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Abstract
In the training process of machine learning, the minimization of the empirical risk loss function is often used to measure
the difference between the model’s predicted value and the real value. Stochastic gradient descent is very popular for this
type of optimization problem, but converges slowly in theoretical analysis. To solve this problem, there are already many
algorithms with variance reduction techniques, such as SVRG, SAG, SAGA, etc. Some scholars apply the conjugate gradient
method in traditional optimization to these algorithms, such as CGVR, SCGA, SCGN, etc., which can basically achieve linear
convergence speed, but these conclusions often need to be established under some relatively strong assumptions. In traditional
optimization, the conjugate gradient method often requires the use of line search techniques to achieve good experimental
results. In a sense, line search embodies some properties of the conjugate methods. Taking inspiration from this, we apply
the modified three-term conjugate gradient method and line search technique to machine learning. In our theoretical analysis,
we obtain the same convergence rate as SCGA under weaker conditional assumptions. We also test the convergence of our
algorithm using two non-convex machine learning models.

Keywords Machine learning · Empirical risk loss function minimization · Stochastic conjugate gradient · Linear convergence

1 Introduction

The core problemof algorithms inmachine learning is how to
find a suitable model from limited training data so that it can
make accurate predictions or decisions on unknown data. To
address this problem,machine learning researchers have pro-
posed different learning criteria and optimization methods to
guide the model selection and training process. The learn-
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ing criterion of empirical risk minimization (ERM), which is
applied to the recently popular GPT (Generative Pretrained
Transformer) model. GPT is an autoregressive language
model based on the Transformer structure. It can achieve
excellent performance in a variety of natural language pro-
cessing tasks through large-scale unsupervised pretraining
and supervised fine-tuning. The training process of GPT
involves the idea of empirical riskminimizationOuyang et al.
(2022), that is, to improve the generalization ability of the
model on the test set by minimizing the loss function of the
model on the training set. Taking general linear regression
as an example, assuming that the loss function is the mean
square error, plus l2 regularization, the minimization of the
objective function can be written as

min
ω,b

1

2m

m∑

i=1

(yi − ωT xi − b)2 + λ‖ω‖22
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wherew ∈ �L is theweight vector of themodel,b is the inter-
cept, yi is the observed value of sample i , and xi is the feature
vector of sample i . n is the total number of samples and λ

is the regularization hyperparameter. We use Fi : �L → �
to denote the objective function for the i-th sample, and then
the above can be written in a more general form:

min
ω

F(ω) =

m∑

i=1

Fi (ω)

m
(1.1)

The full gradient descent algorithm Cauchy (1847) is a clas-
sic algorithm to solve the above problems. The basic idea
is that each time the parameters are updated, the gradient
information on the entire training set is used to advance a
certain step in the opposite direction of the gradient, thereby
gradually reducing the value of the loss function until it con-
verges to a local minimum or global min. However, when
the training set is large, calculating the gradient will be very
time-consuming, and the same gradient must be calculated
repeatedly every time the parameters are updated, resulting in
inefficiency. In addition, the full gradient descent algorithm is
also sensitive to the choice of learning rate. If the learning rate
is too large or too small, it will affect the convergence speed
and effect. In order to overcome the shortcomings of the full
gradient descent algorithm, many improved methods have
appeared: Bottou (2010); Bottou et al. (2018); Robbins and
Monro (1951); Goodfellow et al. (2016). At the same time, in
order to increase the convergence rate of SGD algorithms, Le
Roux Schmidt et al. (2017) proposed an SGD method with
variance technology, and based on this work, more gradi-
ent methods with variance technology such as CGVR (Jin
et al. (2018)), SCGN (Yuan et al. (2021a)), SCGA (Kou
and Yang (2022)), and their common feature is that they all
use the stochastic conjugate gradient method. Among them,
CGVR and SCGA are both hybrid conjugate gradient meth-
ods, and both achieve linear convergence rates under strong
convex conditions. In addition to this, there are also adaptive
methods that are popular in machine learning such as: Ada-
Grad (Lydia and Francis (2019)), AdaDelta (Zeiler (2012)),
Adam (Kingma and Ba (2014)). Due to their adaptive step
size and relatively robust selection of hyper-parameters, they
perform well on many problems even without fine-tuning
hyper-parameters.With the increasing size of data inmachine
learning problems, and the good performance of traditional
conjugate gradient methods in dealing with large-scale equa-
tions, we have reason to believe that the stochastic conjugate
gradient method can be better applied in machine learning.

