ ∈Õ , we have

( ( , ) , ) ( )
( , ) ( , )

| | | |
′ = −

− −

−
Φε η ζ μ λ

η ζ μ η ζ λ

η ζ
2

2
g G

D D D D D D

D D

+ +k GS S D D0 2( , ) ( , ),μ λ μ λ (80)

( ( , ) , ) ( )
( , ) ( , )

| | | |
′ = −

− −

−
Φξ η ζ χ λ

η ζ χ η ζ λ

η ζ
2

2
G g

D D D D D D

D D

− −k GS S D D0 2( , ) ( , ).χ λ χ λ (81)
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Using relationships (80) and (81) we get

( ( , ) , ) ( , ( , ) ), , , , ,

( ( , ) ,

′ = ′ ∀ ∈

′

Φ Φ

Φ

ε ε

ξ

η ζ μ λ μ η ζ λ η ζ μ λ

η ζ χ

X

λ χ η ζ λ η ζ χ λξ) ( , ( , ) ), , , , ,= ′ ∀ ∈Φ X
(82)

from which it follows that ′Φε η ζ( , ) and ′Φξ η ζ( , ) are the self-adjoint operators for all η, ζ ∈X .

On the basis of equation (82) for arbitrary η, ζ, μ ∈Õ , we find

( ( , ) , ) ( )
( , )

| | | |
| | | |′ = −

−

−
+Φε η ζ μ μ

η ζ μ

η ζ
μ2

2

2 0g G k
D D D

D D

S

2 2
2+ G D| | | | .μ (83)

According to the Cauchy–Bunyakovskii–Schwarz inequality, we have

| ( , )| | | | | | | | | .η ζ μ η ζ μD D D D D D− ≤ − (84)

In addition, in accordance with the conditions of (72), the inequality g G− ≤ 0 is fulfilled, and thus, in view

of (84), from equation (83) it follows

( ( , ) , ) | | | | | | | | | | | | ,′ ≥ + ≥Φε η ζ μ μ μ μ μk g gS D0
2 2 2

2 2 (85)

which leads to inequality (61) with the constant m g x T
x T

=
∈

2 1vrai min min ( , ).
Ω

To prove inequality (62), we note that the operator ′Φε η ζ( , ) is self-adjoint and positive for all η, ζ ∈Õ and

therefore its norm is defined by expression:

| | ( , )| | sup
( ( , ) , )

| | | |
.′ =

′

∈
Φ

Φ
ε

μ

εη ζ
η ζ μ μ

μ
X

X

X

X

2 (86)

Using equality (83) for arbitrary η, ζ, μ ∈Õ , we get

( ( , ) , ) | | | | | | | | | | | | ,′ ≤ + ≤Φε η ζ μ μ μ μ μk G kS D0
2 2

0
2

2 (87)

which leads to inequality (62) with the constant M k x T
x T

=
∈

vrai max max ( , ).
Ω

0

To prove inequality (63), we note that the operator ′Φξ η ζ( , ) is self-adjoint but not positive and therefore its

norm is defined by the expression:

| | ( , )| | sup
| ( ( , ) , ) |

| | | |
.′ =

′

∈
Φ

Φ
ξ

χ

ξη ζ
η ζ χ χ

χ
X

X

X

X

2 (88)

On the basis of equality (81) for arbitrary η, ζ, χ ∈Õ , we find

( ( , ) , ) ( )
( , )

| | | |
| | | |′ = −

−

−
−Φξ η ζ χ χ

η ζ χ

η ζ
χ2

2

2 0G g k
D D D

D D

S

2 2
2− G D| | | | ,χ (89)

from which, making use of the inequality G g− ≥ 0, we obtain
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| ( ( , ) , ) | | | | | | | | | | | | | ,′ ≤ + ≤Φξ η ζ χ χ χ χ χX S Dk G k0
2 2

