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Abstract
In this paper, we introduce and study fused lasso nearly-isotonic signal approximation, which is a combination of fused lasso
and generalized nearly-isotonic regression. We show how these three estimators relate to each other and derive solution to a
general problem. Our estimator is computationally feasible and provides a trade-off between monotonicity, block sparsity, and
goodness-of-fit. Next, we prove that fusion and near-isotonisation in a one-dimensional case can be applied interchangably,
and this step-wise procedure gives the solution to the original optimization problem. This property of the estimator is very
important, because it provides a direct way to construct a path solution when one of the penalization parameters is fixed. Also,
we derive an unbiased estimator of degrees of freedom of the estimator.

Keywords Constrained inference · Isotonic regression · Nearly-isotonic regression · Fused lasso

1 Introduction

Thiswork ismotivated by recent papers in nearly-constrained
estimation in several dimensions, and by the papers in gen-
eralised penalized least squared regression. The subject of
penalized estimators starts with L1-penalisation, cf. Tibshi-
rani (1996), which is called lasso signal approximation, and
L2-penalisation, which is usually addressed as ridge regres-
sion (Hoerl and Kennard 1970) or sometimes as Tikhonov–
Philips regularization (Phillips 1962; Tikhonov et al. 1995).
The first generalisation of lasso is L1-penalisation imposed
on the successive differences of the coefficients. For a given
sequence of data points y ∈ R

n , the fusion approximator (cf.
Rinaldo 2009) is given by

β̂
F
( y, λF ) = argmin

β∈Rn

1

2
|| y − β||22 + λF

n−1∑

i=1

|βi − βi+1|.

(1)

The combination of fusion approximator and lasso is called
fused lasso estimator and is given by:
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β̂
FL

( y, λF , λL) = argmin
β∈Rn

1

2
|| y − β||22

+λF

n−1∑

i=1

|βi − βi+1| + λL ||β||1. (2)

The fused lasso was introduced in Tibshirani et al. (2005),
and its asymptotic propertieswere studied in detail inRinaldo
(2009). Also, it is worth to note that in the paper Tibshirani
and Taylor (2011) the estimator in (1) is called the fused
lasso, while the estimator in (2) is addressed as the sparse
fused lasso.

In the area of constrained inference the basic and simplest
problem is isotonic regression in onedimension. For a given
sequence of data points y ∈ R

n , the isotonic regression is
the following approximation

β̂
I = argmin

β∈Rn
|| y − β||22, subject to β1 ≤ β2 ≤ · · · ≤ βn,

(3)

i.e. it is �2-projection of the vector y onto the set of non-
increasing vectors inRn . The notion of isotonic “regression”
in this context might be confusing. Nevertheless, it is a stan-
dard notion in this subject, cf., for example, the papers Best
and Chakravarti (1990); Stout (2013), where the notation
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“isotonic regression” is used for the isotonic projection of
a general vector. Also, in this paper we use the notations
“regression”, “estimator” and “approximator” interchange-
ably. A general introduction to isotonic regression can be
found, for example, in Robertson et al. (1988).

The nearly-isotonic regression, introduced in Tibshirani
et al. (2011) and studied in detail in Minami (2020), is a less
restrictive version of isotonic regression, and it is given by
the following optimization problem

β̂
N I

( y, λN I ) = argmin
β∈Rn

1

2
|| y − β||22

+λN I

n−1∑

i=1

|βi − βi+1|+, (4)

where x+ = x · 1{x > 0}.
In this paper we combine the fused lasso estimator with

nearly-isotonic regression and call the resulting estimator as
fused lasso nearly-isotonic signal approximator, i.e. for a
given sequence of data points y ∈ R

n , the problem in one-
dimensional case is the following optimization:

β̂
FLN I

( y, λF , λL , λN I )

= argmin
β∈Rn

1

2
|| y − β||22 + λF

n−1∑

i=1

|βi − βi+1|

+ λL ||β||1 + λN I

n−1∑

i=1

|βi − βi+1|+.

(5)

Also, in the case of λF �= 0 and λN I �= 0 with λL = 0 we
call the estimator fused nearly-isotonic regression, i.e.

β̂
FN I

( y, λF , λN I ) ≡ β̂
FLN I

( y, λF , 0, λN I )

= argmin
β∈Rn

1

2
|| y − β||22

+λF

n−1∑

i=1

|βi − βi+1|

+λN I

n−1∑

i=1

|βi − βi+1|+. (6)

This generalisation of nearly-isotonic regression in (6)
was proposed in the conclusion of the paper Tibshirani
et al. (2011). Next, a one-dimensional fused nearly-isotonic
regressionwas considered and numerically solved inYu et al.
(2022) with time complexity O(n). Nevertheless, first, in
this paper we consider and solve the problem in general
dimensions. Second, for fixed penalisation parameters in a
one-dimensional case we also provide a solution with linear
complexity and an exact partly path solution (when one of

the parameters is fixed and the path is with respect to the
other one) with complexity O(n log(n)).

It is also worth to mention the paper Gómez et al. (2022),
where the authors studied the nearly-isotonic approximator
with extra penalisation term

(βi − βi+1)
2 · 1{(βi − βi+1) > 0}

with an additional lasso penalty. Also, in the paper Gaines
et al. (2018) the authors did a comparison of the algorithms
to solve the lasso with linear constraints, which is called
constrained lasso.

In the next step we state the problem defined in (5) for the
general case of isotonic constraints with respect to a general
partial order. First, we have to introduce the notation.

1.1 Notation

We start with basic definitions of partial order and isotonic
regression. Let I = {i1, . . . , in} be some index set. Next, we
define the following binary relation � on I.

A binary relation � on I is called partial order if

• it is reflexive, i.e. j � j for all j ∈ I;
• it is transitive, i.e. j1, j2, j3 ∈ I, j1 � j2 and j2 � j3
imply j1 � j3;

• it is antisymmetric, i.e. j1, j2 ∈ I, j1 � j2 and j2 � j1
imply j1 = j2.

Further, a vector β ∈ R
n indexed by I is called isotonic

with respect to the partial order � on I if j1 � j2 implies
β j1 ≤ β j2 .Wedenote the set of all isotonic vectors inRn with
respect to the partial order � on I by Bis , which is a closed
convex cone in R

n and it is also called isotonic cone. Next,
a vector β I ∈ R

n is the isotonic regression of an arbitrary
vector y ∈ R

n over the pre-ordered index set I if

β I = argmin
β∈Bis

∑

j∈I
(β j − y j )

2. (7)

For any partial order relation� on I there exists a directed
graph G = (V , E), with V = I and E is the minimal set of
edges such that

E = {( j1, j2), where ( j1, j2)

is the ordered pair of vertices from I}, (8)

and an arbitrary vector β ∈ R
n is isotonic with respect to �

iff βl1 ≤ βl2 , given that E contains the chain of edges from
l1 ∈ V to l2 ∈ V .

Now we can generalise the estimators discussed above.
First, equivalent to the definition in (7), a vector β I ∈ R

n is
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the isotonic regression of an arbitrary vector y ∈ R
n indexed

by the partially ordered index set I if

β I = argmin
β

∑

j∈I
(β j − y j )

2, (9)

subject to βl1 ≤ βl2 , whenever E contains the chain of edges
from l1 ∈ V to l2 ∈ V .