1.1 Conjugate gradient method

Considering the traditional unconstrained optimization prob-
lem:

min{ f (x) | x ∈ �L}, (1.2)

where f : �L → �. The conjugate gradient method is a
important algorithm to solve the problem (1.2), which is a
method between the steepest descent method and theNewton
method. It overcomes the slow convergence of the steepest
descent method and avoids the disadvantage of the Newton
method that needs to calculate the Hesse matrix. The CG
method, which is defined by

ds+1 =
{−gs+1 + βsds, if s ≥ 0,

−gs+1, if s = 0,
(1.3)

where gs+1 = ∇ f (xs+1) is the gradient of f (x) at xs+1, and
βs ∈ � is a scalar which has four classic CG formulas with

βPRP
s = gTs+1ys+1

‖gs‖2 , [22, 23, 27]

βFR
s = gTs+1gs+1

‖gs‖2 , [20]

βHZ
s = gTs+1ys+1(dTs ys+1 − 2‖ys+1‖2(gTs+1ds))

yTs+1ds
, [21]

βDY
s = gTs+1gs+1

yTs+1ds
, [25],

where ‖·‖ denote the Euclidean norm and yk+1 = gs+1−gs .
For better theoretical or numerical results, many scholars
have revised these classical directions Yuan et al. (2022a,
2021b, a, 2022b, 2019); Wang et al. (2022). Among them,
Yuan et al. (2019) obtained the global convergence of PRP
through a modified wolf line search. Recently, the adap-
tive conjugate gradient method proposed by Wang and Ye
(2023) has a better performance in training neural networks
for image processing. CGVR is a hybrid of FR and PRP
methods on the basis of SVRG (Johnson and Zhang (2013)),
and SCGA is a similar work on SAGA (Defazio and Bach
(2014)). Although both of them exhibit faster convergence
rates experimentally, both require strong theoretical assump-
tions in convergence analysis, which is worthy of our further
study. Jiang et al. (2023) weakens the hypothesis by restart-
ing the coefficients. In order to weaken the condition of the
assumption, it prompts us to think about the direction of
descent and the step size. Inspired by Yuan, we consider
using line search to get some better theoretical properties.
As we all know, when we require the step size to satisfy the
strong wolf step size condition Wolfe (1969), we can avoid
the case where the direction is not the descending direction,

f (xs + αsds) ≤ f (xs) + ηαs∇ f (xs)
T ds,

|∇ f (xs + αsds)
T ds | ≤ −σ∇ f (xs)

T ds
(1.4)
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where 0 < η < σ < 1. Due to its strong properties and
numerical effects, some scholars use the strong wolfe con-
dition in stochastic optimization problems (Kou and Yang
(2022); Jin et al. (2018)).

2 Inspiration and algorithm

Inspired by many scholars and the conjugate gradient and
line search for continuous optimization in the introduction,
we want to apply the new conjugate gradient method and
line search to stochastic optimization problems. Here we
first review two different gradient estimates in stochastic
methods. In stochastic optimization algorithms, using the
mini-batch sampling method can improve computational
speed, avoid redundant samples, and accelerate convergence.
Thismethod achieves acceleration by processing only a small
portion of the data per iteration, while ensuring accuracy of
results. It significantly reduces computational costs and is
more easily applicable to large-scale datasets. The gradient
estimation expression of the mini-batch SAGA algorithm is
as follows::