0
2

2 (90)

which leads to inequality (63) with the constant M M1 = . �

Corollary. From the properties of the operator Φ : Õ Õ→ that are established by the theorem, the results of

the lemma and general data on the strictly monotone and Lipschitz-continuous operators À : U U→ * follows the

one-valued solvability of operator equation (56) and also the continuous dependence of the generalized solution u t( )

on the applied loads ρ ( )
*

t U∈ and initial strains ξ ( ) .t X∈
Iterative Methods for Solving Boundary-Value Problems of Thermoplasticity. Let us consider the

generalized method of elastic solutions [11] in which the solution u U∈ at each loading step is constructed as a limit

of the sequence { }u U
k

k=
∞ ∈1 of solutions for auxiliary linear problems. With this purpose in mind, we introduce into

consideration the linear self-adjoint operator Q acting in the space X . Then, there exist two real positive numbers q1

and q2 such that

q Q q
X X X1
2

2
2

| | | | ( , ) | | | | ,μ μ μ μ≤ ≤ ∀ ∈μ X , (91)

and therefore, the operator Q : X X→ can be used for construction of the scalar product ( , )⋅ ⋅ Q and norm || | |⋅ Q in

the space X that is equivalent to the main norm of this space, i.e., the norm || | |⋅ X :

( , ) ( , ) ,η μ η μQ XQ= | | | | ( , ) ,
/η η ηQ Q

= 1 2 ∀ ∈η μ, .X (92)

In the method of elastic solutions, the sequence of linear approximations { }u U
k

k=
∞ ∈1 is constructed in the

form of the following iterative procedure:

( , ) ( , ) [( ( , ), ) ( )],Bu Bv Bu Bv Bu Bv v
k

Q

k

Q

k

X

+ = − −1 α ξ ρΦ ∀ ∈v U , (93)

where α > 0 is the numerical parameter introduced to control the convergence, which can be varied from iteration to

iteration.

By comparing equations (56) and (93), we obtain

( , ) ( , ) ( [ ( , ) ( , )Bu Bu Bv Bu Bu Bv Q Bu Bu
k

Q

k

Q

k+ −− = − − −1 1α ξ ξΦ Φ ], ) ,Bv Q ∀ ∈v U , (94)

from which, for v u u U
k= − ∈+1

, it follows that

| | | | | | [ ( , ) ( , )] | | .Bu Bu Bu Bu Q Bu Bu
k

Q

k k

Q

+ −− ≤ − − −1 1α ξ ξΦ Φ (95)

Or else, the last inequality can be written in the following way:

| | | | | | [ ( , ) ( , )] | | .ε ε ε ε α ε ξ ε ξk

Q

k k

QQ
+ −− ≤ − − −1 1 Φ Φ (96)

Let us introduce into consideration the nonlinear operator Tα η ξ( , ) acting in the space X and determined

with the help of mapping:

η ξ η ξ η α η ξα, ( , ) ( , ).∈ → = − −
X T Q

1Φ (97)

Then, by using the formula of finite increments, inequality (96) is transformed in the following manner:

| | | | sup | | ( , )| | | | | | ,ε ε η ξ ε ε
η

α
k

Q

X

Q

k

QT
+

∈
− ≤ ′ −1

(98)
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where ′Tα η ξ( , ) is the value of the operator Òα derivative at the point ( , ).η ξ Taking into account that Q is the

linear operator, we get

μ η ξ μ μ α η ξ μα ε∈ → ′ = − ′−
X T Q( , ) ( , ) ,

1Φ (99)

and therefore, for arbitrary μ, χ ∈X , the following relationship is met:

( ( , ) , ) ( , ) ( ( , ) , ) .′ = − ′T QQ X Xα εη ξ μ χ μ χ α η ξ μ χΦ (100)

The expression in the right-hand side of (100) is symmetrical with respect to μ, χ ∈Õ , i.e.,

( ( , ) , ) ( , ( , ) ) ,′ = ′T TQ Qα αη ξ μ χ μ η ξ χ (101)

and therefore, ′Òα η ξ( , ) is the self-adjoint operator for all η ξ, ∈X with respect to the scalar product ( , ) .⋅ ⋅ Q The

norm of the operator ′Òα η ξ( , ) is determined by the expression

| | ( , )| | sup
| ( ( , ) , ) |

| | | |
.′ =

′

∈
T

T

Q

X

Q

Q

α
μ

αη ξ
η ξ μ μ

μ 2 (102)

Using relationships (92), (100), and (102) we obtain

| | ( , )| | sup
( ( , ) , )

( , )
.′ = −

′

∈
T

Q
Q

X

X

X

α
μ

εη ξ α
η ξ μ μ
μ μ

1
Φ

(103)

We assume that there exist such real positive numbers γ 01 and γ 02 at which the inequalities

γ μ μ η ζ μ μ γ μ με01 02( , ) ( ( , ) , ) ( , )Q QX X X≤ ′ ≤Φ (104)

are fulfilled for any η, ζ, μ ∈Õ .