Second, for the directed graph G = (V , E), which cor-
responds to the partial order � on I, the nearly-isotonic
regression of y ∈ R

n indexed by I is given by

β̂
N I

( y, λN I ) = argmin
β∈Rn

1

2
|| y − β||22

+λN I

∑

(i, j)∈E
|βi − β j |+. (10)

This generalisation of nearly-isotonic regression was intro-
duced and studied in Minami (2020).

Next, fused and fused lasso approximators for a general
directed graph G = (V , E) are given by

β̂
F
( y, λF ) = argmin

β∈Rn

1

2
|| y − β||22 + λF

∑

(i, j)∈E
|βi − β j |,

(11)

and

β̂
FL

( y, λF , λL) = argmin
β∈Rn

1

2
|| y − β||22

+λF

∑

(i, j)∈E
|βi − β j | + λL ||β||1. (12)

These optimization problems were introduced and solved for
a general graph in Friedman et al. (2007); Hoefling (2010);
Tibshirani and Taylor (2011).

Further, let D denote the oriented incidence matrix for the
directed graph G = (V , E), corresponding to � on I. We
choose the orientation of D in the following way. Assume
that the graph G with n vertexes has m edges. Next, assume
we label the vertexes by {1, . . . , n} and edges by {1, . . . ,m}.
Then, D is m × n matrix with

Di, j =

⎧
⎪⎨

⎪⎩

1, if vertex j is the source of edge i,

−1, if vertex j is the target of edge i,

0, otherwise.

(13)

In order to clarify the notations we consider the following
examples of partial order relation. First, let us consider the
monotonic order relation in the one-dimensional case. Let
I = {1, . . . , n}, and for j1 ∈ I and j2 ∈ I we naturally
define j1 � j2 if j1 ≤ j2. Further, if we let V = I and

E = {(i, i + 1) : i = 1, . . . , n − 1}, then G = (V , E) is
the directed graphwhich corresponds to the one-dimensional
order relation on I. Figure1 displays the graph and the inci-
dence matrix for the graph.

Next, we consider two dimensional case with bimono-
tonic constraints. The notion of bimonotonicity was first
introduced in Beran and Dümbgen (2010) and it means the
following. Let us consider the index set

I = {i = (i (1), i (2)) : i (1) = 1, 2, . . . , n1,

i (2) = 1, 2, . . . , n2}

with the following order relation � on it: for j1, j2 ∈ I we
have j1 � j2 iff j

(1)
1 ≤ j (1)2 and j (2)1 ≤ j (2)2 . Then, a vector

β ∈ R
n , with n = n1n2, indexed by I is called bimonotone

if it is isotonic with respect to bimonotone order� defined on
its indexI. Further, we define the directed graphG = (V , E)

with vertexes V = I, and the edges

E = {((l, k), (l, k + 1)) : 1 ≤ l ≤ n1, 1 ≤ k ≤ n2 − 1}
∪ {((l, k), (l + 1, k)) : 1 ≤ l ≤ n1 − 1, 1 ≤ k ≤ n2}.

The labeled directed graph for bimonotone constraints and
its incidence matrix are displayed in Fig. 2.

1.2 General statement of the problem

Now we can state the general problem studied in this paper.
Let y ∈ R

n be a signal indexed by the index set I with the
partial order relation � defined on I. Next, let G = (V , E)

be the directed graph corresponding to � on I. The fused
lasso nearly-isotonic signal approximation with respect to �
on I (or, equivalently, to the directed graph G = (V , E),
corresponding to �) is given by

β̂
FLN I

( y, λF , λL , λN I )

= argmin
β∈Rn

1

2
|| y − β||22 + λF

∑

(i, j)∈E
|βi − β j |

+ λL ||β||1 + λN I

∑

(i, j)∈E
|βi − β j |+.

(14)

Therefore, the estimator in (14) is a combination of the esti-
mators in (10) and (12).

Equivalently, we can rewrite the problem in the following
way:

β̂
FLN I

( y, λF , λL , λN I ) = argmin
β∈Rn

1

2
|| y − β||22

+ λF ||Dβ||1
+ λL ||β||1 + λN I ||Dβ||+,

(15)
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Fig. 1 Graph for monotonic contstraints and oriented incidence matrix

Fig. 2 Graph for bimonotonic contstraints and oriented incidence matrix

where D is the oriented incidence matrix of the graph G =
(V , E). Here, we clarify that in the case of penalisation with
the incidence matrix D we assume that β is indexed accord-
ing to the indexing of the edges in the graph G = (V , E).
Analogously to the definition in the one-dimensional case, if
λL = 0 we call the estimator fused nearly-isotonic approxi-

mator and denote it by β̂
FN I

( y, λF , λN I ).
Here, it is worth to mention recent papers in constrained

estimation (Deng and Zhang 2020; Han et al. 2019; Han and
Zhang 2020), where the authors studied the asymptotic prop-
erties of the isotonic regression in general dimensions. Also,
in paperWang et al. (2015) �1-trend filtering was generalised
for the case of a general graph.

1.3 Organisation of the paper

The rest of the paper is organized as follows. In Sect. 2 we
provide the numerical solution to the fused lasso nearly-
isotonic signal approximator. Section3 is dedicated to the
theoretical properties of the estimator. We show how the
solutions to the fused lasso nearly-isotonic regression, fused
lasso, and nearly-isotonic regression are related to each other.
Also, we prove that in the one-dimensional case the new
estimator has agglomerative property and the procedures of
near-isotonisation and fusion can be swapped and provide the
solution to the original problem. Next, in Sect. 4 we derive
the unbiased estimator of the degrees of freedom of the esti-

mator. Furthermore, in Sect. 5 we discuss the computational
aspects, do the simulation study and show that the estimator
is computationally feasible for moderately large data sets.
Also, we illustrate the usage of the estimator for the real data
set. The article closes with a conclusion and a discussion of
possible generalisations in Sect. 6. The proofs of all results
are given in the Appendix. The R and Python implementa-
tions of the estimator are available upon request.

2 Solution to the fused lasso nearly-isotonic
signal approximator

First, we consider fused nearly-isotonic regression, i.e. in
(15) we assume that λL = 0.

Theorem 1 For a fixed data vector y ∈ R
n indexed by the

index set I with the partial order relation � defined on I,
the solution to the fused nearly-isotonic problem in (15) is
given by

β̂
FN I

( y, λF , λN I ) = y − DT ν̂(λF , λN I ) (16)

with

ν̂( y, λF , λN I ) = argmin
ν∈Rm

1

2
|| y − DT ν||22

s. t. − λF1 ≤ ν ≤ (λF + λN I )1, (17)
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where D is the incidence matrix of the directed graph G =
(V , E) with n vertices and m edges corresponding to � on
I, 1 ∈ R

m is the vector whose all elements are equal to 1
and the notation a ≤ b for vectors a, b ∈ R

m means ai ≤ bi
for all i = 1, . . . ,m.

Next, we provide the solution to the fused lasso nearly-
isotonic regression.

Theorem 2 For a given vector y indexed by I, the solu-
tion to the fused lasso nearly-isotonic signal approximator

β̂
FLN I

( y, λF , λL , λN I ) is given by soft thresholding the

fused nearly-isotonic regression β̂
FN I

( y, λF , λN I ), i.e.