Gs = ∇FCs (ωs) −

∑

i∈Cs

∇Fi (ω[s−1])

|Cs | +

m∑

i=1

∇Fi (ω[s−1])

m
(2.1)

whereω[s] represents the latest iterate at which∇Fi was eval-
uated, Cs represents the s-th small batch and |Cs | represents
the size of the batch. ∇Fi (ω[s]) is the gradient of the i-th
sample at iterate ω[i]. Taking the expectation from the above
equation can be seen that it is an unbiased estimate. The first
three-term CG formula is presented by Zhang et al. (2007)
for continuous optimization problems (1.2):

ds+1 =
{

−gs+1 + gTs+1ys+1ds−gTs+1ds ys+1

‖gs‖2 , if s ≥ 1

−gs+1, if s = 0,
(2.2)

we write in a more general form:

ds+1 = −gs+1 + βs+1ds − θs+1ys+1

where ys+1 = gs+1 − gs , βs+1 is a parameter of the stan-
dard PRP conjugate gradient method, θs+1 is a parameter of
the three-term CG method. βs+1 and θs+1 are calculated as
follows:

βs+1 = gTs+1ys+1

‖gs‖2 , θs+1 = gTs+1ds
‖gs‖2 (2.3)

Some studies on the three-term conjugate gradient method
have shown that it has the good property. In Kim et al. (2023),

he applied the three-term conjugate gradient method to the
artificial neural network, which is comprehensively com-
pared with SGD, Adam, AMSGrad Reddi et al. (2019) and
AdaBelief Zhuang et al. (2020) methods and is competitive,
but it doesn’t do much theoretical analysis. Kou and Yang
(2022) tried to add the conjugate gradient method to SAGA
and got SCGA. Yang (2022) combining mini-batch SARAH
(Nguyen et al. (2017)) with FR conjugate gradient methods
named CG-SARAH-SO. Huang et al. (2023) combined the
modified PRP with SARAH to propose BSCG. Inspired by
Yang, Kou and Kim, can we take advantage of the property
of the three-term conjugate gradient to obtain the conver-
gence rate estimated in other gradients? we try to use the
excellent properties of conjugate gradient directions, remove
some assumptions, and adopt a new direction inspired:

ds+1 =
{

−gs+1 + yTs+1gs+1ds−dTs gs+1 ys+1

μ1‖ys+1‖‖ds‖+μ2‖ys+1‖‖gs+1‖+‖gs‖2 , if s ≥ 1

−gs+1, if s = 0,

(2.4)

we try to apply direction (2.4) to the stochastic optimization
problem:

Ps+1 =
{−Gs+1 + Bs+1Ps − Os+1Ys+1, if s ≥ 1

−Gs+1, if s = 0,
(2.5)

where Ps+1 represents the descending direction of the sam-
ple iteration and Ys+1 = Gs+1 − Gs . Bs+1 and Os+1 are
calculated as follows:

Bs+1 = GT
s+1Ys+1

μ1‖Ys+1‖‖Ps‖ + μ2‖Ys+1‖‖Gs+1‖ + ‖Gs‖2 ,

(2.6)

Os+1 = GT
s+1Ps

μ1‖Ys+1‖‖Ps‖ + μ2‖Ys+1‖‖Gs+1‖ + ‖Gs‖2
(2.7)

Dai (2002) proposes two Armjio-style line search methods,
one of which is as follows:

f (xs+1) ≤ f (xs) + ηαsg
T
s ds,

gTs+1ds+1 ≤ −σ2‖gs+1‖2
(2.8)

given constants t ∈ (0, 1), η > 0,σ2 ∈ (0, 1], αs =
max{t, t2, ...}. In fact, the second search line of this line
includes sufficient descent, but because it uses the direction
when s = s + 1, it leads to a large amount of calculation
when looking for the step size. In order to make the step size
more acceptable, we are in a correction item has also been
added to the Armjio condition. Inspired by Yuan et al. (2019)
of modifying Wolfe’s line search criterion, we modify Dai’s
line search. In order to get an appropriate step size αk , we
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design a modifed inexact line search:

