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Abstract
Hilbert-Schmidt Independence Criterion (HSIC) has recently been introduced to the field of single-index models to estimate
the directions. Compared with other well-established methods, the HSIC based method requires relatively weak conditions.
However, its performance has not yet been studied in the prevalent high-dimensional scenarios, where the number of covariates
can be much larger than the sample size. In this article, based on HSIC, we propose to estimate the possibly sparse directions
in the high-dimensional single-index models through a parameter reformulation. Our approach estimates the subspace of the
direction directly and performs variable selection simultaneously. Due to the non-convexity of the objective function and the
complexity of the constraints, a majorize-minimize algorithm together with the linearized alternating direction method of
multipliers is developed to solve the optimization problem. Since it does not involve the inverse of the covariance matrix,
the algorithm can naturally handle large p small n scenarios. Through extensive simulation studies and a real data analysis,
we show that our proposal is efficient and effective in the high-dimensional settings. The Matlab codes for this method are
available online.

Keywords Hilbert-Schmidt independence criterion · Single-index models · Large p small n · Majorization-minimization ·
Sufficient dimension reduction · Variable selection

1 Introduction

Let Y ∈ R be an univariate response and X ∈ R
p be a

p × 1 predictor. The single-index model, as a practically
useful generalization of the classical linear regressionmodel,
considers the following problem

Y = g(β�X, ε), (1.1)

where β is a p×1 vector, ε is an unknown random error inde-
pendent ofX, and g is a link function. Letting span(β) denote
the column subspace spanned by β, then the goal of the
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single-index model is to estimate span(β) without specify-
ing or estimating the link function g. To our best knowledge,
Li and Duan (1989) firstly studied this problem and pro-
posed to estimate span(β) under the linearity condition that
E(X|β�X) is a linear function of β�X. This linearity condi-
tion applies to the marginal distribution of X and is common
in the regression modelling.

Later, Cook (1994, 1998) introduced Sufficient Dimen-
sion Reduction (SDR), which expands the concept of the
single-index model. SDR aims to find the minimal subspace
S ⊆ R

p such that Y ⊥⊥ X|PSX, where⊥⊥ stands for indepen-
dence and PS denotes the projection operator to the subspace
S. Undermild conditions (Cook 1996;Yin et al. 2008), such a
subspace exists and is unique. We call it the central subspace
and denote it by SY |X and its dimension by d = dim(SY |X),
which is often far less than p. When the central subspace is
one dimensional (in other words, d = 1), the corresponding
regression problem is just the single-indexmodel (1.1).Many
methods have been proposed to estimate the central subspace
(Li 1991; Cook and Weisberg 1991; Xia et al. 2002; Cook
and Ni 2005; Zhu and Zeng 2006; Li and Wang 2007; Wang
and Xia 2008; Cook and Forzani 2009; Zeng and Zhu 2010;
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Yin and Li 2011; Ma and Zhu 2012). For a comprehensive
list of references on SDR methods, please refer to Ma and
Zhu (2013).

Unfortunately, one drawback of the SDR methods men-
tioned above is that the estimated linear combinations contain
all the original predictors, which often makes it difficult to
interpret the extracted components. To improve interpretabil-
ity, numerous attempts have been made to perform variable
selection and dimension reduction simultaneously, including
Cook (2004); Ni et al. (2005); Li et al. (2005); Li (2007); Li
and Yin (2008) and Chen et al. (2010). It is known that these
methods perform well when the number of covariates p is
less than the sample size n, but do not work under the sce-
nario p > n. To tackle the difficulty, Yin and Hilafu (2015)
suggested sequential procedures for SDR, and Lin et al.
(2018) proposed the high-dimensional sparse Sliced Inverse
Regression (SIR). Moreover, Wang et al. (2018) introduced
a reduced-rank regression method for estimating the sparse
directions, and Tan et al. (2018) proposed a convex formu-
lation for fitting sparse SIR in high dimensions. Additional
recent approaches to high-dimensional SDR can be found in
Qian et al. (2019); Tan et al. (2020) and Zeng et al. (2022).

In this article, motivated by the work of Zhang and Yin
(2015) and Tan et al. (2018), we develop a new approach for
high-dimensional single-index models via Hilbert-Schmidt
Independence Criterion (HSIC). The proposed method can
perform variable selection and can handle the large p small
n scenarios simultaneously. In comparison to existing high-
dimensional sparse SDRmethods, it requires relatively weak
conditions. The key idea is to reformulate the HSIC based
single-index model by estimating the orthogonal projection
ββ� onto the subspace span(β) rather than span(β) itself,
with the constraints of the nuclear norm relaxing the nor-
malization constraint. Based on the reformulation, a lasso
penalty on the orthogonal projection ββ� is then introduced
to encourage the estimated solution to be sparse. The numer-
ical studies indicate the superiority of the proposed method.

The main contributions of our work are summarized
as the follows. First, our method extends the HSIC-based
single-index regression (Zhang and Yin 2015) to adapt to
sufficient variable selection in large p small n situations via
a smart parameter reformulation. Second, motivated by the
majorization-minimization principle, we design a computa-
tionally fast and efficient algorithm, called MM-LADMM,
to solve the non-convex constrained optimization problem.
Third, a cross-validation procedure is developed to select
the sparsity tuning parameter. Last but not least, our method
can be naturally extended tomultivariate response regression
models where few methods work.

Although the proposed algorithm draws some inspiration
from Tan et al. (2018), it is significantly more complicated
and tricky due to the fact that the objective function in our
method is inherently non-convex while theirs is simply lin-

ear. Moreover, the cross-validation scheme for selecting the
sparsity tuning parameter in Tan et al. (2018) relies on the
assumption that the distribution of X|Y follows a multivari-
ate normal distribution, while our method utilizes a kernel
method to estimate the link function which perfectly avoids
this assumption.

