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Abstract
Stochastic models for collections of interacting populations have crucial roles in many scientific fields such as epidemiology,
ecology, performance engineering, and queueing theory, to name a few. However, the standard approach to extending an
ordinary differential equation model to a Markov chain does not have sufficient flexibility in the mean-variance relationship
to match data. To handle that, we develop new approaches using Dirichlet noise to construct collections of independent or
dependent noise processes. This permits the modeling of high-frequency variation in transition rates both within and between
the populations under study. Our theory is developed in a general framework of time-inhomogeneous Markov processes
equipped with a general graphical structure. We demonstrate our approach on a widely analyzed measles dataset, adding
Dirichlet noise to a classical Susceptible–Exposed–Infected–Recovered model. Our methodology shows improved statistical
fit measured by log-likelihood and provides new insights into the dynamics of this biological system.

Keywords Time-inhomogeneous stochastic processes · Directed graph · Extra-demographic stochasticity · Simultaneous
jumps · Data science

Mathematics Subject Classification 60G20 · 60J20 · 60J22

1 Introduction

In this section, we first give the background and motivations
in Sect. 1.1 and then state our contributions in Sect. 1.3, fol-
lowed with the organization of the paper in Sect. 1.4.

1.1 Background andmotivations

In this paper, we consider a general stochastic graphical
dynamic model (GDM). Recalling that a dynamic model
is a process whose state varies with time, a GDM is an
interacting dynamic model equipped with a graphical struc-
ture, where there is a process associated with each vertex
whose state varies with time and the states of other vertices.
GDMs have wide applications in demography, queueing
theory, performance engineering, epidemiology, biology,
and other areas, whose examples include stochastic com-
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partmental models used in population dynamics. However,
mechanistically-inspired models of probabilistic evolution
frequently do not contain sufficient variability to adequately
match real-world data and further flexibility is still often
required (Ramsay and Hooker (2017), page 15). This pro-
vides motivation to bestow the desired flexibility on Markov
counting processes (MCPs), which are usually used as the
building blocks of GDMs. For example, in epidemiology,
the conceptual, theoretical, and computational convenience
ofMCPs has led to their widespread use formodeling disease
transmission processes with stochastic compartment mod-
els, such as the Susceptible–Exposed–Infected–Recovered
(SEIR) model and its generalizations.

When there is at most one event taking place in a suf-
ficiently short period, a MCP is called simple otherwise it
is called compound. Bretó and Ionides (2011) showed that
infinitesimal dispersion is an equivalent mathematical termi-
nology: a MCP is said to have infinitesimal equi-dispersion
(IED) if and only if it is simple and a MCP is said to
have infinitesimal over-dispersion (IOD) if and only if it is
compound. Using the ratio-formed formula of infinitesimal
dispersion, the variance function divided by the mean func-
tion of theMCP in a sufficiently short period, IED (resp. IOD,
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infinitesimal under-dispersion (IUD)) holds if the ratio =
(resp. >, <) one. For example, the Poisson process has IED.
There are two classes ofmotivations formodeling IOD. First,
the process in question indeed has such occurrences, such as
the ruinmodel inAlbrecher et al. (2017) that allows formulti-
ple insurance claims to occur simultaneously (a phenomenon
known as clusters in actuarial science terminology). Second,
in data analysis, we may have multiple event times that are
short compared to the scale of primary interest. For exam-
ple, New York state (health.data.ny.gov) has published daily
estimates of the number of total COVID-19 tests conducted
at (possibly) different time within the day.

By appending gamma noise to constant transition rates,
Bretó and Ionides (2011) proposed an IOD generation
approach based on simple MCPs. Bretó (2012) provided a
multivariate extension for some univariate MCPs consid-
ered in Bretó and Ionides (2011) with time-homogeneous
transition rate functions (TRFs). Zhang and Li (2016) gave
characterizations of discrete compound Poisson distributions
and an application in probabilistic number theory. Sendova
and Minkova (2018) introduced a compound Poisson count-
ing process with logarithmic compounded distribution. Li
and Sendova (2020) proposed a surplus process involv-
ing a compound Poisson counting process. the concept of
simultaneous co-jumps was proposed in Bretó (2021) with
time-homogeneousTRFs.Gao andSendova (2022) proposed
a generalization of the classical compound Poisson model
with claim sizes following a compound distribution. There
is also similar interest in queueing theory, for instance, the
batch Markovian arrival process, which extends the Marko-
vian arrival process by allowing multiple events to occur
simultaneously (see, e.g., Maraghi et al. 2009; Jayaraman
and Matis 2010).

The assumption of constant or time-homogeneous transi-
tion rates is often unrealistic (Krak et al. 2017). Based on the
fundamental time-inhomogeneous birth process discussed in
Chapter 7 of Klugman et al. (2013), a time-inhomogeneous
compound-birth process was recently proposed by Sendova
and Minkova (2020). A further generalization from being
time-inhomogeneous, is allowing the TRF of one MCP to
also depend on the state of others, which is called interact-
ing particle systems in mathematics terminology. In finance,
the price of one asset usually depend on time and prices of
other assets (e.g. equation (2.7) of Ding and Ning (2021) and
equation (2.1) of Ning andWu (2021)). In epidemiology, the
TRF of one compartment in stochastic compartment models
usually depend on time and states of other compartments,
for example, the rate of new infections in the SEIR-typed
Markov chain model (equation (6) on page 332 of Bretó
et al. (2009) and equation (1) of this paper). With this kind
of general TRFs, Bretó et al. (2009) developed the first over-
dispersion methodology for real epidemic data fitting, and
this approach has been widely used. Although their TRFs

are quite general, their theoretical foundation is limited to
the IOD generation approach on constant rates proposed in
Bretó and Ionides (2011).

The long-standing gap between the models used in prac-
tice and the theory provided by Bretó et al. (2009) and Bretó
and Ionides (2011) is hard to fill. Two natural questions arise:
Can an algorithmic approach be developed that performs
comparably or better than that of Bretó et al. (2009) with-
out a theory-practice gap? Is this new approach applicable in
practice and compatible with modern likelihood-based infer-
ence methodologies (e.g. Ionides et al. (2006, 2015); King
et al. (2008)) to fully replace that of Bretó et al. (2009)?
Graphs, as a kind of data structure that models a set of objects
and their relationships, can be used as a denotation of a
large number of systems across various areas. Because of
their great expressive power, researches on analyzing GDMs
systemically have been receiving more and more attentions
in many areas, Chen et al. (2017) on network reconstruc-
tion from high-dimensional ordinary differential equations,
Katzfuss et al. (2020) on ensemble Kalman methods for
high-dimensional hierarchical dynamic space-time models,
Ionides et al. (2021) on bagged filters for partially observed
spatiotemporal systems, Ning and Ionides (2023) on high-
dimensional spatiotemporal online learning on large graphs,
to name a few. Then two more fundamental questions arise
directly:Can a systemic theory be defined properly and estab-
lished rigorously on a general graph instead of merely on
edges? What sort of mathematical tools are needed to build
a systemic theory to be exploited algorithmically? In this
paper, we aim to address the above four questions.

1.2 Motivational application

We use measles modeling as a motivational example here,
whose real data analysis is provided in Sect. 4. Worldwide,
measles remains a leading cause of vaccine-preventable
death and disability, however global eradication of this highly
infectious disease by intensive vaccinationwould be difficult.
A fundamental class of models for measles transmission is
the SEIRmodel, where (S) represents susceptible individuals
who have not been infected yet but may experience infec-
tion later, (E) represents individuals exposed and carrying a
latent infection, (I) represents infectious individuals that have
been infected and are infectious to others, and (R) represents
recovered individuals that are no longer infectious and are
immune. Two other compartments/vertices (B) and (D) rep-
resenting the birth and death of individuals respectively, are
added in SEIR-type Markov chain models which have been
commonly used for measle data analysis. The directed graph
in Fig. 1 gives a diagrammatic representation, where arrows
are used to indicate the possibility of transitions between
vertices with labels parameterizing the transition rates.
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Fig. 1 Directed graph for SEIR-type Markov chain models

The state of the system at time t is given by the number
of individuals in each vertex and is denoted as

X(t) = x = {xv}v∈V = {xB, xS, xE , xI , xR, xD},

where V = {B, S, E, I , R, D}. According to Bretó et al.
(2009) and He et al. (2010), the TRF of infection is specified
as

rSE (t, xI ) = β(t)(xI + ι)α/P(t), (1)

whereβ(t) is the transmission rate defined in (20), ι describes
imported infectives, α is a mixing parameter with α = 1
corresponding to homogeneous mixing, and P(t) is a known
population size obtained via interpolation from census data.
We can see that the transition rate over arrow (S, E) depends
on time t which makes the dynamic time-inhomogeneous,
and depends on the value xI of vertex I which necessitates
systemic graphical analysis.

1.3 Our contributions

In this paper, we define systemic IOD (SIOD) for gen-
eral GDMs, provide corresponding methodologies for gen-
eral dynamics, generate associated general algorithms, and
demonstrate the algorithmic performance on a benchmark
epidemiological modeling challenge. In sum, the contribu-
tions of this paper are four-fold:

(1) General GDMand systemic definitions.TheGDMunder
consideration is general in terms of a general graph struc-
ture and general dynamics over it. We consider TRFs
as general positive functions of time and the state of
the whole graph, while all the preceding IOD theoreti-
cal literature considered either constants or functions of
time only. We focus on dynamics over a general directed
graph, while all the preceding IOD theoretical literature
worked on dynamics over a single arrow of the graph.We
hence give appropriate definitions of systemic infinites-
imal dispersion (SID), which allow users to flexibly add
IOD to dynamics over some subgraphs while keeping
dynamics over the rest subgraphs having IED.

