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Abstract
Estimating the probability of the binomial distribution is a basic problem, which appears in almost all introductory statistics
courses and is performed frequently in various studies. In some cases, the parameter of interest is a difference between
two probabilities, and the current work studies the construction of confidence intervals for this parameter when the sample
size is small. Our goal is to find the shortest confidence intervals under the constraint of coverage probability being at
least as large as a predetermined level. For the two-sample case, there is no known algorithm that achieves this goal, but
different heuristics procedures have been suggested, and the present work aims at finding optimal confidence intervals. In
the one-sample case, there is a known algorithm that finds optimal confidence intervals presented by Blyth and Still (J
Am Stat Assoc 78(381):108–116, 1983). It is based on solving small and local optimization problems and then using an
inversion step to find the global optimum solution. We show that this approach fails in the two-sample case and therefore,
in order to find optimal confidence intervals, one needs to solve a global optimization problem, rather than small and local
ones, which is computationally much harder. We present and discuss the suitable global optimization problem. Using the
Gurobi package we find near-optimal solutions when the sample sizes are smaller than 15, and we compare these solutions
to some existing methods, both approximate and exact. We find that the improvement in terms of lengths with respect
to the best competitor varies between 1.5 and 5% for different parameters of the problem. Therefore, we recommend the
use of the new confidence intervals when both sample sizes are smaller than 15. Tables of the confidence intervals are
given in the Excel file in this link (https://technionmail-my.sharepoint.com/:f:/g/personal/ap_campus_technion_ac_il/El-
213Kms51BhQxR8MmQJCYBDfIsvtrK9mQIey1sZnZWIQ?e=hxGunl).
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1 Introduction

The task of constructing confidence intervals for the pro-
portion of the binomial distribution is a basic problem in
statistics, which appears in almost all introductory statistics
courses and is performed frequently inmany studies. In some
cases, the parameter of interest is the difference between two
proportions, and the present work studies the construction
of confidence intervals for this parameter. Specifically, if
p1 and p2 are two proportions, the parameter of interest is
� = p1 − p2. Other functions, such as the ratio p1/p2 or

the log odds ratio log
(
p1/(1−p1)
p2/(1−p2)

)
will not be discussed here,

but we believe that ourmethodology can be extended to these
functions. For a discussion about comparisons among differ-
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ent functions of p1, p2 see Brumback and Berg (2008). Our
aim in this work is to study confidence intervals withminimal
length. Evenwhen the sample size is small, this is not a trivial
problem, and we show below how computational difficulties
can be overcome and present (almost) optimal confidence
intervals for the stated problem.

First, one needs to distinguish between an exact confi-
dence interval (henceforth, CI) and an approximate CI. An
exactCI has a guarantee that the coverageprobability is above
some predetermined level of 1−α for all the parameter space,
while an approximate CI achieves this level only asymptoti-
cally, andmight have a smaller coverage probability for some
values of the parameter. An exact CI has the advantage of
guaranteeing the desired level for every sample size and for
every value of the parameter. However, it might come at the
cost of wider intervals. This work focuses on exact CI and
small sample sizes.
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We now review some widely-used methods for the one-
sample case. The most popular one is the Wald CI, which is
based on the normal approximation of the binomial variable.
Specifically, let X ∼ Binomial(n, p1), and let p̂1 = X/n.

Wald CI is p̂1 ± z1− α
2

√
p̂1(1− p̂1)

n , where z1− α
2
is the 1 − α

2
quantile of the standard normal distribution. The Wald CI is
symmetric around the observed proportion p̂1 = X/n, and
its width depends on the variance estimator and the level of
confidence 1 − α. Among the approximate CIs, the Wilson
score (Wilson 1927) gained some popularity. Similar to the
WaldCI, theWilsonCI is basedon thenormal approximation,
but with a different variance estimator. Agresti and Coull
(1998) showed that the performance of the Wald CI is much
inferior to the Wilson CI in terms of coverage probability.
Agresti and Coull also suggest another CI, which they call
an adjusted Wald CI. The idea is to simply take X∗ = X +
2, n∗ = n + 4 and compute the Wald CI with X∗ and n∗.

Brown et al. (2001) provided a comprehensive review of
different methods to construct CIs. They compared perfor-
mance in terms ofminimumcoverage level, average coverage
level, and average diversion from 1− α. Based on the above
criteria, they recommended the Wilson score CI or the Jef-
freys CI for n < 40. The Jeffreys CI is obtained by using a
prior BET A( 12 ,

1
2 ), known as the Jeffreys prior, and taking

the middle 1 − α area under the posterior distribution. For
n ≥ 40, Brown et al. suggested using either theWilson or the
Jeffreys CIs or the Agresti Coull method that was mentioned
above.

The first exact CI for the one-sample case was suggested
by Clopper and Pearson (1934), and it is the intersection of
two one-sided CIs. The Clopper and Pearson CI is generally
too conservative—the intervals are fairly wide. Correspond-
ingly, the coverageprobability is higher than thedesired level,
especially for small n. Sterne (1954) developed an exact CI
that is shorter than the Clopper and Pearson CI, and is opti-
mal in the sense of having a minimal length, i.e., the sum of
n + 1 confidence regions is minimal among all CIs with the
correct coverage probability. However, Crow (1956) showed
that the Sterne method might lead to confidence regions that
are the union of intervals and not a single interval. Crow fur-
ther modified the Sterne method to return only confidence
regions consisting of one interval for any x , preserving the
above optimality property for CIs. Blyth and Still (1983) pro-
posed an algorithm that finds all optimalCIs that are intervals,
including the Crow CI. In Sect. 3.1 the Blyth and Still algo-
rithm is described in detail, as we wish to generalize it to
the two-sample case. Blaker (2000) show that the Blyth and
Still CI does not maintain nestedness. This means that for
two given coefficients 1− α > 1− α′, the corresponding CI
of coefficient 1− α′ is not necessarily contained in the other
CI. Therefore, Blaker proposed an algorithm for constructing

a CI that is always an interval and maintains nestedness but
is not necessarily optimal.

Now, we will review several CIs for the two-sample case,
i.e., for � = p1 − p2. The Wald CI can be easily general-
ized based on the normal approximation of the differences
of the averages. Specifically, let X ∼ Binomial(n, p1), Y ∼
Binomial(m, p2), where X and Y are independent and let
p̂1 = X/n, p̂2 = Y/m. The Wald CI for � is

p̂1 − p̂2 ± z1− α
2

√
p̂1(1 − p̂1)

n
+ p̂2(1 − p̂2)

m
.

