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Abstract
In this paper, we address the problem of designing an experimental plan with both discrete and continuous factors under
fairly general parametric statistical models. We propose a new algorithm, named ForLion, to search for locally optimal
approximate designs under the D-criterion. The algorithm performs an exhaustive search in a design space with mixed factors
while keeping high efficiency and reducing the number of distinct experimental settings. Its optimality is guaranteed by the
general equivalence theorem.We present the relevant theoretical results for multinomial logit models (MLM) and generalized
linear models (GLM), and demonstrate the superiority of our algorithm over state-of-the-art design algorithms using real-life
experiments under MLM and GLM. Our simulation studies show that the ForLion algorithm could reduce the number of
experimental settings by 25% or improve the relative efficiency of the designs by 17.5% on average. Our algorithm can help
the experimenters reduce the time cost, the usage of experimental devices, and thus the total cost of their experiments while
preserving high efficiencies of the designs.

Keywords ForLion algorithm · Generalized linear model · Lift-one algorithm · Mixed factors · Multinomial logistic model ·
D-optimal design

1 Introduction

Our research is motivated by an experiment on the emer-
gence of house flies for studying biological controls of
disease-transmitting fly species (Itepan 1995; Zocchi and
Atkinson 1999). In the original experiment (Itepan 1995),
n = 3500 pupae were grouped evenly into seven subsets and
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exposed in a radiation device tuned to seven different gamma
radiation levels xi ∈ {80, 100, 120, 140, 160, 180, 200} in
units Gy, respectively. After a certain period of time, each
pupa had one of three possible outcomes: unopened,
opened but died (before completing emergence), or
completed emergence. The total experimental costs
in time and expense were closely related to the number
of distinct settings of the radiation device. By searching
the grid-1 settings in [80, 200] using their lift-one algo-
rithm, Bu et al. (2020) proposed a design on five settings
{80, 122, 123, 157, 158} and improved the relative efficiency
of the original design by 20.8% in terms of D-criterion.
More recently, Ai et al. (2023) obtained a design focusing on
four settings {0, 101.1, 147.8, 149.3} by employing an algo-
rithm that combines theFedorov-Wynn (Fedorov andLeonov
2014) and lift-one (Bu et al. 2020) algorithms on searching
the continuous region [0, 200]. Having noticed that both Bu
et al. (2020)’s and Ai et al. (2023)’s designs contain pairs
of settings that are close to each other, we propose a new
algorithm, called the ForLion algorithm (see Sect. 2), that
incorporates a merging step to combine close experimental
settings while maintaining high relative efficiency. For this
case, our proposed algorithm identifies aD-optimal design on
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{0, 103.56, 149.26}, which may lead to a 40% or 25% reduc-
tion of the experimental cost compared to Bu et al. (2020)’s
or Ai et al. (2023)’s design, respectively.

In this paper, we consider experimental plans under fairly
general statistical models with mixed factors. The pre-
determined design region X ⊂ R

d with d ≥ 1 factors is
compact, that is, bounded and closed, for typical applica-
tions (see Sect. 2.4 in Fedorov and Leonov (2014)). Formany
applications, X = ∏d

j=1 I j , where I j is either a finite set
of levels for a qualitative or discrete factor, or an interval
[a j , b j ] for a quantitative or continuous factor. To simplify
the notations, we assume that the first k factors are con-
tinuous, where 0 ≤ k ≤ d, and the last d − k factors
are discrete. Suppose m ≥ 2 distinct experimental settings
x1, . . . , xm ∈ X , known as the design points, are chosen,
and n > 0 experimental units are available for the experiment
with ni ≥ 0 subjects allocated to xi , such that, n = ∑m

i=1 ni .
We assume that the responses, which could be vectors,
are independent and follow a parametric model M(xi ; θ)

with some unknown parameter(s) θ ∈ R
p, p ≥ 1. In the

design theory, w = (w1, . . . , wm)T = (n1/n, . . . , nm/n)T ,
known as the approximate allocation, is often considered
instead of the exact allocation n = (n1, . . . , nm)T (see, for
examples, Kiefer (1974), Sect. 1.27 in Pukelsheim (2006),
and Sect. 9.1 in Atkinson et al. (2007)). Under regularity
conditions, the corresponding Fisher information matrix is
F = ∑m

i=1 wiFxi ∈ R
p×p up to a constant n, whereFxi is the

Fisher information at xi . In this paper, the design under con-
sideration takes the form of ξ = {(xi , wi ), i = 1, . . . , m},
where m is a flexible positive integer, x1, . . . , xm are distinct
design points from X , 0 ≤ wi ≤ 1, and

∑m
i=1 wi = 1. We

also denote � = {{(xi , wi ), i = 1, . . . , m} | m ≥ 1; xi ∈
X , 0 ≤ wi ≤ 1, i = 1, . . . , m;∑m

i=1 wi = 1} be the collec-
tion of all feasible designs.

Under different criteria, such asD-, A-, or E-criterion (see,
for example, Chapter 10 in Atkinson et al. (2007)), many
numerical algorithms have been proposed for finding optimal
designs. If all factors are discrete, the design region X typi-
cally contains a finite number of design points, still denoted
bym. Then the design problem is to optimize the approximate
allocation w = (w1, . . . , wm)T . Commonly used design
algorithms include Fedorov-Wynn (Fedorov 1972; Fedorov
and Hackl 1997), multiplicative (Titterington 1976, 1978;
Silvey et al. 1978), cocktail (Yu 2011), and lift-one (Yang
and Mandal 2015; Yang et al. 2017; Bu et al. 2020), etc.
Besides, classical optimization techniques such as Nelder-
Mead (Nelder and Mead 1965), quasi-Newton (Broyden
1965; Dennis and Moré 1977), conjugate gradient (Hestenes
and Stiefel 1952; Fletcher and Reeves 1964), and simulated
annealing (Kirkpatrick et al. 1983) may also be used for the
same purpose (Nocedal and Wright 2006). A comprehen-
sive numerical study by Yang et al. (2016) (Table 2) showed
that the lift-one algorithm outperforms commonly used opti-

mization algorithms in identifying optimal designs, resulting
in designs with fewer points.

Furthermore, many deterministic optimization methods
may also be used for finding optimal designs under simi-
lar circumstances. Among them, polynomial time (P-time)
methods including linear programming (Harman and Jurík
2008), second-order cone programming (Sagnol 2011),
semidefinite programming (Duarte et al. 2018; Duarte and
Wong 2015; Venables and Ripley 2002; Wong and Zhou
2023; Ye and Zhou 2013), mixed integer linear programming
(Vo-Thanh et al. 2018), mixed integer quadratic program-
ming (Harman and Filová 2014), mixed integer second-order
cone programming (Sagnol and Harman 2015), and mixed
integer semidefinite programming (Duarte 2023), are advan-
tageous for discrete grids due to their polynomial time com-
plexity and capability of managing millions of constraints
efficiently. Notably, nonlinear polynomial time (NP-time)
methods, such as nonlinear programming (Duarte et al.
2022), semi-infinite programming (Duarte and Wong 2014),
and mixed integer nonlinear programming (Duarte et al.
2020) have been utilized as well.