(2) Innovative methodogies and algorithms. On one hand,
under boundedness constraints, in Sect. 3.1 we gener-

ate IOD using multinomial distributions, over outgoing
arrows with the same tail. An algorithmic Euler realiza-
tion of the resulting Theorem 3.1 is provided, which is a
general algorithm (Algorithm 1) for generating dynam-
ics having IOD over connected outgoing arrows. Its
application to a well-known case study in epidemiol-
ogy is provided in Algorithm 2. On the other hand,
without boundedness constraints, in Sect. 3.2 we pro-
pose a methodology for generating IOD using negative
multinomial distributions, over incoming arrowswith the
same head and a corresponding general algorithm can be
developed analogously.

(3) Wideapplicability.Our theoretical framework andmethod-
ologies are sufficiently general to cover many situations.
First, only a weak assumption is required (existence
of the second moment of a single dynamic), which is
usually satisfied in practice; second, software imple-
mentation using Dirichlet random variables is routine
and computationally convenient; third, with our defini-
tion of SIOD, users can flexibly choose those subgraphs
that are appropriate to apply our algorithm for overdis-
persion; fourth, the convenience of simulation from the
proposed algorithms enables likelihood-based data fit-
ting using simulation-based algorithms, among which
we demonstrated using iterated filtering (Ionides et al.
2011, 2006, 2015; King et al. 2008); fifth, just one addi-
tional parameter is needed to describe overdispersion
and this parameter can be inferred using these afore-
mentioned simulation-based algorithms (Sect. 4.2).

(4) Improved data fittingwith new insights.Besides the long-
standing theory-practice gap, there are long-existing
concerns about interpreting results. He et al. (2010)
applied the algorithm proposed in Bretó et al. (2009)
on a benchmark epidemiological modeling challenge.
They obtained a surprisingly large R0 value, which is the
basic reproduction number that is central in epidemiolog-
ical theory. In Sect. 4.2, we conduct fair comparisons by
applying our algorithm with the same data, same model
setting, and same inference algorithm. We achieve bet-
ter data fitting and provide a resolution of a previous
discrepancy on maximum likelihood estimation (MLE).

1.4 Organization of the paper

The rest of the paper proceeds as follows. In Sect. 2, we give
the graph structure, configurations on the graph, dynamics
over the graph, and definitions of infinitesimal dispersion.
Our methodology for generating SIOD is provided in Sect. 3,
where Sects. 3.1 and 3.2 cover dynamics with and with-
out boundedness constraints, respectively. In Sect. 4, we first
describe a SEIR-type Markov chain model which has been
commonly used formeasle data analysis in Sect. 4.1, and then
conduct measles real data analysis on a well-tested and pub-
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licly accessible dataset using our proposed IODmethodology
and algorithm in Sect. 4.2. We conclude with discussion in
Sect. 5. Proofs of the paper are provided in Section A1 of the
Appendix. Code and data reproducing our results are avail-
able online at https://github.com/patning/Over-dispersion.
The notations used throughout this paper are listed in Table 3.

2 Time-inhomogeneous GDMs

In this section, we first give the model desciption in Sect. 2.1,
and then definitions of infinitesimal dispersion in Sect. 2.2.

2.1 Model setup

In this paper, a general GDM is formally defined by two
components: the first is a general directed graph; the second
is stochastic processes having general TRFs associated with
each vertex of the graph.

A directed graph is a set of vertices connected by edges,
where each edge has a direction associated with it. In this
paper, we consider a finite directed graph as G = (V , A),
where V is a set of vertices and A is a set of arrows. For the
directed graph in Fig. 1, V = {B, S, E, I , R, D} and

A = {(B, S), (S, E), (E, I ), (I , R),

(S, D), (E, D), (I , D), (R, D)}.

For two vertices v, v′ ∈ V , an arrow (v, v′) is considered to
be directed from v to v′; v′ is called the head and v is called
the tail of the arrow. In this paper, we allow the directed graph
to have loops, i.e., arrows that directly connect vertices with
themselves. For a vertex v ∈ V , the number of head ends
adjacent to v is called the indegree of v and is denoted as
deg−(v); the number of tail ends adjacent to v is called the
outdegree of v and is denoted as deg+(v). A vertex with zero
indegree is called a source and the set of all source vertices is
denoted by So. A vertex with zero outdegree is called a sink
and the set of all sink vertices is denoted by Si . Thus,

So := {v ∈ V ; deg−(v) = 0}
and Si := {v ∈ V ; deg+(v) = 0}.

For the directed graph in Fig. 1, So = {B} and Si = {D}.
Denote the set of incoming neighbors of v as N−

G (v), which
is the set of vertices v ∈ A such that (v, v) ∈ A. Denote
the set of outgoing neighbors of v as N+

G (v), which is the
set of vertices v′ ∈ A such that (v, v′) ∈ A. Directed graphs
distinguish between N−

G (v) and N+
G (v).

Given a Polish space H, we let DH[0,∞) denote the
space ofH-valued càdlàg functions on [0,∞), endowedwith
the Skorokhod J1 topology, such that DH[0,∞) is a Polish

space; see Parthasarathy (2005) for further theoretical details.
Denote the random variable (also known as spin in graph the-
ory terminology) on any vertex v ∈ V at any time t ∈ [0,∞)

as Xv(t). We consider that Xv(t) is defined on a probabil-
ity space (�,F ,P) and takes values inDH[0,∞), equipped
with the Borel σ -algebra generated by open sets under the
Skorokhod J1-topology. The number of transitions from ver-
tex v to vertex v′ through arrow (v, v′) ∈ A is modeled
by a nondecreasing integer-valued jump process NX

vv′(t) for
t ∈ [0,∞) defined on the same probability space (�,F ,P),
where we use the customary initialization NX

vv′(0) = 0.
Suppose that the dynamics of X(t) := {Xv(t)}v∈V are

driven by NX(t) := {NX
vv′(t)}(v,v′)∈A as follows: For any

v ∈ V and t ∈ [0,∞)

Xv(t) = Xv(0) +
∑

v∈N−
G (v)

NX
vv(t) −

∑

v′∈N+
G (v)

NX
vv′(t).

That is, the random variable of vertex v at time t is given
by its initial value at time 0, plus the increments from all
its incoming neighbors, and then minus the decrements to its
outgoing neighbors.Denote the increment in the time interval
[t, t + h] over arrow (v, v′) ∈ A as

�X
vv′(t, h) := NX

vv′(t + h) − NX
vv′(t),

and then

Xv(t + h) − Xv(t) =
∑

v∈N−
G (v)

�X
vv(t, h) −

∑

v′∈N+
G (v)

�X
vv′(t, h).

2.2 Measures of dispersion

Measures of dispersion were defined previously in the vari-
ance tomean ratio form (e.g. Gillespie 1984) and the variance
and mean difference form (e.g. Brown et al. 1998). For theo-
retical analysis of dispersion, these two kinds of definitions
are mainly equivalent while the difference-formed definition
avoids the “0/0” situation. However, the ratio-formed defini-
tion is widely used, partially due to the fact that it facilitates
the dispersion comparison among different metrics and/or
units. When it comes to data analysis, the over-dispersion
parameter in Poisson regression (see, e.g., Berk and Mac-
Donald 2008) uses the ratio-formed definition. In this paper,
we properly define the SIDwith respect to the whole graph in
Definition 2.2, which is the first time the measure of disper-
sion is defined on a graph to our best knowledge. Definition
2.2 is formulated in terms of the measure of dispersion with
respect to each arrow of the graph, whose definition is given
below and is consistent with that in Bretó and Ionides (2011)
(equation (3) on page 2574):
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Definition 2.1 For arrow (v, v′) ∈ A, define the infinitesimal
variance

[σ dX
vv′ (t, x)]2 := lim

h↓0 h
−1Var[�X

vv′(t, h) | X(t) = x],

and the infinitesimal mean

μdX
vv′(t, x) := lim

h↓0 h
−1

E[�X
vv′(t, h) | X(t) = x].

Define the infinitesimal dispersion index as the following
ratio if it exists:

DdX
vv′ (t, x) := [σ dX

vv′ (t, x)]2
/

μdX
vv′(t, x).

We say that with respect to arrow (v, v′), X(t) has IED
at X(t) = x if DdX

vv′ (t, x) = 1, has IOD at X(t) = x if
DdX

vv′ (t, x) > 1, and has IUD at X(t) = x if DdX
vv′ (t, x) < 1.

Noting that Definition 2.1 is with respect to a specific
arrow, now we give definitions with respect to the whole
graph. A GDM having SIOD is provided in Sect. 4.

Definition 2.2 We say that

• X(t) has SIED at X(t) = x, if DdX
vv′ (t, x) = 1 for all

(v, v′) ∈ A;
• X(t) has SIOD at X(t) = x, if DdX

vv′ (t, x) � 1 for all
(v, v′) ∈ A and there exists (v0, v

′
0) ∈ A such that

DdX
v0v

′
0
(t, x) > 1;

• X(t) has SIUD at X(t) = x, if DdX
vv′ (t, x) � 1 for all

(v, v′) ∈ A and there exists (v0, v
′
0) ∈ A such that

DdX
v0v

′
0
(t, x) < 1.

Note that the above definitions depend on arrow-wise vari-
ances. To explore the infinitesimal correlations between two
arrows’ dynamics, in the following we give the pairwise
definition of infinitesimal covariance consistently with the
arrow-wise definition of infinitesimal variance in Definition
2.1.

Definition 2.3 For arrows (u, u′) ∈ A and (v, v′) ∈ A, define
the infinitesimal covariance

σ dX
uu′,vv′(t, x)

:= lim
h↓0 h

−1Cov[�X
uu′(t, h),�X

vv′(t, h) | X(t) = x].