The rest of the article is organized as follows. Section2
reviews the background of the HSIC-based single-index
method and then introduces the sparse single-index regres-
sion via HSIC. Section3 details our proposed algorithm. In
Sect. 4, we conduct extensive simulation studies and a real
data analysis. A short conclusion and some technical proofs
are provided in Sect. 5 and Appendix, respectively.

The following notations will be used in our exposi-
tion. Let ‖ · ‖ denote the �2 norm of a vector and ‖ · ‖F
denote the Frobenius norm of a matrix, respectively. Let
Pη(�) = η(η��η)−1η�� denote the projection operator
which projects onto span(η) relative to the inner product
〈a,b〉 = a��b, and Qη(�) = I − Pη(�), where I denotes
the identity matrix. The trace of a matrix A is denoted by
tr(A), and the Euclidean inner product of two matrices A,B
is denoted by 〈A,B〉 = tr(A�B). We use I(a>0) to denote
the indicator function, and λmax(·) the largest eigenvalue of
a matrix.

2 Methodology

2.1 Review of single–index regression via HSIC

Gretton et al. (2005a, 2007, 2009) proposed an independence
criterion, called the Hilbert-Schmidt independence criterion,
to detect statistically significant dependence between two
random variables. HSIC for univariate X and Y , denoted by
H(X ,Y ), has the population expression

H(X ,Y ) =E
[
K (X − X ′)L(Y − Y ′)

]

+ E
[
K (X − X ′)

]
E

[
L(Y − Y ′)

]

− 2E
{
E

[
K (X−X ′)|X]

E
[
L(Y−Y ′)|Y ]}

,

(2.1)

where X ′ and Y ′ denote independent copies of X and Y , and
K (·) and L(·) are certain positive definite kernel functions.
From (2.1), H(X ,Y ) exists when the various expectations
over the kernels are finite, which is true as long as the kernels
K (·) and L(·) are bounded.

Remark 1 A commonly used kernel is the Gaussian kernel
(see Kankainen 1995), i.e.,

K (X − X ′) := exp

(
−(X−X ′)2

2σ 2
X

)
and
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L(Y − Y ′) := exp

(
−(Y−Y ′)2

2σ 2
Y

)
.

To facilitate computation, we present and implement our
method using the Gaussian kernel throughout the article.

According to Gretton et al. (2005b), for certain kernels,
H(X ,Y ) defined in (2.1) characterizes the distance between
the joint distribution of X ,Y and the product of theirmarginal
distributions. Hence, H(X ,Y ) equals 0 if and only if the two
random variables are independent, which makes possible its
application in the field of SDR. Indeed, under mild condi-
tions, Zhang and Yin (2015) showed that solving (2.2) with
respect to a general p × 1 vector β would yield a basis of
SY |X, or in other words, the single-index direction:

β = argmax
β��β=1

H(β�X,Y ), (2.2)

where� denotes the covariance matrix ofX. Since the HSIC
index H(βTX,Y ) = H(−β�X,Y ), the constraintβ��β =
1 can not give a unique solution of the parameter β. However,
both solutionsβ and−β span the same space,which is unique
and of our interest.

Let {(Xi ,Yi ) : i = 1, . . . , n} be an i.i.d sample of random
vectors (X,Y ), and �̂ and σ̂Y be the sample covariancematrix
and sample variance of X and Y , respectively. The sample
estimate of H(β�X,Y ), denoted by Hn(β

�X,Y ), is the sum
of three U-statistics (see Serfling 1980; Gretton et al. 2007):

Hn(β
�X,Y )= 1

n2

n∑

i, j=1

Ki j (β)Li j − 2

n3

n∑

i, j,k=1

Ki j (β)Lik

+ 1

n4

n∑

i, j,k,l=1

Ki j (β)Lkl , (2.3)

where

Ki j (β) := exp

(
−(β�(Xi−X j ))

2

2β��̂β

)
and

Li j := exp

(
−(Yi−Y j )

2

2σ̂ 2
Y

)
(2.4)

for i, j ∈ {1, . . . , n}. Hence, the estimator of a basis for the
central subspace SY |X is

βn = argmax
β��̂β=1

Hn(β
�X,Y ). (2.5)

Then, the central subspace is estimated as span(βn), and the
estimated index is β�

n X. Zhang and Yin (2015) established
the consistency and asymptotic normality of the above esti-
mator.

2.2 Sparse single–index regression via HSIC

To reduce model complexity and thus to improve interpre-
tation, especially in high-dimensional scenarios, a common
assumption is that only a few number of the covariates are
active in the single-index regression. Therefore, by (2.2), the
single-index direction can be solved by

β = argmax H(β�X,Y ),

s.t. β��β = 1, ‖β‖0 ≤ s,

where ‖β‖0 denotes the number of the non-zero elements in
β and s indicates the number of the active predictors.

A natural estimator of β is then

βn = argmax Hn(β
�X,Y ),

s.t. β��̂β = 1, ‖β‖0 ≤ s,

(2.6)

where Hn(β
�X,Y ) is defined in (2.3). Thus, the central sub-

space is estimated as span(βn), and the estimated index is
β�
n X. In addition, the estimated active predictors are those

associated with non-zero coefficients.
However, solving (2.6) directly is absolutely not trivial.

Indeed, the optimization (2.6) with �0 norm is known to be an
‘NP hard’ problem, since it would require searching through
all

(p
s

)
sub-vectors of β satisfying the equality constraints,

which takes exponential time in s. Moreover, the objective
function of β in (2.6) may not be convex, and the equal-
ity constraint function is not an affine transformation, which
together make the optimization problem much trickier.