f (xs+1) ≤ f (xs)+max{η1αsg
T
s ds,−η2α

2
s ‖gs‖2},

gTs+1ds+1+σ1‖ds+1‖2 ≤ −σ2‖gs+1‖2
(2.9)

where η1 and η2 are constants in (0,1) and σ2+σ1 > 1, σ1 ≤
1, σ2 > 0, when σ1 is small enough, it approximates the sec-
ond criterion of (2.8). It can lead to some useful conclusions
with the nature of the direction when discussing the conver-
gence of the algorithm later. We write (2.9) in the form of a
random line search and apply it to a stochastic optimization
problem to find the step size:

FC (xs+1) ≤ FC (xs) + max{η1αsG
T
s Ps,−η2α

2
s ‖Gs‖2},

GT
s+1Ps+1 + σ1‖Ps+1‖2 ≤ −σ2‖Gs+1‖2 (2.10)

Direction (2.1) calculated by the conjugate gradient
method and modified line search (2.10), we give the algo-
rithm SATCG. Due to the properties of sufficient descent
and trust region, we have reasons to believe that SATCG
possesses better theoretical properties compared to SCGA
and CGVR.

The remainder of this paper is organized as follows. In
Section 1, we review the SGD algorithm, gradient estimation
methods with variance reduction techniques, and conjugate
gradient methods. In Section 2, inspired by the SCGA and
three conjugate gradient methods, we propose the SATCG
algorithm. In Section 3, we provide a theoretical analysis of
SATCG. In Section 4, we analyze the experimental perfor-
mance of SATCG in two machine learning models.

2.1 Contribution

♦ We provide a convergence analysis of SATCG in the
non-convex condition, and compared to SCGA and CGVR,
SATCG exhibits superior theoretical properties, achieving
linear convergence rate with fewer assumptions.

♦We analyze the performance of SATCG in twomachine
learning models and find that it exhibits better numerical
performance than traditional SGD methods on large-scale
datasets. We also compare it to adaptive algorithms. Addi-
tionally, we investigate the performance of SATCG and
SCGA on small-sized datasets. Overall, SATCG demon-
strates superior convergence properties compared to tradi-
tional SGD algorithms and remains competitive with SCGA,
while providing more stable numerical performance.

3 Features and convergence of SATCG

Assumption 3.1 For all of the individual function ∇Fi (ω) is
Lipschitz smooth. From the properties of Lipschitz, we can

Algorithm 1 SATCG
1: Choose an initial iterate ω[0] ∈ �L ,and step size α0
2: for i=1,2,...,m do
3: Compute ∇Fi (ω0)

4: Store ∇Fi (ω[0]) ← ∇Fi (ω0)

5: end for

6: Set the initial stochastic gradient G0 = 1
m

m∑

i=1

∇Fi (ω0)

7: Set the initial direction P0 = −G0
8: for s=1,2,... do
9: Find the step size αs−1 satisfying (2.10).
10: Update iterate ωs ← ωs−1 + αs−1Ps−1.
11: Choose mini-batch C ⊂ {1,...,n} of size b uniformly random,

compute (2.1)
12: Set Gs ← ∇FCs (ωs) − μCs + μs−1
13: Compute Bs , Os by

Bs = GT
s Ys

μ1‖Ys‖‖Ps−1‖ + μ2‖Ys‖‖Gs‖ + ‖Gs−1‖2 ,

Os = GT
s Ps−1

μ1‖Ys‖‖Ps−1‖ + μ2‖Ys‖‖Gs‖ + ‖Gs−1‖2
14: Determine Ps ← −Gs + Bs Ps−1 − OsYs
15: Update ∇Fj (ω[s]) ← ∇Fj (ωs), ∀ ∈ Cs , while other entries of

the stored full gradient remain unchanged.

16: Update μs ← 1
m

m∑

i=1

∇Fi (ω[s])

17: end for

obtain the following conclusion:

F(ω) ≤ F(v)+ < ∇F(v), ω − v > + L

2
‖ω − v‖2 (3.1)

Assumption 3.2 ThePolyak-ojasiewicz (PL) conditionholds
for some 	 > 0.