Miettinen and Nurminen (1985) demonstrated the poor
coverage of this CI in a few examples and suggested rely-
ing on more stabilized estimators of the variance, which are
based on quantiles of the chi-square distribution, and result
in an approximate CI. Recently, Martín Andrés et al. (2024)
revisited the work of Miettinen and Nurminen (1985) and
suggested a bias correction factor in the context of hypothe-
sis testing.

Newcombe (1998) reviewed 11 methods for creating CIs
for �, including the methods that were mentioned above.
Newcombe compared the methods by the average coverage,
the minimal coverage, and the percentage of non-coverage.
Furthermore, Newcombe suggested a methodof his own
called ‘hybrid score’ and it performed well in the above cri-
teria; see Sect. 5.1 for more details. Another recommended
method for constructing a CI for � was proposed by Agresti
and Caffo (2000). Generalizing Agresti and Coull CI, they
proposed to add four pseudo observations, one to each group,
i.e., define X∗ = X+1,Y ∗ = Y+1, n∗ = n+2,m∗ = m+2
and then calculate the Wald CI for the difference.

A few exact CIs for � were also developed. Santner and
Snell (1980) proposed three different methods to construct
exact CIs. One of them, called the tail method, has gained
popularity due to its simplicity and ease of calculation. This
method can be thought of as a two-dimensional analog of the
Clopper and Pearson CI for one proportion, where the CIs
are an intersection of two one-sided intervals. This method
typically leads to too conservative intervals, as shown by
Chan and Zhang (1999). The latter paper suggests a different
method for constructing exact CIs. Agresti and Min (2001)
studied exact CIs for the two-sample case. They reviewed the
Chan and Zhang CI and suggested a modification that results
in significant improvement in performance. The method is
described in detail in Sect. 5.1. Fagerland et al. (2015) com-
pared several methods including the ones mentioned above
and also others both approximate and exact. Their main
criterion for comparison was the closeness to the nominal
level 1 − α. They recommended using the Agresti and Min
CI. Fay and Hunsberger (2021) reviewed different methods
and compared them both in terms of testing and confidence
intervals. They found that no one method can meet all the
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desirable properties and provide recommendations based on
which properties are given more importance. A related topic
is exact tests in 2×2 contingency tables; see Keer (2023) and
references therein. This work uses optimization methods to
maximize the number of outcomes in a rejection region sim-
ilarily to what is done in the current paper.

To sum up, for the one-sample case there exists an algo-
rithm that minimizes the sum of interval’s length of the CI
under the constraint of obtaining a certain coverage level. For
the two-sample case, such an algorithm does not exist, but
rather different heuristics were suggested. This work aims at
filling this gap, namely,to construct an algorithm that com-
putes the optimal CI for small sample sizes in the two-sample
case and to compare it to existing methods.

The rest of the work is organized as follows: in Sect. 2
the optimization problem is stated and the basic notation is
introduced. The algorithm suggested inBlyth andStill (1983)
finds the optimal solutions for the one-sample case. It is based
on solving small and local optimization problems and then
using an inversion step to find the global optimum solution.
Section3 presents the algorithm and discusses extensions to
the two-sample case. It is shown that this approach fails in the
two-sample case and therefore, in order to findan optimal CI,
one needs to solve a global optimization problem, rather than
small and local ones, which is computationally much harder.
The global optimization problem is presented and discussed
in Sect. 4. Using the Gurobi Optimization, LLC (2023) pack-
age, we find near-optimal solutions when the sample sizes
are smaller than 15, and we compare these solutions to some
existing methods, both approximate and exact in Sect. 5. We
find that the improvement in terms of lengths with respect to
the best competitor varies between 1.5 and 5% for different
parameters of the problem. Section6 concludes with some
recommendations and future research directions.

2 Problem statement

Recall that X and Y are independent, X ∼ Binomial(n, p1)
and Y ∼ Binomial(m, p2). We aim at constructing CIs for
p1 (respectively, � := p1 − p2) for the one- (respectively,
two-) sample cases. In the one-sample case, we define C1 to
be the collection of all confidence intervals, i.e.,

C1 := {[lx , ux ]}x∈{0,1,...,n},

where lx , ux is the lower and upper limit of the confidence
interval when X = x is observed. Correspondingly, for the
two-sample case, we define

C2 := {[lx,y, ux,y]}x∈{0,1,...,n},y∈{0,1,...,m},

and here [lx,y, ux,y] is the confidence interval for � when
(X = x,Y = y) is observed.

We aim to find an optimal exact CI, where optimality is
with respect to the sum of all interval lengths. In the one-
sample case, the length is

Length(C1) =
n∑

x=0

(ux − lx ),

and in the two-sample case, it is

Length(C2) =
m∑
y=0

n∑
x=0

(u(x,y) − l(x,y)).

For computational reasons, we define a grid D for � val-
ues, and a grid P for p1, p2 single proportions values, e.g.,
P = {0, 0.01, 0.02 . . . , 1}, D = {−1,−0.99, . . . 0, 0.01,
0.02 . . . , 1}). The grids choices are connected to each other
since only (p1, p2) ∈ P × P such that p1 − p2 ∈ D are
active in the problem. From a statistical point of view, the
finer is the grid the better; however, a finer grid comes at the
cost of computational burden.

The optimization problem we aim to solve for the one-
sample case is

min
C1

Length(C1) subject to Pp1(p1 ∈ [lX , uX ])
≥ 1 − α ∀p1 ∈ P, (1)

where the sub-index p1 means that the probability is under
X ∼ p1 (and similar notation is used for the two-sample
case). For the two-sample case, the optimization problem is

min
C2

Length(C2)

subject to Pp1,p2(� ∈ [l(X ,Y ), u(X ,Y )])
≥ 1 − α for all (p1, p2)

∈ P × P such that p1 − p2 = � ∈ D. (2)

3 Generalization of the Blyth and Still
algorithm to the two-sample case

The Blyth and Still algorithm finds all the solutions to the
problem (1). In Sect. 3.1 the algorithm is described in detail.
Generalization of the algorithm to the two-sample case is dis-
cussed in Sect. 3.2. It is shown that the generalized algorithm
provides confidence regions rather than intervals.
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3.1 The Blyth and Still algorithm

We consider the one-sample case, that is, Problem (1), and
describe the Blyth and Still algorithm. First, a few definitions
are given.

