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Abstract
This article proposes omnibus portmanteau tests for contrasting adequacy of time series models. The test statistics are based
on combining the autocorrelation function of the conditional residuals, the autocorrelation function of the conditional squared
residuals, and the cross-correlation function between these residuals and their squares. The maximum likelihood estimator is
used to derive the asymptotic distribution of the proposed test statistics under a general class of time series models, including
ARMA, GARCH, and other nonlinear structures. An extensive Monte Carlo simulation study shows that the proposed tests
successfully control the type I error probability and tend to have more power than other competitor tests in many scenarios.
Two applications to a set of weekly stock returns for 92 companies from the S&P 500 demonstrate the practical use of the
proposed tests.

Keywords ARMA and GARCH models · Autocorrelation · Cross-correlation · Nonlinearity test · Mixed portmanteau tests ·
Quasi-maximum likelihood estimation · Stock returns

1 Introduction

Time series models often consist of two components: (i)
the conditional mean part; and (ii) the conditional variance
part. Traditionally, the autoregressive and moving average
(ARMA)models are classified as linear and specify themean
part, whereas the generalized autoregressive conditional het-
eroscedasticity (GARCH)models are nonlinear and describe
the variance part. During the past four decades, time series
analysis was dominated by the ARMAmodels, where a good
model should be able to specify the dependence structure of
the series adequately (Box and Jenkins 1970). Dependency,
in ARMA models, is often measured by using the residual
autocorrelation function (ACF). To test the adequacy of an
ARMAmodel, a portmanteau statistic was proposed by Box
and Pierce (1970) based on the distribution of the residual
ACF. Since then, several authors have improved the port-
manteau tests (see, for example, Fisher and Gallagher 2012;
Ljung andBox1978; Peña andRodríguez 2002, 2006;Mahdi
2017).

In the last two decades, the analysis of nonlinear time
series models has attracted a great deal of interest in busi-
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ness, economics, finance, and other fields. Box and Jenkins
(1970), Granger and Andersen (1978) and Tong and Lim
(1980) noticed that the squared residuals of time series mod-
els are significantly autocorrelated even though the residuals
are not autocorrelated. This indicates that the error term of
these models might be uncorrelated but not independent. The
authors suggested using the ACF of the squared values of the
series to detect nonlinearity. In this respect, Engle (1982)
showed that the classical portmanteau tests proposed by Box
and Pierce (1970) and Ljung and Box (1978) fail to detect the
presence of the autoregressive conditional heteroscedasticity
(ARCH) in many financial time series models. To test for the
presence of an ARCH process, Engle (1982) introduced a
Lagrange multiplier statistic based on the autocorrelations
of the squared residuals.

Several authors have developed portmanteau test statis-
tics employing the ACF of the squared residuals to detect
nonlinear structures and ARCH effect in time series models
(see, for example, Fisher and Gallagher 2012; McLeod and
Li 1983; Peña and Rodríguez 2002, 2006; Rodríguez and
Ruiz 2005). All the above test statistics were derived under
the assumptions of ARMA models and were not proposed
for nonlinear time series models.

Aportmanteau testwas developedbyLi andMak (1994) to
check the adequacy of nonlinear time series models, includ-
ing ARMA-ARCH, and other conditional heteroscedastic
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structures. Under a general class of time series models,
two mixed portmanteau tests, to detect the linear and non-
linear dependency in time series models, were considered
by Wong and Ling (2005) summing the statistics derived
by Box and Pierce (1970) and Li and Mak (1994) for the
first one, and summing the statistics proposed by Ljung
and Box (1978) and McLeod and Li (1983) for the second
one. Wong and Ling (2005) showed that their mixed tests
are, in many situations, more powerful than the tests pro-
posed by Ljung and Box (1978) and McLeod and Li (1983),
when the fitted model has a disparity in its first and second
moments. Zhu (2013) proposed another mixed portmanteau
test for ARMA-GARCH models with parameters estimated
by a quasi-maximum exponential likelihood estimator. Li
et al. (2018) proposed a first-order zero-drift GARCH (ZD-
GARCH(1, 1)) model to study conditional heteroscedasticity
and heteroscedasticity together, for which the authors con-
structed a portmanteau test for model checking. Their test
statistic was derived based on the lag-k autocorrelation func-
tion of the sth power of the absolute residuals, where k is a
positive integer and s > 0.