When the factors are continuous, the Fedorov-Wynn algo-
rithm can still be used by adding a new design point in
each iteration, which maximizes a sensitivity function on X
(Fedorov and Leonov 2014). To improve the efficiency, Ai
et al. (2023) proposed a new algorithm for D-optimal designs
under a continuation-ratio link model with continuous fac-
tors, which essentially incorporates the Fedorov-Wynn (for
adding new design points) and lift-one (for optimizing
the approximate allocation) algorithms. Nevertheless, the
Fedorov-Wynn step tends to add unnecessary closely-spaced
design points (see Sect. 3.2), which may increase the exper-
imental cost. An alternative approach is to discretize the
continuous factors and consider only the grid points (Yang
et al. 2013), which may be computationally expensive espe-
cially when the number of factors is moderate or large.

Little has been done to construct efficient designs with
mixed factors. Lukemire et al. (2019) proposed the d-QPSO
algorithm, amodified quantum-behaved particle swarm opti-
mization (PSO) algorithm, for D-optimal designs under
generalized linear models with binary responses. Later,
Lukemire et al. (2022) extended the PSO algorithm for
locally D-optimal designs under the cumulative logit model
with ordinal responses. However, like other stochastic opti-
mization algorithms, the PSO-type algorithms cannot guar-
antee that an optimal solution will ever be found (Kennedy
and Eberhart 1995; Poli et al. 2007).

Following Ai et al. (2023) and Lukemire et al. (2019,
2022),we chooseD-criterion,whichmaximizes the objective
function f (ξ) = |F(ξ)| = ∣

∣
∑m

i=1 wiFxi

∣
∣, ξ ∈ �. Through-

out this paper, we assume f (ξ) > 0 for some ξ ∈ � to avoid
trivial optimization problems. Unlike Bu et al. (2020) and
Ai et al. (2023), the proposed ForLion algorithm does not
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need to assume rank(Fx) < p for all x ∈ X (see Remark 1
and Example 1). Compared with the PSO-type algorithms
for similar purposes (Lukemire et al. 2019, 2022), our For-
Lion algorithm could improve the relative efficiency of the
designs significantly (see Example 3 for an electrostatic dis-
charge experiment discussed by Lukemire et al. (2019) and
Sect. S.3 of the Supplementary Material for a surface defects
experiment (Phadke 1989; Wu 2008; Lukemire et al. 2022)).
Our strategies may be extended to other optimality crite-
ria, such as A-optimality, which minimizes the trace of the
inverse of the Fisher information matrix, and E-optimality,
which maximizes the smallest eigenvalue of the Fisher infor-
mation matrix (see, for example, Atkinson et al. (2007)).

The remaining parts of this paper are organized as follows.
In Sect. 2, we present the ForLion algorithm for general para-
metric statistical models. In Sect. 3, we derive the theoretical
results for multinomial logistic models (MLM) and revisit
themotivated example to demonstrate our algorithm’s perfor-
mance with mixed factors under general parametric models.
In Sect. 4, we specialize our algorithm for generalized lin-
ear models (GLM) to enhance computational efficiency by
using model-specified formulae and iterations. We use sim-
ulation studies to show the advantages of our algorithm. We
conclude in Sect. 5.

2 ForLion for D-optimal designs withmixed
factors

In this section, we propose a new algorithm, called the For-
Lion (First-orderLift-one) algorithm, for constructing locally
D-optimal approximate designs under a general parametric
model M(x; θ)with x ∈ X ⊂ R

d , d ≥ 1 and θ ∈ R
p, p ≥ 1.

Asmentioned earlier, the design regionX = ∏d
j=1 I j , where

I j = [a j , b j ] for 1 ≤ j ≤ k, −∞ < a j < b j < ∞, and
I j is a finite set of at least two distinct numerical levels for
j > k. To simplify the notation, we still denote a j = min I j

and b j = max I j even if I j is a finite set.
In this paper, we assume 1 ≤ k ≤ d. That is, there is at

least one continuous factor. For cases with k = 0, that is, all
factors are discrete, one may use the lift-one algorithm for
general parametric models (see Remark 1). The goal in this
study is to find a design ξ = {(xi , wi ), i = 1, . . . , m} ∈ �

maximizing f (ξ) = |F(ξ)|, the determinant of F(ξ), where
F(ξ) = ∑m

i=1 wiFxi ∈ R
p×p. Here m ≥ 1 is flexible.

Given a design ξ = {(xi , wi ), i = 1, . . . , m} reported by
the ForLion algorithm (see Algorithm 1), the general equiv-
alence theorem (Kiefer 1974; Pukelsheim 1993; Stufken and
Yang 2012; Fedorov and Leonov 2014) guarantees its D-
optimality on X . As a direct conclusion of Theorem 2.2 in
Fedorov and Leonov (2014), we have the theorem as follows
under the regularity conditions (see Sect. S.8 in the Supple-

Algorithm 1 ForLion
0◦ Set up tuning parameters δ > 0 as the merging threshold and ε > 0

as the converging threshold. For example, δ = 10−6 and ε =
10−12.

1◦ Construct an initial design ξ0 = {(x(0)
i , w

(0)
i ), i = 1, . . . , m0}

such that (i) ‖x(0)
i − x(0)

j ‖ ≥ δ for any i 	= j ; and (ii) |F(ξ0)| >

0. For example, one may sequentially and randomly choose x(0)
i

from either
∏d

j=1{a j , b j } or
∏d

j=1 I j such that the new point is
at least δ away from the previous points, until some m0 such that
|∑m0

i=1 Fx(0)
i

| > 0. The weights w
(0)
i may be defined uniformly (all

equal to 1/m0) or randomly (proportional toUi withUi ’s i.i.d. from
an exponential distribution).

2◦ Merging step: Given the design ξ t = {(x(t)
i , w

(t)
i ), i = 1, . . . , mt }

at the t th iteration, check the pairwise Euclidean distances among
x(t)

i ’s. If there exist 1 ≤ i < j ≤ mt , such that, ‖x(t)
i − x(t)

j ‖ < δ,

then merge the two points into a new point (x(t)
i + x(t)

j )/2 with

weightw(t)
i +w

(t)
j , and replace mt by mt −1. Repeat the procedure

till any two remaining points have a distance of at least δ.
3◦ Lift-one step: Given ξ t , run the lift-one algorithm (see Remark 1)

with converging threshold ε to find the converged allocation
w∗
1 , . . . , w

∗
mt

for the design points x(t)
1 , . . . , x(t)

mt . Replace w
(t)
i ’s

with w∗
i ’s, respectively.

4◦ Deleting step: Update ξ t by removing all x(t)
i ’s that have w

(t)
i = 0.

5◦ Newpoint step:Given ξ t , find a point x
∗ = (x∗

1 , . . . , x∗
d )T ∈ X that

maximizes d(x, ξ t ) = tr(F(ξ t )
−1Fx). Recall that the first k factors

are continuous. If 1 ≤ k < d, we denote x(1) = (x1, . . . , xk)
T

and x(2) = (xk+1, . . . , xd )T . Then x = (xT
(1), x

T
(2))

T . Fixing each

x(2) ∈ ∏d
j=k+1 I j , we use the “L-BFGS-B" quasi-Newton method

(Byrd et al. 1995) to find

x∗
(1) = argmaxx(1)∈∏k

i=1[ai ,bi ]d((xT
(1), x

T
(2))

T , ξ t )

Note that x∗
(1) depends on x(2). Then x∗ is obtained by finding

the x∗
(2) associated with the largest d(((x∗

(1))
T , xT

(2))
T , ξ t ). If k =

d, that is, all factors are continuous, we can always find x∗ =
argmaxx∈X d(x, ξ t ) directly.