If inequalities (104) are used for estimating (103), we obtain

sup | | ( , )| | ( ) max(| | , | | ),
η

α η ξ α αγ αγ
∈

′ ≤ = − −
X

QT q 1 101 02 (105)

and therefore, the condition 0 2 02< <α γ provides the convergence of the method of elastic solutions for any initial

approximation u U
0 ∈ .

The optimum value of α îpt is the solution of the equation

1 101 02− = −α γ α γopt opt (106)

and is calculated from the formula

α
γ γopt = +

2

02 01

. (107)

By substituting the value of α îpt into (105), we obtain

sup | | ( , )| | ( ) .
η

α η ξ α
γ γ
γ γ∈

′ ≤ =
−
+

<
X

Q optT q
opt

02 01

02 01

1 (108)
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Thus, we arrive at the inequalities using which it is possible to estimate the maximum rate of convergence of

the iteration process:

| | | | ( )| | | | ( )| | | | .ε ε α ε ε α ε εk

Q opt

k

Q

k

opt Qq q− ≤ − ≤ −−1 0
(109)

Based on inequalities (91) and (109), we have the estimate that characterizes the maximum rate of

convergence of the iteration process for strains:

| | | | ( ) | | | | .ε ε α ε εk

X

k

opt X

q

q
q− ≤ −2

1

0
(110)

A similar estimate can be obtained for stresses. Actually, in view of inequalities (61) and (62), we find

m M
k

X

k

X

k

X| | | | | | | | | | | | ,ε ε σ σ ε ε− ≤ − ≤ − (111)

and therefore, based on inequalities (110), (111), we obtain the optimum estimate of the rate of convergence for

stresses:

| | | | ( ) | | | | .σ σ α σ σk

X

k

opt X

M

m

q

q
q− ≤ −2

1

0
(112)

Inequalities (110) and (112) make it possible to find the convergence of the elastic solution method

irrespective of the choice of the initial approximation at a rate of the geometrical progression.

The convergence of the method for isothermal processes of active loading was first proved in [12], for

non-isothermal ones in [13], however, without taking into account the initial strains dependent on the deformation

process.

Note. Let Q D= 0 , where D0 is the linear operator that corresponds to the moduli of elasticity k x T0 ( , ) and

G x T0 ( , ). Then for the method of elastic solutions, the following a priori estimates take place:

q G x T

q k x

x T

x T

1 0

2 0

2 0= >

=
∈

∈

vrai

vrai

min min ( , ) ,

max max ( ,

Ω

Ω
T

g x T

G x Tx T

) ,

min min
( , )

( , )
,

.

< ∞

= >

=

⎧

⎨

⎪
⎪

∈
γ

γ

01
1

0

02

0

1

vrai
Ω

⎪

⎩

⎪
⎪
⎪

(113)

Let us consider the other, no less popular method for solving elastoplastic problems using successive

approximations, namely, the method of variable elastic parameters that possesses a higher rate of convergence as

compared with the method of elastic solutions. The convergence of this method was proved in [15, 16] with a

restrictive assumption about a relative variation if the secant modulus of shear of a material. The proof and evaluation

of the convergence of the method of variable elastic parameters for less rigid constraints are obtained in [17],

however, without taking into account the initial strains dependent on the deformation process.