F(ω) − F(ω∗) ≤ 2	‖∇F(ω)‖2

where F(ω∗) is the lower bound on the function F . The PL
condition does not contain any convexity, an example in the
article in Karimi et al. (2016): f (x) = x2 + 3sin2x , when
	 = 8, the PL condition is satisfied, but the function is non-
convex.

Theorem 3.1 We can derive the following two properties
based on Direction 1:

GT
s Ps = −‖Gs‖2 (3.2)

and

‖Ps‖ ≤ (1 + 2

μ1
)‖Gs‖ (3.3)
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Proof When s=1, (3.2) and (3.3) obviously hold. For s > 2,
by (2.4) we have

GT
s Ps = GT

s [−Gs + Y T
s Gs Ps−1 − PT

s−1GsYs
μ1‖Ys‖‖Ps−1‖ + μ2‖Ys‖‖Gs‖ + ‖Gs−1‖2 ]

= −‖Gs‖2 + Y T
s Gs PT

s−1Gs − PT
s−1GsY T

s Gs

μ1‖Ys‖‖Ps−1‖ + μ2‖Ys‖‖Gs‖ + ‖Gs−1‖2
= −‖Gs‖2

We can get: GT
s Ps = −‖Gs‖2 ≥ −‖Gs‖‖Ps‖, then ‖Ps‖ ≥

‖Gs‖. By (2.4) we have

‖Ps‖ = ‖ − Gs + Y T
s Gs Ps−1 − PT

s−1GsYs
μ1‖Ys‖‖Ps−1‖ + μ2‖Ys‖‖Gs‖ + ‖Gs−1‖2 ‖

≤ ‖Gs‖ + 2‖Ys‖‖Gs‖‖Ps−1‖
μ1‖Ys‖‖Ps−1‖ + μ2‖Ys‖‖Gs‖ + ‖Gs−1‖2

≤ ‖Gs‖ + 2‖Ys‖‖Gs‖‖Ps−1‖
μ1‖Ys‖‖Ps−1‖ + μ2‖Ys‖‖Gs‖ + ‖Gs−1‖2

≤ (1 + 2

μ1
)‖Gs‖

In summary, (3.2) and (3.3) are established. The theorem is
still satisfied when the direction is (2.4) and the line search
is (2.9).

Lemma 3.1 Suppose that x1 is a starting point that satis-
fies satisfy the gradient L-smooth. Consider the descending
direction to satisfy (2.4), where the stepsize αs is determined
through line search (2.9). In this case, for every s, line search
will compute apositive stepsizeαs >0andgenerate adescent
direction ds+1. Furthermore, it can be shown that:

αs ≥ min{1, c1}, c1 = 2t(1 − η1)

L

So we can say that there will be an upper and lower bound
on the step size αs that satisfies αs ∈ [α1, 1], 0< α1 <1.

Proof Since d1 = −g1, d1 is a descent direaction.
For any ᾱs , define xs+1 = xs + ᾱsds , similar to proofs in

Dai (2002). As theorem 3.1 shows gTs ds = −‖gs‖2, then

− ‖gs+1‖2 + σ1‖ds+1‖2 ≤ −σ2‖gs+1‖2 ≤ − σ2
(1+ 2

μ1
)2

‖ds+1‖2

(σ1 + σ2
(1+ 2

μ1
)2

)‖ds+1‖2 ≤ ‖gs+1‖2

Because σ2 + σ1 > 1 and ‖Ps‖ ≤ (1 + 2
μ1

)‖Gs‖ holds.
The above equation clearly exists. From the properties of
Lipschitz, then we have that

f (xs+1) − f (xs) ≤ η1ᾱsg
T
s ds

≤ max{η1ᾱsg
T
s ds,−η2ᾱs‖gs‖2},

f or all ᾱs ∈ (0,
2t(1 − η1)

L

|gTs ds |
‖ds‖2 )

Because the gTs ds = −‖gs‖2, by theorem 3.1, we can derive
the ᾱs ∈ (0, 2(1−η1)

L ). There due to line search determines
a positive stepsize ᾱs > 0 and further, above holds with
constant c1 = 2t(1−η1)

L .