6◦ If d(x∗, ξ t ) ≤ p, go to Step 7◦. Otherwise, we let ξ t+1 =
ξ t

⋃{(x∗, 0)}, replace t by t + 1, and go back to Step 2◦.
7◦ Report ξ t as the D-optimal design.

mentary Material, as well as Assumptions (A1), (A2) and
(B1)–(B4) in Sect. 2.4 of Fedorov and Leonov (2014)).

Theorem 1 Under regularity conditions, there exists a D-
optimal design that contains no more than p(p+1)/2 design
points. Furthermore, if ξ is obtained by Algorithm 1, it must
be D-optimal.

We relegate the proof of Theorem 1 and others to Sect. S.9
of the Supplementary Material.

Remark 1 Lift-one step for general parametric models: For
commonly used parametric models, rank(Fx) < p for each
x ∈ X . For example, all GLMs satisfy rank(Fx) = 1 (see
Sect. 4).However, there exist special cases that rank(Fx) = p
for almost all x ∈ X (see Example 1 in Sect. 3.1).

The original lift-one algorithm (see Algorithm 3 in the
SupplementaryMaterial of Huang et al. (2023)) requires 0 ≤
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wi < 1 for all i = 1, . . . , m, given the current allocationw =
(w1, . . . , wm)T . If rank(Fxi ) < p for all i , then f (ξ) > 0
implies 0 ≤ wi < 1 for all i . In that case, same as in the
original lift-one algorithm, we define the allocation function
as

wi (z) =
(

1 − z

1 − wi
w1, . . . ,

1 − z

1 − wi
wi−1, z,

1 − z

1 − wi
wi+1, . . . ,

1 − z

1 − wi
wm

)T

= 1 − z

1 − wi
w + z − wi

1 − wi
ei

where ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R
m , whose i th coor-

dinate is 1, and z is a real number in [0, 1], such that
wi (z) = wi at z = wi , and wi (z) = ei at z = 1. How-
ever, if rank(Fxi ) = p and wi = 1 for some i , we still have
f (ξ) > 0, but the above wi (z) is not well defined. In that
case, we define the allocation function in the ForLion algo-
rithm as

wi (z) =
(
1 − z

m − 1
, . . . ,

1 − z

m − 1
, z,

1 − z

m − 1
, . . . ,

1 − z

m − 1

)T

= m(1 − z)

m − 1
wu + mz − 1

m − 1
ei

where wu = (1/m, . . . , 1/m)T ∈ R
m is a uniform alloca-

tion. For j 	= i , we definew j (z) = (1− z)ei + ze j . The rest
parts are the same as the original life-one algorithm. �

Remark 2 Convergence in finite iterations: In practice, we
may relax the stopping rule d(x∗, ξ t ) ≤ p in Step 6◦ of
Algorithm 1 to d(x∗, ξ t ) ≤ p + ε, where ε could be the
same as in Step 0◦. By Sect. 2.5 in Fedorov and Leonov
(2014), f ((1−α)ξ t +αx∗)− f (ξ t ) ≈ α(d(x∗, ξ t )− p) for
small enough α > 0, where (1 − α)ξ t + αx∗ is the design
{(x(t)

i , (1− α)w
(t)
i ), i = 1, . . . , mt }⋃{(x∗, α)}. Thus, if we

find an x∗, such that, d(x∗, ξ t ) > p + ε, then there exists
an α0 ∈ (0, 1), such that, f ((1 − α0)ξ t + α0x∗) − f (ξ t ) >

α0(d(x∗, ξ t ) − p)/2 > α0ε/2. For small enough merging
threshold δ (see Steps 0◦ and 2◦), we can still guarantee
that f (ξ t+1) − f (ξ t ) > α0ε/4 after Step 2◦. Under regu-
larity conditions, X is compact, and f (ξ) is continuous and
bounded. Our algorithm is guaranteed to stop in finite steps.
Actually, due to the lift-one step (Step 3◦), f (ξ t ) is improved
fast, especially in the first few steps. For all the examples
explored in this paper, our algorithm works efficiently. �

Remark 3 Distance among design points: In Step 1◦ of
Algorithm 1, an initial design is selected such that ‖x(0)

i −
x(0)

j ‖ ≥ δ, and in Step 2◦, two design points are merged if

‖x(t)
i − x(t)

j ‖ < δ. The algorithm uses the Euclidean dis-
tance as a default metric. Nevertheless, to take the effects

of ranges or units across factors into consideration, one may
choose a different distance, for example, a normalized dis-

tance, such that, ‖xi − x j‖2 = ∑d
l=1

(
xil−x jl
bl−al

)2
, where

xi = (xi1, . . . , xid)T and x j = (x j1, . . . , x jd)T . Another
useful distance is to define ‖xi − x j‖ = ∞ whenever their
discrete factor levels are different, that is, xil 	= x jl for some
l > k. Such a distance does not allow any two design points
that have distinct discrete factor levels tomerge,whichmakes
a difference when δ is chosen to be larger than the smallest
difference between discrete factor levels. Note that the choice
of distance and δ (see Sect. S.7 in the Supplementary Mate-
rial) won’t affect the continuous search for a newdesign point
in Step 5◦. It is different from the adaptive grid strategies used
in the literature (Duarte et al. 2018; Harman et al. 2020; Har-
man and Rosa 2020) for optimal designs, where the grid can
be increasingly reduced in size to locate the support points
more accurately. �

Remark 4 Global maxima: According to Theorem 1, when
Algorithm 1 converges, that is, maxx∈X d(x, ξ t ) ≤ p, the
design ξ t must be D-optimal. Nevertheless, from a practical
point of view, there are two possible issues that may occur.
Firstly, the algorithm may fail to find the global maxima in
Step 5◦, which may happen even with the best optimization
software (Givens and Hoeting 2013). As a common practice
(see, for example, Sect. 3.2 in Givens and Hoeting (2013)),
one may randomly generate multiple (such as 3 or 5) start-
ing points when finding x∗

(1) in Step 5◦, and utilize the best
one among them. Secondly, the global maxima or D-optimal
design may not be unique (see, for example, Remark 2 in
Yang et al. (2016)). In that case, one may keep a collection
of D-optimal designs that the algorithm can find. Due to the
log-concavity of the D-criterion (see, for example, Fedorov
(1972)), any convex combinations of D-optimal designs are
still D-optimal. �

3 D-optimal designs for MLMs

In this section, we consider experiments with categori-
cal responses. Following Bu et al. (2020), given ni > 0
experimental units assigned to a design setting xi ∈ X ,
the summarized responses Yi = (Yi1, . . . , Yi J )T follow
Multinomial(ni ;πi1, . . . , πi J )with categorical probabilities
πi1, . . . , πi J , where J ≥ 2 is the number of categories, and
Yi j is the number of experimental units with responses in the
j th category. Multinomial logistic models (MLM) have been
commonly used for modeling categorical responses (Glonek
and McCullagh 1995; Zocchi and Atkinson 1999; Bu et al.
2020). A general MLM can be written as

CT log(Lπ i ) = ηi = Xiθ, i = 1, · · · , m (1)
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where π i = (πi1, . . . , πi J )T satisfying
∑J

j=1 πi j = 1,

ηi = (ηi1, . . . , ηi J )T , C is a (2J − 1) × J constant matrix,
Xi is the model matrix of J × p at xi , θ ∈ R

p are model
parameters, and L is a (2J − 1) × J constant matrix tak-
ing different forms for four special classes of MLM models,
namely, baseline-category, cumulative, adjacent-categories,
and continuation-ratio logit models (see Bu et al. (2020) for
more details). When J = 2, all four logit models are essen-
tially logistic regression models for binary responses, which
belong to generalized linear models (see Sect. 4).

