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Abstract
Sparse principal component analysis (SPCA) is a popular tool for dimensionality reduction in high-dimensional data. How-
ever, there is still a lack of theoretically justifiedBayesian SPCAmethods that can scale well computationally. One of themajor
challenges in Bayesian SPCA is selecting an appropriate prior for the loadings matrix, considering that principal components
are mutually orthogonal. We propose a novel parameter-expanded coordinate ascent variational inference (PX-CAVI) algo-
rithm. This algorithm utilizes a spike and slab prior, which incorporates parameter expansion to cope with the orthogonality
constraint. Besides comparing to two popular SPCA approaches, we introduce the PX-EM algorithm as an EM analogue
to the PX-CAVI algorithm for comparison. Through extensive numerical simulations, we demonstrate that the PX-CAVI
algorithm outperforms these SPCA approaches, showcasing its superiority in terms of performance. We study the posterior
contraction rate of the variational posterior, providing a novel contribution to the existing literature. The PX-CAVI algorithm
is then applied to study a lung cancer gene expression dataset. The R package VBsparsePCA with an implementation of the
algorithm is available on the Comprehensive R Archive Network (CRAN).

Keywords Bayesian SPCA · Spike and slab prior · Variational inference · Parameter expansion

Mathematics Subject Classification Primary 62C10 · 62H25 · 62J07

1 Introduction

Sparse Principal Component Analysis (SPCA), a contempo-
rary variant of PCA, has gained popularity as a valuable tool
for reducing the dimensions of high-dimensional data. Its
applications span various fields, such as chemistry, where it
aids in identifying crucial chemical components from spec-
tra (Varmuza and Filzmoser 2009); genetics, where it helps
discover significant genes and pathways (Li et al. 2017); and
macroeconomics, where it plays a role in selecting dominant
macro variables that earn substantial risk premiums (Rapach
and Zhou 2019). The success of SPCA can be attributed
to two main factors. Firstly, in typical high-dimensional
datasets, the number of input variables p is greater than the
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number of observations n. This condition poses challenges
when using traditional PCA, as the leading eigenvector
becomes inconsistently estimated when p/n does not con-
verge to 0 (Paul 2007; Johnstone and Lu 2009). However,
SPCA addresses and mitigates this issue effectively. Sec-
ondly, the principal components derived from SPCA are
linear combinations of only a few important variables, mak-
ing them highly interpretable in practical applications. This
interpretability makes SPCA a valuable asset when dealing
with complex data sets, enabling researchers and analysts to
glean meaningful insights with ease.

Several SPCA algorithms have been proposed, and inter-
ested readers can refer to Zou and Xue (2018) for a
comprehensive literature review on these algorithms. How-
ever, it’s worth noting that the algorithms discussed in that
review do not include Bayesian methods. Recently, two
Bayesian SPCA approaches, introduced by Gao and Zhou
(2015) and Xie et al. (2022), have emerged and demon-
strated impressive advantages. Both approaches adopt the
spiked covariance model, which conveniently represents a
linear regression model where the loadings matrix serves
as the coefficient and the design matrix follows a standard
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multivariate normal distribution as the random component.
A significant challenge in Bayesian SPCA lies in placing
a prior on the coefficients while enforcing the orthogonality
constraint, which requires the columns of the loadingsmatrix
to be mutually orthogonal. This constraint needs to be incor-
porated through the prior distribution. Gao and Zhou (2015)
tackled this challenge by constructing a prior that projects the
nonzero coordinates onto a subspace spanned by a collection
of mutually orthogonal unit vectors. However, their poste-
rior becomes intractable and challenging to compute when
the rank is greater than one. Xie et al. (2022) adopted a differ-
ent approach by reparametrizing the likelihood, multiplying
the loadings matrix with an orthogonal matrix to remove
the orthogonal constraint. Their prior involves only Lapla-
cian spike and slab densities while our density (see Eq. (3)
in Sect. 2.2) is considerably more general. Additionally, this
prior can introduce dependence while theirs demand prior
independence.

In this paper, we present a novel prior for the coefficient
of the spiked covariance model. In our approach, we apply
a regular spike and slab prior on the parameter, which is the
product of the loadingsmatrix (the coefficient) and an orthog-
onal matrix. The orthogonal matrix is then a latent variable
in the prior. Bymarginalizing this joint density, we derive the
prior of the coefficient. The spike and slab prior is a mixture
of a continuous density and a Dirac measure centered at 0.
By introducing an appropriate prior on the mixture weight,
one can effectively impose sparsity on the coefficient. The
spike and slab prior is widely recognized as one of the most
prominent priors for Bayesian high-dimensional analysis and
has received extensive study. Excellent works in this area
include those by Johnstone and Silverman (2004), Ročková
and George (2018), Castillo and Szabó (2020), Castillo and
van der Vaart (2012), Castillo et al. (2015), Martin et al.
(2017), Qiu et al. (2018), Jammalamadaka et al. (2019), Qiu
et al. (2020), Ning (2023b), Jeong and Ghosal (2020), Ohn
et al. (2023), Ning (2023a), and Ning et al. (2020). For a
comprehensive overview of this topic, readers can refer to
the review paper by Banerjee et al. (2021). It is important
to note that in our spike and slab formulation, the slab den-
sity, which incorporates the latent variable, differs from that
in traditional linear regression models. This distinction con-
tributes to the uniqueness and effectiveness of our proposed
approach.

We employ a variational approach to compute the poste-
rior, amethod thatminimizes a chosen distance or divergence
(e.g., Kullback-Leibler divergence) between a preselected
probability measure, belonging to a rich and analytically
tractable class of distributions, and the posterior distribution.
This approach offers faster computational speed compared
to sampling methods like the Markov chain Monte Carlo
algorithm. Among the variational approaches, the coordi-
nate ascent variational inference (CAVI)method stands out as

the most popular algorithm (Blei et al. 2017). Several CAVI
methods have been developed for sparse linear regression
models with the spike and slab prior (or the subset selection
prior) such as Carbonetto and Stephens (2012), Huang et al.
(2016), Ray and Szabo (2022), Yang et al. (2020) and sparse
factor analysis such as Ghahramani and Beal (1999), Wang
et al. (2020), Hansen et al. (2023). Researchers have also
studied the theoretical properties of the variational posterior,
such as the posterior contraction rate, as examined by Ray
and Szabo (2022) and Yang et al. (2020). While variational
Bayesian methods for SPCA have been developed by Guan
and Dy (2009) and Bouveyron et al. (2018), they did not pro-
vide a theoretical justification for their posterior. Moreover,
the priors used by Guan and Dy (2009) involving the Laplace
distribution andBouveyron et al. (2018)’s prior, similar to the
spike and slab prior with a fixed mixture weight, are known
not to yield the optimal (or near-optimal) posterior contrac-
tion rate.

In this paper, we show that the contraction rates of both
the posterior and the variational posterior are nearly optimal.
To the best of our knowledge, this is the first result for the
variational Bayesian method applied to SPCA. Additionally,
we develop an EM algorithm tailored for SPCA, in which the
maximumof a posteriori estimator is obtained. The EMalgo-
rithm for Bayesian variable selection has been extensively
studied for the sparse linear regression model by Ročková
and George (2014), Ročková and George (2018). Similar
algorithms have been developed for other high-dimensional
models, such as the dynamic time series model (Ning et al.
2019) and the sparse factor model (Ročková and George
2016). For our EM algorithm to accommodate SPCA, we
replace the Dirac measure in the spike and slab prior with a
continuous density, resulting in the continuous spike and slab
prior. Both the variational approach and the EM algorithm
employ parameter expansion techniques on the likelihood
function. Consequently, these algorithms are referred to as
the PX-CAVI and the PX-EM algorithm respectively, where
PX means parameter expanded. The parameter expansion
approach was initially proposed by Liu et al. (1998) and has
proven effective in accelerating the convergence speed of the
EM algorithm. Additionally, we discovered that by selecting
the expanded parameter as the orthogonal matrix, we can cir-
cumvent the need to handle the orthogonal constraint directly
on the loading matrix. This approach allows us to first solve
for the unconstrained matrix and subsequently apply singu-
lar value decomposition (SVD) to obtain an estimated value
for the loadings matrix. This simplification streamlines the
computation process and enhances the efficiency of our algo-
rithms.