Definition 3.1

• A subset S1 = {r , r + 1, . . . , t} where 0 ≤ r < t ≤ n
is an acceptance region with respect to p1 if Pp1(X ∈
S1) ≥ 1 − α.

• A subset S1 is a minimal acceptance region (henceforth
MAR) with respect to p1, denoted by MAR(p1), if there
is no other acceptance region with respect to p1 that has
fewer elements.

• Let S1, S̃1 be twoMARswith respect to p1 and p̃1, where
p1 ≤ p̃1. We say that the pair (S1, S̃1) maintains mono-
tonicity ifmin{S1} ≤ min{S̃1} and max{S1} ≤ max{S̃1}.

The algorithm can be described as follows:

The Blyth and Still algorithm

Input: P = {ρ1, ρ2, . . . , ρ|P|} - a grid of values in
[0, 1] such that ρ1 ≤ ρ2 ≤ · · · ≤ ρ|P|; n - sample
size; 1 − α - desired level.
Output:C1 - a collection ofn+1 confidence intervals.

1. Find all MARs. For all p1 ∈ P calculate all
MARs.

2. Remove MARs that do not maintain monotonicity.
For all i = 1, 2, . . . , |P| − 1| and for all
S1 = MAR(ρi ): if for all S̃1 that is a MAR
of ρi+1 the pair (S1, S̃1) does not maintain
monotonicity, then remove S1. Also, for all
i = 2, 3, . . . , |P| and for all S̃1 = MAR(ρi ), if
for all S1 that is a MAR of ρi−1 the pair (S1, S̃1)
does not maintain monotonicity, then remove S̃1.

3. Choose linear ordering. For i = 1 choose
MAR∗(ρ1) from all the MARs of ρ1
that remained after the previous step. For
i = 2, 3, . . . , |P|, choose MAR∗(ρi ) from
all the remaining MARs of ρi such that
(MAR∗(ρi−1), MAR∗(ρi )) maintains mono-
tonicity.

4. Invert. For all x = 0, 1, . . . ,n, define CR(x) :=
{p1 ∈ P : x ∈ MAR∗(p1)} and lx :=
min{CR(x)}, and ux := max{CR(x)}.

5. Return C1 = {[lx , ux ]}x∈{0,1,...,n}.

We now discuss every step of the algorithm in detail.
1. Find all MARs.
Finding all MARs with respect to p1 can be done in the
following manner: set r = 0 and find the smallest t0 that

makes the interval [0, t0] cover p1 with probability of at least
1 − α, i.e., Pp1(X ∈ [0, t0]) ≥ 1 − α. Then, repeat this
procedure for r = 1, 2, . . . , n: for each r , find the smallest
integer tr such that Pp1(X ∈ [r , tr ]) ≥ 1 − α. Notice that
there exists a critical value R such that for r ≥ R there is no
tr that provides coverage of p1 with the desired probability,
that is, even if we set tr = n, the interval S1 = [r , n] is not
an acceptance region for p1, i.e., Pp1(X ∈ [r , n]) < 1 − α.
After calculating t0, t1, ..., the lengths of [0, t0], [1, t1], ... are
compared and the intervals with minimal length are chosen.
Thus, for each p1 ∈ P there are O(n2) calculations, and the
total number of calculations in this step is |P|O(n2).
2. Remove solutions that do not maintain monotonicity.
This step is needed to ensure that CR(x) in the invert step
(# 4) would be an interval rather than a confidence set.
As mentioned in the introduction, the Sterne CI can lead
to optimal confidence sets, which are optimal in terms of
length, but they are not necessarily intervals. For a con-
crete example, suppose that for p1 = 0.1 the only MAR
is MAR(0.1) = [1, 7] and for p1 = 0.11 the MARs are
MAR(0.11) = [0, 7], [1, 8], [2, 9]. Then, the first MAR
[0, 7] is removed as it violates the monotonicity assumption
with respect to the MAR [1, 7] of p1 = 0.1. If for p1 = 0.1
therewasmore than oneMAR, [0.7] is removed only if it vio-
lates themonotonicity assumption for anyMARof p1 = 0.1.
3. Choose linear ordering.
There are different ways to choose a linear ordering that will
lead to different CIs. However, all of them will be optimal in
the sense of the optimization problem in (1). Blyth and Still
explored a few options for choosing MARs that have other
desired properties. For example, if one wants to avoid CIs
where lx = lx+1 for some x’s, then certain linear orderings
should be avoided.
4. Invert.
By the monotonicity property, the set CR(x) is an interval,
i.e., there are no holes in CR(x). By the construction of
CR(x) we have that

∑n
x=0 #{CR(x)} =∑

p1∈P #{MAR∗(p1)}, where #A is the number of ele-
ments in set A. Since the number of elements in each
MAR∗(p1) is minimal, so is

∑n
x=0 #{CR(x)}. Minimizing∑n

x=0 #{CR(x)} is equivalent to Problem (1) and hence the
output of the algorithm is a solution to Problem (1). More-
over, by choosing different linear orderings in Step 3, all the
optimal solutions can be found by this algorithm.

3.2 A generalization of the Blyth and Still algorithm
to the two-sample case

In this section, we consider a generalization of the Blyth and
Still algorithm that aims to address Problem (2). While the
minimal length and the desired coverage probability are still
preserved, we will show that the output of this generalized
algorithm is not necessarily a confidence interval, but rather
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a confidence set. We start with a definition that parallels Def-
inition 3.1.

Definition 3.2

• A subset S2 ⊆ {0, 1, . . . , n} × {0, 1, . . . ,m} is an
acceptance region with respect to � ∈ D if for all
(p1, p2) ∈ P × P such that p1 − p2 = � we have
that Pp1,p2((X ,Y ) ∈ S2) ≥ 1 − α.

• A subset S2 is a minimal acceptance region (henceforth
MAR) with respect to � ∈ D, denoted by MAR(�), if
there is no other acceptance region with respect to� that
has fewer elements.

Notice that here we define an acceptance region to be
a subset of {0, 1, . . . , n} × {0, 1, . . . ,m}, without requiring
that there are no holes (e.g., S2 in which (0, 2), (0, 4) ∈
S2, (0, 3) /∈ S2 is a possible acceptance region) as in the one
sample definition of an acceptance region.The motivation is
to allow for flexibility in the set of all possibleMARswith the
hope that a certain choice of MARs will lead to a confidence
interval in the inversion step. However, later we demonstrate
that there are cases in which all possible choices of MARs
lead to confidence regions that are not intervals.