3 Algorithm

3.1 Problem reformulation

To solve the sparse single-index regression via HSIC (2.6)
efficiently, we reform the optimization as the follows. Firstly,
instead of using (2.3), we utilize an equivalent form (see
Gretton et al. 2007; Wu and Chen 2021) of Hn(β

�X, Y ),
obtained by replacing the U-statistics with V-statistics

Hn(β
�X,Y ) = 1

n2
tr(KJLJ) = 1

n2

n∑

i, j=1

Ki j (β)L̃i j (3.1)

to facilitate optimization, where K and L are the n × n
matrices with entries Ki j (β) and Li j defined in (2.4), and
J = I − n−111� with 1 denoting a n × 1 vector of ones.
Here, L̃i j denotes the (i, j)-th entry of the product matrix
L̃ = JLJ.
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Given (3.1) and letting� = ββ�, the HSIC-based single-
index regression procedure (2.5) can then be reformulated as
the following minimization problem:

min
�∈M

− 1

n2

n∑

i, j=1

exp

(
−〈�,Zi j 〉

2

)
L̃i j ,

s.t. �̂
1/2

��̂
1/2 ∈ B,

(3.2)

where Zi j = (Xi − X j )(Xi − X j )
�, B = {�̂1/2

��̂
1/2 :

β��̂β = 1}, and M is the set of p × p symmetric positive
semi-definite matrices. In this new formulation, our focus
is changed to directly estimate the orthogonal projection �

onto the subspace spanned by β instead of estimating the
basis β directly.

To further achieve variable selection, we add an �1 penalty
term on � to (3.2) to encourage a sparse estimate:

min
�∈M

− 1

n2

n∑

i, j=1

exp

(
−〈�,Zi j 〉

2

)
L̃i j + λ‖�‖1,

s.t. tr(�̂
1/2

��̂
1/2

) ≤ 1,

(3.3)

where ‖�‖1 = ∑
i, j |�i j | and λ > 0 is a tuning param-

eter. The �1 penalty on � encourages a sparse estimate
for β, and a convex relation with the nuclear norm on

�̂
1/2

��̂
1/2

is implemented on the equality constraint to
facilitate computation. Similar work can be found in sparse
principal component analysis, canonical correlation analysis,
and sliced inverse regression (Vu et al. 2013; Gao et al. 2017;
Tan et al. 2018, ?, 2020). We note that (3.3) may still not be a
canonical convex optimization problem, since the objective
function of � may not be convex, which inspires us to fur-
ther explore the properties of the objective function and then
turn to the majorization-minimization principle (Lange et al.
2000; Hunter and Lange 2004) to obtain a good optimizer;
see the following subsection for algorithmic details.

Remark 2 If the kernel is chosen as the product kernel, we
can naturally extend the above method to settings where
the response is multivariate. That is, for a q-dimensional
response Y = (Y1, . . . ,Yq)�, we use the product kernel to
compute L̃i j in (3.3):

L(Y − Y′) :=
q∏

i=1

exp

(
−|Yi − Y

′
i |2

2σ 2
Yi

)

,

whereY′ = (Y
′
1, . . . ,Y

′
q)

� is an independent copy ofY. Our
simulation shows that this extension works quite well. See
Studies 5 and 6 in the following numerical study.

3.2 TheMM-LADMM algorithm

In this subsection, we propose an efficient optimization algo-
rithm for solving the problem (3.3). Let f (�) denote the
objective function of the problems (3.2).Although f (�)may
not be convex, it is differentiable and has Lipschitz continu-
ous gradient over a bounded convex set. We state properties
of the objective function f (�) in the following proposition,
whose proof is given in the Appendix.

Proposition 3.1 f (�) is differentiable, and its derivative
function is

∇ f (�) = 1

2n2

n∑

i, j=1

exp

(
−〈�,Zi j 〉

2

)
L̃i jZi j , (3.4)

or equivalently,

∇ f (�) = 1

n2
X

� (diag(C1n) − C)X, (3.5)

whereC is a n×n matrixwith the entry ci j= exp(−〈�,Zi j 〉/2
)L̃i j , 1n is a n × n matrix with the entry 1, and X =
[X1, . . . ,Xn]�. Moreover, ∇ f (�) is Lipschitz over the set

D = {� ∈ M : tr(�̂1/2
��̂

1/2
) ≤ 1}.

It is worth noting that we would like to use the expression
form (3.5) instead of (3.4) to calculate the derivative func-
tion∇ f (�). Plus, the Lipschitz continuity property of f (�)

motivates us to design amethod to performe the optimization
from the viewpoint of the majorization-minimization princi-
ple (Lange et al. 2000; Hunter and Lange 2004).

Since the objective function f (�) has a Lipschitz contin-
uous gradient over the bounded set D, there exists a positive
constant L < ∞ such that

f (�) ≤ f (�̃) + 〈� − �̃,∇ f (�̃)〉 + L

2
‖� − �̃‖2F, (3.6)

for all� ∈ D and �̃ ∈ D. Thus, the right hand side of (3.6) is
a majorizing function of f (�) at � (i.e., the right hand side
of (3.6) is greater than or equal to f (�) for all � ∈ D with
equality at � = �̃). This suggests the following Majorize-
Minimize (MM) iteration to solve the problem (3.3):

�(r+1) = argmin
�∈D

{
f (�(r)) + 〈� − �(r),∇ f (�(r))〉

+ L

2
‖� − �(r)‖2F + λ‖�‖1

}
,

= argmin
�∈D

L

2

∥∥
∥∥� −

[
�(r) − 1

L
∇ f (�(r))

]∥∥
∥∥

2

F

+λ‖�‖1, (3.7)
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where �(r+1) and �(r) are the (r + 1)-th and r -th iterates
of the optimization variable �, respectively. By the property
(3.6), we can easily obtain

f (�(r+1)) + λ‖�(r+1)‖1 ≤ f (�(r)) + λ‖�(r)‖1 for all r ,

which means that iterates generated from the algorithm are
guaranteed to monotonically decrease the objective function
value. Hunter and Lange (2004) showed that the sequence
{�(r)}r≥0 obtained by the iterative formula (3.7) converges
to a critical point of the problem (3.3). TheMMalgorithm is a
simple and well-applicable algorithmic framework for solv-
ing such problems. The key challenge inmaking the proposed
algorithm numerically efficient lies in solving the subprob-
lem (3.7).