For the test statistics presented byWong and Ling (2005);
Zhu (2013) and Li et al. (2018), the authors did not con-
sider the cross-correlation between the residuals at different
powers. The idea of using the cross-correlation between the
residuals at different powers to test for linearity was con-
sidered by Welsh and Jernigan (1983); Lawrance and Lewis
(1985, 1987); Psaradakis and Vávra (2019).

In this article, we propose four mixed portmanteau statis-
tics for time series models. The proposed test statistics are
composed by three components: The first of them utilizes
the autocorrelations of the residuals, which is designed to
capture the linear dependency in the mean part of time series
models. Then, the second component of these statistics uti-
lizes the autocorrelation of the squared residuals, which can
be used to test for conditional heteroscedastic effects. The
third component of these statistics is related to the cross-
correlations between the residuals and their squared values,
which may be helpful to test for other types of nonlinear
models in which the residuals and their squared values are
cross-correlated. The cross-correlations between the residu-
als and their squared values allow us to propose two different
tests. One of these tests is based on the positive lags and the
other one uses the negative lags. Therefore, the tests proposed
in the present study combine the statistics presented inWong
and Ling (2005) and Psaradakis and Vávra (2019).

The remainder of this article is organized as follows. Sec-
tion2 defines some popular time series models with their
assumptions. In Sect. 3, we propose new auto-and-cross-
correlated test statistics for contrasting the adequacy of fitted
time series models and derive their asymptotic distributions.
In Sect. 4, a Monte Carlo simulation study is conducted to
compare the performance of the proposed statistics with

some tests commonly used in the literature. We show that
the empirical size of the proposed tests successfully controls
the type I error probability and tends to have higher power
than other tests in many cases. Section5 presents illustrative
applications to demonstrate the usefulness of the proposed
tests for real-world data. We finish this article in Sect. 6 by
providing concluding remarks.

2 The general time series model and its
assumptions

Assume that {zt : t = 0,±1, · · · } is a time series that is gen-
erated by the strictly stationary and ergodic model defined
by

zt = μt (θ ,Ft−1) + εt , εt = ξt
√
ht (θ) (2.1)

where Ft−1 represents the information set (σ -algebra) gen-
erated by {zt , zt−1, · · · }, and θ denotes the l × 1 vector
of unknown parameters and its true value is θ0. μt (θ) =
μt (θ ,Ft−1) = E(zt |Ft−1) and ht (θ) = Var(εt |Ft−1) > 0
are the conditional mean and conditional variance of zt ,
respectively. Both are assumed to have continuous second
order derivative almost surely (a.s.). The process {ξt } is a
sequence of independent and identically distributed (i.i.d.)
random variables with mean zero, variance one, and finite
fourth moment.

The usual ARMA-GARCHmodel can be seen as a special
case of this model that can be written as

zt =
p∑

i=1

φi zt−i +
q∑

i=0

θiεt−i + εt

εt = ξt
√
ht (θ),

ht (θ) = ω +
a∑

i=1

αiε
2
t−i (θ) +

b∑

j=1

β j ht− j (θ), (2.2)

where {ξt } is a sequence of i.i.d. random variables with mean
zero, variance one, and E(ξ4t ) < ∞, with ω > 0, αi ≥ 0,
β j ≥ 0, for i ∈ {1, · · · , a}, j ∈ {1, · · · , b}, and ∑a

i=1 αi +
∑b

j=1 β j < 1.
Ignoring the constant term, the Gaussian log-likelihood

function of {z1, · · · , zn} given the initial values {zt : t ∈ Z
−∪

{0}} can be written as


(θ) =
n∑

t=1


t (θ, z�), (2.3)

where


t (θ, z�) = −1

2
log (ht (θ)) − ε2t (θ)

2ht (θ)
, t ∈ {1, · · · , n},
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where z� ≡ {zt , zt−1, · · · }. Assuming the parameter space
is �, where θ0 is an interior vector in �, and and for
convenience, let’s denote εt = εt (θ0), μt = μt (θ0), and
ht = ht (θ0). The first derivative of the log-likelihood func-
tion is given by

∂
(θ0)

∂θ
= 1

2

n∑

t=1

1

ht

∂ht
∂θ

(
ε2t

ht
− 1

)
+

n∑

t=1

εt

ht

∂μt

∂θ
.