β̂FLN I
i ( y, λF , λL , λN I )

=

⎧
⎪⎨

⎪⎩

β̂FN I
i ( y, λF , λN I ) − λL , if β̂FN I

i ≥ λL ,

0, if |β̂FN I
i | ≤ λL ,

β̂FN I
i ( y, λF , λN I ) + λL , if β̂FN I

i ≤ −λL ,

(18)

for i ∈ I.
From this result we can conclude that adding lasso penal-

isation does not add much to the computational complexity
of the solution. The computational aspects of fused nearly-
isotonic approximator will be discussed in Sect. 5 below. In
the next section we discuss properties of the fused lasso
nearly-isotonic regression.

3 Properties of the fused lasso
nearly-isotonic signal approximator

We start with a proposition which shows how the solutions
to the optimization problems (11), (10) and (15) are related
to each other. This result will be used in the next section to
derive degrees of freedom of the fused lasso nearly-isotonic
signal approximator.

Proposition 3 For a fixed data vector y indexed by I and
penalisation parameters λN I and λF the following relations

between estimators β̂
F
, β̂

N I
and β̂

FN I
hold

β̂
N I

( y, λN I ) = β̂
F

(
y − λN I

2
DT 1,

1

2
λN I

)
, (19)

β̂
FN I

( y, λF , λN I ) = β̂
N I

( y + λF D
T 1, λN I + 2λF )

= β̂
F

(
y − λN I

2
DT 1,

1

2
λN I + λF

)

(20)

and

β̂
FLN I

( y, λF , λL , λN I ) = β̂
FL

( y − λN I

2
DT 1,

1

2
λN I + λF , λL), (21)

where D is the oriented incidence matrix for the graph G =
(V , E) corresponding to the partial order relation � on I.

Further, let us introduce two "naive" versions of β̂
FN I

.
Instead of simultaniously penalise by fusion and isotonisa-
tion we consider the following two-step procedures:

β̂
F→N I

( y, λF , λN I ) = β̂
N I

(β̂
F
( y, λF ), λN I )

≡ argmin
β∈Rn

1

2
||β̂F

( y, λF )

− β||22 + λN I

∑

(i, j)∈E
|βi − β j |+,

(22)

and

β̂
N I→F

( y, λN I , λF ) = β̂
F
(β̂

N I
( y, λN I ), λF )

≡ argmin
β∈Rn

1

2
||β̂N I

( y, λN I )

− β||22 + λF

∑

(i, j)∈E
|βi − β j |.

(23)

Below we prove that both “naive” methods in the one-
dimensional casewith a simplemonotonic restriction defined
above are not only equivalent, but both methods provide the
solution to the fused nearly-isotonic regression.

First, we have to prove that, analogously to fused lasso
and nearly-isotonic regression, as one of the penalization
parameters increases, the constant regions in the solution

β̂
FLN I

can only be joined together and not split apart. In
the paper Minami (2020) this property of the estimator was
called agglomerative property. We prove this result only for
the one-dimensional monotonic order, and the general case
is an open question.

Proposition 4 (Agglomerative property of FLNI estimator)
LetI = {1, . . . , n}with the natural order for integers defined
on it. Next, let λ = (λF , λL , λN I ) and λ∗ = (λ∗

F , λ∗
L , λ∗

N I )

are the triples of penalisation parameters such that one of
the elements of λ∗ is greater than the corresponding element
in λ, while two others are the same. Next, assume that for

some i the solution β̂
FLN I

( y,λ) satisfies

β̂FLN I
i ( y,λ) = β̂FLN I

i+1 ( y,λ).

Then for λ∗ we have

β̂FLN I
i ( y,λ∗) = β̂FLN I

i+1 ( y,λ∗).

Now we can prove the commutability property of the
“naive” estimators and the equivalence of the approach to
the fused nearly-isotonic regression.
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Theorem 5 (Commutability property of FNI estimator) Let

β̂
F→N I

( y, λF , λN I )and β̂
N I→F

( y, λN I , λF )be the“naive”
versions of the fused nearly-isotonic approximator, defined
in (22) and (23), in the case of one-dimensional monotonic
constraint. Then, we have

β̂
F→N I

( y, λF , λN I ) = β̂
N I→F

( y, λN I , λF )

= β̂
FN I

( y, λF , λN I ).

Oneof thefirst conclusions ofTheorem5 is commutability
of strict isotonisation (which corresponds to the large val-
ues of λN I ) and fusion. For big values of λN I , fused lasso
nearly-isotonic signal approximation is, in principle, anal-
ogous to the approach studied in Gao et al. (2020), where
the authors studied estimation of isotonic piecewise constant
signals solving the following optimization problem

β∗ = argmin
β∈Bis

n,k

n∑

j=1

(β j − y j )
2 + pen(n, k), (24)

where

Bis
n,k = {β ∈ R

n : there exists {a j }kj=0 and {μ j }kj=1

such that 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak = n,

μ1 ≤ μ2 ≤ · · · ≤ μk, and βi = μ j

for all i ∈ (a j−1 : a j ]},

and pen(n, k) is a penalization term which depends on n and
k but not on y. Therefore, the result of Theorem 5 provides
an alternative approach to obtain an exact solution in the
estimation isotonic piecewise constant signals.

4 Degrees of freedom

In this section we discuss the estimation of the degrees of
freedom for the fused nearly-isotonic regression and the
fused lasso nearly-isotonic signal approximator. Let us con-
sider the following nonparametric model

Y = β̊ + ε,

where β̊ ∈ R
n is an unknown signal, and the error term

ε ∈ N (0, σ 2 I).
The degrees of freedom is a measure of complexity of the

estimator, and following Efron (1986), for the fixed values of

λF , λL and λNi the degrees of freedom of β̂
FN I

and β̂
FLN I

are given by

d f (β̂
FLN I

(Y , λF , λL , λN I ))

= 1

σ 2

n∑

i=1

Cov[β̂FLN I
i (Y , λF , λL , λN I ),Yi ]. (25)

The next theorem provides the unbiased estimators of the

degrees of freedom d f (β̂
FN I

) and d f (β̂
FLN I

).

Theorem 6 For the fixed values of λF , λL and λNi let

K FN I ( y, λF , λN I ) = #{fused groups in

β̂
FN I

( y, λF , λN I )},

and

K FLN I ( y, λF , λL , λN I ) = #{non-zero fused groups in

β̂
FLN I

( y, λF , λL , λN I )}.

Then we have

E[K FN I (Y , λF , λN I )] = d f (β̂
FN I

(Y , λF , λN I )),

and

E[K FLN I (Y , λF , λL , λN I )]
= d f (β̂

FLN I
(Y , λF , λL , λN I )).

We can potentially use the estimate of degrees of freedom
for an unbiased estimation of the true risk E[∑n

i=1(β̊i −
β̂FLN I
i (Y , λF , λL , λN I ))

2], which is given by the Ĉ p statis-
tic

Ĉ p(λF , λL , λN I ) =
n∑

i=1

(yi − β̂FLN I
i ( y, λF , λL , λN I ))

2

− nσ 2 + 2σ 2K FLN I (Y , λF , λL , λN I ).

Though, we note that in real applications the variance σ 2

is unknown. The variance estimator for the case of one-
dimensional isotonic regression was introduced in Meyer
and Woodroofe (2000). To the authors’ knowledge, the vari-
ance estimator even for the one-dimensional nearly-isotonic
regression is an open problem.