In the generalized method of variable elastic parameters, the sequence of linear approximations { }u U
k

k=
∞ ∈1

is constructed at each loading stage in the form of the following iteration procedure:

( ( , ) , ) ( ( , ) , ) [( ( , ),D Bu Bu Bv D Bu Bu Bv Bu
k k

X

k k

X

kξ ξ α ξ+ = −1 Φ Bv vX) ( )],− ρ ∀ ∈v U , (114)

where α > 0 is the numerical parameter introduced to control the convergence, which can be varied in the process of

iterations.
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The iteration process of (114) can be interpreted as a method of corrections:

( ( , ) , ) ( ( , ), ) ( ),D Bu B Bv Bu Bv v
k k

X

k

Xξ ω ξ ρ= −Φ ∀ ∈v U , u u
k k k+ = −1 αω , (115)

where ωk
U∈ is the correction for the ( )k +1 th iteration.

In the consideration of the convergence of the method of variable parameters of elasticity, we present the

iteration process in Eq. (115) in the form of the operator equation for displacements. To this end, we write the

correction equation:

Λ ( , ) ( , )u A u
k k kξ ω ξ ρ= − in U

*
, (116)

where Λ: U U→ * is the nonlinear operator determined by the mapping

Λ ( , ) : ( ( , ) , ) ,u v w U D Bu Bv Bw Xξ ξ∈ → ∀ ∈v U . (117)

Taking into account the properties of the operator D : X X→ , we conclude that Λ : U U→ * is the

symmetrical coercive bounded operator possessing the bounded coercive inverse operator Λ−1: U U
* → and

therefore, the expression for the correction ωk
U∈ can be presented in the form

ω ξ ξ ρk k k
u A u= −−

( ( , )) ( ( , ) ).Λ 1
(118)

Thus, we obtain the following equation for displacements:

u u u A u
k k k k+ −= − −1 1α ξ ξ ρ( ( , )) ( ( , ) ).Λ (119)

According to (119), the element u U∈ is the fixed point of the operator Γα : U U→ determined by the

mapping

Γ Γ Λα α ξ ρ ν α ξ ξ ρ: ( , , ) ( ( , )) ( ( , ) ).v U v v A v∈ → = − −−1
(120)

Let the mapping Γα : U U→ has the fixed point u U∈ and is Frechet differentiable at this point. Moreover,

there exists a norm that is equivalent to the fundamental norm of the space U for which the following condition is

fulfilled:

| | ( , )| | ( ) .′ ≤ <Γα ξ αu q 1 (121)

Then, according to the Ostrovskii theorem [18] for an arbitrary initial approximation u U
0 ∈ which is sufficiently

close to u U∈ , the sequence { }u U
k

k=
∞ ∈1 constructed using the iteration process of (119) converges to the point

u U∈ at a rate of geometric progression, with the estimation of the rate of convergence being characterized by the

following inequality:

| | | | ( )| | | | .u u q u u
k k− ≤ −α 0

(122)

We note that the presence of the fixed point u U∈ of mapping (120) is attained owing to the existence of the

unique solution of operator equation (56), and the above assumptions about the properties of the operator Φ : X X→
provide the Frechet differentiability of the operator Γα : U U→ .

According to (120) and the rules of differentiation of complex mappings, the Frechet differential of the

operator Γα : U U→ at the point v U∈ on the increment w U∈ has the form

w v w w v A v w v→ ′ = − ′ + ′− −Γ Λ Λ Λα ξ ρ α ξ ξ α ξ( , , ) ( ( , )) ( , ) ( ( , )) (
1 1

( , ) ) ( ( , )) ( ( , ) ).v w v A vξ ξ ξ ρΛ − −1
(123)
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Since u U∈ is the fixed point of the operator Γα : U U→ , we find

v u v v u A u v→ ′ = − ′−Γ Λα ξ α ξ ξ( , ) ( ( , )) ( , ) ,
1 ∀ ∈v U , (124)

where ′A u v( , )ξ is the Frechet operator differential A at the point u U∈ on the increment v U∈

′ → ′ = ′A u v w Bu Bv Bw A u v wX( , ) : ( ( , ) , ) ( , ) , .ξ ξ ξεΦ (125)

We make some remarks concerning the properties of the operator Λ. Since Λ: U U→ * is the symmetrical

coercive bounded operator, there exist two real positive numbers q1 and q2 such that

q w v w w q w
U U1
2

2
2

| | | | ( , ) , | | | | ,≤ ≤Λ ξ ∀ ∈v w U, . (126)