By taking the conditional expectations of the iterative second
derivatives with respect to Ft−1, we have

E

[
∂2
(θ0)

∂θ∂θ�

]
= −1

2

n∑

t=1

1

h2t
E

(
1

h2t

(
∂ht
∂θ

) (
∂ht
∂θ

)�)

−
n∑

t=1

1

ht
E

(
1

ht

(
∂μt

∂θ

) (
∂μt

∂θ

)�)

.

Assume that ∂
(θ0)/∂θ is a martingale difference in terms of
Ft−1 and let θ̂n be the quasi-maximum likelihood estimator
of θ0, that is, θ̂n

a.s.→ θ0, where
a.s.→ denotes a.s. convergence.

Then, it follows that

√
n(̂θn − θ0) = − 1√

n
�−1 ∂
(θ0)

∂θ
+ op(1), (2.4)

where �−1 = E(−∂2
(θ0)/∂θ∂θ�)−1 and op(1) → 0 in
probability as n → ∞. Furthermore, it has been shown that
the asymptotic distribution of

√
n(̂θn − θ0) is normal with

zero mean l × 1 vector and variance-covariance l × l matrix
�−1 (see Hall andHeyde 1980; Higgins and Bera 1992; Ling
and McAleer 2010).

3 The proposed test statistics

Let k be the lag of the series with k ∈ {0,±1,±2, · · · ,±m},
where m is the largest value considered for the auto-and-
cross-correlations and define

ρ(r ,s)(θ0, k) = Cov
(
εrt (θ0), ε

s
t−k(θ0)

)

{
Var

(
εrt (θ0)

)
Var

(
εst (θ0)

)}1/2

= γ(r ,s)(k)√
γ(r ,r)(0)

√
γ(s,s)(0)

(r , s = 1, 2)

as the lag- k theoretical autocorrelation of the error process
{εt (θ0)} where θ0 is the true but unknown parameter vector.
Let

ρ(θ0, k) = [
ρ(r ,r)(θ0, k), ρ(s,s)(θ0, k), ρ(r ,s)(θ0, k)

]�
,

and

R(θ0) =
[
R�

(r ,r)(θ0),R
�
(s,s)(θ0),R

�
(r ,s)(θ0)

]�
3m×1

with

R(r ,s)(θ0) = [
ρ(r ,s)(θ0, 1), ρ(r ,s)(θ0, 2), . . . , ρ(r ,s)(θ0,m)

]�
.

We derive the asymptotic distribution of the proposed test
statistics under the null hypothesis that the time series model
in (2.1) takes the correct functional forms given by H0 :
μt = μt (θ0) and ht = ht (θ0). The alternative hypothesis is
Ha : μt 
= μt (θ0) or ht 
= ht (θ0). Equivalently, the null and
alternative hypotheses can be used for testing the lag residual
auto-and-cross-correlation so that H0 : R(r ,s)(θ0) = 0m and
Ha : R(r ,s)(θ0) 
= 0m , for all r , s ∈ {1, 2}. For simplicity,
we dropped the symbol θ0 so that ρ(r ,s)(θ0, k) = ρ(r ,s)(k)
and R(r ,s)(θ0) = R(r ,s).

Given a sample time series of length n observations
z1, z2, · · · , zn , under the assumptions of H0 and (2.4), we
fit the model defined in (2.1). Subsequently, we calculate the
standardized residuals (conditional residuals) raised to pow-
ers i ∈ 1, 2 using the following expressions:

êit = ε̂it ĥ
−i/2
t ,

where {̂εt }, {̂ε2t },
{√

ĥt
}
, and {̂ht } denote the sample residu-

als, squared-residuals, conditional volatility, and conditional
variance of zt , respectively.

The corresponding sample correlation coefficient between
the standardized residuals may be written as

r̂(r ,s)(k) = γ̂(r ,s)(k)√
γ̂(r ,r)(0)

√
γ̂(s,s)(0)

, (3.1)

where γ̂(r ,s)(k) = n−1 ∑n
t=k+1(̂e

r
t − ẽr )(̂est−k − ẽs), for k ≥

0, γ̂(r ,s)(−k) = γ̂(s,r)(k), for k < 0, is the autocovariance
(cross-covariance), at lag-k, between the standardized resid-
uals to r th power and the standardized residuals to sth power,
and ẽi = n−1 ∑n

t=1 ê
i
t , for i ∈ {1, 2}.