The remainder of this paper is structured as follows: Sect. 2
presents the model and the prior used in this study. Section3
introduces the variational approach and outlines the devel-
opment of the PX-CAVI algorithm. In Sect. 4, we delve into
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the theoretical properties of both the posterior and the varia-
tional posterior. Section5 presents the PX-EM algorithm we
developed.To evaluate the performanceof our algorithms,we
conduct simulation studies in Sect. 6. Furthermore, in Sect. 7,
we analyze a lung cancer gene dataset to illustrate the appli-
cation of our approach in real-world scenarios. The appendix
contains proofs of the equations presented in Sect. 3. Proofs
of the theorems discussed in Sect. 4 and the batch PX-CAVI
algorithmwithout relyingon the jointly row-sparsity assump-
tion are provided in the supplementary material. For readers
interested in implementing our algorithms, we have made
the VBsparsePCA package available on the comprehensive
R archive network (CRAN). This package includes both the
PX-CAVI algorithm and the batch PX-CAVI algorithm.

2 Model and priors

In this section,we begin by introducing the spiked covariance
model, followed by the spike and slab prior applied.

2.1 The spiked covariancemodel

Consider the spiked covariance model

Xi = θwi + σεi , wi
i.i.d.∼ N (0, Ir ), εi

i.i.d.∼ N (0, Ip),

(1)

where Xi is a p-dimensional vector, θ is a p×r -dimensional
loadings matrix, wi is a r -dimensional vector, εi is a p-
dimensional vector that is independent of wi , and r is the
rank. We denote θ·k as the k-th column of θ . The orthog-
onality constraint of θ requires that 〈θ·k, θ·k′ 〉 = 0 for any

k �= k′, k, k′ ∈ {1, . . . , r}. Themodel is equivalent to Xi
i.i.d.∼

N (0, �), where � = θθ ′ + σ 2 Ip. Let θ = U�1/2, where
U = (θ·1/‖θ·1‖2, . . . , θ·r/‖θ·r‖2) is a p × r matrix contain-
ing the first r eigenvectors and� = diag(‖θ·1‖22, . . . , ‖θ·r‖22)
is an r × r diagonal matrix. Then, � = U�U ′ + σ 2 Ip. One
can easily check that the k-th eigenvalue of� is ‖θ·k‖22+σ 2 if
k ≤ r and is σ 2 if k > r . We assume p 
 n (i.e. n/p → 0)
and θ is jointly row-sparse—that is, within the same row,
the coordinates are either all zero or all non-zero. We define
the rows containing non-zero entries as “non-zero rows” and
the remaining rows as “zero rows.” With this assumption,
the support of each column in θ remains the same and is

denoted as S =
{

j ∈ {1, . . . , p} : θ ′
j �= 0r

}
where 0r repre-

sents r -dimensional zero vector. Adopting the row-sparsity
assumption is convenient for practitioners, as the principal
subspace is generated by the same sparse set of features.
Additionally, we can simplify our main ideas and use more
concise notations by adopting this assumption, as the support
is consistent across all principal components. Amore general

assumption that allows the support to vary across principal
components, is covered in the supplementary material. Our R
package VBsparsePCA can effectively handle both assump-
tions.

2.2 The spike and slab prior

We introduce our spike and slab prior, which is

π(θ, γ |λ1, r) ∝
p∏

j=1

[
γ j

∫

A∈Vr ,r

g(θ j |λ1, A, r)π(A)d A

+(1 − γ j )δ0(θ j )
]
, (2)

where Vr ,r = {A ∈ R
r×r : A′ A = Ir } is the Stiefel manifold

of r -frames in R
r and δ0 is the Dirac measure at zero. Our

idea of constructing the prior (2) is that since β = θ A does
not have the orthogonality constraint, as A is an orthogonal
matrix, we first apply the regular spike and slab prior on β

which could be viewed as the joint distribution of θ and A.We
then obtain the prior of θ by marginalizing the parameter A
from the joint distribution of θ and A. Because of the latent
variable A, this prior is different from those in the sparse
linear regression models. We consider a general expression
for the density g, which is

g(θ j |λ1, A, r) = [C(λ1)]r exp(−λ1‖β j‖m
q ), (3)

where 1 ≤ q ≤ 2, m ∈ {1, 2}, and [C(λ1)]r is the
normalizing constant. This expression includes three com-
mon distributions as special cases. If q = 1 and m = 1,
C(λ1) = λ1/2, then g is a product of r -independent Laplace
densities. If q = 2 and m = 2, C(λ1) = √

λ1/(2π), then
it is the multivariate normal density. If q = 2 and m = 1,
C(λ1) = λ1/ar where

ar = √
π (�(r + 1)/�(r/2 + 1))1/r > 2,

then it is the density part of the prior introduced by Ning
et al. (2020) for group sparsity. The priors for the remaining
parameters are given as follows: π(A) ∝ 1 and for each j ,

γ j |κ ∼ Bernoulli(κ), κ ∼ Beta(α1, α2). (4)

Ifσ 2 and r are unknown,we letσ 2 ∼ InverseGamma(σa, σb)

and r ∼ Poisson(�). Assuming r is fixed, then the joint
posterior distribution of (θ, γ , σ 2) is

π(θ, γ , σ 2|X) ∝
n∏

i=1

f (Xi |θ, σ 2, r)

p∏
j=1

π(θ j |γ j , r)

×
(∫

π(γ j |κ)π(κ)dκ

)
π(σ 2), (5)
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where X = (X1, . . . , Xn) with each Xi being a p-
dimensional vector.

3 Variational inference

In this section, we propose a variational approach for SPCA
using the posterior (5).We introduce a mean-field variational
class to obtain the variational posterior, and then develop the
PX-CAVI algorithm to efficiently compute it.

3.1 The variational posterior and the evidence lower
bound

To obtain the variational posterior, we adopt the mean-field
variational approximation, which decomposes the posterior
into several independent components, with the parameter in
each component being independent of the others. The varia-
tional class is defined as follows:

PMF =
{

P(θ):=
p∏

j=1

[
z jN (μ j , σ

2M j ) + (1 − z j )δ0

]
,

μ j ∈ R
r , 〈μ·k , μ·k′ 〉 = 0, ∀k �= k′,

M j ∈ M
r×r , z j ∈ [0, 1]

}
,

(6)

where M
r×r stands for the space of r × r positive defi-

nite matrices. For any P(θ) ∈ PMF, it is a product of p
independent densities, each of which is a mixture of two
distributions—a multivariate normal (or a normal density
when r = 1) and the Dirac measure at zero. The mix-
ture weight z j is the corresponding inclusion probability.
The variational posterior is obtained by minimizing the
Kullback-Leibler divergence between all P(θ) ∈ PMF and
the posterior, i.e.,

P̂(θ) = argminP(θ)∈PMF K L (P(θ), π(θ |X)) , (7)

which can be also written as

P̂(θ) = argmin P(θ)∈PMF

(
EP log P(θ) − EP logπ(θ |X)

)

= argmin P(θ)∈PMF

(
EP log P(θ) − EP logπ(θ, X)

+ logπ(X)
)
. (8)

As the expression of logπ(X) in (8) is intractable, we define
the evidence lower bound (ELBO), which is the lower bound
of logπ(X) as follows:

ELBO(θ) = EP logπ(θ, X) − EP log P(θ). (9)

and solve P̂(θ j ) = argmaxP(θ)∈PMF ELBO(θ). Since

P(θ) =
p∏

j=1

P(θ j ) and π(θ, X) =
p∏

j=1

π(θ j , X),

the ELBO can be also written as follows:

ELBO(θ) =
p∑

j=1

(
EP logπ(θ j , X) − EP log P(θ j )

)
.

From the last display, we can solve each P̂(θ j ) indepen-
dently and then obtain the variational posterior from P̂(θ) =∏p

j=1 P̂(θ j ).

3.2 The PX-CAVI algorithm

The PX-CAVI algorithm is an iterative method where, in
each iteration, it optimizes each of the unknown variables by
conditioning on the rest. Our algorithm incorporates two key
differences from the conventional CAVI algorithm. Firstly,
we include an expectation step, similar to that used in the EM
algorithm, since w = (w1, . . . , wn) is a random variable.
Secondly, we apply parameter expansion to the likelihood,
which enables us to handle the orthogonality constraint and
accelerate the convergence speed of our algorithm.Now, let’s
provide a step-by-step derivation of the PX-CAVI algorithm,
where M = (M1, . . . , Mp) and z = (z1, . . . , z p).