In order to illustrate the performance of the degrees of free-
dom estimator, we generate M = 3000 independent samples
from te following signal on a grid

Yi, j = max (i, j) + εi, j ,

where i, j = 1, . . . , 5 and ε ∈ N (0, 0.25). Using Monte-
Carlo simulations,we estimateCov[β̂FLN I

i ,Yi ] and compare
the estimated true value of d f with the estimator defined in
Theorem 6. The result for different values of penalisation
parameters is given in Fig. 3.
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Fig. 3 Degrees of freedom estimator for different values of penalisation parameters and its 25 % and 75 % quantiles based on 3000 samples

5 Computational aspects, simulation study
and application to a real data set

First of all, recall that the solution to the fused lasso nearly-
isotonic approximator is given by

β̂FLN I
i ( y, λF , λL , λN I )

=

⎧
⎪⎨

⎪⎩

β̂FN I
i ( y, λF , λN I ) − λL , if β̂FN I

i ≥ λL ,

0, if |β̂FN I
i | ≤ λL ,

β̂FN I
i ( y, λF , λN I ) + λL , if β̂FN I

i ≤ −λL ,

for i ∈ I, with

β̂
FN I

( y, λF , λN I ) = y − DT ν̂(λF , λN I )

where

ν̂( y, λF , λN I ) = argmin
ν∈Rm

1

2
|| y − DT ν||22

s. t. − λF1 ≤ ν ≤ (λF + λN I )1,

where D is the incidence matrix displayed in Fig. 1 (a) for
the one-dimensional case. The matrix D is full raw ranked,
therefore, the problem is strictly convex. Next, we have sim-
ilar box-type constraints as in the problem of the L1-trend
filtering example and we can solve the problem with O(n)

time complexity.
Second, note that in one-dimensional case the time

complexities of path solution algorithms for the nearly-
isotonic regression and the fusion approximator are equal
toO(n log(n)), cf. Tibshirani et al. (2011); Hoefling (2010);
Bento et al. (2018) with the references therein. Therefore, if
we have λF fixed, then using the result of Theorem 5 we can

get the solution path with respect to λN I with the time com-
plexityO(n log(n)). Further, if we fix λN I then, again, using
Theorem 5we can obtain the solution path with respect to λF

with complexity O(n log(n)). In paper Yu et al. (2022) the
one-dimensional fused nearly-isotonic regressionwas solved
for fixed values of penalisation parameters. Therefore, one-
dimensional fused lasso and nearly-isotonic regression have
been studied in detail, therefore, in our paper we focus on the
two-dimensional case.

The case of several dimensions ismore complicated.Note,
that, for example, even in the case of two dimensions the
matrix D, displayed in Fig. 2, is not full raw ranked. There-
fore, the dual problem is not strictly convex. At the same
time one can see that the matrix D is sparse diagonal. There-
fore, we apply the recently developed OSQP algorithm, cf.
Stellato et al. (2020). The time complexity of the solution is
linear with respect to the number of edges in the graph, i.e.
it is O(|E |).

The exact solution for fixed values of penalisation param-
eters can be obtained using the results of the paper Minami
(2020), where the author proposed the algorithm for a gen-
eral graph with computational complexityO(n|E | log( n2

|E | )).
Therefore, in principle, using the relation between fused
nearly-isotonic regression and nearly-isotonic regression
proved in Proposition 3 it is possible to obtain the exact solu-
tion to the fused nearly-isotonic approximation for a general
graph.

First, recall that fromTheorem2 it follows that the solution
withλL �= 0 is given by soft-thresholding of the solutionwith
λL = 0. Therefore, lasso penalization does not add much to
the complexity, and we concentrate on the case with λL = 0.
FollowingMinami (2020),we use the following bi-monotone
functions (bisigmoid and bicubic) to test the performance of
the fused nearly-isotonic approximator:

123



120 Page 8 of 17 Statistics and Computing (2024) 34 :120

Fig. 4 Computational times vs side size of a square grid for OSQP solution of fused nearly-isotonic approximator in two dimensions

fbs(x
(1), x (2)) = 1

2

( e16x
(1)−8

1 + e16x (1)−8
+ e16x

(2)−8

1 + e16x (2)−8

)
,

fbc(x
(1), x (2)) = 1

2

(
(2x (1) − 1)3 + (2x (2) − 1)3

)
+ 2,

where x (1) ∈ [0, 1) and x (2) ∈ [0, 1).
The simulation experiment is performed in the following

way. First, we generate homogeneous grid k × k:

x (1)
k = k − 1

d
and x (2)

k = k − 1

d
,

for k = 1, . . . , d. The size of the side d varies in {2×102, 4×
102, 6 × 102, 8 × 102, 103}. Next, we uniformly generate
penalisation parameters λF and λN I from U (0, 5). We per-
form 10 runs and compute computational times for each d.
Analogously to Stellato et al. (2020), we consider two cases

of OSQP algorithm: low precision case with εabs = εrel =
10−3, and high precision case with εabs = εrel = 10−5

(for the details of the settings in OSQP we refer to Stellato
et al. (2020)). Figure4 below provides these computational
times. All the computations were performed on MacBook
Air (Apple M1 chip), 16 GB RAM. From these results we
can conclude that the estimator is computationally feasible
for moderate sized data sets (i.e. for the grids with millions
of nodes).

Next, Fig. 5 visualizes the fused nearly-isotonic approx-
imator. We use the Adult data set, available from the UCI
Machine Learning repository (Becker andKohavi 1996). The
target variable in this data set is either a person’s salary is
greater than 50 000 dollars per year or less. We use two fea-
tures (education number and working hours per week) and
each bar in the figure is the proportion of people making
more that the amount of money mentioned above. This data
set was used, for example, in Wang et al. (2022).
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Fig. 5 Data visualisation for different levels of fusion and isotonisation

From Fig. 5 we can see that fused nearly-isotonic regres-
sion provides a trade-off between monotonicity, block spar-
sity and goodness-of-fit.

6 Conclusion and discussion

In this paperwe introduced and studied the fused lassonearly-
isotonic signal approximator in general dimensions. The

main result is that the estimator is computationally feasible
and it provides interplay between fusion andmonotonisation.
Also, we proved that the properties of the new estimator are
very similar to the properties of the fusion estimator and the
nearly-isotonic regression.

In our opinion, one of the most important results is Theo-
rem5,wherewe proved the commutability property of fusion
and nearly-isotonisation, because for the fixed values of one
of the penalisation parameters we can immediately obtain the
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path solution with respect to the other one. Path algorithm
for fused lasso exists (Hoefling 2010; Tibshirani and Taylor
2011). At the same time, to the authors’ knowledge, path
algorithm for nearly-isotonic regression in general dimen-
sions has not been developed yet. Therefore, further direction
could be the solution for the nearly-isotonic regression, and,
next, to prove if commutability holds in a general dimen-
sional case.

One of the other possible directions is to study the asymp-
totic properties. In particular, it is interesting to understand
the rate of convergence for different model selection and
cross-validation procedures of choosing penalisation param-
eters.

Another direction is to study properties of the solution
when λF and λN I are not the same for each vertex. An
example where one must use different penalisation param-
eters is the case when the data points are measured along
non-homogeneously spaced grid. It is important to note that,
as discussed in Minami (2020), this case is different and
even in the one-dimensional case the estimator will behave
differently. In particular, the agglomerative property of the
nearly-isotonic regression holds if the penalisation parame-
ters satisfy the certain relation, cf. PropositionA.1. inMinami
(2020), which is crucial for the solution path.

Finally, in our opinion, it is interesting to study different
combinations of penalisation estimators, even though, prac-
tically, in this case one needs more data, because there will
be more penalisation parameters to estimate.