The generalized Blyth and Still algorithm

Input: P - a grid of values in [0, 1]; D - a grid of values
in [−1, 1]; n,m - sample sizes; 1−α - desired level.
Output: C̃2 - a collection of (n+1)(m+1) confidence
sets.

1. Find one MAR for each � ∈ D. For all � ∈ D
find one MAR, denoted by MAR(�).

2. Invert. For all (x, y) ∈ {0, 1, . . . , n} ×
{0, 1, . . . ,m}, define CR(x, y) := {� ∈
D if (x, y) ∈ MAR(�)}.

3. Return C̃2 = {CR(x, y)}x∈{0,1,...,n},y∈{0,1,...,m}.

Notice that in this algorithm the steps of removing MARs
that do not maintain monotonicity and choosing linear order-
ing are not present. This will be explained below, but first,
we describe how to find the MARs in Step 1.

Finding theMARs in the two-sample case ismore compli-
cated than the one-sample equivalent task because one needs
to ensure 1−α coverage for all (p1, p2) ∈ P× P that satisfy
p1− p2 = � and not for just one specific p1. Also, in the one-
sample case, the MARs are intervals but here the MARs are
general sets. We found no simple algorithm to compute the
MARs in the two-sample setting and this step is performed
by solving Optimization Problem 1, which is given below.
This optimization problem consists of (n+1)(m+1) binary
variables and has at most |P| constraints for maintaining the

coverage probability. In some instances, the solution is not
unique. We show below that, unlike the one-sample case,
here there is no way of choosing a solution that satisfies that
CR(x, y) in the invert step is always an interval. Therefore,
we selected one solution arbitrarily. The optimal solutionwas
computed by a procedure in the R software (R Core Team
2021) that uses the Gurobi package (Gurobi Optimization,
LLC 2023).

Optimization Problem 1 Problem parameters: D - a grid of
values in [−1, 1] for�; P- a grid of values in [0, 1] for p1 and
p2; (n,m) - number of trials from each sample; confidence
coefficient 1 − α.
Decision variables: r(x, y) - a binary variable that equals 1
iff (x, y) belongs to the MAR.
Objective function: Minimize

∑m
y=0

∑n
x=0 r(x, y).

Constraints:

(a) Maintain the coverage of �:

m∑
y=0

n∑
x=0

r(x, y)

(
n

x

)(
m

y

)
p1

x (1 − p1)
n−x

p2
y(1 − p2)

m−y ≥ 1 − α, (3)

for all (p1, p2) ∈ P × P such that p1 − p2 = �.
(b) The decision variables r(x, y) are binary:

r(x, y) ∈ {0, 1} for all (x, y) ∈ {0, 1, . . . , n}
×{0, 1, . . . ,m}.

Furthermore, we used the above program to find all pos-
sible solutions for the Optimization Problem 1. This allows
us to show that there are examples in which no ordering
of MARs will lead to confidence intervals as in the one-
dimensional case. For example, when n = 5,m = 5, α =
0.1, P = {0, 0.0001, 0.0002, . . . , 1} we find that:

(a) For � = −0.4 the only MAR contains (x, y) = (0, 5).
(b) For � = −0.37 there are five MARs, all of them contain

(x, y) = (0, 5).
(c) For� = −0.38 the onlyMAR does not contain (x, y) =

(0, 5).

This means that for any choice of MARs in this setting, if
(x, y) = (0, 5) is observed, the confidence set of the invert
stepwill contain� = −0.4,−0.37 but not� = −0.38. That
is, the optimal confidence set will be composed of at least two
disjoint intervals. Furthermore, by examining the constraint
(3) for continuous p1, p2 using analytical graphical tools,
we observe that this phenomenon still occurs even for a finer
grid. The full list of MARs for this example are presented in
the appendix.
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We found that this phenomenon occurs quite often: from
six pairs of sample sizes (n,m) ∈ {(10, 5), (5, 5), (6, 4),
(9, 6), (7, 7)} and α = 0.05, only (10, 5) and (6, 4) do not
have MARs with this deficiency.

It follows that one cannot achieve CIs withminimal length
using the Blyth and Still method. Rather, this method guar-
antees confidence sets (not necessarily intervals) that have
a minimal number of elements in D and have the desired
coverage level 1 − α.

In Sect. 5 we examine the performance of this method
where gaps in the confidence sets are simply filled in order
to achieve a confidence interval.

4 Performing full optimization

In the previous section we showed that the generalized Blyth
andStill algorithm to the two-sample case leads to confidence
regions that are optimal in their size, but can be composed of
several disjoint intervals, instead of one interval. The solu-
tion of filling the gaps between the disjoint intervals is later
examined.

Therefore, a different optimizationmethod should be con-
sidered in order to solve Problem (2). The aim is to find a
set of confidence regions that are optimal in length, have the
right coverage level, and are constrained to be intervals. This
can be done by solving the following optimization problem.
For some instances, the solution is not unique, and when this
is the case, we select an arbitrary optimal solution.

Optimization Problem 2 Problem parameters: D - a grid of
values in [−1, 1] for�; P- a grid of values in [0, 1] for p1 and
p2; (n,m) - number of trials from each sample; confidence
coefficient 1 − α.
Decision variables: l(x,y), u(x,y) - the lower and upper limits
for when (x, y) is observed; r(x, y,�) - a binary variable
that equals 1 iff the CI includes � when (x, y) is observed.
Objective function:Minimize

∑m
y=0

∑n
x=0 (u(x,y) − l(x,y)).

Constraints:

(a) Maintain the coverage of �:

m∑
y=0

n∑
x=0

r(x, y,�)

(
n

x

)(
m

y

)
p1

x (1 − p1)
n−x

p2
y(1 − p2)

m−y ≥ 1 − α, (4)

for all (p1, p2) ∈ P × P such that p1 − p2 = �.
(b) Connecting the variables r(x, y,�) and l(x,y) and u(x,y):

r(x, y, �) ≤ � − l(x,y)
2

+ 1 and r(x, y, �) ≤ u(x,y) − �

2
+ 1

(5)

for all (x, y,�) ∈ {0, 1, . . . , n} × {0, 1, . . . ,m} × D.
(c) Connecting further the variables r(x, y,�) and l(x,y)

and u(x,y):

u(x,y) − l(x,y)
dmax

+1 ≤
∑
�∈D

r(x, y,�) ≤ u(x,y) − l(x,y)
dmin

+1

(6)

for all (x, y) ∈ {0, 1, . . . , n} × {0, 1, . . . ,m}, where
dmin and dmax are the minimal and maximal distances
between successive elements in the sorted grid D.