Under the regular assumptions, it can be shown that
ẽ=op(1), ẽ2=1 + op(1), and n−1 ∑n

t=1(̂e
2
t −ẽ2)2=σ 2 +

op(1), where σ 2 converges to the value two (see Li and
Mak 1994; Wong and Ling 2005) and (Theorem Ling
and McAleer 2003). Hence, at lag-k, if we define � =
(�(r ,r),�(s,s),�(r ,s))

�
3m×1 and �(r ,s) = (γ(r ,s)(1), · · · ,

γ(r ,s)(m))� as the counterparts of �̂ = (�̂(r ,r), �̂(s,s),

�̂(r ,s))
�
3m×1 and �̂(r ,s) = (γ̂(r ,s)(1), · · · , γ̂(r ,s)(m))�, respec-

tively, with the replacement of the fitted residual ε̂t and
conditional variance ĥt by εt and ht , respectively, we obtain:

γ̂(1,1)(k) = 1

n

n∑

t=k+1

ε̂t√
ĥt

ε̂t−k√
ĥt−k

,
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r̂(1,1)(k) = 1

n

n∑

t=k+1

ε̂t√
ĥt

ε̂t−k√
ĥt−k

,

γ̂(2,2)(k) = 1

n

n∑

t=k+1

(
ε̂2t

ĥt
− 1

) (
ε̂2t−k

ĥt−k
− 1

)

,

r̂(2,2)(k) = 1

nσ 2

n∑

t=k+1

(
ε̂2t

ĥt
− 1

) (
ε̂2t−k

ĥt−k
− 1

)

,

γ̂(1,2)(k) = 1

n

n∑

t=k+1

ε̂t√
ĥt

(
ε̂2t−k

ĥt−k
− 1

)

,

r̂(1,2)(k) = 1

nσ

n∑

t=k+1

ε̂t√
ĥt

(
ε̂2t−k

ĥt−k
− 1

)

,

γ̂21(k) = 1

n

n∑

t=k+1

(
ε̂2t

ĥt
− 1

)
ε̂t−k√
ĥt−k

,

r̂(2,1)(k) = 1

nσ

n∑

t=k+1

(
ε̂2t

ĥt
− 1

)
ε̂t−k√
ĥt−k

.

We employ these autocorrelation coefficients to propose
new portmanteau goodness-of-fit tests, as later defined in
(3.8), to check for linear and nonlinear dependencies within
the residual series.

Theorem 1 Let the model defined in (2.1) be correctly spec-
ified and that (2.4) holds. Then, we have that

√
n(R̂

�
(1,1), R̂

�
(2,2), R̂

�
(r ,s))

� D→ N3m(0,�rs) as n → ∞,

where

R̂(i, j) = (̂r(i, j)(1), r̂(i, j)(2), · · · , r̂(i, j)(m))�,

(i, j) ∈ {(1, 1), (2, 2), (1, 2), (2, 1)}, (3.2)

D→ denotes convergence in distribution and �rs = E
[
R(θ0)

R�(θ0)
]
is the covariance matrix, which can be replaced by

a consistent estimator �̂rs :

�̂rs =

⎛

⎜⎜
⎝

Im − X11 0 0
�−1X�

11
0 Im − 1

4 X22�
−1X�

22 0
0 0 Im − 1

2 Xrs�
−1X�

rs

⎞

⎟⎟
⎠ ,

(3.3)

with r 
= s ∈ {1, 2}, Im denotes the identity m × m matrix,

X11(k) = 1

n

n∑

t=k+1

1
√
ĥt

∂μt

∂θ�
ε̂t−k√
ĥt−k

, (3.4)

X22(k) = 1

n

n∑

t=k+1

ĥ−1
t

∂ht
∂θ�

(
ε̂2t−k

ĥt−k
− 1

)

, (3.5)

X12(k) = 1

n

n∑

t=k+1

1
√
ĥt

∂μt

∂θ�

(
ε̂2t−k

ĥt−k
− 1

)

, (3.6)

and

X21(k) = 1

n

n∑

t=k+1

1
√
ĥt−k

∂μt−k

∂θ�

(
ε̂2t

ĥt
− 1

)
. (3.7)

Proof The proof is given in the Appendix (1). ��
By the results of Theorem 1, we propose the portmanteau

statistic, Ċrs namely, and its modified version, Crs namely,
to testH0 that the model stated in (2.1) is correctly specified.
Thus, we have that

Ċrs = n

⎛

⎝
R̂(1,1)

R̂(2,2)