3 Probabilistic construction of IOD

In this section, we aim to generate a new model X having
SIOD based on a GDM Z having SIED. We consider Z in a
general form in the way that conditional on Z(t) = z, each

flow NZ
vv′ over arrow (v, v′) ∈ A is associated with a general

TRF ϒvv′ which depends on time (t) and state of the graph
(z), such that

Q(t, (zv, zv′ , zV \{v,v′}), (zv − 1, zv′ + 1, zV \{v,v′}))
= ϒvv′(t, z), (2)

where we used the standard definition of the transition rate

Q(t, x, x′) := lim
h↓0 h

−1
P
(
X(t + h) = x′ | X(t) = x

)
. (3)

The Markov chain interpretation of Z can be specified by the
infinitesimal transition probabilities:

P(�Z
vv′(t, h) = 0 | Z(t) = z) = 1 − ϒvv′(t, z)h + o(h),

P(�Z
vv′(t, h) = 1 | Z(t) = z) = ϒvv′(t, z)h + o(h),

P(�Z
vv′(t, h) > 1 | Z(t) = z) = o(h),

P(�Z
vv′(t, h) < 0 | Z(t) = z) = 0.

(4)

Without loss of generality, we suppose the initial values of
the dynamics over the graph,Z(0), are integers for notational
simplicity. In Sects. 3.1 and 3.2, we consider the transition
rate (defined in (2)) in the forms given in (5) and (14), respec-
tively.

3.1 IOD construction with boundedness constraints

In this subsection, we focus on generating GDMs having
SIOD over outgoing arrows with the same tail. We consider
the case that there are multiple connected outgoing arrows of
vertex v such that |N+

G (v)| � 1, where N+
G (v) is the set of

vertices v′ ∈ V such that (v, v′) ∈ A and |N+
G (v)| is its car-

dinality. Suppose N+
G (v) = {v′

1, . . . , v
′
m} and |N+

G (v)| = m.
For example in Fig. 1, the connected outgoing arrows of ver-
tex S are (S, E) and (S, D), which gives N+

G (S) = {E, D}
and m = 2.

The transition rate of NZ
vv′

i
(t) for i ∈ {1, . . . ,m} is given

by

Q(t, (zv, zv′
i
, zV \{v,v′

i }), (zv − 1, zv′
i
+ 1, zV \{v,v′

i }))
= rvv′

i
(t, z)zv1{zv�1}, (5)

where z = (zv, zv′
i
, zV \{v,v′

i }). Considering the time period
[t, t+h], by (4) the probability that one transition fromvertex
v to vertex v′

i for i ∈ {1, . . . ,m} is given by

P(�Z
vv′

i
(t, h) = 1 | Z(t) = z) = rvv′

i
(t, z)zvh + o(h).

For notational convenience, denote�Z
vv′

0
(t, h) as the remain-

ing individuals at vertex v. Then the joint distribution of
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{�Z
vv′

i
(t, h) = ki }i∈{0,...,m} is given by

P

(
{�Z

vv′
i
(t, h) = ki }i∈{0,...,m} | Z(t) = z

)

= 	(zv + 1)∏m
i=0 	(ki + 1)

m∏

i=0

[
π̃vv′

i
(t, h, z)

]ki + o(h), (6)

where 	(·) is the gamma function, zv � 1 and ki ∈
{0, 1, . . . , zv} for i ∈ {0, . . . ,m} such that

∑m
i=0 ki = zv .

Here, for i ∈ {1, . . . ,m}

π̃vv′
i
(t, h, z)

=
(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,z)ds

)

× rvv′
i
(t, z)zvh + o(h)

∑m
j=1 rvv′

j
(t, z)zvh + o(h)

+ o(h)

=
(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,z)ds

)

× rvv′
i
(t, z)zvh

∑m
j=1 rvv′

j
(t, z)zvh + o(h)

+ o(h)

=
(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,z)ds

)

× rvv′
i
(t, z)zvh

∑m
j=1 rvv′

j
(t, z)zvh

(
1

1 + o(h)

)
+ o(h)

=
(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,z)ds

)

× rvv′
i
(t, z)

∑m
j=1 rvv′

j
(t, z)

(1 + o(h)) + o(h)

=
(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,z)ds

)

× rvv′
i
(t, z)

∑m
j=1 rvv′

j
(t, z)

+ o(h), (7)

where we used Taylor series in the fourth equality, and

π̃vv′
0
(t, h, z) = 1 −

m∑

i=1

π̃vv′
i
(t, h, z).

Plugging (7) into (6), we can rewrite (6) as

P

(
{�Z

vv′
i
(t, h) = ki }i∈{0,...,m} | Z(t) = z

)

= 	(zv + 1)∏m
i=0 	(ki + 1)

m∏

i=0

[
πvv′

i
(t, h, z)

]ki + o(h), (8)

where

πvv′
i
(t, h, z)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,z)ds

)

rvv′
i
(t,z)

∑m
j=1 rvv′

j
(t,z) i ∈ {1, . . . ,m},

1 − ∑m
j=1 πvv′

j
(t, h, z) i = 0.

(A.1)
Denote the transition rateqvv′ at time t over arrow (v, v′) ∈

A as

qvv′(t, x, k) := lim
h↓0 h

−1
P
(
�X

vv′(t, h) = k | X(t) = x
)
. (9)

The following theorem shows that a GDM X having
SIOD can be generated over connected outgoing arrows
{(v, v′

i )}i∈{1,...,m}.

Theorem 3.1 Suppose that rvv′
i
(t, x), for each i ∈ {1, . . . ,m},

is a positive function that is uniformly continuous in t . Fur-
ther suppose that {�X

vv′
i
(t, h) = ki }i∈{0,...,m} are jointly

distributed in the time period [t, t + h] as follows:

P

(
{�X

vv′
i
(t, h) = ki }i∈{0,...,m} | X(t)

= x, {�vv′
i
(t, h, x)}i∈{0,...,m}

)

= 	(xv + 1)∏m
i=0 	(ki + 1)

m∏

i=0

(
�vv′

i
(t, h, x)

)ki + o(h), (10)

where xv � 1 and ki ∈ {0, 1, . . . , xv} for i ∈ {0, . . . ,m}
such that

∑m
i=0 ki = xv . Further suppose that the fam-

ily {�vv′
i
(t, h, x)}i∈{0,1,...,m} is distributed according to the

Dirichlet distribution Dir({αvv′
i
(t, h, x)}i∈{0,1,...,m}) having

αvv′
i
(t, h, x) = cπvv′

i
(t, h, x) for i ∈ {0, . . . ,m},

where c is a finite positive parameter and

πvv′
i
(t, h, x)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

)

rvv′
i
(t,x)

∑m
j=1 rvv′

j
(t,x) i ∈ {1, . . . ,m},

1 − ∑m
j=1 πvv′

j
(t, h, x) i = 0.

The following results hold:

(1) For each i ∈ {1, . . . ,m}, the infinitesimal mean
μdX

vvi
(t, x) is given by

μdX
vv′

i
(t, x) = xvrvv′

i
(t, x)
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and the infinitesimal variance [σ dX
vvi

(t, x)]2 is given by

[σ dX
vv′

i
(t, x)]2

= (1 + (xv − 1)(c + 1)−1)xvrvv′
i
(t, x).

When xv > 1, X(t) has IOD at X(t) = x with
respect to each arrow of {(v, v′

i )}i∈{1,...,m} and X(t)
has SIOD at X(t) = x for connected outgoing arrows
{(v, v′

i )}i∈{1,...,m}; when xv = 1, X(t) has SIED at
X(t) = x for connected outgoing arrows
{(v, v′

i )}i∈{1,...,m}. Furthermore, for i, j ∈ {1, . . . ,m}
and i �= j , the infinitesimal covariance σ dX

vv′
i ,vv′

j
(t, x) =

0.
(2) Denote S as the set of transitions over arrows

{(v, vi )}i∈{1,...,m}, i.e.,

S :=
{
ki : ki � 1 for i ∈ {1, . . . ,m} and

m∑

i=0

ki = xv

}
.

(11)

Then the conditional probability that transitions happen
over two or more arrows

P

(
{�X

vv′
i
(t, h) = ki }i∈{0,...,m}, |S| � 2

∣∣∣ X(t) = x
)

= o(h)

and the conditional probability that only one transition
happens over a single arrow

P

(
{�X

vv′
i
(t, h) = ki }i∈{0,...,m}, |S| = 1

∣∣∣ X(t) = x
)

=
m∑

i=1

qvv′
i
(t, x, ki )h + o(h), (12)

where |S| is the cardinality of S and for i ∈ {1, . . . ,m}

qvv′
i
(t, x, ki )

= c

(
xv

ki

)
	(ki )	(xv − ki + c)

	(xv + c)
rvv′

i
(t, x). (13)

The proof of Theorem 3.1 is postponed to Section A1.1
in the Appendix. We note that a crucial difference between
equations (4) and (12) is that, one transition over any single
arrow has up tom(� 1) units in (12)while one transition over
a specific arrow has exactly one unit in (4). From Theorem
3.1, we can see that the methodology proposed in Bretó and
Ionides (2011) is even a special case of ourm = 1 case. Now,
we realize the methodology proposed in Theorem 3.1 in the
Algorithm 1.

Algorithm 1 Euler scheme on generating dynamics having
IOD over connected outgoing arrows {(v, v′

i )}i∈{1,...,m}.
Set the initial value X(0) and time interval [0, T ].
Set fixed time increment δ = T /N for integer N ; define tn = nδ.
FOR n = 0 to N − 1

FOR each v ∈ V with N+
G (v) = {v′

1, . . . , v
′
m}

Generate {�vv′
i
}i∈{0,1,...,m} according to the Dirichlet distribution

Dir({αvv′
i
}i∈{0,1,...,m}) having

αvv′
i
=cπvv′

i
for i ∈{1, . . . ,m} and αvv′

0
=c−∑m

i=1 αvv′
i
,

where for i ∈ {1, . . . ,m}

πvv′
i
=

(
1 − e

−∑m
j=1

∫ tn+1
tn rvv′

j
(s,x)ds

)
rvv′

i
(tn ,x)

∑m
j=1 rvv′

j
(tn ,x)

.

Generate process increments

{�X
vv′

i
}i∈{0,1,...,m} ∼ Multinomial(Xv(tn), {�vv′

i
}i∈{0,1,...,m})

where �X
vv′

0
stands for retain individuals.