(d) The variables r(x, y,�) are binary:

r(x, y,�) ∈ {0, 1} for all (x, y,�) ∈ {0, 1, . . . , n}
×{0, 1, . . . ,m} × D.

(e) Interval limits are between [−1, 1]:

−1 ≤ l(x,y) ≤ 1 and − 1 ≤ u(x,y) ≤ 1 for all (x, y)

∈ {0, 1, . . . , n} × {0, 1, . . . ,m}.

A solution to Optimization Problem 2 finds the shortest CI
that has 1 − α coverage for every � ∈ D, i.e., it solves
Problem (2). The optimization problem consists of 2(n +
1)(m + 1) variables that assume values in D, and |D|(n +
1)(m + 1) binary variables.

The constraint in (5) consists of two conditions, which
force r(x, y,�) to be 0 if � < l(x, y) or � > u(x, y). This
is because

� < l(x, y) ⇐⇒ � − l(x,y)
2

< 0 ⇐⇒ � − l(x,y)
2

+ 1 < 1.

Thus, by condition (5), if � < l(x, y) then r(x, y,�) <

1. In addition, the expression
(�−l(x,y))

2 + 1 is non-negative,
and hence r(x, y,�) < c for c ≥ 0, which implies that
r(x, y,�) = 0, as it is a binary variable. Similarly, if � >

u(x, y), then r(x, y,�) = 0. If neither � < l(x, y) nor
� > u(x, y) are satisfied, thenConstraint (5) does not restrict
r(x, y,�) to a certain value. This is where Constraint (6)
comes into play. In the case where the grid D is equally-
spaced, Constraint (6) simplifies to

∑
�∈D

r(x, y,�) = u(x,y) − l(x,y)
d

+ 1, (7)

where d is the constant difference between successive ele-
ments in the sorted grid D. In this case, Eq. (7) implies that
if l(x,y) ≤ � ≤ u(x,y), then r(x, y,�) = 1. Combining this
with (5), we have that the r variables are fully determined
by the l and u variables. Constraint (6) does not change the
optimal value, but rather drastically decreases the number of
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feasible solutions and thus reduces the number of computa-
tions needed to solve Optimization Problem 2.

Another way of forcing r(x, y,�) to be 1 if l(x,y) ≤ � ≤
u(x,y), even when D is not equally-spaced, is to change the
objective function to

minimize
m∑
y=0

n∑
x=0

(u(x,y) − l(x,y)) − dmin

2N

n∑
x=0

m∑
y=0∑

�∈D
r(x, y,�),

where N = (n+1)(m+1)|D| is the number of r variables and
dmin is the minimal distance between consecutive elements
in the sorted grid D.

If one wishes to find a solution that maintains the sym-
metry of the binomial distribution under the transformation
p �→ 1 − p, then one can add the restriction

u(x,y) = −l(n−x,m−y) for all (x, y)

∈ {0, 1, . . . , n} × {0, 1, . . . ,m}. (8)

In theGeneralizedBlyth and Still algorithm thatwas given
in Sect. 3.2, Optimization problem 1 is being solved |D|
times, each with (n + 1)(m + 1) binary variables. Here, on
the other hand, there are |D|(n + 1)(m + 1) binary variables
and the optimization problem is solved only once. Since the
running time of the optimization problem solver is not linear
in the number of the binary variables, Optimization Problem
2 is computationally much more difficult.

5 Comparisons

In this section, we compare the full optimization algorithm
of Sect. 4 and the generalized Blyth and Still algorithm of
Sect. 3.1 to several existing methods, both approximate and
exact.

5.1 A list of methods

The existing methods we have compared are listed below.
1. The Wald CI, i.e.,

p̂1 − p̂2 ± z1− α
2

√
p̂1(1 − p̂1)

n
+ p̂2(1 − p̂2)

m
.

It is included in our comparison due to its widespread use
even though it is known to perform poorly.
2. The adjusted Wald CI of Agresti and Caffo (2000) (AC) is
given by

p̄1 − p̄2 ± z1− α
2

√
p̄1(1 − p̄1)

n
+ p̄2(1 − p̄2)

m
.,

where p̄1 = (x + 1)/(n + 2), p̄2 = (y + 1)/(m + 2)
3. The hybrid score (HS) of Newcombe (1998).

Newcombe hybrid score (HS)

Input: n,m - sample sizes; 1 − α - confidence coef-
ficient.
Output:C2 - a collection of (n+1)(m+1) confidence
intervals.

1. Calculate lower and upper bounds. Let p̂1 =
x/n and p̂2 = y/n. For each x ∈ {0, 1, . . . , n},
let lx (1), ux (1) be the two solutions for p1
of z1− α

2
= | p̂1−p1|√

p1(1−p1)

n

, and for each y ∈
{0, 1, . . . ,m}, let ly(2), uy(2) be the two solu-

tions for p2 of z1− α
2

= | p̂2−p2|√
p2(1−p2)

m

.

2. Hybrid score. For all(x, y) ∈ {0, 1, . . . , n} ×
{0, 1, . . . ,m} define

l(x, y) = p̂1 − p̂2 − z1− α
2√

lx (1)(1 − lx (1))

n
+ uy(2)(1 − uy(2))

m
and

u(x, y) = p̂1 − p̂2 + z1− α
2√

ux (1)(1 − ux (1))

n
+ ly(2)(1 − ly(2))

m
.

3. ReturnC2 = {[l(x,y), u(x,y)]}(x,y)∈{0,1,...,n}×{0,1,...,m}.

The calculations of the HS CI can be found in the R soft-
ware in the package ‘DescTools’ (Signorell 2024).
4. The exact method of Agresti and Min (2001) (AM)
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The exact method of Agresti and Min (2001) (AM)

Input: P - a grid of values in [0, 1]; D - a grid of values
in [−1, 1]; n,m - sample sizes; 1 − α - confidence
coefficient.Output:C2 - a collection of (n+1)(m+1)
confidence intervals.

1. Calculate scores. For any triplet (x, y,�) ∈
{0, 1, . . . , n} × {0, 1, . . . ,m} × D define

Z(x, y,�) =
( x
n − y

m − �
)2

p̃1(1− p̃1)
n + p̃2(1− p̃2)

m

,

where p̃1, p̃2 are the MLE for p1, p2 under
p1 − p2 = �, i.e., they maximize the likelihood
p1x (1− p1)n−x p2 y(1− p2)m−y , under the con-
straint p1 − p2 = �.