The subproblem (3.7) is a quadratic problem with a con-
vex constraint, so any local minimum can be guaranteed to
be a global minimum. We employ the Linearized Alternat-
ing Direction Method of Multipliers algorithm (LADMM,
Zhang et al. 2011; Wang and Yuan 2012; Yang and Yuan
2013) to solve it. This algorithm can allow us to tackle the
difficulty caused by the interaction between the penalty term
and the constraints. We give the derivation details of solv-
ing the subproblem (3.7) via the LADMM algorithm in the
Appendix. In practice, we find that this algorithm can solve
the subproblem quite efficiently.

Algorithm 1 presents the entire algorithm flow to solve
the problem (3.3). It has two loops: an outer loop in which
the MM algorithm approximates the original problem (3.3)
iteratively by a series of convex relaxations, and an inner
loop in which the LADMM algorithm is used to solve each
convex relaxation (3.7). In the inner loop, the update of �

performs soft-thresholding, and the update ofH is via a pro-
jection operator which needs to compute a singular value
decomposition and modify the obtained singular values with
a monotone piecewise linear function. For specific details
about the projection operator, please refer to Proposition
6.1 in the Appendix. Matlab codes for implementing the
algorithm are available at https://github.com/CalvinWu-ai/
sHSIC.

Remark 3 Since the optimization problem (3.3) may not be
convex, different initial values �(0) would produce different
local optimizers. To alleviate this problem, the routine proce-
dure is to try multiple initial values and then choose the best
one. However, for ease of calculation, we selected the initial
values �(0) crudely as zero matrices, inspired by a similar
algorithm in Zeng et al. (2022). Despite the possible non-
convexity of the problem (3.3), this crude selection of initial
values works fine throughout all our numerical experiments,
and we suggest this selection for the proposed algorithm.

Algorithm 1: MM-LADMM Algorithm for Solving
(3.3)
Input: {(Xi , Yi ) : i = 1, . . . , n}, the tuning parameter λ, the

Lipschitz constant L , the LADMM parameters ρ > 0 and
τ = 4ρλ2max(�̂).

1 Initialize �(0) ∈ M and H(0) = �̂
1/2

�(0)�̂
1/2

;
2 repeat r = 0, 1, 2, . . .
3 Initialize primal variables �0 = �(r),H0 = H(r), and dual

variable �0 = 0;
4 repeat j = 0, 1, 2, . . .

5 temp ← L

L + τ

[

�(r) − ∇ f (�(r))

L

]

;

6 temp ← temp

+ τ

L + τ

[
� j − ρ

τ
�̂� j �̂ + ρ

τ
�̂

1/2
(H j − � j )�̂

1/2
]
;

7 � j+1 ← Soft

(
temp,

λ

L + τ

)
, where Soft(·, ·) denotes

the soft-thresholding operator: Soft(A, b) =
{Soft(Ai j , b)} = {sign(Ai j )max(|Ai j | − b, 0)} for a
matrix A = (Ai j ). ;

8 H j+1 ← PF (�̂
1/2

� j+1�̂
1/2 + � j ), where PF is defined

in Proposition 6.1 in the Appendix;

9 � j+1 ← � j + �̂
1/2

� j+1�̂
1/2 − H j+1;

10 until stopping criterion met;
11 �(r+1) ← � j+1,H(r+1) ← H j+1,�

(r+1) ← � j+1;
12 until stopping criterion met;

Output: β̂ = the leading eigenvector of �(r+1).

3.3 Tuning parameter selection

The tuning parameter λ in the proposed method determines
the sparsity level of the estimate. Motivated by Tan et al.
(2018),we use anM-fold cross-validation procedure to select
λ. LetC1, . . . ,CM denote M equally sized andmutually dis-
joint subsamples of the whole dataset. The cross-validation
procedure utilizes each single subsample as the test data and
the remaining M −1 subsamples as the training data to com-
pute the prediction error for each λ. Specifically, given a fixed
λ, the corresponding overall prediction error is computed as

1

M |Cm |
M∑

m=1

∑

i∈Cm

{
Yi − Ê(Y |X = Xi )

}2
,

where |Cm | denotes the cardinality of the set Cm and
Ê(Y |X = Xi ) is an estimate of E(Y |X = Xi ) from the
training data. The working tuning parameter is the one which
minimizes the prediction error.

We use the Nadaraya-Watson kernel method to estimate
the conditional expectation E(Y |X). Recall that β̂ is esti-
mated by the top eigenvector of �̂. Given a new data X∗, the
Nadaraya-Watson kernel estimator of the conditional mean
E(Y |X = X∗) is
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Ê(Y |X = X∗) =
n∑

i=1

Kh(β̂
�
(X∗ − Xi ))

∑n
j=1 Kh(β̂

�
(X∗ − X j ))

Yi , (3.8)

where Kh(t) = K (t/h)/h is a kernel function with a band-
width h. To facilitate computation, we use a Gaussian kernel
and take the cross-validation with the leave-one-out estimate
of the residual sum of squares to select the bandwidth. Notice
that there is a trick to compute the cross-validation function
of h with a single fit. This trick vastly reduces the compu-
tational complexity at the price of the increasing memory
consumption. For specific details, please refer to Fan and
Gijbels (1996).