R̂(r ,s)

⎞

⎠

�

�̂
−1
rs

⎛

⎝
R̂(1,1)

R̂(2,2)

R̂(r ,s)

⎞

⎠ ,

Crs = n

⎛

⎝
R̃(1,1)

R̃(2,2)

R̃(r ,s)

⎞

⎠

�

�̂
−1
rs

⎛

⎝
R̃(1,1)

R̃(2,2)

R̃(r ,s)

⎞

⎠ , (3.8)

where R̂(1,1), R̂(2,2), R̂(r ,s) are defined in (3.2), and R̃(1,1),

R̃(2,2), R̃(r ,s) are obtained after replacing the autocorrelation
coefficients in (3.1) by their standardized values formulated
as

r̃(r ,s)(k) =
√
n + 2

n − k
r̂(r ,s)(k), k ∈ {1, · · · ,m}. (3.9)

From the theorem on quadratic forms given in Box (1954), it
is straightforward to show that Ċrs andCrs are asymptotically
chi-square distributed with 3m − (p + q + 1) degrees of
freedom.

Figure 1 illustrates the accuracy of the approximation of
the empirical distribution of Ċrs and Crs , for r 
= s ∈ {1, 2}
to the chi-square distribution employing 103 replicates when
an ARMA(1,1) model fits to a sample of size n = 200 gen-
erated from an ARMA(1,1) process defined as

zt = 0.9zt−1 + εt − 0.88εt−1. (3.10)

The parameters of the ARMA model stated in (3.10) are
selected to be very close to non-stationarity and non-
invertibility case, whereas the coefficient of theMAmodel is
near to cancellation with the coefficient of the AR model to
demonstrate the usefulness of the proposed tests, even with
extreme cases.

We found similar results for small and large samples and
our preliminary analysis indicates that the portmanteau tests
based on the statistics Crs control the type I error probability
more successfully than the tests that consider the statistics
Ċrs . Hence, we recommend the use of Crs .
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Fig. 1 The solid (dark-gray) line is the chi-square limiting distribution
with degrees of freedom 3m − 2. The dot (green), dot (dark-green),
longdash (brown), and longdash (red) are the Monte Carlo distributions
of Ċ12, Ċ21,C12, and C21, respectively, generated by 1000 replicates

of a series of a length n = 200 according to a Gaussian ARMA(1,1)
model with φ1 = 0.9 and θ1 = −0.88. The tests are evaluated at each
indicated lag m ∈ {3, 7, 11, 14}

Remark 1 As mentioned, the proposed test statistics in (3.8)
can be seen as combinations of the statistics presented by
Wong and Ling (2005) and Psaradakis and Vávra (2019).
Thus, each test statistic Crs may be seen as a linear com-
bination of three existent test statistic proposed by Ljung
and Box (1978), McLeod and Li (1983), and Psaradakis
andVávra (2019), modifying the corresponding statistic Ċrs ,
which are linear combinations of three statistics given byBox
and Pierce (1970), Li and Mak (1994), and Psaradakis and
Vávra (2019).

4 Simulation studies

We carry out Monte Carlo simulations to examine statistical
properties of the proposed tests. For comparative purposes,
we also consider three test statistics given by

Qrs = n(n + 2)
m∑

k=1

(n − k)−1̂r2(r ,s)(k),

(r , s) ∈ {(1, 2), (2, 1), (2, 2)}, (4.1)

where Q12 and Q21 represent the statistics presented in
Psaradakis and Vávra (2019) and Q22 denotes the statistic
proposed byMcLeod and Li (1983). In addition, we consider
two statistics introduced byLi andMak (1994) andWong and
Ling (2005), which are denoted by QLM and QWL, respec-
tively, given by

QLM = n
m∑

k=1

r̂2(2,2)(k), (4.2)

QWL = n

(
R̂(1,1)

R̂(2,2)

)� (
Im 0
0 Im − 1

4X22�
−1X�

22

)−1

×
(
R̂(1,1)

R̂(2,2)

)
. (4.3)

First, we examined six statistics, C12,C21, Q12, Q21, Q22

and QWL namely, assuming the following five linear models
studied by Psaradakis and Vávra (2019):

A1. AR(1) model: zt = −0.9zt−1 + εt ;
A2. AR(2) model: zt = 0.6zt−1 − 0.5zt−2 + εt ;
A3. MA(1) model: zt = 0.8εt−1 + εt ;
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A4. ARMA(2,1) model: zt = 0.8zt−1 + 0.15zt−2 +
0.3εt−1 + εt ;

A5. ARMA(1,1) model: zt = 0.6zt−1 + 0.4εt−1 + εt .