2. Calculate λ values. For any triplet (x, y,�) ∈
{0, 1, . . . , n} × {0, 1, . . . ,m} × D define

λ(x, y,�)

= max

{
Pp1,p2

(
Z(X ,Y ,�) ≥ Z(x, y,�)

)

: (p1, p2) ∈ P × P s.t p1 − p2 = �

}
.

3. Invert For all (x, y) ∈ {0, 1, . . . , n} ×
{0, 1, . . . ,m} define CR(x, y) := {� ∈
D if λ(x, y,�) > α} and l(x,y) :=
min{CR(x, y)}, u(x,y) := max{CR(x, y)}.

4. ReturnC2 = {[l(x,y), u(x,y)]}(x,y)∈{0,1,...,n}×{0,1,...,m}.

Notice that similar to the generalized Blyth and Still algo-
rithm,CR(x, y) is not necessarily an interval. Therefore, the
confidence interval is defined by theminimumandmaximum
value of CR(x, y).

We could not find a code in R that implements the AM
algorithm, and therefore we wrote our own code. For cal-
culating the MLEs p̃1, p̃2 in Step 1 we used the function
‘z2stat’ in the package ‘PropCIs’ (Scherer 2022); an explicit
expression for the MSE is given in Miettinen and Nurminen
(1985).

We ran the AM algorithm under two modes, which we
denote by AM1 and AM2. The first mode is with the
gridsD = {−1,−0.99,−0.98, . . . , 1} and P = {0, 0.01,
0.02, . . . , 1}, and the second mode is with the grids D =
{−1,−0.999,−0.998, . . . , 1} and P = {0, 0.001, 0.002,
. . . , 1}. The reason for considering the coarser grid of the
first mode is to attain a better comparison to the full opti-
mization method, in which the finer grid is computationally
infeasible. The AM algorithm is sub-optimal but runs much

faster than full optimization and therefore can be computed
with a finer grid.
5. The generalized Blyth and Still algorithm that is given in
Sect. 3.2 (BSG).

We ran the algorithm where the confidence sets are filled
if they are not intervals. As in the AMmethod, we considered
two possible modes, denoted by BSG1 and BSG2. In the first
modewe used the gridsD = {−1,−0.99,−0.98, . . . , 1} and
P = {0, 0.02, 0.04, . . . , 1}. In the second mode we used the
grid D = {−1,−0.999,−0.998, . . . , 1} and a different grid
P for every � ∈ D, a choice that improves the performance
of the algorithm. Namely, for � ≥ 0 we define

P� = {�, . . . , 1} with equal jumps of
1 − �

100

and for � < 0 we define

P� = {0, . . . , 1 + �} with equal jumps of
1 − �

100
.

The coverage condition of the algorithm in (3) is satisfied for
any pair (p1, p1 − �) where p1 ∈ P�.
6. The full optimization algorithm presented in Sect. 4 (Full).

We ran the algorithm of Sect. 4 with the grid D =
{−1,−0.99,−0.98, . . . , 1}, P = {0, 0.01, 0.02, . . . , 1} and
denote it by Full1. Here we only considered the coarse grid
since the computational complexity of the optimization prob-
lem is much greater. We ran the problem with the symmetric
condition (8) and found that this restriction does not change
the length of the CIs in the optimal solution.

The Gurobi software was given a time limit of two min-
utes. If the time limit is reached, the best solution is reported,
as is the gap between this solution to the current lower bound
in terms of percentage. The starting point of the algorithm is
based on the output of the AM method.

Since the grid is relatively coarse, there are non-negligible
amount of differences p1− p2 for which 1−α coverage is not
preserved.We examined twoways to overcome this problem,
where the updated limits are denoted by l∗(x,y) and u∗

(x,y).

(a) Extending theCIs in each direction by adding or reducing
0.01 (which is the gap size in the grid we used) (Full2),
i.e.,

l∗(x,y) = l(x,y) − 0.01 and u∗
(x,y) = u(x,y) + 0.01.

(b) Extending theCIs in each direction by adding or reducing
0.01/2 (Full3), i.e.,

l∗(x,y) = l(x,y) − 0.01/2 and u∗
(x,y) = u(x,y) + 0.01/2.

In these extensions, the new limits are truncated if they
exceed the interval [−1, 1].
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5.2 Criteria of performance

We compare the methods listed in Sect. 5.1 according to the
following six criteria.
AVG length. The average length in defined by

∑m
y=0

∑n
x=0(u(x,y) − l(x,y))

(n + 1)(m + 1)
.

PCT of under-coverage. Define the coverage probability
function CP(p1, p2) := Pp1,p2(� ∈ [l(X ,Y ), u(X ,Y )]). The
percentage of under-coverage is

100 ×
∫ 1

0

∫ 1

0
I (CP(p1, p2) < 1 − α)d p1dp2.

PCT of substantial under-coverage. This is defined by

100 ×
∫ 1

0

∫ 1

0
I (CP(p1, p2) < 1 − α − 0.01)d p1dp2.

AVG deviation. This is defined by

10, 000 ×
∫ 1

0

∫ 1

0
[1 − α − CP(p1, p2)]

I (CP(p1, p2) < 1 − α)d p1dp2.

This expression is the loss for an average pair (p1, p2)
(assuming a uniform distribution), where the loss for each
pair is defined by the difference between the desired level
1 − α and the actual coverage level CP(p1, p2) when
CP(p1, p2) is below 1 − α and zero otherwise. The fac-
tor 10,000 is used since this loss is relatively small in most
of the methods we used.
Min CL. The minimum coverage probability is defined by
min(p1,p2)∈[0,1]×[0,1] CP(p1, p2).

AVG CL. The average coverage probability is
∫ 1
0

∫ 1
0 CP

(p1, p2)d p1dp2.
For calculating the above criteria (besides AVG length),

we sampled 40,000pairs (p1, p2) fromauniformdistribution
on [0, 1]×[0, 1]. This defines a gridP in [0, 1]×[0, 1]. Then
the above criteria are computed using this grid. For example,
the percentage of under-coverage is evaluated by

100 × 1

|P|
∑

(p1,p2)∈P
I (CP(p1, p2) < 1 − α).

5.3 Results

We calculated the resulting CIs of the methods listed
in Sect. 5.1 for three cases of (n,m), namely (n,m) ∈
{(9, 6), (14, 7), (10, 10)}. For each of them, three different
confidence coefficients are considered,α ∈ {0.01, 0.05, 0.1}.