1. E-step

In this step, the fullmodel posterior isπ(θ,w, X). Let�(t) be
the estimated value of� = (μ, M, z) from the t-th iteration,
we obtain

P̂(wi |�(t)) = N (ω̃i , Ṽw),

ω̃i = 1

σ 2 Ṽw

∑p

j=1
z(t)

j

[
μ

(t)
j

]′
Xi j ,

Ṽw =
(

1

σ 2

∑p

j=1
z(t)

j

([
μ

(t)
j

]′
μ

(t)
j + σ 2M (t)

j

)
+ Ir

)−1

.

(10)

Then, the objective function is given by

Q(θ |�(t)) = Ew|�(t) logπ(θ,w, X).

We obtain

P̂(θ)= argmaxP(θ)∈PMF

p∑
j=1

(
EP Q(θ j |�(t)) − EP log P(θ j )

)
.

= argmaxP(θ)∈PMF

p∑
j=1

(
EP
[
Ew|�(t) logπ(θ j , w, X)

]−EP log P(θ j )
)
.
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2. Parameter expansion

To obtain P̂(θ), special attentionmust be given to the orthog-
onality constraint of μ as defined in (6). This is where
the parameter expansion technique is used. Let A be the
expanded parameter and denote β = θ A, the likelihood
after the parameter expansion becomes Xi = βwi + σ 2εi ,

as Awi
i.i.d∼ N (0, Ir ) follows the same distribution as wi .

Then, our spike and slab prior is directly applied on β. We
do not require the prior to be invariant under the transfor-
mation of the parameter. After solving β, one can obtain θ

using the singular value decomposition (SVD). To accelerate
the convergence speed of the algorithm, we apply parame-
ter expansion again. At this time, the expanded parameter is
chosen to be a positive definite matrix, say D. We denote
β̃ = βD. The likelihood after this parameter expansion

becomes Xi = β̃w̃i + σεi , where w̃i
i.i.d∼ N (0, D) and

β̃ = θ̃ AD−1
L , DL is the lower triangular matrix obtained

using SVD. Our spike and slab prior is then directly putting
on β̃. To summarize, parameter expansion is used twice in
the PX-CAVI algorithm. The first time is primary used to
deal with the orthogonality constraint, and the second time
is to accelerate its convergence speed. We denote ũ and
M̃ as the mean and the covariance of P(β̃). This leads us
to instead maximize EP Q(�̃|�̃(t)) − Eq log P(β̃), where
�̃ = (̃u, M̃, z) and

P(β̃) =
p∏

j=1

[
z jN (̃u j , σ

2M̃ j ) + (1 − z j )δ0

]
. (11)

One can quickly check that ũ = μAD−1
L and M̃ j =

D−1
L M j D−1

L
′
. Note that since we assume θ is jointly row-

sparse, the support of β and it of β̃ are the same. Thus z j in
(11) is the same as it in (6).

To solve for ũ and M̃ , we explore the following two
choices of the density g in (3):

• When q = 1 and m = 1, it yields a product of r -
independent Laplace densities. Details are given inAppendix
A. In summary, denoting Hi = ω̃i ω̃

′
i + Ṽw, we obtain

̂̃u j = min
ũ j

[
1

2σ 2

n∑
i=1

(
ũ j Hi ũ

′
j − 2Xi j ũ j ω̃i

)

+λ1

r∑
k=1

f (̃u jk, σ
2M̃ j,kk)

]
(12)

̂̃M j = min
M̃ j

[
1

2

n∑
i=1

Tr (M̃ j Hi ) − log det(M̃ j )

2

+λ1

r∑
k=1

f (̃u jk, σ
2M̃ j,kk)

]
, (13)

where f (̃u jk, σ
2M̃ j,kk) is the mean of the folded normal

distribution,

f (̃u jk, σ
2M̃ j,kk) =

√
2σ 2M̃ j,kk

π
exp

(
− ũ2

jk

2σ 2M̃ j,kk

)

+ ũ jk

⎛
⎝1 − 2�

⎛
⎝− ũ jk√

σ 2M̃ j,kk

⎞
⎠
⎞
⎠ ,

with � being the cumulative distribution function of a stan-
dard normal distribution. Here, det(B) and Tr(B) stands for
the determinant and the trace of the matrix B.

• When q = 2 and m = 2, it results in a multivariate
normal density. If g is the multivariate normal density, we
useN (0, σ 2 Ir/λ1) instead, as the solution for σ 2 is simpler.
One can considerwe choose the tuning parameter to beλ1/σ

2

instead of λ1. Then, we obtain

̂̃u j = ̂̃M j

n∑
i=1

Xi j ω̃
′
i and ̂̃M j =

⎛
⎝

n∑
i=1

(
ω̃i ω̃

′
i + Ṽw

)+ λ1 Ir

⎞
⎠

−1

.

(14)

3. Updating z

To solve z, we need to obtain ĥ = (̂h1, . . . , ĥ p), where for
each j ∈ {1, . . . , p}, ĥ j = log(̂z j/(1− ẑ j )). In Appendix A,
we derive the solution for ĥ j . If g is the product of r inde-
pendent Laplace density, then

ĥ j = log

(
α1

α2

)
+ r log

(√
πσλ1√
2

)

− λ1

r∑
k=1

f (̃u jk, σ
2M̃ j,kk) + log det(M̃ j ) + 1

2

− 1

2σ 2

n∑
i=1

[
−2Xi j ũ j ω̃i + ũ j Hi ũ

′
j + Tr(σ 2M̃ j Hi )

]
.

(15)

If g is the multivariate normal density, then

ĥ j = log

(
α1

α2

)
+ r log λ1

2
− λ1

2

(
ũ j ũ

′
j + σ 2 Tr (M̃ j )

)

+ log det(M̃ j ) + 1

2
− 1

2σ 2

n∑
i=1

(
−2Xi j ũ j ω̃

′
i + ũ j Hi ũ

′
j

+Tr (σ 2M̃ j Hi )
)

. (16)

4. Updating μ̂ and ̂M

As we obtained ̂̃u and ̂̃M , then μ̂ and M̂ can be solved
accordingly. Note that w̃i ∼ N (0, D). In the E-step, we
also obtained ω̃i and Vω. Thus, D can be solved using
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D̂ = 1
n

∑n
i=1 ω̃i ω̃

′
i + Ṽω, and μ̂ can be obtained by first solv-

ing û = ̂̃u D̂L . Next, we apply the SVD to obtain Â. Last, we
obtain μ using μ̂ = û Â′. M̂ can be obtained similarly, i.e.,
M̂ j = D̂L M̃ j D̂′

L .

5. Updating σ 2

Recall that the prior σ 2 ∼ InverseGamma(σa, σb). If g is the
product of r independent Laplace density, we obtain

σ̂ 2 = argmin σ 2∈(0,∞)

[ p∑
j=1

z j

{ 1

2σ 2

n∑
i=1

(
ũ j Hi ũ

′
j − 2Xi j ũ j ω̃i

)
− r log σ 2

2

+ λ1

r∑
k=1

f (̃u jk, σ
2M̃ j,kk)

}

+ (np + 2σa + 2) log σ 2

2

+ Tr (X ′ X) + 2σb

2σ 2

]
. (17)

If g is the multivariate normal density, we obtain

σ̂ 2 =
Tr(X ′ X) +∑p

j=1 z j
∑n

i=1

(
ũ j Hi ũ′

j − 2Xi j ũ j ω̃i + λ1ũ j ũ′
j

)
+ 2σb

np + 2(σa + 1)
.

(18)

Now, we summarize the PX-CAVI algorithm.

Algorithm 1: The PX-CAVI algorithm

Data: X , a p × n matrix, scaled and centered

Input: μ̂(0), M̂ (0), ẑ(0), σ̂ (0) r , number of total iterations T , and
the threshold δ

For t = 0, . . . , T − 1:
– Update ω̃(t+1) and Ṽ (t+1)

w using (10)
– If g is the product of r independent Laplace density

– Update ũ(t+1) and M̃ (t+1) using (12) and (13)
– Update h(t+1) using (15) and then obtain ẑ(t+1)

– Update σ (t+1) from (17)

– If g is the multivariate normal density

– Update ũ(t+1) and M̃ (t+1) using (14)
– Update h(t+1) using (16) and then obtain ẑ(t+1)

– Update σ (t+1) using (18)

– Obtain D(t+1), u(t+1), and M̂ (t+1)

– Apply SVD to obtain A(t+1) and then obtain μ(t+1)

Stop: If

max
(∥∥μ(t+1)μ(t+1)′ − μ(t)μ(t)′∥∥

F , ‖z(t+1) − z(t)‖1
)

≤ δ

Output: P̂(θ).