Then the operator Λ: U U→ * can be used for constructing the scalar product ( , )⋅ ⋅ Λ and norm || | |⋅ Λ in the

space U , which is equivalent to the fundamental norm of this space, i.e., the norm || | |⋅ U :

( , ) ( , ) , ,v w u v wΛ Λ= ξ | | | | ( , ) ,
/

v v vΛ Λ= 1 2 ∀ ∈v w U, . (127)

Let us show that the operator ′Γα ξ( , )u satisfies the condition of (121) for the introduced metric | | | |⋅ Λ . Since

the relationship

( ( , ) , ) ( , ) , ( , ) ,′ = − ′Γ ΛΛα ξ ξ α ξu v w u v w A u v w (128)

is fulfilled for arbitrary v w U, ∈ , we arrive at the following equation:

( ( , ) , ) ( , ( , ) ) ,′ = ′Γ ΓΛ Λα αξ ξu v w v u w ∀ ∈v w U, , (129)

from which it follows that ′Γα ξ( , )u is the self-adjoint operator for the scalar product ( , )⋅ ⋅ Λ and therefore, its norm is

determined by the expression

| | ( , )| | sup
| ( ( , ) , ) |

| | | |
.′ =

′

∈
Γ

Γ
Λ

Λ

Λ
α

αξ
ξ

u
u v v

vv U
2 (130)

Using relationships (127), (128), and (130) we obtain

| | ( , )| | sup
( , ) ,

( , ) ,
.′ = −

′

∈
Γ

ΛΛα ξ α
ξ
ξ

u
A u v v

u v vv U

1 (131)

We assume that for all η, ζ, μ ∈Õ , there exist such real positive numbers γ 1 and γ 2 for which the

following inequalities are fulfilled:

γ η ζ μ μ η ζ μ μ γ η ζ μ με1 2( ( , ) , ) ( ( , ) , ) ( ( , ) , ) .D DX X X≤ ′ ≤Φ (132)

Then, based on (117), (125), (132) for arbitrary v w U, ∈ , we have

γ ξ ξ γ ξ1 2Λ Λ( , ) , ( , ) , ( , ) , .v w w A v w w v w w≤ ′ ≤ (133)

According to (131) and (133) we find

| | ( , )| | ( ) max ( | | , | | ).′ ≤ = − −Γ Λα ξ α αγ αγu q 1 11 2 (134)
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Thus, the condition q( )α <1 will be fulfilled only in the case if α γ∈( , ).0 2 2 In this case, in view of

inequalities (126), the estimate that characterizes the rate of convergence of the following iteration process:

| | | | ( ) | | | |u u
q

q
q u u

k

U

k

U− ≤ −2

1

0α (135)

is true.

Based on (135), it is easy to determine that the minimum estimate

| | ( , )| | ( )′ ≤ =
−
+

<Γ Λα ξ α
γ γ
γ γopt

u q opt

2 1

2 1

1 (136)

is attained for

α
γ γopt = +

2

1 2

. (137)

The optimum estimates of the rate of convergence for strains and stresses have the form

|| | | ( ) | | | | ,ε ε α ε εk

X

k

opt X

q

q
q− ≤ −2

1

0
(138)

| | | | ( ) | | | | .σ σ α σ σk

X

k

opt X

M

m

q

q
q− ≤ −2

1

0
(139)

Inequalities (136), (138) and (139) make it possible to establish the local convergence of the method of

variable elastic parameters in the nonisothermal processes of active loading by taking into account the initial strains

Note. For the method of variable elastic parameters, a priori estimates of the following type are true:

q G x T

q

x T

x T

1

2

2 0= >

=
∈

∈

vrai

vrai

min min min ( , , ) ,

max max

Ω

Ω

ε
ε

k x T

g x T

G x Tx T

0

1 0

( , ) ,

min min min
( , , )

( , , )
,

< ∞

= >
∈

γ
ε
εε

vrai
Ω

γ 2 1=

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

.

(140)

According to estimates (130) and (140), the geometric ratio in the estimate of the rate of convergence of the

method of variable elastic parameters is lower than that in the estimate of the convergence of the method of elastic

solutions, i.e., the rate of convergence of the method of variable elastic parameters is higher than that of the method of

elastic solutions.