For each set of parameters and a CI method, we computed
the six criteria of Sect. 5.2.

The results for (n,m) = (9, 6), (14, 7), (10, 10) are given
in Tables 1, 2, and 3, respectively. A few observations and
conclusions are now given.

• The WALD CI performs poorly. Almost for all pairs, the
coverage probability is below the desired level 1−α and
even below 1 − α − 0.01. Also, the average coverage is
well below the desired level. This finding is not surprising
as the WALD CI relies on asymptotic approximation,
which is not valid for small sample sizes.

• We considered three non-exact methods:WALD, HS and
AC.Comparing thesemethods in terms of average length,
the order is usually WALD < HS < AC, but the same
order holds under the under-coverage and substantial
under-coverage criteria. This means that narrower CIs
come with the price of under-coverage.

• The Full1 method produces CI with optimal length,
or close to optimal; see the discussion below. As we
expected, it has the shortest average length among all
exact CIs. Compared to the approximate CIs it is longer
by 2–10% than HS andWALD and it has a similar length
as AC.

• The Full1 method does not guarantee exact coverage
for any (p1, p2), just for the pairs in the grid. For
(n,m) = (9, 6), the percentage of under-coverage pairs
ranges from6%forα = 0.01, to 10% forα = 0.1. For the
two other sample sizes, it ranges from 14 to 18%. Exam-
ining Full1 by the criterion of percentage of substantial
under-coverage, we can see that it has good performance,
especially for small α. Yet, for (n,m, α) = (10, 10, 0.1)
the percentage of substantial under-coverage reaches 8%,
which might be too high. Still, the Full1 has a smaller
percentage of under-coverage and percentage of substan-
tial under-coverage compared to the approximate CIs,
including AC.

• The exact methods Full1, BSG1 and AM1 ran with the
same grid for �. Among these methods, the order of the
average length is usually Full1 < BSG1 < AM1. The
length improvement of Full1 compared to AM1 is about
2–5%. On the other hand, AM1 has better coverage than
BSG1 and Full1.

• The modification of Full2 produces a CI that is exact for
all pairs but it comes at the cost of a larger length of
0.02. Full3 does not guarantee exact coverage, but the
percentage of under-coverage is decreased by about 90%
compared to Full1, and the intervals are extended by half
the amount compared to Full2.

• The BSG2 method achieves significant improvement in
the coverage criteria compared to BSG1, at the cost of
average length that is greater by about 2%. Similarly,
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AM2 improvesAM1 in termsof coverage, but the average
length increases slightly.

• Out of all the exactmethods examined, onlyBSG2,AM2,
Full2 and Full3 have satisfactorily performance for the
coverage criteria. The coverage probability of Full2 is
always larger than 1 − α in the above parameters. Com-
paring BSG2, AM2 and Full3 we can observe that Full3
has the largest percentage of under-coverage, for most
of the nine combinations of n,m and α we considered,
while AM2 has the lowest. On the other hand, Full3 has
the smallest percentage of substantial under-coverage,
smaller than 0.01% for all 9 cases. AM2 and BSG2 have
slightly higher numbers, yet still very low, ranging from
0.13 to 0.47%.
Considering the criterion of AVG deviation, all three
methods have low scores, in comparison to the other
methods. BSG2 has a slightly higher score than AM2
and Full3, which are mostly comparable.

• In addition we checked if the Full3 CIs maintain the nest-
edness property that was mentioned in the introduction.
We checked for every sample sizes 3 ≤ m ≤ n ≤ 15
and for each sample results (x, y) ∈ {0, 1, . . . , n} ×
{0, 1, . . . ,m} that the 99% CI contains the 95% CI, and
the latter contains the 90%CI. Overall there are 50 viola-
tions of nestedness out of 9, 191 comparisons (0.544%).
For example, when the sample sizes are (n,m) = (10, 7)
and the observations are (x, y) = (8, 1), the 90% CI is
[0.185, 0.855], while the 95%CI is [0.195, 0.895], which
does not contain the former interval.

To examine further the under-coverage of the different
methods we plotted in Fig. 1 all pairs (p1, p2) ∈ P for which
CP(p1, p2) is below 1 − α when (n,m, α) = (9, 6, 0.05)
for all methods excluding WALD.

We observe that AM2, BSG2 and Full3 have similar low
under-coverage, but the pattern is a bit different. For AM2
the under-coverage is mostly for pairs (p1, p2) that are close
( 12 ,

1
2 ), while for Full3 it is mostly for large � = |p1 − p2|.

The graph of Full2 is empty as there is no under-coverage
for this method.

Additionally, Fig. 2 plots the coverage probability as a
function of p2 when p1 = 0.5. We can see that all the seven
exact methods (AM1, AM2, BSG1, BSG2, Full1, Full2,
Full3) exhibit a similar pattern, and the coverage probabil-
ity is above 1 − α for almost all p2. Notice that the graph
of Full2 has a few short lines (looking like points) in the
high-confidence area, which do not exist in the Full3 graph.
This is due to the extension of the limits by 0.01/2 in Full3
compared to the extension of 0.01 in Full2.

Table 4 reports the decrease in the average length of the
solutions found by the Full1 method compared to the best
lower bound that was computed. It is demonstrated that the
gap between the best lower bound and the solution that was

found is quite small. Even if the time limit of the algo-
rithm is extended, we believe that it generally would not
result in better performance. By observing the outputs of
the optimization algorithm throughout the run, it seems that
the solution found is optimal or very close to optimal, and
more running time will mostly improve the computation of
the lower bound, and not the solution itself. For example, for
(n,m, α) = (10, 10, 0.05) the solution after 180s, was the
same one that was found after 30 s. The changes were only
in the computation of the gap: from 1.67% to 0.87%.

Considering both coverage and length, it seems that Full3
is the best method among the ones we suggested, namely,
Full1, Full2, Full3, BSG1 and BSG2. Among the other meth-
ods, AM2 has the best performance. Comparing Full3 and
AM2, theyperformsimilarly in the coverage criteria but Full3
has a smaller average length.