4 Asymptotic properties

This section studies the asymptotical properties of the pos-
terior in (5) and the variational posterior in (7). We work
with the subset selection prior, which includes the spike and
slab prior in (2) as a special case, which is constructed as
follows: First, a number s is chosen from a prior π on the
set {0, . . . , p}. Next, a set S is chosen uniformly from the
set {1, . . . , p} such that its cardinality |S| = s. Last, condi-
tional on S, if j ∈ S, then the prior for θ j is chosen to be∫

A∈Vr ,r
g(θ j |λ1, A)d�(A); if j /∈ S, then θ j is set to 0′

r . The
prior is given as follows:

π(θ, S|λ1) ∝ π(|S|) 1( p
|S|
)
∏
j∈S

∫

A∈Vr ,r

g(θ j |λ1, A)π(A)d A
∏
j /∈S

δ0(θ j ).

(19)

Note that (2) is a special case of (19) when π(|S|) is the
beta-binomial distribution. That is, s|κ ∼ binomial(p, κ)

and κ ∼ Beta(α1, α2).
In the next subsection, we will study the theoretical prop-

erties of the posterior with the subset selection prior. Before
we proceed, some notations need to be introduced. Let �
(resp.�) stand for inequalities up (resp. down) to a constant,
a � b stand for C1a ≤ b ≤ C2a with positive constants
C1 < C2, and a � b stand for a/b → 0. We denote ‖b‖2
as the �2-norm of a vector b and ‖B‖ as the spectrum norm
of a matrix B. The true value of an unknown parameter ϑ is
denoted by ϑ�.

4.1 Contraction rate of the posterior

We study the dimensionality and the contraction rate of the
posterior distribution. In this study, we assume r is unknown
and σ 2 is fixed. Three assumptions are needed to obtain the
rate.

Assumption 1 (Priors for s and r ) For positive constants a1,
a2, a3, and a4, assume

p−a1 � π(s)/π(s − 1) � p−a2

exp(−a3r) � π(r) � exp(−a4r).

The above assumption impose conditions on the tails of
the priors π(s) and π(r). The first condition also appears in
the study of the sparse linear regression model (e.g. Castillo
et al. 2015; Martin et al. 2017; Ning et al. 2020). It assumes
that the logarithm of the ratio between π(s + h) and π(s) is
in the same magnitude as −h log p. When h increases, the
assigned probability on s + h decays exponentially fast. The
beta-binomial prior mentioned above satisfies this condition
if one chooses, for example, α1 = 1 and α2 = pν + 1 for
any ν > log log p/ log p. The second condition is similar to
that in Pati et al. (2014). It assumes the tail of π(r) should
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decay exponentially fast; the Poisson distribution satisfies
this condition.

Assumption 2 (Bounds for λ1) For positive constants b1, b2,
and b3, assume

b1

√
n

pb2/r� ≤ λ1 ≤ b3
√

n log p.

Assumption 2 provides the permissible region for λ1. If
λ1 is too large, it introduces an extra shrinkage effect on large
signals; if it is too small, the posteriorwill contract at a slower
rate. Our upper bound is of the same order as that in Castillo
et al. (2015), where they studied the sparse linear regression
model. But the lower bounds are different. Ours is bigger; it
can go to 0 very slowly if r� is close to log p/ log n.

Assumption 3 (Bounds for r� and θ�) For some positive con-
stant b2, b4, and b5, r� ≤ b2 log p/ log n, ‖θ�‖ ≥ b4 and
‖θ�‖1,1 ≤ b5s� log p/λ1 if m = 1 and 1 ≤ q ≤ 2 and
‖θ�‖2 ≤ b5s� log p/λ1 if m = 2 and q = 2.

Assumption 3 requires the true values of θ and r being
bounded. r� cannot be too large. If log p/ log n � r� �
log p, then the rate obtained in Theorem 4.1 will be slower,
i.e., O(

√
r�s� log p/n). The bounds for ‖θ�‖ essentially con-

trol the largest eigenvalue, as ‖θ�‖2 + σ 2 is the largest
eigenvalue of ��. It cannot be either too big or too small.

We now present the main theorem.

Theorem 4.1 For the model in (1) and the subset selection
prior in (19), if Assumptions 1–3 hold, then for sufficiently
large constants M1, M2, and M3 ≥ M2/b4, as n goes to
infinity,

E f ��
(
θ : |S| > M1s�|X)→ 0, (20)

E f ��
(‖� − ��‖ ≥ M2εn|X)→ 0, (21)

E f ��
(∥∥UU ′ − U �U �′∥∥ ≥ M3εn|X)→ 0, (22)

where εn = √
s� log p/n.

In Theorem 4.1, we derive the posterior contraction rate
under the spectrum loss. The minimax rates for using the
spectrum loss havebeen studied byCai et al. (2015).Consider
the parameter space

�0(s, p, r , ρ) =
{
� : 0 ≤ ‖θ·r‖22 ≤ ‖θ·1‖22 ≤ ρ, U ∈ Vr ,r ,

|S| ≤ s
}
,

the minimax rate of estimating � for r ≤ s ≤ p is√
(ρ+1)s

n log
( ep

s

)+ ρ2r
n ∧ ρ. Comparing it to the rate we

obtained, assuming ρ is fixed and s ≥ r , our rate is sub-
optimal as the log factor in our rate is log p but in the

minimax rate, it is log(p/s). Cai et al. (2015) also provided
the minimax rate for the projection matrix. Assuming a more
restrictive parameter space �1(s, p, r , ρ, τ ),

�1(s, p, r , ρ, τ ) =
{
� : ρ/τ ≤ ‖θ·r‖22 ≤ ‖θ·1‖22 ≤ ρ,

U ∈ Vr ,r , |S| ≤ s
}
,

the minimax rate is
√

(ρ+1)s
nρ2 log

( ep
s

)∧1. Again, if ρ is fixed,

the rate we obtained is suboptimal.
One may ask if we could obtain the same rate as that

in Theorem 4.1 if we use the Frobenius norm as the loss
function (in short, Frobenius loss). This is in fact possible,
and the proof can simply follow the argument in Gao and
Zhou (2015). However, one needs to impose a lower bound
for ‖θ ·r‖22. Although in practice, the lower bound can be
introduced through the prior, e.g., using a truncated prior,
the exact value is hard to determine. Thus, we did not choose
this prior.

4.2 Contraction rate of the variational posterior

We study the contraction rate of the variational posterior
in (7). Recent studies on this topic have provided exciting
results of the variational method and developed useful tools
for studying their theoretical properties (e.g. Ray and Szabo
2022; Wang and Blei 2019; Yang et al. 2020; Zhang and Gao
2020). Ray and Szabo (2022) and Yang et al. (2020) studied
the spike and slab posterior with the linear regression model
and obtained a (near-)optimal rate for their posterior. Zhang
and Gao (2020) proposed a general framework for deriving
the contraction rate of a variational posterior. We derive the
rate by directly applying this general framework, as our vari-
ational posterior is intractable, and using a direct argument
(e.g., those in the linear regressionmodel) is impossible. The-
orem 4.2 shows that the rate of the variational posterior is
also εn (but with a larger constant). Proofs of the theorem are
provided in the supplemental material.

Theorem 4.2 With the model (1) and the subset selection
prior (19), if P̂(θ) ∈ PMF and Assumptions 1–3 hold, then
for large constants M4 and M5, as n goes to infinity,

Q̂(‖� − ��‖ ≥ M4εn|X) → 0, (23)

Q̂(‖UU ′ − U �U �′‖ ≥ M5εn|X) → 0. (24)

5 The PX-EM algorithm

The EM algorithm is another popular algorithm that is used
in Bayesian high-dimensional analysis. In this section, to
understand the strength of PX-CAVI, we also develop its EM
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analog, referred to as the PX-EM algorithm. The parameter
expansion steps for the PX-EM algorithm mirror those used
in the PX-CAVI algorithm. The PX-EM algorithm requires
us to use the continuous spike and slab prior, which is

π(θ, S|λ1, λ0) ∝
∫

A

p∏
j=1

[
γ j g(θ j |λ1, A, r)

+ (1 − γ j )g(θ j |λ0, A, r)
]
π(A)d A, (25)

where λ0 
 λ1. By comparing to (2), the Dirac measure is
replaced by the continuous density with a large variance. The
priors for the rest parameters remain the same.