We note that Tan et al. (2018) proposed a similar cross-
validation procedure to select the sparsity tuning parameter.
However, their approach is based on the framework of prin-
cipal fitted components (Cook and Forzani 2008), which
requires the distribution of X|Y to be normally distributed.
Clearly, this assumption is not suitable to our settings and
to various real applications. The proposed procedure, which
includes the Nadaraya-Watson kernel estimate of the condi-
tional mean, does not depend on the distribution of X|Y and
thus avoids the assumption.

4 Numerical study

4.1 Simulations

In this section, we conduct simulations to compare our
method with 3 state-of-the-art high-dimensional sparse SDR
methods: Lasso-SIR (Lin et al. 2019), convex-SIR (Tan et al.
2018) and SEAS (Zeng et al. 2022). Specifically, within the
SEAS framework, we consider 3 SEAS estimators: SEAS-
SIR, SEAS-Intra and SEAS-PFC, all elucidated in Zeng et al.
(2022). For a fair comparison, we use the publicly available
codes and default parameter settings of the above 3 methods.
We use two measures: the True Positive Rate (TPR) and the
False Positive Rate (FPR), to assess how well the methods
select variables. In particular, TPR is defined as the propor-
tion of active predictors that are correctly identified while
FPR is defined as the proportion of irrelevant predictors that
are falsely identified. Hence, an estimator with a bigger TPR
and a smaller FPR is better. Furthermore, we calculate the
absolute correlation coefficient (corr) between the true single
index and its estimator to evaluate accuracy of the methods.
Clearly, a higher absolute correlation coefficient indicates a
better estimator.

Recall that �̂ is an estimator of the orthogonal projection
�, and the estimated vector of coefficients β̂ is obtained
by computing the top eigenvector of �̂. When computing
TPR and FPR in practice, we truncated β̂ by zeroing out
its entries whose magnitude is smaller than 10−4. In all our

simulations, the initial point �(0) of our algorithm started as
the zero matrix. To assess these methods fairly, the following
6 data generating schemes are considered.

Study 1. Thismodel is a classic linear regressionmodel from
Tan et al. (2018):

Y = √
3β�X + 2ε,

where ε ∼ N (0, 1), X = (X1, . . . , X p)
� ∼

Np(0, 	) with 	i j = 0.5|i− j | for 1 ≤ i, j ≤ p,
and X and ε are independent. In this study, the
central subspace is spanned by the vector β =
(1, 1, 1, 0, . . . , 0)�/

√
3 with p − 3 zero coeffi-

cients.
Study 2. This model is a nonlinear regression model from

Yin and Hilafu (2015):

Y = 1 + exp(β�X) + ε,

where ε, X and β are specified as those in Study 1.
Study 3. This model is from Chen et al. (2018):

Y = (β�X + 0.5)2 + 0.5ε,

where ε and X are generated as those in Study 1.
In this study, the central subspace is spanned by
the vector β = (1, 1, 1, 1, 0, . . . , 0)�/2 with p−4
zero coefficients.

Study 4. This model is a mean function model similar to
Zhang and Yin (2015):

Y = sin(β�X) + 0.2ε,

where ε ∼ N (0, 1). The predictor X = (X1, . . . ,

X p)
� is independent of ε and defined as fol-

lows: the last p− 1 components (X2, . . . , X p)
� ∼

Np−1(0, 	) with 	i j = 0.5|i− j | for 2 ≤ i, j ≤ p
and the first component X1 = |X2 + X3| + 0.1ξ ,
where ξ is an independent standard normal ran-
dom variable. In this study, the central subspace is
spanned by the vector β = (1, 1, 1, 0, . . . , 0)�/

√
3

with p − 3 zero coefficients.
Study 5. This model is a multivariate response model com-

bining Study 1 and Study 3:

{
Y1 = β�X + 2ε,

Y2 = (β�X + 0.5)2 + 0.5ε,

where ε ∼ N (0, 1). The predictor X = (X1, . . . ,

X p)
� is independent of ε and defined as those in

Study 1 or 3. In this study, β = (1, 1, 1, 1, 0, . . . ,
0)�/2 with p − 4 zero coefficients.
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Table 1 Summary of Studies
1–4. The mean, averaged over
200 datasets, are reported. All
entries are multiplied by 100.
The bold numbers in each row
highlight the best methods

Method Our method convex-SIR Lasso-SIR SEAS-SIR SEAS-PFC SEAS-Intra

(n, p) = (100, 150)

Study 1 TPR 94.0 97.3 97.0 99.7 99.3 99.3

FPR 1.5 3.5 12.1 4.1 1.7 1.7

corr 87.2 90.2 79.4 94.2 93.8 94.4

Study 2 TPR 99.3 96.5 99.3 100.0 99.7 99.7

FPR 1.0 1.2 9.6 2.8 1.2 1.4

corr 95.6 90.4 87.3 96.3 95.6 95.9

Study 3 TPR 91.4 37.6 44.5 72.3 77.8 70.8

FPR 2.1 7.8 12.0 18.1 7.9 10.2

corr 87.6 32.0 26.7 49.0 62.7 57.8

Study 4 TPR 79.7 36.8 61.0 76.7 65.0 69.0

FPR 1.1 1.6 11.8 8.0 1.0 4.5

corr 83.2 32.0 41.7 63.8 74.1 62.9

(n, p) = (200, 150)