Set Xv(tn+1) = �X
vv′

0
+ ∑

v∈N−
G (v) �X

vv

END FOR

END FOR

3.2 IOD construction without boundedness
constraints

Unbounded processes, such as the pure birth process, have
wide applications. In this subsection, we focus on generating
GDMs having IODover incoming arrowswith the same head
without boundedness constraints.

We consider the case that there are multiple connected
incoming arrows of vertex u′ such that |N−

G (u′)| � 1, where
N−
G (u′) is the set of vertices u ∈ V such that (u, u′) ∈ A and

|N−
G (u′)| is its cardinality. Suppose N−

G (u′) := {u1, . . . , um}
and m := |N−

G (u′)|. For example in Fig. 1, the connected
incoming arrows of vertex D are (S, D), (E, D), (I , D),
and (R, D), which gives N−

G (D) = {S, E, I , R} andm = 4.
The transition probability of NZ

ui u′(t) for i ∈ {1, . . . ,m}
is given by

Q(t, (zui , zu′ , zV \{ui ,u′}), (zui − 1, zu′ + 1, zV \{ui ,u′}))
= rui u′(t, z)zu′1{zu′>0}, (14)

where z = (zui , zu′ , zV \{ui ,u′}). In the time period [t, t + h],
by (4) the probability that one transition from vertex ui to
vertex u′

P(�Z
ui u′(t, h) = 1 | Z(t) = z) = rui u′(t, z)zu′h + o(h).

The joint distribution of increments of {NZ
ui u′(t)}i∈{1,...,m} is

given by

P

(
{�Z

ui u′(t, h) = ki }i∈{1,...,m} | Z(t) = z
)
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= 	(zu′ + ∑m
i=1 ki )

	(zu′)
∏m

i=1 	(ki + 1)

[
1 −

m∑

i=1

π̃ui u′(t, h, z)

]zu′

×
m∏

i=0

[
π̃ui u′(t, h, z)

]ki + o(h), (15)

where zu′ > 0 and ki ∈ {0, 1, 2, . . .} for i ∈ {1, . . . ,m}.
Here, for i ∈ {1, · · · ,m}

π̃ui u′(t, h, z)

=
(
1 − e−∑m

j=1
∫ t+h
t rui u′ (s,z)ds

)

× rvv′
i
(t, z)zu′h + o(h)

∑m
j=1 rui u′(t, z)zu′h + o(h)

+ o(h)

=
(
1 − e−∑m

j=1
∫ t+h
t rui u′ (s,z)ds

)

× rvv′
i
(t, z)zu′h

∑m
j=1 rui u′(t, z)zu′h + o(h)

+ o(h)

=
(
1 − e−∑m

j=1
∫ t+h
t rui u′ (s,z)ds

)

× rvv′
i
(t, z)zu′h

∑m
j=1 rui u′(t, z)zu′h

(
1

1 + o(h)

)
+ o(h)

=
(
1 − e−∑m

j=1
∫ t+h
t rui u′ (s,z)ds

)

× rvv′
i
(t, z)

∑m
j=1 rui u′(t, z)

(1 + o(h)) + o(h)

=
(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,z)ds

)

× rui u′(t, z)
∑m

j=1 ru j u′(t, z)
+ o(h), (16)

where we used Taylor series in the fourth equality. Plugging
(16) into (15), we can rewrite (15) as

P

(
{�Z

ui u′(t, h) = ki }i∈{1,...,m} | Z(t) = z
)

= 	(zu′ + ∑m
i=1 ki )

	(zu′)
∏m

i=1 	(ki + 1)

[
πu0u′(t, h, z)

]zu′

×
m∏

i=0

[
πui u′(t, h, z)

]ki + o(h),

where

πui u′(t, h, z)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,z)ds

)

rui u′ (t,z)
∑m

j=1 ru j u′ (t,z)
i ∈ {1, . . . ,m},

1 − ∑m
j=1 πu j u′(t, h, z) i = 0.

The following theorem shows that a GDM X having
SIOD can be generated over connected incoming arrows
{(ui , u′)}i∈{1,...,m}.

Theorem 3.2 Suppose that rui u′(t, x), for each i ∈
{1, . . . ,m}, is a positive function that is uniformly continuous
in t . Further suppose that the increments of {NX

ui u′(t)}i∈{1,...,m}
are jointly distributed in the time period [t, t + h] as:

P

(
{�X

ui u′(t, h) = ki }i∈{1,...,m} | X(t)

= x, {�ui u′(t, h, x)}i∈{0,1,...,m}
)

= 	(xu′ + ∑m
i=1 ki )

	(xu′)
∏m

i=1 	(ki + 1)

× [
�u0u′(t, h, x)

]xu′
m∏

i=1

[
�ui u′(t, h, x)

]ki + o(h),

(17)

where xu′ > 0 and ki ∈ {0, 1, 2, . . .} for i ∈ {1, . . . ,m}.
Here, {�ui u′(t, h, x)}i∈{0,1,...,m} is distributed according to
theDirichlet distributionDir({αui u′(t, h, x)}i∈{0,1,...,m})hav-
ing

αui u′(t, h, x) = cπui u′(t, h, x) for i ∈ {0, 1, . . . ,m}

where c is a finite positive parameter and

πui u′(t, h, x)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)

rui u′ (t,x)
∑m

j=1 ru j u′ (t,x)
i ∈ {1, . . . ,m},

1 − ∑m
j=1 πu j u′(t, h, x) i = 0.

The following results hold:

(1) When c > 2e
∑m

i=1
∫ t+h
t rui u′ (s,x)ds , for any i ∈ {1, . . . ,m},

the infinitesimal mean μdX
ui u′(t, x) is given by

μdX
ui u′(t, x) = xu′rui u′(t, x)

c

c − 1
,

and the infinitesimal variance [σ dX
ui u′(t, x)]2 is given by

[σ dX
ui u′(t, x)]2 = x2u′rui u′(t, x)

c

(c − 1)(c − 2)
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+ xu′rui u′(t, x)
c

c − 2
.

Then X(t) has IOD at X(t) = x with respect to
each arrow of {(ui , u′)}i∈{1,...,m}, and X(t) has SIOD at
X(t) = x for connected incoming arrows
{(ui , u′)}i∈{1,...,m}. Furthermore, when c >

2e
∑m

i=1
∫ t+h
t rui u′ (s,x)ds , for i, j ∈ {1, . . . ,m} and i �= j ,

the infinitesimal covariance σ dX
uu′

i ,uu
′
j
(t, x) = 0.

(2) Denote S as the set of transitions over arrows
{(ui , u′)}i∈{1,...,m}, i.e.,

S :=
{
ki : ki � 1 for i ∈ {1, . . . ,m}

}
. (18)

Then the conditional probability that transitions happen
over two or more arrows

P

(
{�X

ui u′(t, h) = ki }i∈{1,...,m}, |S| � 2
∣∣∣ X(t) = x

)

= o(h),

and the conditional probability that only one transition
happens over a single arrow

P

(
{�X

ui u′(t, h) = ki }i∈{1,...,m}, |S| = 1
∣∣∣ X(t) = x

)

=
m∑

i=1

qui u′(t, x, ki )h + o(h),

where |S| is the cardinality of S and for i ∈ {1, . . . ,m}

qui u′(t, x, ki )

= c
	(xu′ + ∑m

i=1 ki )

	(xu′)
∏m

i=1 	(ki + 1)

	(xu′ + c)	(ki )

	(xu′ + ∑m
i=1 ki + c)

× rui u′(t, x). (19)

The proof of Theorem 3.2 is postponed to Section A1.2.
in the Appendix. We note that in practice, users of Theo-
rem 3.2 can simply treat c as an unknown parameter through
using modern likelihood-based parameter inference algo-
rithms such as Ionides et al. (2015), as illustrated in Sect. 4.

4 Application

In this section, we demonstrate our theories, methodologies,
and algorithms. A SEIR-typeMarkov chainmodel is covered
in 1.2. InSect. 4.1,weprovide further details of it. InSect. 4.2,
we use it to conduct measles real data analysis on the same
dataset as Bretó et al. (2009) and He et al. (2010), which
is a well-tested and publicly accessible dataset, using our
methodology and algorithm, for performance comparison.

In Sect. 4.3, we perform a comparative analysis on artificial
datasets, generated by perturbing the measles dataset.

4.1 Further details of themotivational application

The standard interpretation of Fig. 1 as a Markov chain hav-
ing transition rates, conditional on x, is given by

Q(t, (xB, xS, xV \{B,S}), (xB − 1, xS + 1, xV \{B,S}))
= rBS(t)xB1{xB>0},

Q(t, (xS, xE , xV \{S,E}), (xS − 1, xE + 1, xV \{S,E}))
= rSE (t, xI )xS1{xS>0},

Q(t, (xE , xI , xV \{E,I }), (xE − 1, xI + 1, xV \{E,I }))
= rE I xE1{xE>0},

Q(t, (xI , xR, xV \{I ,R}), (xI − 1, xR + 1, xV \{I ,R}))
= rI RxI1{xI>0},

Q(t, (xS, xD, xV \{S,D}), (xS − 1, xD + 1, xV \{S,D}))
= rSDxS1{xS>0},

Q(t, (xE , xD, xV \{E,D}), (xE − 1, xD + 1, xV \{E,D}))
= rEDxE1{xE>0},

Q(t, (xR, xD, xV \{R,D}), (xR − 1, xD + 1, xV \{R,D}))
= rRDxR1{xR>0},

The time-inhomogeneous transition rate over (B, S), denoted
as rBS(t), is the per-capita rate of recruitment of susceptibles
depending on known birth rates obtained via interpolation
from birth records. A cohort-entry effect is also considered
in calculating rBS(t), to reflect the fact that a large cohort
of first-year students enters the schools each fall: a frac-
tion θc of recruits into the susceptible class enter on the
school admission day and the remaining fraction (1 − θc)
enter the susceptible class continuously. The TRF of infec-
tion rSE (t, xI ) is defined in (1). Since transmission rates are
closely linked to contact rates among children, which are
higher during school terms, β(t) reflects the pattern of school
terms and holidays, as follows:

β(t) =
{

(1 + 2{1 − p}θa) β̄ during school term ,

(1 − 2pθa) β̄ during vacation ,

(20)

where p is the proportion of the year taken up by school
term, β̄ is the mean transmission rate, and θa measures the
relative effect of school holidays on transmission. For ease of
interpretation, β̄ is reparameterized in terms of R0 which is
the annual average basic reproductive ratio, such that R0 =
β̄/rI R , where rI R is the recovery rate. Here, rE I is the rate
at which exposed individuals become infectious and rSD =
rED = rI D = rRD denotes a constant per capita death rate.
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Algorithm 2 Euler scheme on generating dynamics having
IOD over arrows (S, E) and (S, D), using Algorithm 1.