Our PX-EM algorithm contains two steps: E-step and M-
step. In the E-step, expectations are takenwith respect to both
w and γ . We then obtain

wi |θ(t), X ∼ N (ωi , Vw), (26)

γ j ∼ Bernoulli(γ̃ j ), (27)

where θ(t) and κ(t) are the estimated values of θ and κ from
the t-th iteration and

Vw = σ 2(θ(t)′θ(t) + σ 2 Ir )
−1, ωi = σ−2Vwθ(t)′ Xi , (28)

γ̃
(t)
j = P(γ j = 1|θ(t), κ(t), X) = a(t)

j

a(t)
j + b(t)

j

, (29)

where a(t)
j = exp(−λ1‖θ(t)

j ‖m
q + log κ(t)) and b(t)

j =
exp(−λ0‖θ(t)

j ‖m
q + log(1 − κ(t))).

To obtain the objective function, we first apply param-
eter expansion to the likelihood, same as that in the
PX-CAVI algorithm. The expanded parameter becomes
β̃ = βD = θ AD. The spike and slab prior is then
directly applied on β̃. The objective function is given by
Q(β̃, κ|θ(t), A(t), D(t), κ(t)), where

Q = Ew, γ |θ(t),κ(t) logπ(β̃, w|X)

= C −
p∑

j=1

(
1

2σ 2

∥∥∥ML β̃ ′
j − d j

∥∥∥
2

2

+(γ̃ jλ1 + (1 − γ̃ j )λ0)‖β̃ j‖m
q

)

+ (‖ γ̃ ‖1+α1−1) log κ+ (p−‖ γ̃ ‖1+α2−1) log(1−κ),

(30)

where C is a constant, ML is the lower triangular part from
the Cholesky decomposition, M = ∑n

i=1 ωiω
′
i + nVw, and

d j = ML
−1∑n

i=1 ωi Xi j .

In the M-step, we maximize the objective function and
obtain

̂̃β j = argminβ̃ j

{
1

2σ 2

∥∥∥ML β̃ ′
j − d j

∥∥∥
2

2
+ pen j‖β̃ j‖m

q

}
,

(31)

κ̂ = α1 + ‖γ̃ ‖1 − 1

p + α1 + α2 − 2
, (32)

where pen j = γ̃ jλ1 + (1 − γ̃ j )λ0. Then θ̂ is obtained using

β̃ = θ ADL , where D̂ = 1
n

∑n
i=1 ωiω

′
i + Vw and Â is

obtained by applying the SVD on the matrix ̂̃β D̂−1
L .

In (31), we choose m = 1 and let q = 1 and 2. When
q = 1, the expression is similar to that of the adaptive lasso
(Zou et al. 2006). When q = 2, the penalty term is then
similar to it in the group lasso method (Yuan and Lin 2006).
Despite those similarities, the tuning parameter in (31) can
be updated during each EM iteration; however, in both of the
two aforementioned literature, their tuning parameters are
chosen to be fixed values. The benefit of allowing the tuning
parameter to update is explored by Ročková (2018), which
studied the sparse normal mean model.

Last, we obtain

σ̂ 2 = Tr(X ′ X) − 2
∑p

j=1 d j MLθ ′
j +∑p

j=1 θ j Mθ ′
j + 2σb

np + 2(σa + 1).
(33)

Algorithm 2: The PX-EM algorithm
Data: X , a p × n matrix, centered and scaled

Input: θ(0), σ (0), r , number of total iterations T , and the
threshold δ

For t = 0, . . . , T − 1, repeat:
– Update ω(t+1) and V (t+1)

w from (26) and γ̃ (t+1) from (27);
– Update β̃

(t+1)
j from (31)

– Update κ(t+1) from (32)
– Update D(t+1) and A(t+1) and then obtain θ(t+1) and U (t+1)

– Update σ (t+1) from (33)
– Evaluate the objective function Q(t+1) in (30)

Stop: if
∣∣ log Q(t+1) − log Q(t)

∣∣ ≤ δ

Output: θ̂ = θ(t+1), U = Û (t+1), γ̂ = ̂̃γ (t+1)
, and σ̂ = σ̂ (t+1).

We conclude this section by offering theoretical justifi-
cation for utilizing parameter expansion to accelerate the
convergence speed of the EM algorithm. We observed that
the convergence speed improves with both parameter expan-
sions. Intuitively, by Dempster et al. (1977), the speed
of convergence is determined by the largest eigenvalue of
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S(�) = I −1
com(�)Iobs(�), where

Iobs(�) = −∂2 log(�|X)

∂�∂�′

∣∣∣∣
�=��

and

Icom(�) = −∂2Q(�|�)

∂�∂�′

∣∣∣∣
�=��

. (34)

We denote� as the collection of all the unknown parameters
and �� as the true values. Let � be the expanded parame-
ter and �̃ = (�,�). We found that the largest eigenvalue
of S(�̃) is bigger than that of S(�). Thus, the convergence
speed is increased. In Lemma 5.1, we provide a formal state-
ment of this result. Proof of Lemma 5.1 is provided in the
supplementary material.

Lemma 5.1 Given that the PX-EM algorithm converges to
the posterior mode, both parameter expansions speed up the
convergence of the original EM algorithm.

6 Simulation study

In this section, we conduct four simulation studies to eval-
uate the performance of our proposed PX-CAVI algorithm.
Firstly, we compare the use of a product of Laplace density
(i.e., q = 1 and m = 1 in g (3)) with the multivariate normal
density (i.e., q = 2 and m = 2 in g (3)) within the PX-CAVI
algorithm. Next, we compare the PX-CAVI algorithm with
the PX-EM algorithm. Additionally, we introduce the batch
PX-CAVI algorithm, which does not require θ to be jointly
row-sparse, and compare it with two other penalty methods
for SPCA and the conventional PCA. In the final study, we
assume that r is unknown and demonstrate that the algorithm
is less sensitive to the choice of r . Throughout all the studies,
we set σ 2 to be fixed. However, in the R packagewe provided,
it has the capability to estimate σ 2 automatically.

The dataset is generated as follows: First, given r�, s�, and
p, we generate U � using the randortho function in R. Next,
we set σ 2 = 0.1 and choose the diagonal values of �� to be
an equally spaced sequence from 10 to 20 (i.e., the largest
value is 20 and the smallest value is 10); however, in the first
study, we will choose different values for ��; see Sect. 6.2
for details. Last, we obtain�� = U ���U �′ +σ 2 Ip and gen-
erate n = 200 independent samples from N (0, ��). Then,
the dataset is an n × p matrix. For each simulated dataset,
we obtain the following quantities: the Frobenius loss of the
projection matrix ‖ÛÛ ′ − U �U �′‖F , the percentage of mis-
classification also known as the average Hamming distance
‖̂z − γ � ‖1/p, the false discovery rate (FDR), and the false
negative rate (FNR). The hyperparameters in the prior are
chosen as follows: λ1 = 1, α1 = 1, α2 = p + 1, σa = 1, and
σb = 2. Also, we set the total iterations T = 100, ι = 0.1,

and the threshold δ = 10−4. To determine whether γ j = 1
or 0, we choose the threshold to be 0.5.

6.1 On choosing the initial values for PX-CAVI
and PX-EM

Before presenting the simulation results, let us discuss how
we obtained the initial values for the PX-CAVI algorithm,
as well as the batch PX-CAVI algorithm, and the initial
values for the PX-EM algorithm. We carefully explored dif-
ferent choices of initial values and found that the PX-CAVI
algorithm exhibits robustness against variations in the initial
values. Consequently, the algorithm is not overly sensitive
to the specific choices of initializations. Therefore, we esti-
mated μ̂(0) using the conventional PCA and set ẑ(0) = 𝟙′

p.