3.1 Fisher information Fx and sensitivity function
d(x, �)

The p × p matrix Fx, known as the Fisher information at
x ∈ X , plays a key role in the ForLion algorithm.We provide
its formula in detail in Theorem 2.

Theorem 2 For MLM (1), the Fisher informationFx atx ∈ X
(or Xθ for cumulative logit models, see Bu et al. (2020)) can
be written as a block matrix (Fx

st )J×J ∈ R
p×p, where Fx

st , a
sub-matrix of Fx with block row index s and column index t
in {1, . . . , J }, is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ux
st · hs(x)ht (x)T , for 1 ≤ s, t ≤ J − 1

∑J−1
j=1 ux

j t · hc(x)ht (x)T , for s = J , 1 ≤ t ≤ J − 1
∑J−1

j=1 ux
s j · hs(x)hc(x)T , for 1 ≤ s ≤ J − 1, t = J

∑J−1
i=1

∑J−1
j=1 ux

i j · hc(x)hc(x)T , for s = J , t = J

where h j (x) and hc(x) are predictors at x, and ux
st ’s are

known functions of x and θ (more details can be found in
Appendix A).

In response to Remark 1 in Sect. 2, we provide below a
surprising example that the Fisher information Fx at a single
point x is positive definite for almost all x ∈ X .

Example 1 Positive Definite Fx We consider a special
MLM (1) with non-proportional odds (npo) (see Sect. S.8
in the Supplementary Material of Bu et al. (2020) for more
details). Suppose d = 1 and a feasible design point x = x ∈
[a, b] = X , J ≥ 3, h1(x) = · · · = hJ−1(x) ≡ x . The model
matrix at x = x is

Xx =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x 0 · · · 0
0 x · · · 0
...

...
. . .

...

0 0 · · · x
0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

J×(J−1)

with p = J − 1. That is, the model equation (1) in this
example is ηx = Xxθ = (β1x, . . . , βJ−1x, 0)T , where θ =
(β1, . . . , βJ−1)

T ∈ R
J−1 are the model parameters. Then

Ux = (ux
st )s,t=1,...,J can be calculated from Theorem A.2 in

Bu et al. (2020). Note that ux
s J = ux

Js = 0 for s = 1, . . . , J −
1 and ux

J J = 1. The Fisher information matrix at x = x is
Fx = XT

x UxXx = x2Vx , where Vx = (ux
st )s,t=1,...,J−1.

Then |Fx | = x2(J−1)|Vx |. According to Equation (S.1) and
LemmaS.9 in theSupplementaryMaterial ofBu et al. (2020),
|Vx | equals to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∏J
j=1 π x

j for baseline-category,
adjacent-categories,
and continuation-ratio

[∏J−1
j=1 γ x

j (1−γ x
j )

]2

∏J
j=1 π x

j
for cumulative logit models

which is always positive, where γ x
j = ∑ j

l=1 π x
l ∈ (0, 1),

j = 1, . . . , J −1. In other words, rank(Fx ) = p in this case,
as long as x 	= 0. �
There also exists an example of a special MLM such that
Fx = Fx′ but x 	= x′ (see Appendix B).

To search for a new design point x∗ in Step 5◦ of Algo-
rithm 1, we utilize the R function optim with the option
“L-BFGS-B" that allows box constraints. L-BFGS-B is a
limited-memory version of the BFGS algorithm, which itself
is one of several quasi-Newton methods (Byrd et al. 1995). It
works fairly well in finding solutions even at the boundaries
of the box constraints. We give explicit formulae for com-
puting d(x, ξ ) below and provide the first-order derivative of
the sensitivity function for MLM (1) in Appendix C.

Theorem 3 Consider MLM (1) with a compact X . A design
ξ = {(xi , wi ), i = 1, . . . , m} with f (ξ) > 0 is D-optimal if
and only if maxx∈X d(x, ξ ) ≤ p, where

d(x, ξ) =
J−1∑

j=1

ux
j j (h

x
j )

TC j jhxj

+
J−1∑

i=1

J−1∑

j=1

ux
i j · (hxc)

TCJ Jhxc

+2
J−2∑

i=1

J−1∑

j=i+1

ux
i j (h

x
j )

TCi jhxi

+2
J−1∑

i=1

J−1∑

j=1

ux
i j (h

x
c)

TCi Jhxi (2)

Ci j ∈ R
pi ×p j is a submatrix of the p × p matrix

F(ξ)−1 =
⎡

⎢
⎣

C11 · · · C1J
...

. . .
...

CJ1 · · · CJ J

⎤

⎥
⎦

i, j = 1, . . . , J , p = ∑J
j=1 p j , and pJ = pc . �
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3.2 Example: emergence of house flies

In this section, we revisit the motivating example at the
beginning of Sect. 1. The original design (Itepan 1995)
assigned ni = 500 pupae to each of m = 7 doses,
xi = 80, 100, 120, 140, 160, 180, 200, respectively, which
corresponds to the uniform design ξu in Table 1. Under
a continuation-ratio non-proportional odds (npo) model
adopted by Zocchi and Atkinson (1999)

log

(
πi1

πi2 + πi3

)

= β11 + β12xi + β13x2i

log

(
πi2

πi3

)

= β21 + β22xi

with fitted parameters θ = (β11, β12, β13, β21, β22)
T =

(−1.935,−0.02642, 0.0003174, −9.159, 0.06386)T , Bu
et al. (2020) obtained D-optimal designs under different
grid sizes using their lift-one algorithm proposed for dis-
crete factors. With grid size of 20, that is, using the design
space {80, 100, . . . , 200} that was evenly spaced by 20 units,
they obtained a design ξ20 containing four design points.
With finer grid points on the same interval [80, 200], both
their grid-5 design ξ5 (with design space {80, 85, . . . , 200})
and grid-1 design ξ1 (with design space {80, 81, . . . , 200})
contain five design points (see Table 1). By incorporating
the Fedorov-Wynn and lift-one algorithms and continuously
searching the extended region [0, 200], Ai et al. (2023)
obtained a four-points design ξa (see Example S1 in their
Supplementary Material).

For x ∈ X = [80, 200] as in Bu et al. (2020), our For-
Lion algorithm reports ξ∗ with only three design points (see
Table 1, as well as the Supplementary Material, Sect. S.2 for
details). Compared with ξ∗, the relative efficiencies of the
ξu , ξ20, ξ5, and ξ1, defined by [ f (·)/ f (ξ∗)]1/5, are 82.79%,
99.68%, 99.91%, and 99.997%, respectively. The increas-
ing pattern of relative efficiencies, from ξ20 to ξ5 and ξ1,
indicates that with finer grid points, the lift-one algorithm
can search the design space more thoroughly and find better
designs. For x ∈ [0, 200] as in Ai et al. (2023), our algo-
rithm yields ξ ′∗ with only three points (see Table 1) and the
relative efficiency of Ai et al. (2023)’s ξa with respect to
ξ ′∗ is 99.81%. Note that both ξ∗ and ξ ′∗ from our algorithm
contain only three experimental settings, which achieves the
minimum m justified by Bu et al. (2020). Given that the cost
of using the radiation device is expensive and each run of the
experiment takes at least hours, our designs can save 40% or
25% cost and time compared with Bu et al. (2020)’s and Ai
et al. (2023)’s, respectively.