Note that the above given proofs of the convergence of the method of elastic solutions and variable elastic

parameters ignore the error of calculations of the initial strains ξ ( )t X∈ dependent on the deformation process. In

fact, the initial strain tensor for each loading step is determined by solving the elastoplastic problem for the previous

loading step, and therefore, includes an error due to the approximate solution of operator equation (56) for each

loading step. Thus, we derive the equation that takes into account the input data error for the initial strains
~
ξ:

A u(~,
~

)ξ ρ= in U
*

, ~ .u U∈ (141)
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Let us estimate the error ~
u u U− ∈ . Using the first inequality in (58), we have

m u u A u A u u u A u A u
U

| | ~ | | (~, ) ( , ), ~ (~, ) (~,
~

), ~− ≤ − − = −2 ξ ξ ξ ξ u u− , (142)

whence, taking into account the third inequality in (58), we find

| | ~ | | | | (~, ) (~,
~

)| | | |
~

| | .*u u
m

A u A u
M

m
U U X− ≤ − ≤ −

1 1ξ ξ ξ ξ (143)

Thus, the following estimate is true:

| | ~ | | | |
~

| | .ε ε ξ ξ− ≤ −X X

M

m

1
(144)

In fact, for each loading step, instead of operator equation (56), approximate equation (141) is solved and

therefore the above given estimates of the rate of convergence of the methods of elastic solutions and variable elastic

parameters establish the convergence of the sequential approximations to the solution of operator equation (141). On

this basis, we have the estimate

| | ~ | | | | ~ | | .ε ε ε εk

X

k

X

q

q
q− ≤ −2

1

0
(145)

To estimate the error ε εk − , we use the triangle inequality

| | | | | | ~ | | | | ~ | | ,ε ε ε ε ε εk

X

k

X X− ≤ − + − (146)

from which, taking into account the estimates of (144) and (145), we find

| | | | | | ~ | | | |
~

| | .ε ε ε ε ξ ξk

X

k

X X

q

q
q

M

m
− ≤ − + −2

1

0 1
(147)

In addition, according to the triangle inequality and estimate of (144), we have

| | ~ | | | | | | | |
~

| | ,ε ε ε ε ξ ξ0 0 1− ≤ − + −X X X

M

m
(148)

and therefore, inequality (147) takes the form

|| | | | | | | | |
~

ε ε ε ε ξk

X

k

X

k
q

q
q

M

m

q

q
q− ≤ − + +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −2

1

0 1 2

1

1 ξ | | .X (149)

Let us estimate the error
~

,ξ ξ− where the element
~

( )ξ tm is determined by the expression

~
( ) ( ) ( ) ( ).ξ ε εt t tm S

T

m D

p k

m
m= +− −
−

1 1
1 (150)

According to (24), (28) and (150) we get

~
( ) ( ) ( ) ( ) ( )ξ ξ ε εt t t tm m D

p k

m D

p

m
m− = −−

− −
1

1 1
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= − − −− −
− −

−
−ε ε σ

D

k

m D m

m
D

k

m
m m

t t
G T t

t
1 1

1 1
0 1

1

1

2
( ) ( )

( ( ))
( ( ) σD mt( )),−1 (151)

with

σ σ ε ξ
D

k

m D m D

k

m D m
m m

t t t t
− −

− − − −− = −1 1
1 1 1 1( ) ( ) ( ( ),

~
( )) (Φ Φ ε ξD m D mt t( ), ( )).− −1 1 (152)

Let us introduce into consideration the calculation operator P for plastic strains determined according to

(24) by the following mapping:

η ζ η ζ η η ζD D D D D D DX P
G

, ( , ) ( , ).∈ → = −
1

2 0

Φ (153)