Theorem 3.2 Assuming that the step size satisfies condition
1 and is in the direction of 2.5, then the gradient Gs satisfy

‖Gs+1‖
‖Gs‖ ≤ 2μ1 + 4

μ1μ2(1 − 1−σ1
σ2

)
= β

It is evident that when 2μ1+4
μ1μ2

< σ2−σ1−1
σ2

, the inequality

β = ‖gs+1‖
‖gs‖ < 1 holds true.

Proof Multiply Ps+1 at both ends of the direction (2.4)

‖Ps+1‖2 = −PT
s+1Gs+1

+ Y T
s+1Gs+1PT

s+1Ps − PT
s Gs+1PT

s+1Ys+1

μ1‖Ys+1‖‖Ps‖ + μ2‖Ys+1‖‖Gs+1‖ + ‖Gs‖2

≤ ‖Gs+1‖2 + 2‖Ys+1‖‖Gs+1‖‖Ps+1‖‖Ps‖
μ1‖Ys+1‖‖Ps‖ + μ2‖Ys+1‖‖Gs+1‖ + ‖Gs‖2

≤ 1 − σ1

σ2
‖Ps+1‖2 + 2

μ2
‖Ps+1‖‖Ps‖

The inequality in the last line is due to the second line of the
search (2.10):

−‖Ps+1‖2 + σ1‖Ps+1‖2 ≤ GT
s+1Ps+1 + σ1‖Ps+1‖2

≤ −σ2‖Gs+1‖2

By (3.2) and (3.3), when the ‖Ps+1‖ �= 0, we get

(1 − 1 − σ1

σ2
)‖Gs+1‖ ≤ (1 − 1 − σ1

σ2
)‖Ps+1‖

≤ 2

μ2
(1 + 2

μ1
)‖Gs‖

then we have

‖Gs+1‖
‖Gs‖ ≤ 2μ1 + 4

μ1μ2(1 − 1−σ1
σ2

)

Lemma 3.2 Let ω∗ be the unique minimizer of F. Taking
expectation with respect to Cs of ‖G0‖2, we obtain

E[‖G0‖2] ≤ 2L[F(ω0) − F(ω∗)]

For details, see Lemma 4 of the Kou and Yang (2022).

Theorem 3.3 Suppose that Assumptions 3.1, and Theorem
3.2 hold. Let ω∗ be the unique minimizer of F. Then, for all
s ≥ 0, we have taking expectation in this relation conditioned
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on Cs. From Lemma 3, it can be known that the step size
searched by line search (2.9) has upper and lower bounds,
so the step size of (2.10) also has upper and lower bounds.
Assuming that we choose α1 < 2	(1 − β2), we can get the
linear convergence rate of the algorithm.

Proof By ωs+1 = ωs + αs Ps , the inequality (3.1) can be
written as

FCs (ωs+1) − FCs (ωs) ≤ αsG
T
s ds + 1

2
α2
s L‖Ps‖2

On Cs taking expectations on both sides of inequality,

E[F(ωs+1)] − E[F(ωs)]
≤ E[αsG

T
s Ps] + 1

2
α2
s LE[‖Ps‖2]

≤ −αs E[‖Gs‖2] + 1

2
α2
s L(1 + 2

μ1
)2E[‖Gs‖2]

≤ −α1E[‖Gs‖2]

+ [ Lα2
s

2
(1 + 2

μ1
)2]E[‖Gs‖2]

≤ −α1‖E[Gs]‖2 + [ Lα2
s

2
(1 + 2

μ1
)2]β2s E[‖G0‖2]

≤ −α1‖∇F(ωs)‖2

+ [ L
2

(1 + 2

μ1
)2]β2s2LE[F(ω0) − F(ω∗)]