To further check if the improvements by our designs are
due to randomness, we conduct a simulation study by gen-
erating 100 bootstrapped replicates from the original data.
For each bootstrapped data, we obtain the fitted parameters,

treat them as the true values, and obtain D-optimal designs
by Ai et al. (2023)’s, Bu et al. (2020)’s grid-1, and our For-
Lion algorithmwith δ = 0.1 and ε = 10−10, respectively. As
Fig. 1 shows, our ForLion algorithm achieves the most effi-
cient designswith the least number of designpoints.Actually,
the median number of design points is 5 for Ai’s, 4 for Bu’s,
and 3 for ForLion’s. Compared with ForLion’s, the mean rel-
ative efficiency is 99.82% for Ai’s and 99.99% for Bu’s. As
for computational time, the median time cost on a Windows
11 desktop with 32GB RAM and AMDRyzen 7 5700G pro-
cessor is 3.59s for Ai’s, 161.81s for Bu’s, and 44.88s for
ForLion’s.

4 D-optimal designs for GLMs

In this section, we consider experiments with a univari-
ate response Y , which follows a distribution f (y; θ) =
exp{yb(θ) + c(θ) + d(y)} in the exponential family with
a single parameter θ . Examples include binary response
Y ∼ Bernoulli(θ), count response Y ∼ Poisson(θ), posi-
tive response Y ∼ Gamma(κ, θ) with known κ > 0, and
continuous response Y ∼ N (θ, σ 2) with known σ 2 >

0 (McCullagh and Nelder 1989). Suppose independent
responses Y1, . . . , Yn are collected with corresponding fac-
tor level combinations x1, . . . , xn ∈ X ⊂ R

d , where xi =
(xi1, . . . , xid)T . Under a generalized linear model (GLM),
there exists a link function g, parameters of interest β =
(β1, β2, . . . , βp)

T , and the corresponding vector of p known
and deterministic predictor functions h = (h1, . . . , h p)

T ,
such that

E(Yi ) = μi and ηi = g(μi ) = XT
i β (3)

where Xi = h(xi ) = (h1(xi ), . . . , h p(xi ))
T , i = 1, . . . , n.

For many applications, h1(xi ) ≡ 1 represents the intercept
of the model.

4.1 ForLion algorithm specialized for GLM

Due to the specific form of GLM’s Fisher information (see
Sect. S.4 and (S4.2) in the Supplementary Material), the lift-
one algorithm can be extremely efficient by utilizing analytic
solutions for each iteration (Yang and Mandal 2015). In this
section, we specialize the ForLion algorithm for GLM with
explicit formulae in Steps 3◦, 5◦, and 6◦.

ForGLM(3), our goal is tofindadesign ξ = {(xi , wi ), i =
1, . . . , m} maximizing f (ξ) = |XT

ξ
WξXξ |, where Xξ =

(h(x1), . . . ,h(xm))T ∈ R
m×p with known predictor func-

tions h1, . . . , h p , and Wξ = diag
{w1ν(βTh(x1)), . . . , wmν(βTh(xm))} with known parame-
tersβ = (β1, . . . , βp)

T and a positive differentiable function
ν, where ν(ηi ) = (∂μi/∂ηi )

2/Var(Yi ), for i = 1, . . . , m
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Table 1 Designs for the emergence of house files experiment

Design ξu ξ20 ξ5 ξ1 ξ∗ ξa ξ ′∗
Range of x [80, 200] [80, 200] [80, 200] [80, 200] [80, 200] [0, 200] [0, 200]

(0.00, 0.203) (0.00, 0.203)

(80, 0.143) (80, 0.312) (80, 0.316) (80, 0.316) (80.00, 0.316)

(100, 0.143) (101.10, 0.397) (103.56, 0.398)

(120, 0.143) (120, 0.292) (120, 0.143) (122, 0.079) (122.78, 0.342)

(140, 0.143) (140, 0.107) (125, 0.200) (123, 0.264) (147.80, 0.307) (149.26, 0.399)

(160, 0.143) (160, 0.290) (155, 0.168) (157, 0.221) (157.37, 0.342) (149.30, 0.093)

(180, 0.143) (160, 0.172) (158, 0.121)

(200, 0.143)

Rela.Effi 82.79% 99.68% 99.91% 99.997% 100% 99.81% 100%

Fig. 1 Boxplots of Ai’s, Bu’s, and ForLion’s designs for 100 bootstrapped data

(see Sects. S.1 and S.4 in the Supplementary Material for
examples and more technical details). The sensitivity func-
tion d(x, ξ) = tr(F(ξ)−1Fx) in Step 5◦ of Algorithm 1 can
be written as ν(βTh(x)) · h(x)T (XT

ξ
WξXξ )

−1 h(x). As a
direct conclusion of the general equivalence theorem (see
Theorem 2.2 in Fedorov and Leonov (2014)), we have the
following theorem for GLMs.

Theorem 4 Consider GLM (3) with a compact design region
X . A design ξ = {(xi , wi ), i = 1, . . . , m} with f (ξ) =
|XT

ξ
WξXξ | > 0 is D-optimal if and only if

max
x∈X

ν(βTh(x)) · h(x)T (XT
ξ WξXξ )

−1h(x) ≤ p (4)

Given the design ξ t = {(x(t)
i , w

(t)
i ), i = 1, . . . , mt } at

the t th iteration, suppose in Step 5◦ we find the design
point x∗ ∈ X maximizing d(x, ξ t ) = ν(βTh(x)) ·

h(x)T (XT
ξ t
Wξ t

Xξ t
)−1h(x) according to Theorem 4. Recall

that d(x∗, ξ t ) ≤ p in this step implies the optimality of
ξ t and the end of the iterations. If d(x∗, ξ t ) > p, x∗ will
be added to form the updated design ξ t+1 . For GLMs,
instead of letting ξ t+1 = ξ t

⋃{(x∗, 0)}, we recommend

{(x(t)
i , (1 − αt )w

(t)
i ), i = 1, . . . , mt }⋃{(x∗, αt )}, denoted

by (1 − αt )ξ t
⋃{(x∗, αt )} for simplicity, where αt ∈ [0, 1]

is an initial allocation for the new design point x∗, which is
determined by Theorem 5.

Theorem 5 Given ξ t = {(x(t)
i , w

(t)
i ), i = 1, . . . , mt } and

x∗ ∈ X , if we consider ξ t+1 in the form of (1 −
α)ξ t

⋃{(x∗, α)} with α ∈ [0, 1], then

αt =
{

2p ·dt −(p+1)bt
p(2p ·dt −2bt )

if 2p · dt > (p + 1)bt

0 otherwise
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maximizes f (ξ t+1) with dt = f ({(x(t)
1 , w

(t)
1 /2),

. . . , (x(t)
mt , w

(t)
mt /2), (x

∗, 1/2)}) and bt = f (ξ t ).

Based on αt in Theorem 5, which is obtained essentially
via one iteration of the lift-one algorithm (Yang et al. 2016;
Yang and Mandal 2015) with x∗ added, we update Step 6◦
of Algorithm 1 with Step 6′ for GLMs, which speeds up the
ForLion algorithm significantly.

6′ If d(x∗, ξ t ) ≤ p, go to Step 7◦. Otherwise, we let
ξ t+1 = (1 − αt )ξ t

⋃{(x∗, αt )}, replace t by t + 1, and
go back to Step 2◦, where αt is given by Theorem 5.