Study 1 TPR 99.3 100.0 100.0 100.0 100.0 100.0

FPR 1.5 2.9 7.0 3.0 1.6 0.7

corr 95.0 96.4 95.1 9.4 97.5 97.7

Study 2 TPR 100.0 100.0 100.0 100.0 100.0 100.0

FPR 2.3 1.1 6.5 0.8 0.7 1.2

corr 98.7 97.9 96.3 98.4 98.5 98.3

Study 3 TPR 100.0 69.6 61.8 89.5 90.8 91.0

FPR 0.7 3.5 8.4 14.7 2.5 5.0

corr 98.6 64.5 48.9 77.6 86.9 84.9

Study 4 TPR 94.2 63.3 74.7 76.7 67.3 79.0

FPR 0.6 0.1 8.4 1.0 0.4 0.9

corr 88.3 75.1 67.0 79.6 80.1 77.4

Study 6. This model is a multivariate response model com-
bining Study 3 and Study 4:

{
Y1 = (β�X + 0.5)2 + 0.5ε,

Y2 = sin(β�X) + 0.2ε,

where ε ∼ N (0, 1). The predictor X = (X1, . . . ,

X p)
� is independent of ε and defined as those in

Study 4. β = (1, 1, 1, 1, 0, . . . , 0)�/2 with p − 4
zero coefficients.

The first four studies mainly focus on univariate response
SDR,while thenext two studies exploremultivariate response
SDR. Since the methods for comparison can not be applied
to the multivariate response cases, the comparison are only
conducted in Studies 1–4. The simulation results are summa-
rized in Table 1. In Study 1, although our method exhibits
a slight advantage over the other methods in terms of FPR,
it generally performs less favorably in comparison to these
methods. This phenomenon can be well explained by that the
SIR-type methods should have the best performance in the

classic linear model. In Study 2, the four methods demon-
strate similar performance. In Study 3, the mean function is
nearly symmetric about 0, which causes serious problems
to the SIR-type methods. Nevertheless, our method is still
valid in this setting and significantly outperforms the other
methods. In Study 4, the linearity condition is destroyed.
Hence, in such a case it is not surprising that our proposed
method performs much better than the methods for compari-
son. To summarize, compared with existing approaches, our
proposed method performs quite well across all the 4 studies
in the high-dimensional setting.

In the first 4 studies, we go futher to examine the influence
of covariate correlation on estimation. Specifically, we gen-
erate X from a multivariate normal distribution Np(0, 	),
where �i j = ρ|i− j |, and then we explore different values of
ρ within the set {0.1, 0.3, 0.5, 0.7, 0.9}. It is evident that a
larger ρ corresponds to a higher level of covariate correla-
tion. The simulation results show that both the performance
of variable selection and estimation accuracy of the pro-
posed method remain quite stable as the correlation among
the covariates increases from ρ = 0.1 to ρ = 0.7, and are
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Table 2 Summary of Study 3.
The mean, averaged over 200
datasets, are reported. All
entries are multiplied by 100

(n, p) = (100, 150) (n, p) = (200, 150)

ρ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Our method TPR 87.1 88.0 91.4 88.4 92.4 99.6 99.5 100.0 99.1 99.5

FPR 3.7 2.2 2.1 1.1 1.8 1.0 0.8 0.7 2.2 1.3

corr 84.8 85.1 87.6 84.6 81.4 98.7 98.4 98.6 95.5 96.5

convex-SIR TPR 38.1 37.8 37.6 28.1 69.0 80.6 78.0 69.6 69.8 68.0

FPR 11.3 8.1 7.8 14.0 72.0 3.2 4.6 3.5 4.8 7.9

corr 26.9 31.5 32.0 17.3 20.5 72.9 68.8 64.5 64.3 56.0

Lasso-SIR TPR 60.2 60.8 44.5 35.5 23.2 86.2 73.2 61.8 53.2 37.0

FPR 17.8 16.7 12.0 10.8 6.1 12.7 10.1 8.4 5.8 4.6

corr 32.8 35.7 26.7 23.8 18.6 65.7 56.1 48.9 45.9 35.4

SEAS-SIR TPR 75.8 75.8 72.3 70.3 68.5 93.5 87.0 89.5 87.5 91.5

FPR 23.3 20.8 18.1 20.7 21.6 22.9 16.3 14.7 12.5 18.9

corr 43.2 50.0 49.0 43.8 42.1 70.6 73.4 77.6 75.0 66.4

SEAS-PFC TPR 74.0 76.5 77.8 73.8 68.5 93.2 92.0 90.8 87.8 86.0

FPR 8.7 10.2 7.9 5.8 6.9 4.4 2.3 2.5 3.0 2.4

corr 59.2 57.8 62.7 61.3 54.2 83.9 87.2 86.9 82.3 75.3

SEAS-Intra TPR 83.0 73.2 70.8 75.5 73.5 92.5 88.5 91.0 85.8 91.0

FPR 16.9 10.5 10.2 7.6 11.8 7.8 5.9 5.0 4.2 10.6

corr 56.8 60.5 57.8 66.3 52.5 80.1 80.3 84.9 78.8 70.3

Table 3 Summary of Studies 5
and 6. The mean, averaged over
200 datasets, are reported. All
entries are multiplied by 100

(n, p) = (100, 150) (n, p) = (200, 150)

Study 5 Study 6 Study 5 Study 6

Our method TPR 99.8 98.9 100.0 100.0

FPR 0.7 2.7 0.4 1.7

corr 95.1 92.5 98.2 95.2

only slightly affected at the high correlation level of ρ = 0.9.
Similar phenomena also occurs in the 3 sparse SDRmethods
for comparison, except that FPR of the convex-SIR estimator
jumps to an extremely high level at ρ = 0.9 in Studies 3–4.
Since the results of Studies 1–4 are similar, we only report
the results for Study 3 in Table 2 as an illustration.

Studies 5 and 6 investigate the performance of the pro-
posed method in multivariate response models. As far as we
know, there seems to be no apparent competitor in such sce-
narios. The results are summarized in Table 3, and we can
see that our proposed method works fine even if the response
is multivariate.