For model A1, the parameter used by Psaradakis and Vávra
(2019) was φ = 0.8. However, we considered here a value
negative of the parameter close to non-stationarity case to
assess the behavior of the test statistics associated with posi-
tive and negative values of the parameters. We also analyzed
for this model the cases where φ ∈ {±0.1,±0.5,±0.8}
whose results showed very minor changes in the behavior of
the proposed tests. For model A3, we also explored the cases
where θ ∈ {±0.3,±0.6,±0.9} and obtained good results.

Second, we investigated four statistics, C12,C21, QWL,
and QLM namely, according to the following three nonlinear
models studied by Velasco and Wang (2015) and Han and
Ling (2017):

A6. GARCH(1,1) model: εt = ξt
√
ht , ht = 0.1 +

0.3ε2t−1 + 0.5ht−1;
A7. AR(1)-ARCH(1) model: zt = 0.5zt−1 + εt , εt =

ξt
√
ht , ht = 0.1 + 0.4ε2t−1;

A8. AR(1)-GARCH(1,1) model: zt = 0.5zt−1 + εt , εt =
ξt

√
ht , ht = 0.1 + 0.3ε2t−1 + 0.5ht−1;

where ηt
i.i.d.∼ N (0, 1) or Student-t distribution with 10

degrees of freedom.
In all experiments, we use theR software (www.R-project.

org, R Core Team 2020) to simulate 1000 replicates of arti-
ficial series of size n + n/2 with n ∈ {100, 300}. However,
only the last n data points are used to carry out portmanteau
tests with the residuals of some fitted models.

The empirical size and power of the tests are calculated
based on a nominal level 5%. Simulation results for nominal
levels 1% and 10% are not reported, due to space conserva-
tion, but they are available upon request.

First, we calculate the type I error probability, at lags
m ∈ {5, 10}, based on six statistics,C12,C21, Q12, Q21, Q22

and QWL namely, when a true model is fitted to a series
generated according to models A1-A5. Second, we investi-
gated the accuracy of estimating type I error probability using
four statistics,C12,C21, QWL, and QLM namely, when a true
model is fitted to a series generated according to models A6-
A8.

The empirical sizes of the test corresponding to the nomi-
nal size 5% over 1000 independent simulations belong to the
95%confidence interval [3.65%, 6.35%] and to the 99%con-
fidence interval [3.22%, 6.78%]. From Tables 1 and 2, note
that tests based on the statistics QWL and QLM can distort the
test size, whereas the tests using the statistics Q22, Q12, Q21

and the proposed statistics exhibit no substantial size distor-
tion and, generally, have empirical levels that improve as n

increases. Also, we found similar results for the cases where
the error terms have either skew-normal distribution with
asymmetryparameterκ ∈ {−1.0,−0.5, 0.5, 1.0}orStudent-
t distribution with degrees of freedom ν ∈ {5, 15, 20}. These
results are omitted here due to space conservation, but they
are available upon request.

4.1 Testing linearity in linear time series models

Now, we investigate the efficiency to distinguish power for
the mean term of the test statistics C12,C21, Q12, Q21, Q22,
and QWL

1. For expositional simplicity, we define C� as the
highest test power attained by the statistics C12 and C21,
whereas Q� as the highest test power attained by Q12 and
Q21, that is,

C� = max(C12,C21), Q� = max(Q12, Q21). (4.4)

Thepower of the tests are calculated under the null hypothesis
H0 that zt satisfies the ARMA model

zt = μt +
p∑

i=1

φi zt−i +
q∑

i=1

θiεt−i + εt ,

which can be seen as an AR(p) model, where p → ∞. We
followed the approach presented by Ng and Perron (2005)
who used the Bayesian information criterion (BIC) to select
the order p ∈ {0, 1, · · · , �8(n/100)1/4�}, where �a� denotes
the floor function (integer part) of the number a ∈ R, when
an AR(p) model erroneously fits to series generated from
the following models studied by Li and Mak (1994), Wong
and Ling (2005), Han and Ling (2017), and Psaradakis and
Vávra (2019):

B1. Bilinear (BL) model: zt = 0.2 + 0.4zt−1 + εt +
ϕzt−1εt−1, where εt

i.i.d.∼ N (0, 1), with parameter val-
ues of ϕ being selected in the range 0 < ϕ < 2.5;

B2. RandomcoefficientAR (RCAR)model: zt = 0.2zt−1+
ut , ut = ϕηt zt−1 + εt , where {εt } and {ηt } are two
sequences of i.i.d.N (0, 1) random variables, which
are independent from each other variable; note that
the RCAR model is a special case of the AR(1)
and ARCH(1) models as observed in E(u2t |Ft−1) =
ϕ2z2t−1+1, which is the conditional variance over time.