Set the initial valueX(0) and time interval [0, T ].
Set fixed time increment δ = T /N for integer N ; define tn = nδ.
FOR n = 0 to N − 1

Generate {�S0,�SE ,�SD} according to the Dirichlet distribution

Dir({αS0, αSE , αSD}) having
αSE = cπSE , αSD = cπSD, and αS0 = c − αSE − αSD,

where

πSE =
(
1 − e− ∫ tn+1

tn rSE (s,x)ds−rSDδ
)

rSE (tn ,x)
rSE (tn ,x)+rSD

,

πSD =
(
1 − e− ∫ tn+1

tn rSE (s,x)ds−rSDδ
)

rSD
rSE (tn ,x)+rSD

.

Generate process increments

{�X
S0,�

X
SE ,�X

SD} ∼ Multinomial(XS(tn), {�S0,�SE ,�SD})
where �X

S0 stands for retain individuals.

Set XS(tn+1) = �X
S0 + �X

BS

END FOR

Our transition rates are taken the same as He et al. (2010)
for equidispersed arrows, therefore we use the same Euler
approximation. The dynamics over (B, S) is modelled as
an inhomogeneous Poisson process on each step of the
Euler scheme.The dynamics over outgoing connected arrows
{(S, E), (S, D)} (resp. {(E, I ), (E, D)}, {(I , R), (I , D)})
are modeled through multinomial distributions on each step
of the Euler scheme, and the dynamic over (R, D) can
be implied through fixed population. The only difference
between our approach and that of Bretó et al. (2009), is the
modeling of dynamics over {(S, E), (S, D)}. Algorithm 2 is
obtained by applying our general Algorithm 1 to this applica-
tion. InAlgorithm2 the event probabilities in themultinomial
distribution are Dirichlet random variables, whereas the
approach of Bretó et al. (2009) is adding gamma noise to
those probabilities.

4.2 Comparison using real data

He et al. (2010) used the over-dispersion methodology (Box
1 on page 280 therein) proposed in Bretó et al. (2009) on
analyzing measles epidemics occurring in London during
the pre-vaccination era, which is a well-tested and publicly
accessible dataset with reported cases from 1950 to 1964.
Figure2 shows the case reports and annual birth rates for
London.

In order to conduct fair comparisons, we use the same
model setting and data as He et al. (2010). Thus, we fix
p = 0.7589 in (20), set the delay from birth to suscepti-
ble as 4, and set the mortality rate rSD = 1/50 = 0.02
per year. The unknown model parameters in the SEIR-type
Markov chainmodel covered in Sect. 4, are R0, rE I , rI R , α, ι,
θc, and θa . To calculate the likelihood of the data, a measure-

Fig. 2 Weekly reported measles cases (solid line) and annual births
(dotted line) for London

ment model is added to describe the relationship between the
latent disease dynamics and the observed case reports. We
use the same measurement model as He et al. (2010), which
has two more unknown parameters: reporting rate ρ and dis-
persion parameter ψ (see page 281 of He et al. (2010) for
a detailed description of this report measurement process).
The unknown initializations are XS(0), XE (0), XI (0), and
XR(0). The unknown IOD model parameters are σSE of the
gamma noise-based approach used in He et al. (2010) and c
of our approach in Algorithm 1. We implemented the same
parameter inference algorithm ( Ionides et al. (2015)) as He
et al. (2010), via the pomppackage (King et al. (2016)). From
Table 1, we can see that with the same number of unknown
parameters which indicates the same complexity of infer-
ence, our method has better data fitting in terms of a higher
ML (Table 3).

There are long-existing concerns about interpreting results
generated by the approach proposed in Bretó et al. (2009).
The quantity R0 is central in the epidemiological theory
because it has interpretations in terms of many quantities
of interest, which include mean age of the first infec-
tion, mean susceptible fraction, exponential-phase epidemic
growth rate, and vaccination coverage required for eradica-
tion. He et al. (2010) obtained MLE R0 = 56.8 and the
likelihoods over R0 yielded a 95% confidence interval of
(37, 60). Furthermore, Bjørnstad et al. (2002) found an esti-
mate of R0 = 29.9 for London. Hence, He et al. (2010) gave
detailed possible explanations on pages 276 − 278 therein,
regarding concerns about the surprisingly high MLE value
of R0. We obtained MLE R0 = 34.09 and a 95% confi-
dence interval of (31.21, 47.37) for London (Fig. 3). Thus,
our method not only shows improved statistical fit but also
provides a resolution of a previous discrepancy between
continuous-time models fitted to time series data and other
lines of evidence concerning R0 for measles.
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Table 1 Comparisons of ML
and MLEs using a real dataset

Name He et al. (2010) Our method Name He et al. (2010) Our method

ML – 3804.9 – 3803.2 θc 0.56 1

R0 56.8 34.09 θa 0.55 0.48

rE I 28.9 52.71 XS(0) 0.0297 0.032

rI R 30.4 22.88 XE (0) 5.17e–05 6.99e–05

α 0.976 1.017 XI (0) 5.14e–05 4.52e–05

ι 2.9 55.08 XR(0) 0.97 0.968

ρ 0.488 0.492 c N/A 652.8

ψ 0.116 0.118 σSE 0.088 N/A

Fig. 3 Log-likelihood analysis of the basic reproductive ratio, R0. The
dashed lines construct a 95% confidence interval of (31.21, 47.37) for
London

4.3 Comparison using artificial datasets

In this subsection, we conduct comparisons using artificial
datasets. The real dataset, discussed in the previous sub-
section, is used to generate two artificial datasets. Artificial
dataset 1 is created by perturbing the real dataset from 1950
to 1954, adding one more case to each observation. Artifi-
cial dataset 2 is generated by perturbing the same dataset,
adding two more cases. We implemented the same parame-
ter inference algorithm ( Ionides et al. (2015)) with the same
algorithm setup. Five initial values for the search were gener-
ated using five values of R0 as {10, 15.65, 24.49, 38.34, 60}
and the others were set to the best results obtained from the
two methods listed in Table 1. Table 2 lists the best two
ML and MLE results for each method out of the five ini-
tial values. Our method clearly outperforms that of He et al.
(2010) in terms of log-likelihood. Furthermore, our method
consistently exhibits smaller standard deviations (SD). The
parameter inference result for R0 is much smaller than their
estimates when their SD is less than one, which aligns with
scientific findings and indicates that the results fromHe et al.
(2010) are less reliable than ours.

Table 2 Comparisons of ML and MLEs using two artificial datasets.
The best two results from each method are listed

He et al. (2010) Our method
ML SD R0 ML SD R0

Artificial Dataset 1

−1663.26 0.84 41.87 −1653.93 0.22 29.88

−1669.74 0.42 19.78 −1657.44 0.37 25.85

Artificial Dataset 2

−1659.26 1.66 52.08 −1654.58 0.55 33.47

−1668.88 0.67 45.87 −1661.74 0.31 42.81

5 Discussion

Markov processes play a crucial role in stochastic modeling,
offering a natural extension of differential equation mod-
els used in deterministic modeling. By introducing noise
to rates, we achieve a parsimonious approach that allows
for flexible mean-variance relationships. While alternative
methods like multistate models with expanded state spaces
exist, our approach offers distinct advantages: it incorporates
a single noise parameter, maintains theMarkov property, and
preserves the continuous-time structure of the underlying
dynamics. These benefits, combined with a good statistical
fit to the data, make our model desirable.We demonstrate the
effectiveness of our approach in achieving these objectives.

Although simultaneous events are mathematically neces-
sary to achieve flexible mean-variance relationships under
the given assumptions, it is important to acknowledge
that distinguishing between truly simultaneous and almost-
simultaneous events is empirically impossible. In the real
world, the process of transitioning between biological or
social states, such as becoming infected, lacks a precisely
defined exact point in time. Therefore, our focus lies on
evaluating whether the modeling structure provides a sci-
entifically meaningful and statistically accurate explanation
of observable data. It is these questions that we prioritize in
our research.

The topic of R0 (basic reproduction number) for measles
is both intriguing and significant. In a study by Guerra

123



  147 Page 12 of 19 Statistics and Computing           (2024) 34:147 

et al. (2017), more than 16, 000 scientific paper abstracts
were examined, leading to the identification of 18 studies
that reported approximately 60 estimates of R0 for measles.
Among these 18 representative studies, only three were pub-
lished after the year 2000, focusing on measles data from
the years 1950 to 1964 (Table 1, page e422 in Guerra et al.
(2017)). Interestingly, all three studies reported relatively
high values of R0, with He et al. (2010) being one of them. To
ensure a fair comparison, our research applies the same data,
model settings, and inference algorithm as those employed
in He et al. (2010).