To better understand the computational efficiency of the
proposed algorithm relative to competing approaches, we
record the computation time of each method in Study 3 as
an illustrative example. For a fair comparison, we record
the total computation time for each method, including a 5-
fold cross-validation to select from 50 tuning parameters in a
proper range. The results are displayed in Fig. 1. Subfigures
(a) and (b) plot the log computation time and the absolute
correlation coefficient of each method against the sample

size, respectively. The figures together show that the speed
of our method is comparable to convex-SIR and SEAS-PFC
with significantly high estimation accuracy. Although Lasso-
SIR enjoys the fastest speed, its accuracy seems quite poor in
comparison to the other methods. Furthermore, our method
presents scalability to sample size in the sense that its com-
putation time does not significantly increase as the sample
size increases, while the computation times of other methods
rise with the sample size.

4.2 Real data analysis

In this part, we evaluate the performance of our proposed
method in a real dataset about riboflavin (vitamin B2) pro-
duction with Bacillus subtilis, which is publicly available in
the R package hdi. This dataset was analyzed by Dezeure
et al. (2015); Hilafu and Yin (2017), and Serfling (1980) for
high-dimensional analysis. It consists of a single real-valued
response variable which is the logarithm of the riboflavin
production rate and p = 4088 predictors measuring the log-
arithmof the expression level of 4088genes.Thepurpose is to
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Fig. 1 Box plots of a natural log computation time (seconds) and b absolute correlation coefficient for each SDRmethod for Study 3 with ρ = 0.5

Table 4 Summary of the
regression results in the real
data. The bold numbers in each
row highlight the best two
methods

Our method convex-SIR Lasso-SIR SEAS-SIR SEAS-PFC SEAS-Intra

Adjusted-R2 0.736 0.289 0.833 0.443 0.474 0.557

RMSE 0.409 0.665 0.538 0.591 0.568 0.601

systematically search genomic features that contain sufficient
information for the riboflavin production rate prediction. We
center the response and standardize all the covariates before
analysis.

The sample size n = 71 is small compared with the
covariate dimension p = 4088. To handle the ultrahigh
dimensionality, we preselect the most significant 100 genes
via the sure independence screening procedure based on the
distance correlation (Li et al. 2012). Following the work of
Hilafu and Yin (2017), we split the data into a training set
of 50 samples and a test set of 21 samples. The training set
is used to select features and estimate the central subspace.
To evaluate the performance in the test data, we fit a linear
model with the estimated single index as the predictor, rather
than building a complex model.

We compare the proposed method with convex-SIR,
Lasso-SIR and SEAS, as done in the simulation. Table 4
reports the adjusted-R2 in the training data and Root Mean
Squared Error (RMSE) for the test samples. Specifically,
our method obtained an adjusted R2 73.6% in the training
data with a significantly small RMSE 0.409 for the test data.
Lasso-SIR obtained the largest adjusted R2 83.3% with a
bigger RMSE 0.538, indicating possible overfitting for this
real data set. Convex-SIR and SEAS performed less favor-
ably than the aforementioned two methods. The scatterplots
in Figs. 2 give a clear picture of the performance of the 4
methods in the training data and the test data.

5 Conclusion

In this article, we develop an MM-LADMM algorithm to
handle large p and small n scenarios for single index regres-
sion, extending the HSIC based method of Zhang and Yin
(2015) to adapt to high-dimensional settings. The proposed
approach estimates the basis of the central subspace and
performs sufficient variable selection simultaneously. Com-
pared with other high-dimensional sparse SDRmethods, our
method requires much weaker conditions. To be specific, it
requires verymild conditions onX and no particular assump-
tions on Y |X orX|Y while retaining the model free property.
The simulation studies showed that our method is highly effi-
cient and stable in both n > p and n < p scenarios.

There are several possible prospects for future research. It
may be of interest to extend the proposedmethod tomultiple-
index models, which is absolutely not trivial since it may
need a completely new algorithm design. Moreover, the cur-
rent computational bottleneck of ourmethod is on solving the
majorization step, which bears a computational complexity
of O(p3) per iteration. Thus, it will be also interesting to
redesign a highly efficient algorithm such that the proposed
method is scalable to accommodate large-scale data. Finally,
the asymptotic properties of the proposed estimator, which
are not covered in the current article, are deserved to inves-
tigate in the future.
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Fig. 2 Panel a are the scattterplots of y against the estimated index β̂
�
X in the training set; Panel b are the scatterplots of the actual and predicted

values for the testing samples
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Technical derivations

Proof of proposition 3.1

Proof. We first compute the gradient function ∇ f (�).
Recalling the definition of f (�), we directly have

∇ f (�) = 1

2n2

n∑

i, j=1

exp

(
−〈�,Zi j 〉

2

)
L̃i jZi j .

Noting that C ∈ R
n×n with ci j = exp(−〈�,Zi j 〉/2)L̃i j and

X = [X1, . . . ,Xn]�, we have

∇ f (�) = 1

2n2

n∑

i, j=1

ci jZi j

= 1

2n2

n∑

i, j=1

ci j (Xi − X j )(Xi − X j )
�

= 1

2n2

n∑

i, j=1

ci j
(
XiX�

i + X jX�
j − XiX�

j −X jX�
i

)

= 1

n2

n∑

i, j=1

ci j
(
XiX�

i − XiX�
j

)

= 1

n2
X

� (diag(C1n) − C)X,

which establishes the first part of Proposition 3.1. Next, we
prove the Lipschitz continuity of ∇ f (�) over the bounded

set D = {� ∈ M : tr(�̂1/2
��̂

1/2
) ≤ 1}. For any � ∈ D

and �̃ ∈ D, by the triangle inequality, we obtain

‖∇ f (�) − ∇ f (�̃)‖F

=
∥∥∥∥∥
∥

1

2n2

n∑

i, j=1

exp

(
−〈�,Zi j 〉

2

)
L̃i jZi j

− 1

2n2

n∑

i, j=1

exp

(

−〈�̃,Zi j 〉
2

)