For M̂ (0)
j , we let it be an identity matrix times a small value

(i.e., 10−3). Finally, for (̂σ (0))2, we chose it to be the smallest
eigenvalue of the Gramian matrix X ′ X/(n − 1).

The PX-EM algorithm is more sensitive to poor initializa-
tions than the PX-CAVI algorithm. To address this concern,
we employed two strategies aimed at alleviating this issue.
The first one is through prior elicitation, which is proposed
by Ročková and Lesaffre (2014). We replaced (27) with its
tempered version given by

γ̃
(t)
j = P(γ j = 1|θ(t), X) =

(
a(t)

j

)ι
(

a(t)
j

)ι +
(

b(t)
j

)ι . (35)

where ι < 1 is fixed. In the simulation study, we fix ι = 0.1.
Another strategy is to choose the “best-guess” of ini-

tial values using the path-following strategy proposed by
Ročková and George (2016). First, we chose a vector con-
taining a sequence of values of λ0, {λ(1)

0 , . . . , λ
(I )
0 }, where

λ
(1)
0 = λ1 +2

√
ρmin with ρmin being the smallest eigenvalue

of X ′ X/(n − 1), and λ
(I )
0 = p2 log p. Next, we obtained an

initial value of θ using the conventional PCAand repeated the
following process: At i-th step, set λ0 = λ

(i)
0 and chose the

input values as their output values obtained from the (i −1)-
th step. We repeated this I times until all the values in that
sequence of λ0 are used. Finally, the values output from the
last step are used as the initial values for the PX-EM algo-
rithm. As can be seen, comparing to the PX-CAVI algorithm,
obtaining the initial values of the PX-EM algorithm takes a
much longer time.

6.2 Laplace density vs normal density

Let r� = 1, then g is the Laplace distribution (m = 1, q = 1)
and the normal distribution (m = 2, q = 2). We con-
ducted simulation studies of the PX-CAVI algorithm and
compared the use of two distributions. We chose ‖θ�‖2 ∈

123



118 Page 10 of 16 Statistics and Computing (2024) 34 :118

{1, 3, 5, 10, 20} and p ∈ {100, 1000}. For each setting,1000
datasets are generated. Simulation results are provided in
Table 1.

From Table 1, we observed the following results: For
p = 100, there is no significant difference between using
the normal and the Laplace densities, as their results are sim-
ilar. However, when p = 1000, using the normal density
yields better results, as indicated by the smaller average value
of the Frobenius loss of the projection matrix. In the case
of p = 1000, the normal density outperforms the Laplace
density in estimating weaker signals (e.g., observed in the
Frobenius loss when |θ�| = 1). The computational speed
using the normal density is faster than the Laplace density.
This is because when choosing the Laplace density, the algo-
rithmneeds to solve the two nonlinear functions (12) and (13)
in each iteration. The computational speed notably increases,
particularly when r > 2 using the Laplace density, and solv-
ing the two Eqs. (12) and (13) becomes more challenging.
Based on these findings, we recommend using the multivari-
ate normal density, especially when the rank r is large, as
it provides improved performance and computational effi-
ciency in comparison to the Laplace density.

6.3 Comparison between PX-CAVI and PX-EM

In this study, we compare the PX-CAVI algorithm with the
PX-EM algorithm. Two options for q in (31) are considered
for the PX-EM algorithm: q = 1 representing the �1-norm,
and q = 2 representing the �2-norm. We observed that the
algorithm using the �1-norm outperforms the one using the
�2-norm in terms of parameter estimation (see the simu-
lation result in the Supplementary Material). Henceforth,
we utilized the �1-norm. The true parameter values were
chosen as follows: We fixed s� = 20, and r� = 2 and
chose q = 1, s� ∈ {10, 40, 70, 150}, r� ∈ {1, 3, 5}, and
p ∈ {500, 1000, 2000, 4000}. We ran both the PX-CAVI
and the PX-EM algorithms. The results are given in Table 2.
As we mentioned in Sect. 6.1, choosing the initial values for
the PX-EM algorithm takes a longer time, and thus, we were
only able to run 100 simulations. For the PX-CAVI, the result
is based on 1000 simulations.

We remark two findings in Table 2. First, in general, the
PX-CAVI algorithm is better than the PX-EM algorithm in
both parameter estimation and variable selection. When s�

and r� are large, the PX-CAVI algorithm is more accurate.

Although it seems thatwhen s� and r� are small (e.g., s� = 10
and r� = 1 and s� = 40 and r� = 1), the Frobenius loss and
the percentage ofmisclassification are bigger in thePX-CAVI
algorithm than the PX-EM algorithm. However, the standard
errors associate with the Frobenius loss when s� = 10 and
r� = 1 is 0.011 and s� = 40 and r� = 1 is 0.015. For
the percentage of misclassification, the standard errors are
0.1 when s� = 10 and r� = 1 and 0.2 when s� = 40 and
r� = 1. Consequently, the observed differences between the
two algorithms are insignificant. Our second notable finding
is that both algorithms effectively control the FDR. However,
the PX-CAVI algorithm exhibits better control over the FNR,
resulting in more accurate and desirable variable selection
outcomes.

6.4 The batch PX-CAVI vs other SPCA algorithms

The PX-CAVI algorithm assumes θ to be jointly row-sparse.
In the Supplementary Material, we propose the batch PX-
CAVI algorithm, which relaxes this assumption, allowing
each principal component to have identical support. The
batch PX-CAVI algorithm updates the coordinates belonging
to the same row simultaneously. To evaluate the performance
of the batch PX-CAVI algorithm, we compare it with two
other popular algorithms for SPCA: the elastic net method
proposed by Zou et al. (2006) and the robust SPCA method
proposed by Erichson et al. (2020). Both of these methods
are penalty-based approaches, and their tuning parameters
are fixed (unlike the PX-EM algorithm). They are often used
in practice, and their R packages elasticnet and sparsepca
are available on CRAN.

To determine the optimal values of the tuning parameters
for each algorithm, we consider a vector containing 100 val-
ues and estimate the Frobenius loss of the projection matrix
for each value in ascending order. The tuning parameter that
results in the smallest Frobenius loss value is selected as the
optimal value. The results are presented in Table 3. Notably,
we observed that the batch PX-CAVI algorithm outperforms
the other three algorithms listed in the table with the small-
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Table 1 Simulation results of
the PX-CAVI algorithm using
the Laplace and Normal densitis

‖θ�‖2 Prior p = 100 p = 1000

Frob Misc(%) FDR FNR Frob Misc(%) FDR FNR

1 Normal 0.156 2.4 0.000 0.026 0.174 0.3 0.000 0.003

Laplace 0.156 2.4 0.000 0.026 0.190 0.3 0.000 0.003

3 Normal 0.076 1.4 0.000 0.015 0.082 0.1 0.000 0.001

Laplace 0.076 1.4 0.000 0.015 0.088 0.2 0.000 0.002

5 Normal 0.055 1.0 0.000 0.012 0.059 0.1 0.000 0.001

Laplace 0.055 1.0 0.000 0.012 0.062 0.1 0.000 0.001

10 Normal 0.036 0.8 0.000 0.008 0.038 0.1 0.000 0.001

Laplace 0.036 0.8 0.000 0.008 0.039 0.1 0.000 0.001

20 Normal 0.024 0.5 0.000 0.006 0.026 0.1 0.000 0.001

Laplace 0.024 0.5 0.000 0.006 0.026 0.1 0.000 0.001

We fixed n = 200, s� = 20 and r� = 1 and chose p ∈ {100, 1000} and ‖θ�‖2 ∈ {1, 3, 5, 10, 20}. For each
setting, we ran 1000 simulations and computed the average values of the Frobenius loss of the projection
matrix, the percentage of misclassification, FDR, and FNR

Table 2 Simulation results of the PX-CAVI and the PX-EM algorithms. We fixed n = 200 and chose s� ∈ {10, 20, 40, 70, 150}, r� ∈ {1, 2, 3, 5},
and p ∈ {500, 1000, 2000, 4000}