The overdispersion approach presented in Bretó et al.
(2009) has gained significant popularity; however, it still
remains somewhat of a black-box method. This approach
lacks a solid mathematical foundation, leaving users uncer-
tain about its conditions of applicability, the extent towhich it
works, the underlying mechanisms, and its stability. While it
may be of interest to examine the limitations of the approach
proposed in Bretó et al. (2009), such analysis is beyond the
scope of this paper. Instead and importantly, we propose a
new theory and methodology that addresses these limita-
tions. In contrast to the previous approach, our method is
both explainable and supported by a robust mathematical
framework. Firstly, we establish weak yet precise conditions
under which our algorithm can be applied more generally.
Secondly, through rigorous mathematical derivations, we
provide clear insights into how the overdispersion param-
eter is incorporated into our methodology. Furthermore, our
approach can offer improved data fitting and the generation
of more interpretable scientific results.

In practice, for complex dynamical systems, not only
the joint probability distribution is unknown but also the
marginal distributions. A model that is defined using a sim-
ulator instead of an analytically tractable characterization of
an underlying process, is said to be implicitly defined (Dig-
gle andGratton 1984).Models for complex dynamic systems
that lack analytically tractable transition densities, are some-
times defined implicitly by a computer simulation algorithm.
Inmathematics and computational science, the Euler method
is the commonly used for that purpose. It is a first-order
numerical procedure for solving differential equations with
a given initial value. Its local error (error per step) is pro-
portional to the square of the step size, and its global error
(error at a given time) is proportional to the step size. Our
methodology is applicable to general dynamical systems that
can be simulated using the Euler scheme, but it is not limited
to exclusively using that method. The computational effi-
ciency of the chosen simulation method is the standard for
the approach.

Inference approaches that are applicable to implicitly
defined models are said to possess the plug-and-play prop-
erty, or alternatively called equation-free or likelihood-free (
Kevrekidis et al. (2004); Xiu et al. (2005); Marjoram et al.

(2003); Sisson et al. (2007)). Modern likelihood-based infer-
ence algorithms possessing the plug-and-play property (e.g.
Ionides et al. (2006, 2015); King et al. (2008)) do not need
to evaluate the step-by-step transition densities, and merely
require a simulator as input for the dynamic process. Lately,
scalable inference algorithms that possess the plug-and-play
property have been developed for high-dimensional GDMs
(e.g. Ning and Ionides (2023); Ionides et al. (2023)). Since
our definition of IOD is localized to individual arrows, the
dimension of the graph becomes irrelevant. Therefore, our
methodology is compatible with those inference algorithms
of moderate graph dimension or large graph dimension.

A1. Proof of Theorems

In this section, we give the proof of Theorem 3.1 in Section
A1.1, and the proof of Theorem 3.2 in A1.2. We heavily use
properties of themultinomial distribution, the negativemulti-
nomial distritbution, and the Dirichlet distribution (Table 3).
We conduct asymptotic analysis in a sufficiently small time
interval [t, t + h]. We recall that increments over the arrow
(v, v′) is defined as

�X
vv′(t, h) = NX

vv′(t + h) − NX
vv′(t).

We recall that for random variables Y1, Y2, and Y3, the law
of total variance states that

Var(Y1) = E[Var(Y1 | Y2)] + Var(E[Y1 | Y2]),

and the law of total covariance states that

cov(Y1,Y2) =E(cov(Y1,Y2 | Y3))
+ cov(E(Y1 | Y3),E(Y2 | Y3)).

A1.1 Proof of Theorem 3.1

(1). By (10), for i ∈ {1, . . . ,m}

E(�X
vv′

i
(t, h) | X(t) = x)

= xvE(�vv′
i
(t, h, x)) + o(h)

= xv

c
αvv′

i
(t, h, x) + o(h),

and by the law of total variance

Var(�X
vv′

i
(t, h) | X(t) = x)

= x2vVar(�vv′
i
(t, h, x))

+ xvE(�vv′
i
(t, h, x)(1 − �vv′

i
(t, h, x))) + o(h)
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Table 3 Notation
G = (V , A) G: graph, V : set of vertices, and A: set of arrows, Sect. 2.1.

So Set of all source vertices, Sect. 2.1.

Si Set of all sink vertices, Sect. 2.1.

Xv(t) Stochastic process on vertex v ∈ V at time t ∈ [0,∞), Sect. 2.1.

NX
vv′ (t) Nondecreasing integer-valued jump process over (v, v′), Sect. 2.1.

�X
vv′ (t, h) Increments of NX

vv′ (t) in time interval [t, t + h], Sect. 2.2.
[σ dX

vv′ (t, x)]2 Infinitesimal variance, Def. 2.1.

μdX
vv′ (t, x) Infinitesimal mean, Def. 2.1.

DdX
vv′ (t, x) Infinitesimal dispersion index, Def. 2.1.

ϒvv′ (t, z) Transition probability over (v, v′), Sect. 3.
r··(t, z) Per-capita rate function, Sect. 3.

π̃··(t, h, z) Transition probability, Sect. 3.

π··(t, h, z) Transition probability after rewriting, Sect. 3.

�··(t, h, x) Stochastic transition probability, Sect. 3.

c > 0 Inverse noise parameter, Sect. 3.

α··(t, h, x) Parameter in the distribution of �··(t, h, x), Sect. 3.

β··(t, h, x) Parameter in the distribution of �··(t, h, x), Sect. 3.

Q(t, x, x′) Transition rate function, Eqn. (3).

qvv′ (t, x, k) Transition rate function, Eqn. (9).

S Set defined in Eqn. (11).

S Set defined in Eqn. (18).

= (x2v − xv)
αvv′

i
(t, h, x)(c − αvv′

i
(t, h, x))

c2(c + 1)

+ xv

c
αvv′

i
(t, h, x)

− xv

c2

(
αvv′

i
(t, h, x)

)2 + o(h).

Plugging

αvv′
i
(t, h, x)

= c

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

) rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

into the above two equations, we have

E(�X
vv′

i
(t, h) | X(t) = x)

= xv

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

)

× rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

+ o(h)

and

Var(�X
vv′

i
(t, h) | X(t) = x)

= (x2v − xv)(c + 1)−1

×
(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

) rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

×
(
1 −

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

) rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

)

+ xv

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

) rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

− xv

((
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

) rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

)2

+ o(h)

:= A1 + A2 − A3 + o(h). (A.1)

We need to ensure that the above variance is positive. Since
xv � 1, c > 0, and rvv′

i
(t, x) > 0, we have

0 <

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

)
< 1

and 0 <
rvv′

i
(t, x)

∑m
j=1 rvv′

j
(t, x)

< 1,

and then the first term A1 is always positive. Since

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

) rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)
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>

((
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

) rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

)2

,

we have A2 − A3 > 0. Thus, when h is sufficiently small,
we have

Var(�X
vv′

i
(t, h) | X(t) = x) > 0.

Note that when h is sufficiently small, we also have
E(�X

vv′
i
(t, h) | X(t) = x) > 0. Applying L’Hôpital’s rule,

μdX
vv′

i
(t, x) = xvrvv′

i
(t, x),

[σ dX
vv′

i
(t, x)]2 = (1 + (xv − 1)(c + 1)−1)xvrvv′

i
(t, x).

Then we can see that for any i ∈ {1, . . . ,m}, when xv > 1,
the infinitesimal dispersion index DdX

vv′
i
(t, x) > 1, i.e., X(t)

has IOD atX(t) = xwith respect to arrow (v, v′
i ) ∈ A; when

xv = 1, the infinitesimal dispersion index DdX
vv′

i
(t, x) = 1,

i.e.,X(t) has IED atX(t) = xwith respect to arrow (v, v′
i ) ∈

A. By Definition 2.2, when xv > 1,X(t) has SIOD atX(t) =
x over connected outgoing arrows {(v, v′

i )}i∈{1,...,m}; when
xv = 1,X(t) has SIED atX(t) = x over connected outgoing
arrows {(v, v′

i )}i∈{1,...,m}.
By the law of total covariance, for i, j ∈ {1, . . . ,m} and

i �= j , we have

Cov
[
�X

vv′
i
(t, h),�X

vv′
j
(t, h) | X(t) = x

]

= Cov
[
E[�X

vv′
i
(t, h) | X(t) = x, {�vv′

i
(t, h, x)}i∈{0,...,m}],

E[�X
vv′

j
(t, h) | X(t) = x, {�vv′

i
(t, h, x)}i∈{0,...,m}]

]

+ E

[
Cov[�X

vv′
i
(t, h),�X

vv′
j
(t, h) | X(t) = x,

{�vv′
i
(t, h, x)}i∈{0,...,m}]

]

= x2vCov[�vv′
i
(t, h, x),�vv′

j
(t, h, x)]

− E[xv�vv′
i
(t, h, x)�vv′

j
(t, h, x)] + o(h)

= (x2v − xv)Cov[�vv′
i
(t, h, x),�vv′

j
(t, h, x)]

− xvE[�vv′
i
(t, h, x)]E[�vv′

j
(t, h, x)] + o(h)

= −(x2v − xv)
αvv′

i
(t, h, x)αvv′

j
(t, h, x)

c2(c + 1)

− xv

αvv′
i
(t, h, x)αvv′

j
(t, h, x)

c2
+ o(h)

= − (x2v − xv)

c + 1

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

)2

×
rvv′

i
(t, x)rvv′

j
(t, x)

(
∑m

j=1 rvv′
j
(t, x))2

− xv

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

)2

×
rvv′

i
(t, x)rvv′

j
(t, x)

(
∑m

j=1 rvv′
j
(t, x))2

+ o(h).

(A.2)

By Definition 2.3, for i, j ∈ {1, . . . ,m} and i �= j ,

σ dX
vv′

i ,vv′
j
(t, x) = 0.