The second inequality uses (3.3), the third inequality can be
obtained from Lemma 3.1, and the fourth inequality uses
Theorem 3.2. The last line can be obtained by Lemma 3.2
and Lemma 3.3. Adding the expectation of F(ω∗) to both
sides of the inequality, we get

E[F(ωs+1)] − E[F(ω∗)]
≤ (1 − α1

2	
)(E[F(ωs)] − E[F(ω∗)])

+ [L2(1 + 2

μ1
)2]β2s E[F(ω0) − F(ω∗)]

Then, we define

ξ = 1 − α1

2	

T (i) = L2(1 + 2

μ1
)2β2i

T = 1 + L2(1 + 2

μ1
)2

1

ξ − β2

Xs+1 = E[F(ωs+1)] − E[F(ω∗)]

The above formula can be expressed as:

Xs+1 ≤ (1 − α1

2	
)Xs + T (s)X0

≤ (1 − α1

2	
)2Xs−1 + T (s − 1)X0 + T (s)X0

(3.4)

We scale the right side of (3.4) to s = 0 has the following
formula:

Xs+1 ≤ [ξ s+1 +
s∑

i=0

ξ s−i T (i)]X0

s∑

i=0

ξ s−i T (i) = ξ s L2(1 + 2

μ1
)2

s∑

i=0

(
β2

ξ
)i

= ξ s L2(1 + 2

μ1
)2
1 − (

β2

ξ
)s+1

1 − β2

ξ

Through the above conclusions, we can get the linear con-
vergence rate of the algorithm 1

E[F(ωs+1)] − E[F(ω∗)] ≤ [ξ s+1

+ ξ s L2(1 + 2

μ1
)2

1

1 − β2

ξ

]E[F(ω0) − F(ω∗)]

≤ ξ s+1[1 + L2(1 + 2

μ1
)2

1

ξ − β2 ]E[F(ω0) − F(ω∗)]
≤ ξ s+1T E[F(ω0) − F(ω∗)]

4 Applications of algorithm inmachine
learningmodels

We used the following two models to evaluate our algorithm,
mainly for the following two reasons:

1. These two models are machine learning models using
non-convex sigmoid loss function, which can better adapt to
the distribution of data and Noise, improve the robustness
and generalization ability of the model. All the codes are
written in MATLAB 2018a on a PC with a 12th Gen Intel(R)
Core(TM) i7-12650H 2.30 GHz and 16 GB of memory.

2. These twomodels represent two different regularization
strategies: Nonconvex regularized ERM model uses non-
convex regularization terms, such as �0 norm or �p norm
(0 < p < 1), To enhance the sparsity of the model; the Non-
convex SVM model uses the �2 norm as a regularization
term to control the complexity of the model. Both strategies
have their own advantages and disadvantages, and we hope
to analyze the performance of our algorithm under differ-
ent regularization settings by comparing their performance
(Tables 1, 2).
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Table 1 Dataset

Data set Training samples Dimension

Adult 32562 123

Covtype 581012 54

Mnist 60000 784

Ijcnn 49990 22

A9a 32561 123

w8a 49749 300

Diabetes 768 8

Fourclass 862 2

German.numer 1000 24

Inosphere 351 34

Splice 1000 60

Sonar 208 60

All of the above datasets have been scaled to the [−1, 1]
range via max-min through the preprocessing phase.

Test model 1

Nonconvex SVM model with a sigmoid loss function

min
1

n

n∑

i=1

Fi (ω) + σ‖ω‖2

where Fi (ω) = 1 − tanh(vi < ω, ui>), u ∈ � and v ∈
{−1, 1} represent the feature vector and corresponding label
respectively.

Test model 2

Nonconvex regularized ERM model with a nonconvex sig-
moid loss function

min
1

n

n∑

i=1

Fi (ω) + σ

2
‖ω‖2

where Fi (ω) = 1
[1+exp(bi aTi ω)] . Binary classification problem

is a common type of problem in machine learning, which
requires us to divide the data into two categories, such as
distinguishing spam and normal emails, or distinguishing
whether a sonar signal is a rock or a metal.