To examine further the decrease of length of Full3 com-
pared to AM2, we considered 21 pairs of (n,m), where 5 ≤
m ≤ n ≤ 10. For each such pair and forα ∈ {0.01, 0.05, 0.1}
we computed the relative improvement, which is defined by

100 × AVG length(AM2)-AVG length(Full3)

AVG length (AM2)
. (9)

The results are plotted in Fig. 3. We observe that for all
21 pairs Full3 produced shorter intervals and the relative
improvement varies from 0.5% to 5%. The larger the α, the
larger is the relative improvement. For α = 0.01, the relative
improvement is about 1%, and for α = 0.05, the range is
from 2.5% to 4%, respectively. It also seems that the relative
improvement tends to increase with n. In all runs of Full3,
the gap between the solution obtained to the lower bound
is rather small and the largest gap is 1.35%. Figure4, which
appears in the appendix, extends Fig. 3 to sample sizes (n,m)

where 3 ≤ m ≤ n ≤ 15.
Figures3 and4 demonstrate that larger sample sizes lead

to more relative improvement. This is because the degrees
of freedom of the optimization method are larger for larger
sample sizes. Therefore, the advantage of performing full
optimization is more significant.

5.4 Summary of the findings

The Full algorithm was shown to be computationally fea-
sible for small n,m using the rather coarse grid of D =
{−1,−0.99, . . . , 1}. While the resulting CIs do not have the
right coverage probability for p1 and p2 that are not in the
grid, simple adjustments can be made to improve the cov-
erage at a small cost in the average length. The adjusted
method, Full3, is comparable, in terms of coverage, to AM2
and BSG2, which are computed under a finer grid, but has
shorter CIs.
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Fig. 1 Plotting all pairs (p1, p2) ∈ P for which CP(p1, p2) is below 1−α when (n,m, α) = (9, 6, 0.05) for all methods listed in Sect. 5.1 besides
WALD

Table 4 A bound of the gap, in
terms of percentage of length,
between the optimal solution
and the one found by Full1 as
computed by the Gurobi
package

α\(n,m) (n = 9,m = 6) (%) (n = 14,m = 7) (%) (n = 10,m = 10) (%)

0.01 0.1 0.957 0.922

0.05 0.33 0.94 1.08

0.1 0.77 1.31 1.33
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Fig. 2 Plotting the coverage probability as a function of p2 when p1 = 0.5 and (n,m, α) = (9, 6, 0.05) for for all methods listed in Sect. 5.1
excluding WALD. The vertical line represents the 1 − α = 0.95 confidence coefficient

6 Discussion

For small n,m (n,m ≤ 15) we recommended the use of
the Full3 method, as it has good coverage and a small aver-
age length. Tables for various (n,m, α) of the Full3 method
are presented in the following link https://technionmail-my.
sharepoint.com/:f:/g/personal/ap_campus_technion_ac_il/El-
213Kms51BhQxR8MmQJCYBDfIsvtrK9mQIey1sZnZWIQ?

e=hxGunl. The second best method is the AM2 method, and
it can be used when Full3 is not available.

We also tried several examples with larger sample sizes
than 15.Whenboth sample sizeswere 25, the algorithmcould
not find feasible solutions. For smaller sample sizes (around
20) the results were similar to what was reported in Sect. 5.3.
However, amore thorough study is required for larger sample
sizes, and we leave this for future research.
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Fig. 3 Plotting the relative improvement as defined in (9) for every pair (n,m) where n ∈ {5, . . . , 10} and m ∈ {5, . . . , n} and for
α ∈ {0.01, 0.05, 0.1}. The x-axis in the graphs is n and the number near each point is the corresponding m

Extensions of this work can go in several directions. One
can consider extending the Full algorithm to other frequently
used discrete distributions, like Poisson or Hyper-geometric.
This amounts to changing the coverage criterion (4) accord-
ing to the distribution used. One can also consider other
related optimization problems, for example finding the short-
est CIs that have an average confidence coefficient of 1− α,
and theminimal coverage probability is above 1−β for some
β > α. The availability of powerful optimization algorithms
and software allows one to investigate such problems.
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7 Appendix

A list of notation

• p1, p2—Proportions of binomial distribution
• � = p1 − p2—Difference between two proportions
• 1 − α—The stated confidence coefficient
• n,m—The sample sizes
• z1− α

2
—The1− α

2 quantile of standard normal distribution
• X—Random variable ∼ binomial(n, p1), Y - random

variable ∼ binomial(m, p2)
• x, y—The sample results
• lx , ux—Lower and upper limit of the confidence inter-

val for p1 when X = x is observed. l(x,y), u(x,y) lower
and upper limit of the confidence interval for � when
(X ,Y ) = (x, y) is observed

• CI—The confidence interval
• C1—The collection of all confidence intervals for one
sample case:

C1 := {[lx , ux ]}x∈{0,1,...,n}
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Fig. 4 Plotting the relative improvement as defined in (9) for every pair (n,m) where n ∈ {3, . . . , 15} and m ∈ {3, . . . , n} and for
α ∈ {0.01, 0.05, 0.1}. The x-axis in the graphs is n and the number near each point is the corresponding m

• C2—The collection of all confidence intervals for two
sample case:

C2 := {[lx,y, ux,y]}x∈{0,1,...,n},y∈{0,1,...,m}

• D—Grid for � values
• P—Grid for p1, p2 values.

Relative improvement to additional pairs of
sample sizes

Figure4 displays the relative improvement as shown in Fig. 3
to sample sizes (n,m) where 3 ≤ m ≤ n ≤ 15.

The full list of MARs for the example pre-
sented in Sect. 3.2

MAR for � = −0.37:

MAR1(−0.37) = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5),
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 2), (2, 3), (2, 4), (2, 5), (3, 3),

(3, 4), (3, 5), (4, 4), (4, 5)}

MARs for � = −0.4:

MAR1(−0.4) = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5),
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 2), (2, 3), (2, 4), (2, 5), (3, 3),

(3, 4), (3, 5), (4, 4), (4, 5)}
MAR2(−0.4) = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5),

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 3), (2, 4), (2, 5), (3, 2), (3, 3),

(3, 4), (3, 5), (4, 4), (4, 5)}
MAR3(−0.4) = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5),

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 1), (2, 3), (2, 4), (2, 5), (3, 3),

(3, 4), (3, 5), (4, 4), (4, 5)}
MAR4(−0.4) = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5),

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 2), (2, 3), (2, 4), (2, 5), (3, 2),
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(3, 4), (3, 5), (4, 4), (4, 5)}
MAR5(−0.4) = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5),

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 2), (2, 3), (2, 4), (2, 5), (3, 4),

(3, 5), (4, 3), (4, 4), (4, 5)}

MAR for � = −0.38:

MAR1(−0.38) = {(0, 1), (0, 2), (0, 3), (0, 4),
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 2), (2, 3), (2, 4), (2, 5),

(3, 3), (3, 4), (3, 5), (4, 4), (4, 5)}
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