(2). By (10), with y = (y0, y1, . . . , ym), we have

P

(
{�X

vv′
i
(t, h) = ki }i∈{0,...,m} | X(t) = x

)

=
∫ 1

0

	(xv + 1)∏m
i=0 	(ki + 1)

m∏

i=0

(yi )
ki

×
{

	(
∑m

i=0 αvv′
i
(t, h, x))

∏m
i=0 	(αvv′

i
(t, h, x))

m∏

i=0

y
αvv′

i
(t,h,x)−1

i

}
dy

+ o(h)

= 	(xv + 1)∏m
i=0 	(ki + 1)

	(
∑m

i=0 αvv′
i
(t, h, x))

∏m
i=0 	(αvv′

i
(t, h, x))

×
∫ m∏

i=0

(yi )
ki∈|A|+αvv′

i
(t,h,x)−1

dy + o(h)

= 	(xv + 1)∏m
i=0 	(ki + 1)

	(
∑m

i=0 αvv′
i
(t, h, x))

∏m
i=0 	(αvv′

i
(t, h, x))

×
∏m

i=0 	(ki + αvv′
i
(t, h, x))

	(
∑m

i=0 ki + ∑m
i=0 αvv′

i
(t, h, x))

+ o(h)

= 	(xv + 1)∏m
i=0 	(ki + 1)

	(c)∏m
i=0 	(αvv′

i
(t, h, x))

×
∏m

i=0 	(ki + αvv′
i
(t, h, x))

	(xv + c)
+ o(h). (A.3)

Recalling that for i ∈ {1, . . . ,m}

αvv′
i
(t, h, x) = c

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

)

× rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

,

by Taylor series we have

αvv′
i
(t, h, x) = crvv′

i
(t, x)h + o(h). (A.4)

Hence, for ki � 1 and i ∈ {1, . . . ,m},

	(ki + αvv′
i
(t, h, x))
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= (ki + αvv′
i
(t, h, x) − 1) · · · (2 + αvv′

i
(t, h, x) − 1)

× αvv′
i
(t, h, x) · 	(αvv′

i
(t, h, x))

= (ki − 1) · · · (2 − 1) · αvv′
i
(t, h, x) · 	(αvv′

i
(t, h, x))

+ o(αvv′
i
(t, h, x))

= 	(ki )αvv′
i
(t, h, x)	(αvv′

i
(t, h, x)) + o(αvv′

i
(t, h, x)).

(A.5)

Furthermore, we have that

	(k0 + αvv′
0
(t, h, x))

= 	

(
xv −

m∑

i=1

ki∈|A| + c −
m∑

i=1

αvv′
i
(t, h, x)

)

=
(
xv −

m∑

i=1

ki∈|A| − 1 + c −
m∑

i=1

αvv′
i
(t, h, x)

)

× · · · ×
(
c −

m∑

i=1

αvv′
i
(t, h, x)

)

× 	(αvv′
0
(t, h, x))

=
[(

xv −
m∑

i=1

ki∈|A| − 1 + c

)
· · · c + O

(
m∑

i=1

αvv′
i
(t, h, x)

)]

× 	(αvv′
0
(t, h, x))

=
[

	(xv − ∑m
i=1 ki∈|A| + c)

	(c)

+O
(

m∑

i=1

αvv′
i
(t, h, x)

)]
	(αvv′

0
(t, h, x)). (A.6)

Plugging (A.4), (A.5), and (A.6) into (A.3), we can see that

P

(
{�X

vv′
i
(t, h) = ki }i∈{0,1,...,m}, |S| � 2 | X(t) = x

)
= o(h)

and

P

(
{�X

vv′
i
(t, h) = ki }i∈{0,1,...,m}, |S| = 1 | X(t) = x

)

=
m∑

i=1

qvv′
i
(t, x, ki )h + o(h),

where S is the set defined in (11), |S| is the cardinality of S,
and for i ∈ {1, . . . ,m}

qvv′
i
(t, x, ki ) = c

(
xv

ki

)
	(ki )	(xv − ki + c)

	(xv + c)
rvv′

i
(t, x).

The proof is complete.

Remark A1.1 It is worth noting that if we use the approxima-
tion

(
1 − e

−∑m
j=1

∫ t+h
t rvv′

j
(s,x)ds

) rvv′
i
(t, x)

∑m
j=1 rvv′

j
(t, x)

≈ rvv′
i
(t, x)h,

equation (A.1) would be

Var(�X
vv′

i
(t, h) | X(t) = x)

= (x2v − xv)(c + 1)−1rvv′
j
(t, x)h

(
1 − rvv′

j
(t, x)h

)

+ xvrvv′
j
(t, x)h − xvr

2
vv′

j
(t, x)h2 + o(h)

= xvrvv′
j
(t, x)h

(
1 − rvv′

j
(t, x)h

)

×
[
(xv − 1)(c + 1)−1 + 1

]
+ o(h).

For rvv′
j
(t, x) defined in equation (5), we did not assume

rvv′
j
(t, x)h ∈ (0, 1) uniformly for all t and x. Hence,

this approximated form cannot guarantee the positivity of
Var(�X

vv′
i
(t, h) | X(t) = x).

A1.2. Proof of Theorem 3.2

(1). By (17), for i ∈ {1, . . . ,m}, with y = (y0, y1, . . . , ym),
we have

E(�X
ui u′(t, h) | X(t) = x)

= xu′E
(
(�u0u′(t, h, x))−1�ui u′(t, h, x)

)
+ o(h)

= xu′
∫ 1

0
y−1
0 yi

	(
∑m

i=0 αui u′(t, h, x))
∏m

i=0 	(αui u′(t, h, x))

×
m∏

i=0

y
αui u

′ (t,h,x)−1

i dy + o(h)

=
∫ 1

0
y
αu0u

′ (t,h,x)−2

0 y
αui u

′ (t,h,x)

i

i−1∏

j=1

y
αu j u

′ (t,h,x)−1

j

×
m∏

j=i+1

y
αu j u

′ (t,h,x)−1

j dy

× xu′
	(
∑m

i=0 αui u′(t, h, x))
∏m

i=0 	(αui u′(t, h, x))
+ o(h)

= ×	(
∑m

i=0 αui u′(t, h, x))
∏m

i=0 	(αui u′(t, h, x))

×
∏i−1

j=1 	(αu j u′(t, h, x))
∏m

j=i+1 	(αu j u′(t, h, x))

	(
∑m

i=0 αui u′(t, h, x))

× xu′	(αu0u′(t, h, x) − 1)	(αui u′(t, h, x) + 1) + o(h)

= xu′
	(αu0u′(t, h, x) − 1)	(αui u′(t, h, x) + 1)

	(αu0u′(t, h, x))	(αui u′(t, h, x))
+ o(h)

= xu′
αui u′(t, h, x)

αu0u′(t, h, x) − 1
+ o(h). (A.7)
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By (17) and the law of total variance, we have

Var(�X
ui u′(t, h) | X(t) = x)

= x2u′Var((�u0u′(t, h, x))−1�ui u′(t, h, x))

+ xu′E[(�u0u′(t, h, x))−2(�ui u′(t, h, x))2]
+ xu′E[(�u0u′(t, h, x))−1�ui u′(t, h, x)] + o(h)

= (x2u′ + xu′)E[(�u0u′(t, h, x))−2(�ui u′(t, h, x))2]
− x2u′E[(�u0u′(t, h, x))(�ui u′(t, h, x))]2
+ xu′E[(�u0u′(t, h, x))−1�ui u′(t, h, x)] + o(h)

= (x2u′ + xu′)
	(αu0u′(t, h, x) − 2)	(αui u′(t, h, x) + 2)

	(αu0u′(t, h, x))	(αui u′(t, h, x))

− x2u′

(
	(αu0u′(t, h, x) − 1)	(αui u′(t, h, x) + 1)

	(αu0u′(t, h, x))	(αui u′(t, h, x))

)2

+ xu′
(

	(αu0u′(t, h, x) − 1)	(αui u′(t, h, x) + 1)

	(αu0u′(t, h, x))	(αui u′(t, h, x))

)

+ o(h)

= (x2u′ + xu′)
(αui u′(t, h, x) + 1)αui u′(t, h, x)

(αu0u′(t, h, x) − 1)(αu0u′(t, h, x) − 2)

− x2u′

(
αui u′(t, h, x)

αu0u′(t, h, x) − 1

)2

+ xu′
(

αui u′(t, h, x)
αu0u′(t, h, x) − 1

)

+ o(h). (A.8)

Plugging

αui u′(t, h, x) = c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)

× rui u′(t, x)
∑m

j=1 ru j u′(t, x)
(A.9)

and

αu0u′(t, h, x) = c −
m∑

i=1

αui u′(t, h, x)

= ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds

(A.10)

into equations (A.7) and (A.8), we have

E(�X
ui u′(t, h) | X(t) = x)

= xu′

c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
rui u′ (t,x)

∑m
j=1 ru j u′ (t,x)

ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 1

+ o(h) (A.11)

and

Var(�X
ui u′ (t, h) | X(t) = x)

= (x2u′ + xu′ )

×
c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
rui u′ (t,x)

∑m
j=1 ru j u′ (t,x)

+ 1

(
ce

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds − 1

)(
ce

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds − 2

)

× c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
rui u′ (t, x)

∑m
j=1 ru j u′ (t, x)

− x2u′

⎛

⎜⎜⎜⎝

c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
rui u′ (t,x)

∑m
j=1 ru j u′ (t,x)

ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 1

⎞

⎟⎟⎟⎠

2

+ xu′

⎛

⎜⎜⎜⎝

c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
rui u′ (t,x)

∑m
j=1 ru j u′ (t,x)

ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 1

⎞

⎟⎟⎟⎠

+ o(h). (A.12)

Note that when h is sufficiently small, c >

2e
∑m

i=1
∫ t+h
t rui u′ (s,x)ds suffices that E(�X

ui u′(t, h) | X(t) =
x) > 0, and together with the fact that

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
rui u′ (t,x)

∑m
j=1 ru j u′ (t,x)

+ 1

ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 2

>

c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
rui u′ (t,x)

∑m
j=1 ru j u′ (t,x)

ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 1

we also have Var(�X
ui u′(t, h) | X(t) = x) > 0.