The advantages of the lift-one algorithm over commonly
used numerical algorithms include simplified computation
and exact zero weight for negligible design points. For
GLMs, Step 3◦ of Algorithm 1 should be specialized with
analytic iterations as in Yang andMandal (2015).We provide
the explicit formula for the sensitivity function’s first-order
derivative in Sect. S.5 of the Supplementary Material for
Step 5◦.

By utilizing the analytical solutions for GLM in Steps 3◦,
5◦ and 6′, the computation ismuch faster than the general pro-
cedure of the ForLion algorithm (see Example 2 in Sect. 4.3).

4.2 Minimally supported design and initial design

A minimally supported design ξ = {(xi , wi ), i = 1, . . . , m}
achieves the smallest possible m such that f (ξ) > 0, or
equivalently, the Fisher information matrix is of full rank.
Due to the existence of Example 1, m could be as small as 1
for an MLM. Nevertheless, m must be p or above for GLMs
due to the following theorem.

Theorem 6 Consider a design ξ = {(xi , wi ), i = 1, . . . , m}
with m support points, that is, wi > 0, i = 1, . . . , m, for
GLM (3). Then f (ξ) > 0 only if Xξ is of full column rank
p, that is, rank(Xξ ) = p. Therefore, a minimally supported
design contains at least p support points. Furthermore, if
ν(βTh(x)) > 0 for all x in the design region X , then f (ξ) >

0 if and only if rank(Xξ ) = p.

Theorem 7 shows that a minimally supported D-optimal
design under a GLM must be a uniform design.

Theorem 7 Consider a minimally supported design ξ =
{(xi , wi ), i = 1, . . . , p} for GLM (3) that satisfies f (ξ) > 0.
It is D-optimal only if wi = p−1, i = 1, . . . , p. That is, it is
a uniform allocation of its support points.

Based on Theorem 7, we recommend a minimally sup-
ported design as the initial design for the ForLion algorithm
under GLMs. The advantage is that once p design points
x1, . . . , xp are chosen from X , such that the model matrix
Xξ = (h(x1), . . . ,h(xp))

T is of full rank p, then the design

ξ = {(xi , 1/p), i = 1, . . . , p} is D-optimal given those p
design points.

Recall that a typical design space can take the form of
X = ∏d

j=1 I j , where I j is either a finite set of distinct
numerical levels or an interval [a j , b j ], and a j = min I j

and b j = max I j even if I j is a finite set. As one option in
Step 1◦ of Algorithm 1, we suggest to choose p initial design
points from

∏d
j=1{a j , b j }. For typical applications, we may

assume that there exist p distinct points in
∏d

j=1{a j , b j }
such that the corresponding model matrix Xξ is of full
rank, or equivalently, the 2d × p matrix consisting of rows
h(x)T , x ∈ ∏d

j=1{a j , b j } is of full rank p. Herein, we spe-
cialize Step 1◦ of Algorithm 1 for GLMs as follows:

1′ Construct an initial design ξ0 = {(x(0)
i , p−1), i =

1, . . . , p} such that x(0)
1 , . . . , x(0)

p ∈ ∏d
j=1{a j , b j } and

Xξ0
= (h(x(0)

1 ), . . . ,h(x(0)
p ))T is of full rank p.

4.3 Examples under GLMs

In this section, we use two examples to show the performance
of our ForLion algorithm under GLMs, both with continuous
factors involved only as main effects, which have simplified
notations (see Sect. S.6 in the Supplementary Material).

Example 2 In Example 4.7 of Stufken and Yang (2012),
they considered a logistic model with three continuous fac-
tors logit(μi ) = β0 + β1xi1 + β2xi2 + β3xi3 with xi1 ∈
[−2, 2], xi2 ∈ [−1, 1], and xi3 ∈ (−∞,∞). Assum-
ing (β0, β1, β2, β3) = (1,−0.5, 0.5, 1), they obtained an
8-points D-optimal design ξo theoretically. Using a MacOS-
based laptopwithCPU2GHzQuad-Core andmemory 16GB
3733 MHz, our ForLion algorithm specialized for GLMs
takes 17s andour general ForLion algorithm takes 124s to get
the same design ξ∗ (see Table 2). The relative efficiency of ξ∗
compared with ξo is simply 100%. Note that ξo was obtained
from an analytic approach requiring an unbounded xi3 . For
bounded xi3 , such as xi3 ∈ [−1, 1], [−2, 2], or [−3, 3], we
can still use the ForLion algorithm to obtain the correspond-
ing D-optimal designs, whose relative efficiencies compared
with ξo or ξ∗ are 85.55%, 99.13%, and 99.99993%, respec-
tively. �

Example 3 Lukemire et al. (2019) reconsidered the electro-
static discharge (ESD) experiment described by Whitman
et al. (2006) with a binary response and five mixed factors.
The first four factors LotA, LotB, ESD, Pulse take val-
ues in {−1, 1}, and the fifth factor Voltage ∈ [25, 45]
is continuous. Using their d-QPSO algorithm, Lukemire
et al. (2019) obtained a 13-points design ξo for the model
logit(μ) = β0+β1LotA+β2LotB+β3ESD+β4Pulse+
β5Voltage+β34(ESD×Pulse)with assumed parameter
values β = (−7.5, 1.50,−0.2,−0.15, 0.25, 0.35, 0.4)T . It
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Table 2 Designs obtained for Example 2

Stufken and Yang’s ξo ForLion’s ξ∗
i xi1 xi2 xi3 wi xi1 xi2 xi3 wi

1 −2 −1 −2.5436 0.125 −2 −1 −2.5433 0.125

2 −2 −1 −0.4564 0.125 −2 −1 −0.4565 0.125

3 −2 1 −3.5436 0.125 −2 1 −3.5433 0.125

4 −2 1 −1.4564 0.125 −2 1 −1.4564 0.125

5 2 −1 −0.5436 0.125 2 −1 −0.5435 0.125

6 2 −1 1.5436 0.125 2 −1 1.5434 0.125

7 2 1 −1.5436 0.125 2 1 −1.5445 0.125

8 2 1 0.5436 0.125 2 1 0.5433 0.125

takes 88 seconds using the same laptop as in Example 2 for
our (GLM) ForLion algorithm to find a slightly better design
ξ∗ consisting of 14 points (see Table S2 in the Supplemen-
tary Material) with relative efficiency [ f (ξ∗)/ f (ξo)]1/7 =
100.08%.

To make a thorough comparison, we randomly gener-
ate 100 sets of parameters β from independent uniform
distributions: U (1.0, 2.0) for LotA, U (−0.3, −0.1) for
LotB, U (−0.3, 0.0) for ESD, U (0.1, 0.4) for Pulse,
U (0.25, 0.45) forVoltage,U (0.35, 0.45) forESD×Pulse,
and U (−8.0,−7.0) for Intercept. For each simulated β, we
treat it as the true parameter values and obtain D-optimal
designs using d-QPSO, ForLion, and Fedorov-Wynn-liftone
(that is, the ForLion algorithm without the merging step,
similarly in spirit to Ai et al. (2023)’s) algorithms. For the
ForLion algorithm, we use δ = 0.03 and ε = 10−8 (see
Sect. S.7 in the Supplementary Material for more discus-
sion on choosing δ). For the d-QPSO algorithm, following
Lukemire et al. (2019), we use 5 swarms with 30 particles
each and the algorithm searches design with up to 18 sup-
port points and the maximum number of iterations 4, 000.
Figure2 shows the numbers of design points of the three
algorithms and the relative efficiencies. The median number
of design points is 13 for d-QPSO’s, 39 for Fedorov-Wynn-
liftone’s, and 13 for Forlion’s. The mean relative efficiencies
compared with our ForLion D-optimal designs, defined as
[ f (·)/ f (ξForLion)]1/7, is 86.95% for d-QPSO’s and 100%
for Fedorov-Wynn-liftone’s. Themedian running time on the
same desktop in Sect. 3.2 is 10.94s for d-QPSO’s, 129.74s
for Fedorov-Wynn-liftone’s, and 71.21s for ForLion’s. �

5 Conclusion and discussion

In this paper,wedevelop theForLion algorithm tofind locally
D-optimal approximate designs under fairly general paramet-
ric models with mixed factors.