Appendix A Proofs of the results

Proof of Theorem 1. First, following the derivations of �1
trend filtering and generalised lasso in Kim et al. (2009) and
Tibshirani and Taylor (2011), respectively, we can write the
optimization problem in (6) in the following way

minimize
β,z

1

2
|| y − β||22 + λF ||z||1 + λN I ||z||+

subject to Dβ = z ∈ R
m .

Further, the Lagrangian is given by

L(β, z, ν) = 1

2
|| y − β||22 + λF ||z||1

+λN I ||z||+ + νT (Dβ − z), (A1)

where ν ∈ R
m is a dual variable.

Note that

min
z

(
λF ||z||1 + λN I ||z||+ − νT z

)

=
{
0, if − λF1 ≤ ν ≤ (λF + λN I )1,

−∞, otherwise,

and

min
β

(
1

2
|| y − β||22 + νT Dβ

)

= −1

2
νT DDT ν + yT DT ν

= −1

2
|| y − DT ν||22 + 1

2
yT y.

Next, the dual function is given by

g(ν) = min
β,z

L(β, z, ν)

=

⎧
⎪⎨

⎪⎩

− 1
2 || y − DT ν||22 + 1

2 y
T y,

if − λF1 ≤ ν ≤ (λF + λN I )1,

−∞, otherwise,

and, therefore, the dual problem is

ν̂( y, λF , λN I ) = argmax
ν

g(ν)

subject to − λF1 ≤ ν ≤ (λF + λN I )1,

which is equivalent to

ν̂( y, λF , λN I ) = argmin
ν

1

2
|| y − DT ν||22

subject to − λF1 ≤ ν ≤ (λF + λN I )1.

Lastly, taking first derivative of Lagrangian L(β, z, ν)

with respect to β we get the following relation between

β̂
FN I

(λF , λN I ) and ν̂( y, λF , λN I )

β̂
FN I

( y, λF , λN I ) = y − DT ν̂( y, λF , λN I ).

�

Proof of Theorem 2. The proof is similar to the derivation of
the solution of the fused lasso in Friedman et al. (2007).
Nevertheless, for compleeteness of the paper we provide the

proof for β̂
FLN I

( y, λF , λL , λN I ).
The subgradient equations (which are necessary and suf-

ficient conditions for the solution of (5)) for βi , with i ∈ I,
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are

gi (λL)

= −(yi − βi ) + λN I

⎛

⎝
∑

j :(i, j)∈E
qi, j −

∑

j :( j ,i)∈E
q j ,i

⎞

⎠

+ λF

⎛

⎝
∑

j :(i, j)∈E
ti, j −

∑

j :( j ,i)∈E
t j ,i

⎞

⎠ + λLsi = 0,

(A2)

where

qi, j :

⎧
⎪⎨

⎪⎩

= 1, if βi − β j > 0,

= 0, if βi − β j < 0,

∈ [0, 1], if βi = β j ,

ti, j :

⎧
⎪⎨

⎪⎩

= 1, if βi − β j > 0,

= −1, if βi − β j < 0,

∈ [−1, 1], if βi = β j ,

si :

⎧
⎪⎨

⎪⎩

= 1, if βi > 0,

= −1, if βi < 0,

∈ [−1, 1], if βi = 0.

(A3)

Next, let qi, j (λL), ti, j (λL) and si (λL) denote the val-
ues of the parameters defined above at some value of λL .
Note, the values of λN I and λF are fixed. Therefore, if
β̂FLN I
i ( y, λF , 0, λN I ) �= 0 for si (0) we have

si (0) =
{
1, if β̂FLN I

i ( y, λF , 0, λN I ) > 0,

−1, if β̂FLN I
i ( y, λF , 0, λN I ) < 0,

and for β̂FLN I
i ( y, λF , 0, λN I ) = 0 we can set si (0) = 0.

Next, let β̂
ST

(λL) denote the soft thresholding of β̂
FLN I

( y, λF , 0, λN I ), i.e.

β̂ST
i (λL)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β̂FLN I
i ( y, λF , 0, λN I ) − λL ,

if β̂FLN I
i ( y, λF , 0, λN I ) ≥ λL ,

0, if |β̂FLN I
i ( y, λF , 0, λN I )| ≤ λL ,

β̂FLN I
i ( y, λF , 0, λN I ) + λL ,

if β̂FLN I
i ( y, λF , 0, λN I ) ≤ −λL .

The goal is to prove that β̂
ST

(λL) provides the solution to
(14).

Note, analogously to the proof for the fused lasso esti-
mator in Lemma A.1 at Friedman et al. (2007), if either
β̂ST
i (λL) �= 0 or β̂ST

j (λL) �= 0, and β̂ST
i (λL) < β̂ST

j (λL)

or β̂ST
i (λL) > β̂ST

j (λL), then we also have β̂ST
i (0) <

β̂ST
j (0) or β̂ST

i (0) > β̂ST
j (0), respectively. Therefore, soft

thresholding of β̂
FLN I

( y, λF , 0, λN I ) does not change the
ordering of these pairs and we have qi, j (λL) = qi, j (0)
and ti, j (λL) = ti, j (0). Next, if for some (i, j) ∈ E we
have β̂ST

i (λL) = β̂ST
j (λL) = 0, then qi, j ∈ [0, 1] and

ti, j ∈ [−1, 1], and, again, we can set ti, j (λL) = ti, j (0),
and qi, j (λL) = qi, j (0).

Now let us insert β̂ST
i (λL) into subgradient equations (A2)

and show that we can find si (λL) ∈ [0, 1], for all i ∈ I.
First, assume that for some i we have β̂FLN I

i ( y, λF , 0,
λN I ) ≥ λL . Then

gi (λL) = − (yi − β̂FLN I
i ( y, λF , 0, λN I )) − λL

+ λN I

⎛

⎝
∑

j :(i, j)∈E
qi, j (λL) −

∑

j :( j ,i)∈E
q j ,i (λL)

⎞

⎠

+ λF

⎛

⎝
∑

j :(i, j)∈E
ti, j (λL) −

∑

j :( j ,i)∈E
t j ,i (λL)

⎞

⎠

+ λLsi (λL)

= − (yi − β̂FLN I
i ( y, λF , 0, λN I ))

+ λN I

⎛

⎝
∑

j :(i, j)∈E
qi, j (0) −

∑

j :( j ,i)∈E
q j ,i (0)

⎞

⎠

+ sλF

⎛

⎝
∑

j :(i, j)∈E
ti, j (0) −

∑

j :( j ,i)∈E
t j ,i (0)

⎞

⎠

+ λLsi (λL) − λL = 0.