Algorithm comparison

In both model tests, SGD, SAGA, SARAH, Adam, and
Rmsprop all use an initial step size of 0.1, while Adam has
momentum parameters of 0.9 and 0.999, and Rmsprop has
a momentum parameter of 0.99, which are commonly used
settings. The results are presented in Figs. 1 and 2, where we
compare the convergence of SATCG and SGD class algo-
rithms with adaptive algorithms on 8 different datasets. It is
evident that SATCG generally achieves faster convergence
on all datasets and models.

In Figs. 3 and 4, we compare a stochastic conjugate gra-
dient method known as SCGA. Kou’s study also compares
SCGA with CGVR in several small-scale datasets. In addi-
tion, we compare the convergence of SATCG and SCGA
in six smaller datasets. From the experimental results of
Comparative Model 1, we observe that SATCG and SCGA
perform similarly in the diabetes and fourclass datasets, but
SATCG exhibits better descent and stability in the remaining
four datasets. But in Model 2, SCGA has a better perfor-
mance.

Figures5 and 6 show the performance of SATCGwith dif-
ferent regularization coefficients on six small-scale data sets.
It can be seen that SATCGhas better experimental results and
faster decline when the regularization coefficient is smaller.

Table 2 Parmeter value Parmeter Value Description

α 0.1 The initial step size in Adam, Rmsprop, SAGA, SGD,
SARAH

b [√m] Mini batch quantity(the square root of the dataset
dimension is rounded down)

μ1 2 Direction correction factor

μ2 5 Direction correction factor

σ1 0.9 Line search second criterion coefficients

σ2 0.9 Line search second criterion coefficients

η1 0.003 Armjio criterion coefficient

η2 0.003 Armjio criterion coefficient

λ 10−5 Regularization coefficient of the loss function
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Fig. 1 Comparison of SATCG with several classes of algorithms on 12 datasets adult, covtype, ijcnn, mnist, a9a, w8a, diabetes, fourclass,
german.number, inosphere, snoar, splice for Model 1.(The x-axis represents numbers of iterations. The y-axis represents loss function values.)
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Fig. 2 Comparison of SATCG with several classes of algorithms on 12 datasets adult, covtype, ijcnn, mnist, a9a, w8a, diabetes, fourclass,
german.number, inosphere, snoar, splice for Model 2.(The x-axis represents numbers of iterations. The y-axis represents loss function values.)
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Fig. 3 Comparison of SATCG and SCGA on 6 datasets diabetes, fourclass, german.number, inosphere, snoar, splice for Model 1. (The x-axis
represents numbers of iterations. The y-axis represents loss function values.)

Fig. 4 Comparison of SATCG and SCGA on 6 datasets diabetes, fourclass, german.number, inosphere, snoar, splice for Model 2. (The x-axis
represents numbers of iterations. The y-axis represents loss function values.)
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Fig. 5 Compare the performance of SATCG with different regularization coefficients (0.001,0.0001,0.00001) on Model 1. (The x-axis represents
numbers of iterations. The y-axis represents loss function values.)

Fig. 6 Compare the performance of SATCG with different regularization coefficients (0.001,0.0001,0.00001) on Model 2. (The x-axis represents
numbers of iterations. The y-axis represents loss function values.)
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In summary, SATCG offers more advantages compared to
SGD algorithms, and it exhibits greater stability and compet-
itiveness than SCGA, Adam, and Rmsprop.

5 Conclusion

In this paper, we present an extension of the modified tra-
ditional three-conjugate gradient method and line search
technique for immediate optimization. We achieve a linear
convergence rate with weaker conditional assumptions in
our theoretical analysis. Additionally, we test the conver-
gence of our algorithm across 16 datasets using machine
learning models. We compare the results of our algorithm
SATCG with several other mainstream algorithms and find
that SATCG demonstrates faster and more stable conver-
gence.
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