Compared with Bu et al. (2020)’s and Ai et al. (2023)’s
algorithm, our ForLion algorithm can reduce the number of
distinct experimental settings by 25%above on averagewhile
keeping the highest possible efficiency (see Sect. 3.2). In gen-
eral, for experiments such as the Emergence of house flies
(see Sect. 3.2), the total experimental cost not only relies on
the number of experimental units but also the number of
distinct experimental settings (or runs). For such kinds of
experiments, an experimental plan with fewer distinct exper-
imental settings may allow the experimenter to support more
experimental units under the same budget limit, and complete
the experiment with less time cost. Under the circumstances,
our ForLion algorithmmaybe extended for amodified design
problem that maximizes n p|F(ξ)| under a budget constraint
mCr + nCu ≤ C0, that incorporates the experimental run
cost Cr and the experimental unit cost Cu , and perhaps a
time constraint m ≤ M0 as well.

Compared with PSO-type algorithms, the ForLion algo-
rithm can improve the relative efficiency by 17.5% above on
average while achieving a low number of distinct experimen-
tal settings (see Example 3). Our ForLion algorithm may be
extended for other optimality criteria by adjusting the corre-
sponding objective function f (ξ) and the sensitivity function
d(x, ξ), as well as a lift-one algorithm modified accordingly
to align with those criteria.

In Step 5◦ of Algorithm 1, the search for a new design
point x∗ involves solving for continuous design variables for
each level combination of the discrete variables. When the
number of discrete variables increases, the number of sce-
narios grows exponentially, which may cause computational
inefficiency. In this case, one possible solution is to treat some
of the discrete variables as continuous variables first, run the
ForLion algorithm to obtain a design with continuous levels
of those discrete factors, and then modify the design points
by rounding the continuous levels of discrete factors to their
nearest feasible levels. For a binary factor, one may simply
use [0, 1] or [−1, 1] as a continuous region of the possible
levels. Note that there are also experiments with discrete fac-
tors involving three or more categorical levels. For example,
the factor of Cleaning Method in an experiment on a polysil-
icon deposition process for manufacturing very large scale
integrated circuits has three levels, namely, None, CM2, and
CM3 (Phadke 1989). For those scenarios, onemay first trans-
form such a discrete factor, say, the Cleaning Method, to two
dummy variables (that is, the indicator variables for CM2 and
CM3, respectively) taking values in {0, 1}, then run the For-
Lion algorithm by treating them as two continuous variables
taking values in [0, 1].
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Fig. 2 Boxplots of 100 simulations for d-QPSO, Fedorov-Wynn-liftone, and ForLion algorithms for the electrostatic discharge experiment (Exam-
ple 3)

Supplementary information

We provide explicit formulae of ux
st in the Fisher information

Fx for MLM (1) in Appendix A, a special example of MLM
that Fx = Fx′ in Appendix B, and the first-order derivative
of d(x, ξ ) for MLM (1) in Appendix C.

Supplementary material

Contents of the Supplementary Material are listed below:
S.1 Commonly used GLMs: A list of commonly used GLM
models, corresponding link functions, ν functions, and their
first-order derivatives; S.2 Technical details of house flies
example: Technical details of applying the ForLion algorithm
to the emergence of house flies example; S.3 Example: Mini-
mizing surface defects: An example with cumulative logit po
model that shows the advantages of the ForLion algorithm;
S.4 Fisher information matrix for GLMs: Formulae for com-
puting Fisher information matrix for GLMs; S.5 First-order
derivative of sensitivity function for GLMs: Formulae of
∂d(x, ξ)/∂xi forGLMs; S.6GLMswithmain-effects contin-
uous factors: Details of GLMs with main-effects continuous
factors; S.7 Electrostatic discharge example supplementary:
The optimal design table for electrostatic discharge example
and a simulation study on the effects of merging threshold δ;
S.8 Assumptions needed for Theorem 1; S.9 Proofs: Proofs
for theorems in this paper.

Appendix A Computing uxst in Fisher
information Fx

In this section, we providemore technical details for Sect. 3.1
and Theorem 2.

For MLM (1), Corollary 3.1 in Bu et al. (2020) provided
an alternative form Fxi = XT

i UiXi , which we use for com-
puting the Fisher information Fx at an arbitrary x ∈ X . More
specifically, first of all, the corresponding model matrix at x
is

Xx =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

hT
1 (x) 0T · · · 0T hT

c (x)

0T hT
2 (x)

. . .
...

...
...

. . .
. . . 0T hT

c (x)
0T · · · 0T hT

J−1(x) h
T
c (x)

0T · · · · · · 0T 0T

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

J×p

(A1)

wherehT
j (·) = (h j1(·), . . . , h jp j (·)) andhT

c (·)= (h1(·), . . . ,
h pc(·)) are known predictor functions. We let β j and ζ

denote the model parameters associated with hT
j (x) and

hT
c (x), respectively, then the model parameter vector θ =

(β1,β2, · · · ,β J−1, ζ )T ∈ R
p, and the linear predictor

ηx = Xxθ = (ηx1, . . . , η
x
J−1, 0)

T ∈ R
J , where ηxj =

hT
j (x)β j + hT

c (x)ζ , j = 1, . . . , J − 1.
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According to Lemmas S.10, S.12 and S.13 in the Sup-
plementary Material of Bu et al. (2020), the categorical
probabilities πx = (πx

1 , . . . , πx
J )T ∈ R

J at x for baseline-
category, adjacent-categories and continuation-ratio logit
models can be expressed as follows:

πx
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp{ηxj }
exp{ηx1}+···+exp{ηxJ−1}+1 baseline-category

exp{ηxJ−1+···+ηxj }
D j

adjacent-categories

exp{ηxj }
∏ j

l=1(exp{ηxl } + 1)−1 continuation-ratio

(A2)

for j = 1, . . . , J − 1, where D j = exp{ηxJ−1 + · · · + ηx1} +
exp{ηxJ−1 + · · · + ηx2} + · · · + exp{ηxJ−1} + 1, and

πx
J =

⎧
⎪⎨

⎪⎩

1
exp{ηx1}+···+exp{ηxJ−1}+1 baseline-category

1
DJ

adjacent-categories
∏J−1

l=1 (exp{ηxl } + 1)−1 continuation-ratio

where DJ = exp{ηxJ−1+· · ·+ηx1}+exp{ηxJ−1+· · ·+ηx2}+
· · · + exp{ηxJ−1} + 1. Note that we provide the expression of
πx

J for completeness while πx
J = 1− πx

1 − · · · − πx
J−1 is an

easier way for numerical calculations.
As for cumulative logit models, the candidate x must sat-

isfy −∞ < ηx1 < ηx2 < · · · < ηxJ−1 < ∞. Otherwise,
0 < πx

j < 1 might be violated for some j = 1, . . . , J . In
other words, the feasible design region should be