Note, that

−
(
yi − β̂FLN I

i ( y, λF , 0, λN I )
)

+ λN I

⎛

⎝
∑

j :(i, j)∈E
qi, j (0) −

∑

j :( j ,i)∈E
q j ,i (0)

⎞

⎠

+ λF

⎛

⎝
∑

j :(i, j)∈E
ti, j (0) −

∑

j :( j ,i)∈E
t j ,i (0)

⎞

⎠ = 0,

because β̂
FN I

( y, λF , λN I ) ≡ β̂
FLN I

( y, λF , 0, λN I ).
Therefore, if si (λL) = signβ̂ST

i (λL) = 1, then gi (λL) = 0.
The proof for the case when β̂FLN I

i ( y, λF , 0, λN I ) ≤
−λL is similar and one can show that gi (λL) = 0 if si (λL) =
signβ̂ST

i (λL) = −1.
Second, assume that |β̂FLN I

i ( y, λF , 0, λN I )| < λL .
Then, β̂ST

i (λL) = 0, and
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gi (λL ) = − yi + λN I

⎛

⎝
∑

j :(i, j)∈E
qi, j (λL ) −

∑

j :( j ,i)∈E
q j ,i (λL )

⎞

⎠

+ λF

⎛

⎝
∑

j :(i, j)∈E
ti, j (λL ) −

∑

j :( j ,i)∈E
t j ,i (λL )

⎞

⎠

+ λLsi (λL )

= − yi + λN I

⎛

⎝
∑

j :(i, j)∈E
qi, j (0) −

∑

j :( j ,i)∈E
q j ,i (0)

⎞

⎠

+ λF

⎛

⎝
∑

j :(i, j)∈E
ti, j (0) −

∑

j :( j ,i)∈E
t j ,i (0)

⎞

⎠

+ λLsi (λL ) = 0.

Next, if we let si (λL) = β̂FLN I
i ( y, λF , 0, λN I )/λL , then,

again, we have

gi (λL) = − (yi − β̂FLN I
i ( y, λF , 0, λN I ))

+ λN I

⎛

⎝
∑

j :(i, j)∈E
qi, j (0) −

∑

j :( j ,i)∈E
q j ,i (0)

⎞

⎠

+ λF

⎛

⎝
∑

j :(i, j)∈E
ti, j (0) −

∑

j :( j ,i)∈E
t j ,i (0)

⎞

⎠ = 0,

Therefore, we have proved that β̂
FLN I

( y, λF , λL , λN I ) =
β̂
ST

(λL). �

Proof of Proposition 3. First, from Tibshirani et al. (2011) the
solution to the nearly-isotonic problem is given by

β̂
N I

( y, λN I ) = y − DT v̂( y, λN I ),

with

v̂( y, λN I ) = argmin
v∈Rn−1

1

2
|| y − DT v||22 subject to

0 ≤ v ≤ λN I1,

and from Tibshirani and Taylor (2011) it follows

β̂
F
( y, λF ) = y − DT ŵ( y, λF ),

with

ŵ( y, λF ) = argmin
w∈Rn−1

1

2
|| y − DTw||22

subject to − λF1 ≤ w ≤ λF1.

Second, let us introduce a new variable v∗ = v − λN I
2 1.

Then

β̂
N I

( y, λN I ) = y − DT λN I

2
1 − DT v̂

∗
( y, λN I ),

where

v̂
∗
( y, λN I ) = argmin

v∗∈Rn−1

1
2 || y − DT λN I

2 1 − DT v∗||22
s. t. − λN I

2 1 ≤ v∗ ≤ λN I
2 1.

Therefore, we have proved that β̂
N I

( y, λN I ) = β̂
F
( y −

λN I
2 DT 1, 1

2λN I ).
The proof for the fused lasso nearly-isotonic estimator is

the same with the change of variable u∗ = u + DT λF1 in
(16) and (17) for the proof of the first equality in (20) and
with u∗ = u − λN I

2 1 for the second equality.
Next, we prove the result for the case of fused lasso nearly-

isotonic approximator. From Theorem 2 we have

β̂FLN I
i ( y, λF , λL , λN I )

=

⎧
⎪⎨

⎪⎩

β̂FN I
i ( y, λF , λN I ) − λL , if β̂FN I

i ≥ λL ,

0, if |β̂FN I
i | ≤ λL ,

β̂FN I
i ( y, λF , λN I ) + λL , if β̂FN I

i ≤ −λL ,

for i ∈ I.
Further, using (20) we have

β̂FLN I
i ( y, λF , λL , λN I ) = β̂F

i ( y − λN I

2
DT 1,

1

2
λN I + λF ) − λL ,

if β̂F
i ( y − λN I

2 DT 1, 1
2λN I + λF ) ≥ λL ,

β̂FLN I
i ( y, λF , λL , λN I ) = 0,

if |β̂F
i ( y − λN I

2 DT 1, 1
2λN I + λF )| ≤ λL ,

β̂FLN I
i ( y, λF , λL , λN I ) = β̂F

i ( y − λN I

2
DT 1,

×1

2
λN I + λF ) + λL ,

if β̂F
i ( y − λN I

2 DT 1, 1
2λN I + λF ) ≤ −λL .

Therefore, we obtain

β̂
FLN I

( y, λF , λL , λN I )

= argmin
β∈Rn

1

2

∥∥∥∥ y − λN I

2
DT 1 − β

∥∥∥∥
2

2
+

(
1

2
λN I + λF

)
||Dβ||1

+ λL ||β||1 ≡ β̂
FL

(
y − λN I

2
DT 1,

1

2
λN I + λF , λL

)
.

�
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Let us consider the following cases separately.
Case 1: λN Iand λFare fixed and λ∗

L > λL . The result of
the proposition for this case follows directly from Theorem
2.

Case 2: λF and λL are fixed and λ∗
N I > λN I . Let us

consider the fused nearly-isotonic regression and write the
subgradient equations

gi (λN I ) = −(yi − βi ) + λN I (qi (λN I ) − qi−1(λN I ))

+λF (ti (λN I ) − ti−1(λN I )) = 0,

where qi and ti , with i = 1, . . . , n, are defined in (A3),
and, analogously to the proof of Theorem 2, q(λN I ), t(λN I )

denote the values of the parameters defined above at some
value of λN I .

Assume that for λN I in the solution β̂
FN I

( y, λF , λN I )

we have a following constant region

β̂FN I
j−1 ( y, λF , λN I ) �= β̂FN I

j ( y, λF , λN I ) = . . .

= β̂FN I
j+k ( y, λF , λN I ) �= β̂FN I

j+k+1( y, λF , λN I ),
(A4)

and in the same way as in Tibshirani et al. (2011) for λ∗
N I we

consider the subset of the subgradient equations

gi (λN I ) = −(yi − βi ) + λ∗
N I (qi (λ

∗
N I ) − qi−1(λ

∗
N I ))

+ λF (ti (λ
∗
N I ) − ti−1(λ

∗
N I )) = 0,

(A5)

with i = j, . . . , k, and show that there exists the solution for
which (A4) holds, qi ∈ [0, 1] and ti ∈ [−1, 1].

Note first that as λN I increases, (A4) holds until themerge
with other groups happens, which means that q j−1, q j+k ∈
{0, 1} and t j−1, t j+k ∈ {−1, 1} will not change their values
until the merge of this constant region. Also, as it follows
from (A3), for i ∈ [ j, j + k] the value of ti is in [−1, 1].
Therefore, without any violation of the restrictions on ti we
can assume that ti (λ∗

N I ) = ti (λ) for any i ∈ [ j, j + k − 1].
Next, taking pairwise differences between subgradient

equations for λN I we have

λN I Aq̃(λN I ) + λF A t̃(λN I )

= D ỹ + λN I c(λN I ) + λF d(λN I ),

where D is displayed at Fig. 1,

A =

⎡

⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2

⎤

⎥⎥⎥⎥⎥⎦
, (A6)

and

ỹ = (y j , . . . , y j+k),

q̃(λN I ) = (q j (λN I ), . . . , q j+k−1(λN I )),

t̃(λN I ) = (t j (λN I ), . . . , t j+k−1(λN I )),

c(λN I ) = (q j−1(λN I ), 0, . . . , 0, q j+k(λN I )),

d(λN I ) = (t j−1(λN I ), 0, . . . , 0, t j+k(λN I )).