Then, in accordance with (151)–(153), we have

( ) ( ) ( ) ( ( ),
~

( )ε ε ε ξ
D

p k

m D

p

m D

k

m D m
m m

t t P t t− −
− − − −− =1 1

1 1 1 1 ) ( ( ), ( )),− − −P t tD m D mε ξ1 1 (154)

from which, using the triangle inequality and formula of finite increments, we obtain

| |
~

( ) ( )| | | | ( ) ( ) ( )| |ξ ξ ε εt t t tm m X D

p k

m D

p

m X
m− = −−

− −
1

1 1

≤ ′ −
∈

− −
−sup | | ( ,

~
( ))| | | | ( ) (

η
ε η ξ ε ε

D

m

X

D D m X D

k

m D mP t t t1 1
1

−1 )| | X

+ ′ −
∈

− − −sup | | ( ( ), )| | | |
~

( ) ( )| |
ζ

ξ ε ζ ξ ξ
D X

D m D X m m XP t t t1 1 1 , (155)

where ′P D Dε η ζ( , ) and ′P D Dξ η ζ( , ) are the derivatives of the operator P at the arbitrary point ( , )η ζD D

determined in accordance with (153) using the following mappings:

μ η ζ μ μ η ζ μ

χ η

ε ε

ξ

D D D D D D D D

D D

X P
G

X P

∈ → ′ = − ′

∈ → ′

( , ) ( , ) ,

( ,

1

2 0

Φ

ζ χ η ζ χξD D D D D
G

) ( , ) .= ′1

2 0

Φ
(156)

Therefore, for arbitrary η, ζ, μ, χ, λ ∈Õ , we have

( ( , ) , ) ( , )
( ,

′ = −
⎛
⎝
⎜

⎞
⎠
⎟ +

− −
P

G

G

G g

G
D D D D D D

D D

ε η ζ μ λ μ λ
η ζ μ

1
0 0

D D D D

D D

D D D D DP
G

G

) ( , )

| | | |
,

( ( , ) , ) ( ,

η ζ λ

η ζ

η ζ χ λ χ λξ

−

−

′ = −

2

0
D

D D D D D D

D D

G g

G
)

( , ) ( , )

| | | |
.+

− − −

−0
2

η ζ χ η ζ λ

η ζ

(157)

Based on (157) we conclude that ′P D Dε η ζ( , ) and ′P D Dξ η ζ( , ) are the self-adjoint operators for all ηD ,

ζD X∈ , and therefore their norm is determined by expressions

| | ( , )| | sup
| ( ( , ) , ) |

| | | |
′ =

′

∈
P

P

D D X

X

D D D D X

D XD

ε
μ

εη ζ
η ζ μ μ

μ 2
, (158a)
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| | ( , )| | sup
| ( ( , ) , ) |

| | | |
′ =

′

∈
P

P

D D X

X

D D D D X

D XD

ξ
χ

ξη ζ
η ζ χ χ

χ 2
. (158b)

Taking into account relationships (157) we obtain

( ( , ) , ) | | | |
( ,

′ = −
⎛
⎝
⎜

⎞
⎠
⎟ +

− −
P

G

G

G g

G
D D D D D

D D

ε η ζ μ μ μ
η ζ μ

1
0

2

0

D

D D

D D D D

D D D
P

G g

G

)

| | | |
,

( ( , ) , )
( , )

| |

2

2

0

2

η ζ

η ζ χ χ
η ζ χ

ξ

−

′ =
− −

η ζ
χ

D D

D

G

G−
−

| |
| | | | ,

2
0

2

(159)

from which, for arbitrary η, ζ, μ, χ ∈X , the inequalities follow

| ( ( , ) , ) | | | | | ,

| ( ( ,

′ ≤ −
⎛
⎝
⎜

⎞
⎠
⎟

′

P
g

G

P

D D D D D

D D

ε

ξ

η ζ μ μ μ

η ζ

1
0

2

) , )| | | | | .χ χ χD D D

G

G
≤

0

2

(160)

In accordance with (158) and (160) we find

| | ( , )| | ,′ ≤ −P D D Xε η ζ γ1 01 | | ( , )| | ,′ ≤P D D Xξ η ζ 1 (161)

and therefore, based on inequality (155), we arrive at the estimate

| |
~

( ) ( )| | ( )| | ( ) ( )| |ξ ξ γ ε εt t t tm m X

k

m m X
m− ≤ − − +−

− −1 01 1 1
1 | |

~
( ) ( )| | .ξ ξt tm m X− −−1 1 (162)