Frobenius loss Misc (%) FDR FNR

p s� r� PX-CAVI PX-EM PX-CAVI PX-EM PX-CAVI PX-EM PX-CAVI PX-EM

1000 10 1 0.025 0.024 0.1 0.1 0.000 0.001 0.001 0.001

1000 10 3 0.039 0.040 0.1 0.0 0.000 0.000 0.000 0.000

1000 10 5 0.043 0.043 0.1 0.0 0.000 0.000 0.000 0.000

1000 40 1 0.061 0.054 0.5 0.4 0.000 0.001 0.006 0.004

1000 40 3 0.092 0.128 0.0 0.1 0.000 0.000 0.000 0.001

1000 40 5 0.113 0.128 0.0 0.1 0.000 0.000 0.000 0.001

1000 70 1 0.089 0.093 1.2 1.2 0.000 0.000 0.016 0.013

1000 70 3 0.126 0.214 0.1 0.4 0.000 0.000 0.001 0.005

1000 70 5 0.155 0.212 0.0 0.1 0.000 0.000 0.000 0.002

1000 150 1 0.145 0.155 3.5 3.7 0.000 0.000 0.052 0.042

1000 150 3 0.194 0.463 0.3 2.6 0.000 0.000 0.010 0.029

1000 150 5 0.231 0.520 0.0 1.5 0.000 0.000 0.002 0.017

500 20 2 0.054 0.067 0.0 0.1 0.000 0.000 0.001 0.001

1000 20 2 0.054 0.072 0.0 0.1 0.000 0.000 0.000 0.001

2000 20 2 0.055 0.063 0.0 0.0 0.000 0.000 0.000 0.001

4000 20 2 0.055 0.057 0.0 0.0 0.000 0.000 0.000 0.001

For each setting, we ran 100 simulations for the PX-EM and 1000 simulations for the PX-CAVI. We computed the average values of the Frobenius
loss of the projection matrix, the percentage of misclassification, FDR, and FNR

est estimation and selection errors, regardless of the values
of p, s�, and r�. Furthermore, the algorithm proposed by
Zou et al. (2006) shows better performance than Erichson
et al. (2020)’s method when r� is large. As expected, all
three algorithms (batch PX-CAVI and two penalty methods)
outperform the conventional PCAmethod. The program was
executed on aMacBook Pro laptop with a 2.9 GHz Intel Core
i7 processor and 16 GB memory. With specific parameters
set at n = 200, p = 1000, s = 10, and r = 2, the average
running time for a single simulation were found to be 14.96 s

for the PX-CAVI algorithm, 0.281s for the method proposed
by Zou et al. (2006), and 0.498s for the method introduced
by Erichson et al. (2020). The running time of our PX-CAVI
algorithm can be further accelerated by using parallel com-
puting to update ̂̃u j in (12) and (14) for each j = 1, . . . , p
in Algorithm 1.
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Table 3 Simulation results of
the batch PX-CAVI
(bPX-CAVI) algorithm, the two
SPCA algorithms proposed by
Zou et al. (2006) and Erichson
et al. (2020) (namely, sPCA1
and sPCA2), and PCA

Frobenius loss Misclassification (%)

p s� r� bPX-CAVI sPCA1 sPCA2 PCA bPX-CAVI sPCA1 sPCA2

1000 10 1 0.025 0.073 0.066 0.222 0.1 0.1 0.1

1000 10 3 0.046 0.169 0.359 0.461 0.1 0.3 10.5

1000 10 5 0.052 0.207 0.607 0.593 0.1 0.6 26.5

1000 40 1 0.061 0.115 0.114 0.222 0.5 0.8 0.5

1000 40 3 0.131 0.261 0.348 0.462 0.6 2.7 8.3

1000 40 5 0.164 0.342 0.565 0.593 0.6 2.4 26.7

1000 70 1 0.089 0.145 0.151 0.222 1.2 1.8 1.2

1000 70 3 0.193 0.316 0.368 0.462 1.3 3.4 9.1

1000 70 5 0.247 0.417 0.565 0.593 1.3 14.5 27.3

1000 150 1 0.145 0.189 0.203 0.223 3.5 4.2 3.5

1000 150 3 0.321 0.405 0.422 0.463 4.1 8.4 12.3

1000 150 5 0.405 0.526 0.594 0.593 4.1 16.3 28.7

500 20 2 0.068 0.183 0.257 0.273 1.3 2.3 1.2

1000 20 2 0.068 0.175 0.268 0.383 0.1 1.8 0.1

2000 20 2 0.070 0.215 0.285 0.532 0.1 0.6 0.2

4000 20 2 0.072 0.332 0.304 0.725 0.1 0.1 0.0

We fixed n = 200 and chose s� ∈ {10, 20, 40, 70, 150}, r� ∈ {1, 2, 3, 5}, and p ∈ {500, 1000, 2000, 4000}.
For each setting, we ran 1000 simulations and obtained the average values of the Frobenius loss of the
projection matrix and the percentage of misclassification

Table 4 Simulations for the
PX-CAVI algorithm choosing
different input values for r

|〈Û·1, U �·1〉| |〈Û·2, U �·2〉| |〈Û·3, U �·3〉| |〈Û·4, U �·4〉| Misc (%)

r = 1 0.868 (0.180) 1.1 (0.3)

r = 2 0.864 (0.188) 0.798 (0.217) 0.2 (0.1)

r = 3 0.866 (0.186) 0.801 (0.216) 0.855 (0.170) 0.0 (0.1)

r = 4 0.869 (0.183) 0.803 (0.214) 0.855 (0.171) 0.932 (0.104) 0.0 (0.0)

r = 5 0.868 (0.183) 0.803 (0.214) 0.855 (0.170) 0.933 (0.104) 0.0 (0.0)

r = 20 0.881 (0.173) 0.811 (0.213) 0.850 (0.176) 0.933 (0.099) 0.0 (0.0)

Let r� = 4, n = 200, p = 1000, and s� = 70, and we generated 1000 datasets. For each value r ∈
{1, 2, 3, 4, 5, 20}, we calculated the average values (and the standard errors) of the quantity, |〈Û·k , U �·k〉|, and
the percentage of misclassification

Table 5 The results of the top
10 references IDs of genes and
the total numbers of active
genes of the first two principal
components estimated by the
PX-CAVI and the batch
PX-CAVI (bPX-CAVI)
algorithms and PCA

Ranking 1st principal component 2nd principal component

PX-CAVI bPX-CAVI PCA PX-CAVI bPX-CAVI PCA

1 38691_s_at 38691_s_at 38691_s_at 41209_at 41209_at 39220_at

2 37004_at 37004_at 37004_at 39,220_at 39220_at 41,209_at

3 33383_f_at 33383_f_at 33383_f_at 38430_at 38430_at 38430_at

4 35926_s_at 35926_s_at 35926_s_at 34708_at 34708_at 34708_at

5 37864_s_at 37864_s_at 37864_s_at 33377_at 40607_at 40607_at

6 41723_s_at 41723_s_at 41723_s_at 40607_at 33377_at 33377_at

7 38096_f_at 38096_f_at 38096_f_at 36780_at 36119_at 36119_at

8 38194_s_at 38194_s_at 38194_s_at 36119_at 36780_at 36780_at

9 33274_f_at 33274_f_at 33274_f_at 32452_at 32452_at 32452_at

10 33500_i_at 33500_i_at 33500_i_at 32052_at 35730_at 35730_at

# of nonzeros 1183 1469 5000 1183 795 5000
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Fig. 1 The three plots in the first row are the first three principal component scores estimated using the PX-CAVI algorithm and the three plots at
the bottom are the same score functions estimated using the batch PX-CAVI algorithm

6.5 Unknown r

The previous three studies assumed that r is known. In this
study,we investigate the scenariowhere r is unknown.Rather
than modifying our algorithms to estimate r directly—which
could increase computation time and introduce complexity
in choosing initial values—we propose a practical approach
of plugging in a value for r before conducting the analysis.
This plugged-in value can be obtained through other algo-
rithms or based on prior studies. Importantly, the accuracy of
the plugged-in value is not critical. This study is designed as
follows: We set r� = 4, n = 200, p = 1000, and s� = 70.
The input value of r is chosen to be r = 1, 2, 3, 4, 5, 20. For
each value, we ran the PX-CAVI algorithm and obtained the
average values of |〈Û·k, U �·k〉| and the percentage of misclas-
sification from 1000 simulations. Note that Û·k is the k-th
eigenvector from μ̂; Û·k and U �·k are close if |〈Û·k, U �·k〉| is
close 1. The results are provided in Table 4. From that table,
we found that regardless of the input value r , even when
r = 20, the results are similar. Additionally, we noticed
that as the rank increases, the accuracy of variable selection
improves.