Since A is invertible we have

λN I q̃(λN I ) + λF t̃(λN I )

= A−1D ỹ + λN I A
−1c(λN I ) + λF A

−1d(λN I ),

and, since q̃(λN I ) and t̃(λN I ) provide the solution to the
subgradient equations (A5), then

− λF ≤ λN I q̃(λN I ) + λF t̃(λN I ) ≤ λN I + λF . (A7)

Next, as pointed out at Friedman et al. (2007) and Tibshi-
rani et al. (2011)

(A−1)i,1 = (n − i + 1)/(n + 1) and

(A−1)i,n = i/(n + 1),

then, one can show that

− λF1 � λN I A
−1c(λN I ) + λF A

−1d(λN I )

� λN I1 + λF1. (A8)

Further, let us consider the case of λ∗
N I > λN I . Then we

have

λ∗
N I q̃(λ∗

N I ) + λF t̃(λ∗
N I )

= A−1D ỹ + λ∗
N I A

−1c(λ∗
N I ) + λF A

−1d(λ∗
N I ).

Recall, above we set t̃(λ∗
N I ) = t̃(λN I ), and q j−1, q j+k, t j−1

and t j+k does not change their values until the merge, which
means that c(λ∗

N I ) = c(λN I ), and d(λ∗
N I ) = d(λN I ).

Therefore, the subgradient equations for λ∗
N I can be writ-

ten as

λ∗
N I q̃(λ∗

N I ) + λF t̃(λN I )

= A−1D ỹ + λ∗
N I A

−1c(λN I ) + λF A
−1d(λN I ).

Next, since the term A−1D ỹ is not changed, −λF ≤
λF t̃(λN I ) ≤ λF , and

−λF1 � λ∗
N I A

−1c(λN I ) + λF A
−1d(λN I ) � λ∗

N I1 + λF1,

then we have

0 � q̃(λ∗
N I ) � 1.
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Therefore we proved that β̂FN I
i ( y,λ∗) = β̂FN I

i+1 ( y,λ∗).
Since β̂FLN I

i ( y,λ∗) is given by soft thresholding of β̂FN I
i

( y,λ∗), then β̂FLN I
i ( y,λ∗) = β̂FLN I

i+1 ( y,λ∗) for i ∈ [ j, k].
Case 3: λN I and λL are fixed and λ∗

F > λF . The proof
for this case is virtually identical to the proof for theCase 2. In
this case we assume that qi (λ∗

F ) = qi (λ2) for any i ∈ [ j, j+
k − 1]. Next, q j−1, q j+k, t j−1 and t j+k do not change their
values until the merge, which, again, means that c(λ∗

F ) =
c(λF ), and d(λ∗

F ) = d(λF ). Finally, we can show that

−1 � t̃(λ∗
F ) � 1.

�

Proof of Theorem 5. For some fixed λF and λN I , let us write
subgradient equations for the fused lasso nearly-isotonic
approximator:

gi = −(yi − βi ) + λN I (qi − qi−1) + λF (ti − ti−1) = 0,

for i = 1, . . . , n, where qi and ti , with i = 1, . . . , n − 1, are
given by

qi :

⎧
⎪⎨

⎪⎩

= 1, if βi − βi+1 > 0,

= 0, if βi − βi+1 < 0,

∈ [0, 1], if βi = βi+1,

ti :

⎧
⎪⎨

⎪⎩

= 1, if βi − βi+1 > 0,

= −1, if βi − βi+1 < 0,

∈ [−1, 1], if βi = βi+1,

(A9)

and q0 = qn = t0 = tn = 0.

Second, assume that in the solution β̂
FN I

( y, λF , λN I )

there are K distinct constant regionsA(λF , λN I ) = {A1, . . . ,

AK }, and f j and l j are the first and last indices, respectively,
in the region A j . Therefore, using the telescoping sums, for

k ∈ A j the solution β̂
FN I

( y, λF , λN I ) can be written as

β̂FN I
k ( y, λF , λN I ) =

∑l j
i= f j

yi

|A j | − λN I
q f j+1 − ql j

|A j |
−λF

t f j+1 − tl j
|A j | ,

with |A j | = #{ j : y j ∈ A j }.
We, first, prove that

β̂
F→N I

( y, λF , λN I ) = β̂
FN I

( y, λF , λN I ).

Let us fix some λF , and take λ∗
N I > λN I such

that β̂
FN I

( y, λF , λ∗
N I ) has the same constant regions as

β̂
FN I

( y, λF , λN I ). Therefore, analogously to the case of one

dimensional nearly-isotonic regression in Tibshirani et al.
(2011), for a fixed λN I the solution is linear function of λN I

in between the values of λN I (which are called knots) where
some constant regions merge.

Assume now that λN I = 0. Next, assume that in the solu-

tion β̂
FN I

( y, λF , 0) there are K (0) distinct constant regions
A(λF , 0) = {A1, . . . , AK }, and f j and l j are the first and
last indices, respectively, in those region A j .

Next, we increase the value of λ∗
N I > λN I and assume

that we still have the same constant regions as for λF and
λN I , i.e.

β̂FN I
k ( y, λF , λ∗

N I ) =
∑l j

i= f j
yi

|A j | − λ∗
N I

q f j+1 − ql j
|A j |

−λF
t f j+1 − tl j

|A j | ,

i.e. at the value λ∗
N I not merge has happened, which means

that

β̂FN I
k ( y, λF , λ∗

N I ) �= β̂FN I
k′ ( y, λF , λ∗

N I )

if k and k′ are not in the same A j ∈ A(λF , 0). Next, recall
that for any k ∈ A j we have

β̂F
k ( y, λF ) = β̂FN I

k ( y, λF , 0)

=
∑l j

i= f j
yi

|A j | − λF
t f j+1 − tl j

|A j | . (A10)

Therefore, β̂F
k ( y, λF ) has the same constant regions as

β̂FN I
k ( y, λF , 0).
Then, recall that

β̂
F→N I

( y, λF , λN I ) = β̂
N I

(β̂
F
( y, λF ), λN I )

Next, let us choose λ′
N I < λ∗

N I such that, again, the con-

stant regions of β̂
N I

(β̂F
k ( y, λF ), λ′

N I ) are the same as for
β̂F
k ( y, λF ) and β̂FN I

k ( y, λF , λN I ). Then, for k ∈ A j the
solution is given by

β̂F→N I
k ( y, λF , λ′

N I ) =
∑l j

i= f j
β̂F
i

|A j | − λ′
N I

q f j+1 − ql j
|A j | ,

and using (A10) we get

β̂F→N I
k ( y, λF , λ′

N I )

=
∑l j

i= f j
yi

|A j | − λ′
N I

q f j+1 − ql j
|A j | − λF

t f j+1 − tl j
|A j | ,
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which means that the solution is linear function of λ′
N I until

some constant regions merge.
Note now

β̂
F→N I

( y, λF , λ′
N I ) = β̂

FN I
( y, λF , λ′

N I )

and, obviously, this equality holds at least until constant
regions merge. Let λ

(1)
N I be the first value of λN I when the

first merge happens. At the value λ
(1)
N I the equality

β̂
F→N I

( y, λF , λ
(1)
N I ) = β̂

FN I
( y, λF , λ

(1)
N I )

holds, since β̂
N I

is continuous in λN I .
Assume for simplicity of notation that at λN I = λ

(1)
N I

the constant region A j merges with constant region A j+1.
Therefore, for k ∈ A j ∪ A j+1 we have

β̂FN I
k ( y, λF , λ

(1)
N I )

=
∑l j+1

i= f j
yi

|A j | + |A j+1| − λ
(1)
N I

q f j+2 − ql j
|A j | + |A j+1|

−λF
t f j+2 − tl j

|A j | + |A j+1| ,

and for k ∈ Am �= A j ∪ A j+1:

β̂FN I
k ( y, λF , λ

(1)
N I )

=
∑lm

i= fm
yi

|Am | − λ
(1)
N I

q fm+1 − qlm
|Am | − λF

t fm+1 − tlm
|Am | .