If inequality (149) is used to estimate the first summand in the right-hand side of (162), then we obtain

| |
~

( ) ( )| | | | ( ) ( )| | |ξ ξ ε εt t C q t t Cm m X

k

m m X
m− ≤ − +−

− −1
0

1 1 2
1 |

~
( ) ( )| | ,ξ ξt tm m X− −−1 1 (163)

where Ñ1 and Ñ2 are the positive constants

C
q

q
1

2

1
011= −( ),γ C

M

m
C q

km

2
1

01 11 1 1= + − + −( ).γ (164)

Note that in a real iteration process, the number of iterations km−1 is taken such that q
km− <<1 1 and

therefore, it can be assumed that

C
M

m

M

m
2

1
011 1= + − ≤( ) .γ (165)

If, in formula (163), each
~

( ) ( )ξ ξt tm m− −−1 1 is expressed in terms of the preceding, we obtain the following

inequality:

| |
~

( ) ( )| | | | ( ) ( )|ξ ξ ε εt t C C q t tm m X

m n

n

m
k

n n
n− ≤ −−

=

−

∑1 2
1

1
0

| .X (166)
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Based on (149) and (166), we arrive at the total error estimate for strains at the end of the loading stage:

| | ( ) ( )| | ( ) ,ε εk

m m X n

k

n

m

m nt t
q

q
C t q− ≤

=
∑2

1 1

(167)

where C tn( ) are the positive coefficients,

C t t t

C t C C t

m m m X

n

m n

n

( ) | | ( ) ( )| | ,

( ) ( ) | | ( )

= −

= − −−

ε ε

ε

0

2 2
0

1 ε ( )| | , .t n mn X 1 1≤ ≤ −
(168)

A similar estimate can be obtained for stresses. In fact, using inequalities (62), (63) we find

| | | | | | ( ,
~

) ( , )| | | | ( ,
~

) ( ,
~

)|σ σ ε ξ ε ξ ε ξ ε ξk

X

k

X

k− = − ≤ −Φ Φ Φ Φ | | | ( ,
~

) ( , )| |X X+ −Φ Φε ξ ε ξ

≤ ′ − + ′
∈ ∈

sup | | ( ,
~

)| | | | | | sup | | ( , )| |
η

ε
ζ

ξη ξ ε ε ε ζ
X

X

k

X

X

XΦ Φ | |
~

| | ( | | | | | |
~

| | ),ξ ξ ε ε ξ ξ− ≤ − + −X

k

X XM
(169)

and therefore, in view of estimates (163), (166), we obtain the estimate of the total error for stresses at the end of the

loading step:

| | ( ) ( )| | ( ) ,σ σk

m m X n

k

n

m

m nt t M
q

q
C t q− ≤

=
∑2

1 1

(170)

where C tn( ) are the positive coefficients determined by the following expressions:

C t t t

C t C C t

m m m X

n

m n

n

( ) | | ( ) ( )| | ,

( ) ( ) | | (

= −

= − −

ε ε

γ ε

0

2 01 2
0

) ( )| | , .− ≤ ≤ −ε t n mn X 1 1
(171)

Inequalities (167) and (170) make it possible to establish the convergence of the methods of elastic solutions

and elastic variable parameters for solving boundary-value problems describing the nonisothermal processes of active

loading taking into account the initial strains dependent on the deformation history and heating. In accordance with

those estimates, the accuracy of the problem solution for initial loading stages should be such as not to allow the

increase of the first coefficients of the total error expansion (167), (170) to influence the accuracy of solution of the

elastoplastic problem for subsequent loading stages.

Conclusions. The results of analysis of the generalized boundary-value problem of plasticity that describes

the nonisothermal processes of elastoplastic deformation taking into account the loading history have been presented.

The boundary-value problem has been stated as a nonlinear operator equation in the Hilbertian space. The conditions

which provide the existence, uniqueness and constant dependence of the generalized solution and initial strains have

been established. The convergence of the methods of elastic solutions and variable elastic parameters for

nonisothermal processes of active loading taking into account the initial strains dependent on the deformation process

has been proved.
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