ByL’Hôpital’s rule, equations (A.11) and (A.12), andDef-
inition 2.1, we have

μdX
ui u′(t, x) = xu′rui u′(t, x)

c

c − 1
,

[σ dX
ui u′(t, x)]2 = x2u′rui u′(t, x)

c

(c − 1)(c − 2)

+ xu′rui u′(t, x)
c

c − 2
.

When c > 2e
∑m

i=1
∫ t+h
t rui u′ (s,x)ds , since

xu′rui u′(t, x)
c

c − 2
> xu′rui u′(t, x)

c

c − 1
> 0

and

x2u′rui u′(t, x)
c

(c − 1)(c − 2)
> 0,

we have DdX
ui u′(t, x) > 1, i.e.,X(t) has IOD atX(t) = x with

respect to each arrow in {(ui , u′)}i∈{1,...,m}. ByDefinition 2.2,
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X(t) has SIOD atX(t) = x over connected incoming arrows
{(ui , u′)}i∈{1,...,m}.

By the law of total covariance, for i, j ∈ {1, . . . ,m} and
i �= j , we have

Cov
[
�X
ui u′ (t, h), �X

u j u′ (t, h) | X(t) = x
]

= Cov

[
E

[
�X
ui u′ (t, h) | X(t) = x, {�ui u′ (t, h, x)}i∈{0,1,...,m}

]
,

× E

[
�X
u j u′ (t, h) | X(t) = x, {�ui u′ (t, h, x)}i∈{0,1,...,m}

]]

+ E

[
Cov

[
�X
ui u′ (t, h), �X

u j u′ (t, h) | X(t) = x,

{�ui u′ (t, h, x)}i∈{0,1,...,m}
]]

+ o(h)

= x2u′Cov
[
(�u0u′ (t, h, x))−1�ui u′ (t, h, x),

(�u0u′ (t, h, x))−1�u j u′ (t, h, x)
]

+ E

[
xu′ (�u0u′ (t, h, x))−2�ui u′ (t, h, x)�u j u′ (t, h, x)

]
+ o(h)

= x2u′E
[
(�u0u′ (t, h, x))−2�ui u′ (t, h, x)�u j u′ (t, h, x)

]

− x2u′E
[
(�u0u′ (t, h, x))−1�ui u′ (t, h, x)

]

× E

[
(�u0u′ (t, h, x))−1�u j u′ (t, h, x)

]

+ xu′E
[
(�u0u′ (t, h, x))−2�ui u′ (t, h, x)�u j u′ (t, h, x)

]
+ o(h)

= (x2u′ + xu′ )E
[
(�u0u′ (t, h, x))−2�ui u′ (t, h, x)�u j u′ (t, h, x)

]

− x2u′E
[
(�u0u′ (t, h, x))−1�ui u′ (t, h, x)

]

× E

[
(�u0u′ (t, h, x))−1�u j u′ (t, h, x)

]
+ o(h).

(A.13)

Note that

E

[
(�u0u′ (t, h, x))−2�ui u′ (t, h, x)�u j u′ (t, h, x)

]

=
∫ 1

0
y−2
0 yi y j

	(
∑m

i=0 αui u′ (t, h, x))

×
m∏

i=0

	(αui u′ (t, h, x))
m∏

i=0

y
αui u

′ (t,h,x)−1

i dy + o(h)

= 	(
∑m

i=0 αui u′ (t, h, x))
∏m

i=0 	(αui u′ (t, h, x))

×
∫ 1

0
y
αu0u

′ (t,h,x)−3

0 y
αui u

′ (t,h,x)

i y
αu j u

′ (t,h,x)

j

×
∏

l∈{1,...,m}\{i, j}
y
αul u

′ (t,h,x)−1

l dy + o(h)

= 	(αu0u′ (t, h, x) − 2)	(αui u′ (t, h, x) + 1)	(αu j u′ (t, h, x) + 1)

× 	(
∑m

i=0 αui u′ (t, h, x))
∏m

i=0 	(αui u′ (t, h, x))

∏
l∈{1,...,m}\{i, j} 	(αul u′ (t, h, x))

	(
∑m

i=0 αui u′ (t, h, x))
+ o(h)

= 	(αu0u′ (t, h, x) − 2)	(αui u′ (t, h, x) + 1)	(αu j u′ (t, h, x) + 1)

	(αu0u′ (t, h, x))	(αui u′ (t, h, x))	(αu j u′ (t, h, x))

+ o(h)

= αui u′ (t, h, x)αu j u′ (t, h, x)

(αu0u′ (t, h, x) − 1)(αu0u′ (t, h, x) − 2)

+ o(h). (A.14)

Plugging equations (A.9) and (A.10) into (A.14), we have

E

[
(�u0u′ (t, h, x))−2�ui u′ (t, h, x)�u j u′ (t, h, x)

]

=
c2

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)2 rui u′ (t,x)ru j u′ (t,x)

(
∑m

j=1 ru j u′ (t,x))2

(ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 1)(ce

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds − 2)

+ o(h). (A.15)

Plugging (A.15) into (A.13), we have

Cov
[
�X

ui u′(t, h),�X
u j u′(t, h) | X(t) = x

]

= (x2u′ + xu′)

c2
(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)2 rui u′ (t,x)ru j u′ (t,x)

(
∑m

j=1 ru j u′ (t,x))2

(ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 1)(ce

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds − 2)

− x2u′

c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
rui u′ (t,x)

∑m
j=1 ru j u′ (t,x)

(ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 1)

×
c

(
1 − e

−∑m
j=1

∫ t+h
t ru j u′ (s,x)ds

)
ru j u′ (t,x)

∑m
j=1 ru j u′ (t,x)

(ce
−∑m

j=1
∫ t+h
t ru j u′ (s,x)ds − 1)

+ o(h). (A.16)

By Definition 2.3, for i, j ∈ {1, . . . ,m} and i �= j ,

σ dX
ui u′,u j u′(t, x) = 0.

(2). By (17), with y = (y0, y1, . . . , ym), we have

P

(
{�X

ui u′(t, h) = ki }i∈{1,...,m} | X(t) = x
)

=
∫ 1

0

	(xu′ + ∑m
i=1 ki )

	(xu′)
∏m

i=1 	(ki + 1)
[y0]

xu′

×
m∏

i=1

[yi ]
ki

	(
∑m

i=0 αui u′(t, h, x))
∏m

i=0 	(αui u′(t, h, x))

×
m∏

i=0

y
αui u

′ (t,h,x)−1

i dy + o(h)

= 	(xu′ + ∑m
i=1 ki )

	(xu′)
∏m

i=1 	(ki + 1)

	(
∑m

i=0 αui u′(t, h, x))
∏m

i=0 	(αui u′(t, h, x))

×
∫ 1

0
[y0]

xu′+αu0u
′ (t,h,x)−1

m∏

i=1

[yi ]
ki+αui u

′ (t,h,x)−1 dy
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+ o(h)

= 	(xu′ + ∑m
i=1 ki )

	(xu′)
∏m

i=1 	(ki + 1)

	(
∑m

i=0 αui u′(t, h, x))
∏m

i=0 	(αui u′(t, h, x))

× 	(xu′ + αu0u′(t, h, x))
∏m

i=1 	(ki + αui u′(t, h, x))

	(xu′ + ∑m
i=1 ki + ∑m

i=0 αui u′(t, h, x))

+ o(h)

= 	(xu′ + ∑m
i=1 ki )

	(xu′)
∏m

i=1 	(ki + 1)

	(c)
∏m

i=0 	(αui u′(t, h, x))

× 	(xu′ + αu0u′(t, h, x))
∏m

i=1 	(ki + αui u′(t, h, x))

	(xu′ + ∑m
i=1 ki + c)

+ o(h). (A.17)

Recalling that for i ∈ {1, . . . ,m}

αui u′(t, h, x)

= c

(
1 − e−∑m

i=1
∫ t+h
t rui u′ (s,x)ds

)
rui u′(t, x)

∑m
i=1 rui u′(t, x)

,

by Taylor series we have

αui u′(t, h, x) = crui u′(t, x)h + o(h). (A.18)

Hence, for ki � 1 and i ∈ {1, . . . ,m},

	(ki + αui u′(t, h, x))

= (ki + αui u′(t, h, x) − 1)

× · · · × (2 + αui u′(t, h, x) − 1)αui u′(t, h, x)

× 	(αui u′(t, h, x))

= (ki − 1) · · · (2 − 1) · αui u′(t, h, x)

× 	(αui u′(t, h, x)) + o(αui u′(t, h, x))

= 	(ki )αui u′(t, h, x)	(αui u′(t, h, x)) + o(αui u′(t, h, x)).
(A.19)

Furthermore, we have

	(xu′ + αu0u′(t, h, x))

=
(
xu′ − 1 + c −

m∑

i=1

αui u′(t, h, x)

)

× · · · ×
(
c −

m∑

i=1

αui u′(t, h, x)

)

× 	(αu0u′(t, h, x))

=
[
(xu′ − 1 + c) · · · c + O

(
m∑

i=1

αui u′(t, h, x)

)]

× 	(αu0u′(t, h, x))

=
[

	(xu′ + c)

	(c)
+ O

(
m∑

i=1

αui u′(t, h, x)

)]

× 	(αu0u′(t, h, x)). (A.20)

Plugging (A.18), (A.19) and (A.20) into (A.17), we can see
that

P

(
{�X

ui u′(t, h) = ki }i∈{1,...,m}, |S| � 2 | X(t) = x
)

= o(h)

and

P

(
{�X

ui u′(t, h) = ki }i∈{1,...,m}, |S| = 1 | X(t) = x
)

=
m∑

i=1

qui u′(t, x, ki )h + o(h),

where S is the set defined in (18), |S| is the cardinality of S ,
and

qui u′(t, x, ki )

= c
	(xu′ + ∑m

i=1 ki )

	(xu′)
∏m

i=1 	(ki + 1)

	(xu′ + c)	(ki )

	(xu′ + ∑m
i=1 ki + c)

× rui u′(t, x).
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