Further, for β̂
F→N I

( y, λF , λ
(1)
N I ) for k ∈ A j ∪ A j+1 we have

β̂F→N I
k ( y, λF , λ

(1)
N I )

=
∑l j+1

i= f j
β̂F
i

|A j | + |A j+1| − λ
(1)
N I

q f j+2 − ql j
|A j | + |A j+1|

= β̂FN I
k ( y, λF , λ

(1)
N I ),

and for k ∈ Am �= A j ∪ A j+1:

β̂F→N I
k ( y, λF , λ

(1)
N I )

=
∑lm

i= fm
β̂F
i

|Am | − λ
(1)
N I

q fm+1 − qlm
|Am |

= β̂FN I
k ( y, λF , λ

(1)
N I ).

Next, let us increase λ
(1)
N I by δλ so that no merge in

β̂
FN I

( y, λF , λN I + δλ) happens. Then, for k ∈ A j ∪ A j+1

we have

β̂FN I
k ( y, λF , λ

(1)
N I + δλ)

=
∑l j+1

i= f j
yi

|A j | + |A j+1| − (λ
(1)
N I + δλ)

q f j+2 − ql j
|A j | + |A j+1|

− λF
t f j+2 − tl j

|A j | + |A j+1| ,

and for k ∈ Am �= A j ∪ A j+1:

β̂FN I
k ( y, λF , λ

(1)
N I + δλ)

=
∑lm

i= fm
yi

|Am | − (λ
(1)
N I + δλ)

q fm+1 − qlm
|Am | − λF

t fm+1 − tlm
|Am | .

Further, in the case of β̂
F→N I

( y, λF , λ
(1)
N I )we increase λ by

δλ′ < δλ and, therefore, we have for k ∈ A j ∪ A j+1:

β̂F→N I
k ( y, λF , λ

(1)
N I + δλ′)

=
∑l j+1

i= f j
β̂F
i

|A j | + |A j+1| − (λ
(1)
N I + δλ′)

q f j+2 − ql j
|A j | + |A j+1| ,

and for k ∈ Am �= A j ∪ A j+1:

β̂F→N I
k ( y, λF , λ

(1)
N I + δλ′)

=
∑lm

i= fm
β̂F
i

|Am | − (λ
(1)
N I + δλ′)

q fm+1 − qlm
|Am | .

Therefore, before the next merge happens we have the fol-

lowing relation between the estimators β̂
F→N I

( y, λF , λN I )

and β̂
FN I

( y, λF , λN I )

β̂FN I
k ( y, λF , λ

(1)
N I + δλ)

= β̂F→N I
k ( y, λF , λ

(1)
N I + δλ′)

+(δλ − δλ′)
q f j+2 − ql j

|A j | + |A j+1| ,

if k ∈ A j ∪ A j+1, and

β̂FN I
k ( y, λF , λ

(1)
N I + δλ)

= β̂F→N I
k ( y, λF , λ

(1)
N I + δλ′) + (δλ − δλ′)

q fm+1 − qlm
|Am | ,

for k ∈ Am �= A j ∪ A j+1.
We have proved that before the second merge we have

β̂
F→N I

( y, λF , λN I ) = β̂
FN I

( y, λF , λN I )
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and at the value of λ
(2)
N I when the second merge of some

constant regions happens we have

β̂
F→N I

( y, λF , λ
(2)
N I ) = β̂

FN I
( y, λF , λ

(2)
N I )

by the continuity.
We can continue this process until the last knot point in

the path. Therefore we proved the equality of the estimators.
The proof of

β̂
N I→F

( y, λF , λN I ) = β̂
FN I

( y, λF , λN I ).

is virtually the same with q j suitably changed to t j and λN I

to λF and using the propertis of fused lasso from Hoefling
(2010). �

Proof of Theorem 6. First, for the fused estimator β̂
F
( y, λF )

let

K F ( y, λF ) = #{fused groups in β̂
F
( y, λF )}.

Then, as it follows from Tibshirani and Taylor (2011), for

β̂
F
( y, λF ) we have

E[K F (Y , λF )] = d f
(
β̂
F
(Y , λF )

)
.

Next, from Proposition 3, it follows

β̂
FN I

(
y, λF , λN I ) = β̂

F
( y − λN I

2
DT 1,

1

2
λN I + λF

)
.

Therefore, using the property of covariance we have

d f (β̂
FN I

(Y , λF , λN I ))

=
n∑

i=1

Cov
[
β̂FN I
i (Y , λF , λN I ),Yi

]

=
n∑

i=1

Cov

[
β̂F
i

(
Y − λN I

2
DT 1,

1

2
λN I + λF

)
,Yi

]

=
n∑

i=1

Cov

[
β̂F
i

(
Y − λN I

2
DT 1,

1

2
λN I + λF

)
,Yi

− λN I

2
[DT 1]i

]

= E

[
K F

(
Y − λN I

2
DT 1,

1

2
λN I + λF

)]

≡ E

[
K FN I (Y , λF , λN I )

]
,

where [a]i denotes i-th element in the vector a ∈ R
n .

Next, we prove the result for the fused lasso nearly-
isotonic approximator. From Proposition 3 we have

β̂
FLN I

( y, λF , λL , λN I )

= β̂
FL

(
y − λN I

2
DT 1,

1

2
λN I + λF , λL

)
.

Next, for the fused lasso β̂
FL

( y, λF , λL) defined in (2) let

K FL( y, λF , λL) = #{non-zero fused groups in

β̂
FL

( y, λF , λL)},

and from Tibshirani and Taylor (2011) it follows

E

[
K FL(Y , λF , λL)

]
= d f

(
β̂
FL

(Y , λF , λL)
)

.

Further, again, using the property of the covariance, we
have

d f
(
β̂
FLN I

(Y , λF , λL , λN I )
)

=
n∑

i=1

Cov
[
β̂FLN I
i (Y , λF , λL , λN I ),Yi

]

=
n∑

i=1

Cov

[
β̂FL
i

(
Y−λN I

2
DT 1,

1

2
λN I+λF , λL

)
, Yi

]

=
n∑

i=1

Cov

[
β̂FL
i

(
Y − λN I

2
DT 1,

1

2
λN I + λF , λL

)
, Yi

− λN I

2
[DT 1]i

]

= E

[
K FL

(
Y − λN I

2
DT 1,

1

2
λN I + λF , λL

)]

≡ E

[
K FLN I (Y , λF , λL , λN I )

]
.

Lastly, we note that the proof for the unbiased estimator of
the degrees of freedom for nearly-isotonic regression, given
in Tibshirani et al. (2011), can be done in the same way as
in the current proof, using the relation (19) and, again, the
result of the paper Tibshirani and Taylor (2011) for the fusion

estimator β̂
FLN I

(Y , λF ). �
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