7 A real data study

This section applies the PX-CAVI and batch PX-CAVI algo-
rithms to analyze a lung cancer dataset. This a gene expres-
sion dataset, accessible through the R package sparseBC,
which comprises expression levels of 5000 genes and 56
subjects. These subjects encompass 20 pulmonary carci-
noid subjects (carcinoid), 13 colon cancermetastasis subjects
(colon), 17 normal lung subjects (normal), and 6 small cell
lung subjects (small cell). The primary objective is to iden-
tify biologically relevant genes correlated with lung cancer
and distinguish the four different cancer types.

To prepare the data for analysis, we center and scale it
before running each algorithm. In this study, we set the rank
r = 8, as it captures over 70% variability. Furthermore, we
are particularly interested in the first three principal compo-
nents (PCs). Therefore, selecting r = 8 serves the purpose
well. Table 5 presents the top 10 reference IDs of genes
identified from the first and second PCs. Each reference ID
corresponds to a specific gene, and this correspondence can
be validated using the NCBI website. For instance, the refer-
ence ID ‘38,691_s_at’ represents the gene 6440 (see https://
www.ncbi.nlm.nih.gov/geoprofiles/62830018).

From Table 5, we made the following observations. The
top ten genes of the first principal component obtained from
all three algorithms are the same. In the second PC, the order
might vary slightly, but overall, the results are similar. We
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conducted a gene count analysis to determine the number of
genes with nonzero loading values for each PC. For PCA,
which does not impose sparsity on the loadings matrix, the
total number of nonzeros is equal to the total number of
genes. The PX-CAVI algorithm ensures that all PCs have the
same number of nonzero loadings by the jointly row-sparsity
assumption. This property leads to easier interpretation, as
there is no concern about specific genes being selected in
the first PC but not in second PC. The batch PX-CAVI algo-
rithm employs fewer genes than the PX-CAVI algorithm to
construct the second PC. By comparing their score func-
tions in Fig. 1, we observed that using either 1183 genes
or 795 genes to represent PCs does not result in significant
differences. This demonstrates the advantage of the batch
PX-CAVI algorithm in utilizing fewer genes to construct PCs
while maintaining comparable performance. Additionally,
we provided the first three PC scores estimated by both algo-
rithms and highlighted the four different cancer types using
different colors. As shown in the PC scores, the four cancer
types are well-separated, indicating the effectiveness of our
algorithms in distinguishing between the different types of
lung cancer.

8 Conclusion and discussion

In this paper, we proposed the PX-CAVI algorithm (also the
batch PX-CAVI algorithm) and its EM analogue the PX-
EM algorithm for Bayesian SPCA. These algorithms utilized
parameter expansion to effectively handle the orthogonality
constraint imposed by the loading matrix and enhance their
convergence speeds. We demonstrated that the PX-CAVI
algorithm outperforms all other algorithms discussed in the
paper, showcasing its superiority. Furthermore, we studied
the posterior contraction rate of the variational posterior,
providing a novel contribution to the existing literature.Addi-
tionally, our findings revealed that choosing the normal (or
multivariate normal) density for g yielded better results com-
pared to the heavier-tailed Laplace density.

Future studies include understanding why the Laplace
density of the current prior fails to yield smaller estima-
tion errors even in the rank one case and choosing other
shrinkage priors such as the product moment prior in John-
son and Rossell (2010) and the non-local priors considered in
Avalos-Pacheco et al. (2022). Additionally, the uncertainty
quantification problem of SPCA remains unexplored, despite
the rich literature on this topic for the sparse linear regres-
sion model (see van der Pas et al. 2017; Belitser and Ghosal
2020; Castillo and Roquain 2020; Martin and Ning 2020).
Moreover, gaining a deeper understanding of the variational
posterior, i.e. its conditions for achieving variable selection
consistency would be valuable. Lastly, an interesting avenue
for exploration involves extending our proposed method to

the unsupervised learning setting, as explored in She (2017).
In this context, the row-wise sparsity and row-rank restric-
tions can be imposed through priors that is similar to the those
considered in the current paper. Our R package VBsparsePCA
for the PX-CAVI and batch PX-CAVI algorithms is available
on CRAN, offering a practical tool for researchers to apply
these algorithms in their analyses.
Supplementary Material

Supplement to “Spike and slab Bayesian sparse prin-
cipal component analysis”
(). In this supplementary material, we present the batch PX-
CAVI algorithm, include the simulation results of the the
PX-EM algorithm by choosing �1-norm and �2-norm in its
penalty term, give the proofs of Theorems 4.1 and 4.2 and
Lemma 5.1, and provide some auxiliary lemmas.

Appendix A: Derivation of (12)–(18)

First, we need the following result:

Ew|�(t)

[
1

2σ 2

n∑
i=1

(Xi j − β̃ jwi )
2

]

= 1

2σ 2

n∑
i=1

(
X2

i j − 2Xi j β̃ j ω̃i + β̃ j Hi β̃
′
j

)
, (36)

where Hi = ω̃i ω̃
′
i + Ṽw and the expressions of w̃i and Ṽw

are given in (10).
Since the ELBO is a summation of p terms, we solve u j

and M j for each j . As the posterior conditional on γ j = 0 is
singular to the Dirac measure, we only need to consider the
case γ j = 1. This leads to minimize the function

Eũ j ,M̃ j ,z j |γ j =1

[
1

2σ 2

n∑
i=1

(
−2Xi j β̃ j ω̃i + β̃ j Hi β̃

′
j

)

+ log
N (̃u j , σ

2M̃ j )

κ◦
j g(β̃ j |λ1)

]

= C − 1

σ 2

n∑
i=1

Xi j ũ j ω̃i

+ 1

2σ 2

n∑
i=1

(
ũ j Hi ũ

′
j + Tr

(
σ 2M̃ j Hi

))

+ λ1

r∑
k=1

f (̃u jk, M̃ j,kk),

where κ◦
j = ∫ π(γ j |κ)d�(κ). Then we take the derivative

of ũ j and M̃ j to obtain (12) and (13). The solutions in (14)
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are obtained by changing λ1
∑r

k=1 f (̃u jk, M̃ j,kk) in the last

display with λ1
2σ 2

(
ũ j ũ′

j + σ 2 Tr(M j )
)
.

To derive (15), we have

EP
(
Ew|�(t)π(β̃ j , w, X) − log q(β̃ j )

)

= C + Eμ̃ j ,M̃ j ,z j

[
1

2σ 2

n∑
i=1

(
−2Xi j β̃ j ω̃i + β̃ j Hi β̃

′
j

)

+ 𝟙{γ j =0} log
1 − z j

1 − κ◦
j

+ 𝟙{γ j =1} log
z j N (μ̃ j , σ

2M j )

κ◦
j g(β̃ j |λ1)

]

= C + (1 − z j ) log
1 − z j

1 − κ◦
j

+ z j

{
1

2σ 2

n∑
i=1

(
μ̃ j Hi μ̃

′
j + σ 2 Tr (M̃ j Hi ) − 2Xi j μ̃ j ω̃i

)

+ r log

( √
2√

πσλ1

)
− 1

2
log det(M̃ j ) − 1

2

+ λ1

r∑
k=1

f (μ̃ jk, σ
2M̃ j,kk) + log

z j

κ◦
j

}
. (37)

The solution of ĥ j can be obtained byminimizing z j from
the last line of the above display. Similarly, (16) is obtained
by minimizing z j from the following expression

C + z j

{
1

2σ 2

n∑
i=1

(
μ̃ j Hi μ̃

′
j + σ 2 Tr (M̃ j Hi ) − 2Xi j μ̃ j ω̃i

)

− r log λ1 + 1

2
− 1

2
log det(M̃ j ) + λ1

2σ 2

(
ũ j ũ′

j + Tr (σ 2 M̃ j )
)

+ log
z j

κ◦
j

}
+ (1 − z j ) log

1 − z j

1 − κ◦
j
. (38)

Last, to obtain (17), we first sum the expressions in (37) for
all j = 1, . . . , p. Next, wewrite down the explicit expression
of C which involves σ 2, i.e.,

pCσ 2 = (np + 2σa + 2) log σ 2

2
+ Tr(X ′ X) + 2σb

2σ 2 .

Last, we plugging the above expression and solve σ 2. The
solution (18) can be obtained similarly using (38).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10430-
8.
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