L̃i jZi j

∥
∥∥∥∥∥
F

≤ 1

2n2

n∑

i, j=1

|L̃i j |‖Zi j‖F
∣∣∣
∣exp

(
−〈�,Zi j 〉

2

)
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− exp

(

−〈�̃,Zi j 〉
2

)∣
∣∣∣∣

≤ 1

2n2

n∑

i, j=1

|L̃i j |‖Zi j‖F
∣∣∣
∣∣
〈� − �̃,Zi j 〉

2

∣∣∣
∣∣
,

where the last inequality holds since |ex − ey | ≤ |x − y|, for
any y ≤ x ≤ 0. Further, by the Cauchy-Schwartz inequality,
we know |〈� − �̃,Zi j 〉| ≤ ‖� − �̃‖F‖Zi j‖F. Thus, we
finally get

‖∇ f (�) − ∇ f (�̃)‖F ≤ 1

4n2

n∑

i, j=1

|L̃i j |‖Zi j‖2F‖� − �̃‖F

=
∑n

i, j=1 |L̃i j |‖Zi j‖2F
4n2

‖� − �̃‖F,

where
∑n

i, j=1 |L̃i j |‖Zi j‖2F/(4n2) is a constant, which veri-
fies the claim. �

Linearized alternating directionmethod of
multipliers algorithm for solving (3.7)

To implement the LADMM algorithm, we rewrite the sub-
problem in formula (3.7) as

min
�,H∈M

L

2

∥∥∥
∥� −

[
�(r) − 1

L
∇ f (�(r))

]∥∥∥
∥

2

F
+ λ‖�‖1

+ ∞ · I(tr(H)>1),

s.t. �̂
1/2

��̂
1/2 = H.

This is equivalent to minimizing the following scaled aug-
mented Lagrangian function,

Lρ(�,H,�) = L

2

∥∥∥
∥� −

[
�(r) − 1

L
∇ f (�(r))

]∥∥∥
∥

2

F

+ λ‖�‖1 + ∞ · I(tr(H)>1)

+ ρ

2
‖�̂1/2

��̂
1/2 − H + �‖2F,

where ρ is a small constant and � is the dual variable. The
LADMM algorithm minimizes the augmented Lagrangian
function by alternatively solving one block of variables at a
time. In particular, to update � at the j-th iteration, we need
to minimize

L

2

∥∥
∥∥� −

[
�(r) − 1

L
∇ f (�(r))

]∥∥
∥∥

2

F
+ λ‖�‖1

+ρ

2
‖�̂1/2

��̂
1/2 − H j + � j‖2F,

where H j and � j are the j-th estimates of H and �, respec-
tively. However, there is no closed-form solution for the

above minimization problem. To tackle the difficulty, Fang
et al. (2015) proposed to linearize the quadratic term in the
above problem by applying a second-order Taylor expansion.
Following their work, we obtain the update for �:

� j+1=argmin
�∈M

L

2

∥∥∥
∥� −

[
�(r)− 1

L
∇ f (�(r))

]∥∥∥
∥

2

F
+ λ‖�‖1

+ ρ〈� − � j , �̂� j �̂ − �̂
1/2

(H j − � j )�̂
1/2〉

+ τ

2
‖� − � j‖2F.

As suggested by Fang et al. (2015), we pick τ ≥ 4ρλ2max(�̂)

to ensure the convergence of the LADMM algorithm. The
above iterate can be written in the more familiar notation:

� j+1 = argmin
�∈M

L + τ

2

∥∥∥�

−
{ τ

L + τ

[
� j−ρ

τ
�̂� j �̂+ρ

τ
�̂

1/2
(H j−� j )�̂

1/2
]

+ L

L + τ

[
�(r) − ∇ f (�(r))

L

]}∥∥∥
2

F
+ λ‖�‖1

which has the closed-form solution

� j+1 =
Soft

(
τ

L + τ

[
� j − ρ

τ
�̂� j �̂ + ρ

τ
�̂

1/2
(H j − � j )�̂

1/2
]

+ L

L + τ

[

�(r) − ∇ f (�(r))

L

]

,
λ

L + τ

)

,

where Soft(·, ·) implements the element-wise soft-thresho-
lding on a matrix A = (Ai j ): Soft(A, b) = {Soft(Ai j , b)} =
{sign(Ai j )max(|Ai j | − b, 0)}. Next, the update of H can be
obtained as

H j+1 = argmin
H∈M,tr(H)≤1

1

2
‖H − (�̂

1/2
� j+1�̂

1/2 + � j )‖2F,

which has a closed-form solution according to the following
proposition.

Proposition 6.1 Let F = {H ∈ M : tr(H) ≤ 1} and
PF (W) = argminH∈F ‖H−W‖2F/2. IfW has the singular
value decomposition W = ∑p

i=1 ωiuiu�
i , then PF (W) =∑p

i=1(ωi −θ∗)+uiu�
i , where (ωi −θ∗)+ = max(ωi −θ∗, 0)

and θ∗ is the minimum value satisfying
∑p

i=1(ωi −θ)+ ≤ 1.

The above proposition follows directly from Lemma 4.1 in
Vu et al. (2013), Proposition 10.2 in Gao et al. (2017), and
Proposition 1 in the Appendix of Tan et al. (2018). Thus, by
Proposition 6.1, we have

H j+1 = PF (�̂
1/2

� j+1�̂
1/2 + � j ).
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Finally, we update the dual variable by

� j+1 = � j + �̂
1/2

� j+1�̂
1/2 − H j+1.
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