Xθ = {x ∈ X | −∞ < ηx1 < ηx2 < · · · < ηxJ−1 < ∞} (A3)

which depends on the regression parameter θ (see Sec-
tion S.14 in the Supplementary Material of Bu et al. (2020)
for such an example). For cumulative logit models, if x ∈ Xθ ,
then

πx
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp{ηx1}
1+exp{ηx1} j = 1
exp{ηxj }

1+exp{ηxj } − exp{ηxj−1}
1+exp{ηxj−1} 1 < j < J

1
1+exp{ηxJ−1} j = J

(A4)

according to Lemma S.11 of Bu et al. (2020).
Once πx ∈ R

J is obtained, we can calculate ux
st =

ust (πx) based on Theorem A.2 in Bu et al. (2020) as fol-
lows:

(i) ux
st = ux

ts , s, t = 1, . . . , J ;
(ii) ux

s J = 0 for s = 1, . . . , J − 1 and ux
J J = 1;

(iii) For s = 1, . . . , J − 1, ux
ss is

⎧
⎪⎪⎨

⎪⎪⎩

πx
s (1 − πx

s ) for baseline-category,
(γ x

s )2(1 − γ x
s )2((πx

s )−1 + (πx
s+1)

−1) for cumulative,
γ x

s (1 − γ x
s ) for adjacent-categories,

πx
s (1 − γ x

s )(1 − γ x
s−1)

−1 for continuation-ratio;

(iv) For 1 ≤ s < t ≤ J − 1, ux
st is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−πx
s πx

t for baseline-category,
−γ x

s γ x
t (1 − γ x

s )(1 − γ x
t )(πx

t )−1 for cumulative, t − s = 1,
0 for cumulative, t − s > 1,
γ x

s (1 − γ x
t ) for adjacent-categories,

0 for continuation-ratio;

where γ x
j = πx

1 + · · · + πx
j , j = 1, . . . , J − 1; γ x

0 ≡ 0 and
γ x

J ≡ 1.

Appendix B Example that Fx = Fx′ with
x �= x′

Consider a special MLM (1) with proportional odds (po)
(see Section S.7 in the Supplementary Material of Bu et al.
(2020) for more technical details). Suppose d = 2 and a
feasible design point x = (x1, x2)T ∈ [a, b] × [−c, c] = X ,
c > 0, J ≥ 2, hc(x) = (x1, x22 )

T . Then the model matrix at
x = (x1, x2)T is

Xx =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 x1 x22

0 1
. . .

...
...

...
. . .

. . . 0 x1 x22
0 · · · 0 1 x1 x22
0 · · · 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

J×(J+1)

Then p = J + 1. Let θ = (β1, . . . , βJ−1, ζ1, ζ2)
T ∈ R

J+1

be themodel parameters (since θ is fixed,wemay assume that
X = Xθ if the model is a cumulative logit model). Let x′ =
(x1,−x2)T . Then Xx = Xx′ and thus ηx = ηx′ . According
to (A2) (or (A4)), we obtain πx = πx′ and then Ux = Ux′ .
The Fisher information matrix at x is Fx = XT

x UxXx =
XT
x′Ux′Xx′ = Fx′ . Note that x 	= x′ if x2 	= 0.

Appendix C First-order derivative of
sensitivity function

Asmentioned in Sect. 3.1, to applyAlgorithm1 forMLM,we
need to calculate the first-order derivative of the sensitivity
function d(x, ξ ).

Recall that the first k (1 ≤ k ≤ d) factors are continu-
ous. Given x = (x1, . . . , xd)T ∈ X , for each i = 1, . . . , k,
according to Formulae 17.1(a), 17.2(a) and 17.7 in Seber
(2008),

∂d(x, ξ)

∂xi
= ∂tr(F(ξ)−1Fx)

∂xi

= tr

(

F(ξ)−1 ∂Fx

∂xi

)
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= tr

(

F(ξ)−1
[
∂XT

x

∂xi
UxXx + XT

x
∂Ux

∂xi
Xx

+ XT
x Ux

∂Xx

∂xi

])

(C5)

where

∂Xx

∂xi
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂hT
1 (x)
∂xi

0T · · · 0T ∂hT
c (x)
∂xi

0T ∂hT
2 (x)
∂xi

. . .
...

...

...
. . .

. . . 0T ∂hT
c (x)
∂xi

0T · · · 0T ∂hT
J−1(x)
∂xi

∂hT
c (x)
∂xi

0T · · · · · · 0T 0T

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

J×p

(C6)

∂Ux
∂xi

=
(

∂uxst
∂xi

)

s,t=1,...,J
with

∂ux
st

∂xi
= ∂ux

st

∂πT
x

· ∂πx

∂ηT
x

· ∂ηx

∂xi

= ∂ux
st

∂πT
x

·
(
CTD−1

x L
)−1 · ∂Xx

∂xi
· θ (C7)

C and L defined as in (1), and Dx = diag(Lπx). Explicit
formula of (CTD−1

x L)−1 can be found in Section S.3 in the
Supplementary Material of Bu et al. (2020) with xi replaced

by x. As for ∂uxst
∂πT

x
, we have the following explicit formulae

(i) ∂uxst
∂πx

= ∂uxts
∂πx

, s, t = 1, . . . , J ;

(ii)
∂uxs J
∂πx

= 0 ∈ R
J for s = 1, . . . , J ;

(iii) For s = 1, . . . , J − 1, ∂uxss
∂πx

is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
πx

s 1
T
s−1, 1 − πx

s , πx
s 1

T
J−s

)T
for baseline-category

ux
ss

[(
2
γ x

s
1T

s , 2
1−γ x

s
1T

J−s

)T

− πx
s+1es

πx
s (πx

s +πx
s+1)

− πx
s es+1

πx
s+1(π

x
s +πx

s+1)

]
for cumulative

(
(1 − γ x

s )1T
s , γ x

s 1
T
J−s

)T
for adjacent-categories

(

0T
s−1,

(1−γ x
s )2

(1−γ x
s−1)

2 ,
(πx

s )21T
J−s

(1−γ x
s−1)

2

)T

for continuation-ratio

where es is the J × 1 vector with the sth coordinate 1
and all others 0, 1s is the s × 1 vector of all 1, and 0s is
the s × 1 vector of all 0.

(iv) For 1 ≤ s < t ≤ J − 1, ∂uxst
∂πx

is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0T

s−1,−πx
t , 0T

t−s−1,−πx
s , 0T

J−t

)T
for baseline-category(

−(1 − γ x
s )(1 − γ x

t )
(
1 + 2γ x

s
πx

t

)
1T

s ,

−γ x
s (1 − γ x

t )
[
1 − γ x

s (1−γ x
t )

(πx
t )2

]
,

−γ x
s γ x

t

[
1 + 2(1−γ x

t )

πt

]
1T

J−s−1

)T
for cumulative, t − s = 1

0J for cumulative, t − s > 1
(
(1 − γ x

t )1T
s , 0T

t−s , γ
x
s 1

T
J−t

)T
for adjacent-categories

0J for continuation-ratio

where γ x
j = πx

1 + · · · + πx
j , j = 1, . . . , J − 1; γ x

0 ≡ 0 and
γ x

J ≡ 1.

Thus the explicit formulae for ∂d(x,ξ)
∂xi

, i = 1, . . . , k can

be obtained via (C5). Only ∂Xx
∂xi

is related to i , which may
speed up the computations.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10465-
x.
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