We select parameter values of ϕ from the range 0 <

ϕ < 2.5;

1 We also test the form of the GARCH-type models by examining
the GARCH(1,1) model versus the MA(1)-GARCH(1,1) and AR(1)-
GARCH(1,1) models based on the test statistics C�, QWL, and QLM.
The results are available upon request.
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Table 1 Empirical sizes, for 5%
significance test, of the
indicated statistic, distribution,
model, n, and m

Model n m = 5 m = 10
C12 C21 Q12 Q21 Q22 QWL C12 C21 Q12 Q21 Q22 QWL

Gaussian distribution

A1 100 5.7 5.8 4.4 4.4 4.4 3.6 5.7 5.9 4.7 4.7 4.7 4.4

300 5.6 5.4 4.9 4.9 5.0 3.7 5.6 5.5 4.9 4.9 5.1 4.3

A2 100 5.2 4.8 4.2 4.2 4.1 3.1 5.4 4.9 4.3 4.3 4.6 3.6

300 5.2 5.5 5.0 5.0 5.0 3.5 5.4 5.3 4.8 4.8 5.2 4.0

A3 100 6.0 5.8 4.4 4.4 4.3 3.7 6.0 6.0 4.6 4.6 4.8 4.4

300 5.5 5.8 5.1 5.1 5.0 3.7 5.8 5.8 5.0 5.0 5.1 4.3

A4 100 6.6 6.2 4.3 4.3 3.9 4.1 6.2 5.9 4.3 4.4 4.5 4.2

300 6.5 6.4 4.5 4.7 4.6 4.5 5.6 5.2 5.4 4.2 4.8 4.3

A5 100 5.5 5.3 4.3 4.4 4.0 2.9 5.6 5.4 4.3 4.3 5.2 4.0

300 5.3 5.6 4.8 4.8 5.0 3.6 5.5 5.6 4.8 4.8 5.1 4.0

Student-t distribution with 10 degrees of freedom

A1 100 5.8 5.4 4.1 4.1 4.3 3.4 5.6 5.1 4.0 4.0 4.3 3.9

300 6.2 6.3 4.5 4.5 5.3 4.2 6.1 6.3 5.0 5.0 5.3 4.6

A2 100 4.5 4.6 3.9 3.9 3.9 2.9 4.6 4.5 3.6 3.6 3.9 3.3

300 5.7 5.7 4.3 4.3 5.2 3.5 5.8 5.8 4.7 4.7 5.5 4.0

A3 100 5.6 5.2 4.4 4.4 4.3 3.4 5.4 5.3 4.1 4.1 4.3 3.8

300 5.9 6.0 4.5 4.5 5.2 4.0 6.0 6.4 5.0 5.0 5.5 4.4

A4 100 7.2 7.4 4.9 5.1 4.2 4.0 5.8 6.0 4.8 5.0 4.7 4.2

300 6.2 6.0 4.6 4.8 5.0 4.4 5.8 5.6 4.8 5.0 5.2 4.4

A5 100 5.0 4.7 4.2 4.2 4.1 2.9 4.9 4.8 3.9 3.9 4.1 3.6

300 5.6 5.9 4.3 4.3 5.1 3.8 5.7 5.8 4.7 4.7 5.5 4.1

Table 2 Empirical sizes, for 5% significance test, of the indicated statis-
tic, distribution, model, n, and m

Model n m = 5 m = 10
C12 C21 QWL QLM C12 C21 QWL QLM

Gaussian distribution

A6 100 3.7 3.8 2.3 2.8 4.1 4.0 2.7 2.3

300 3.5 3.4 1.8 3.2 3.5 3.6 2.5 2.5

A7 100 3.9 3.9 2.3 3.5 4.5 45 3.2 3.1

300 3.8 3.7 2.1 3.6 4.5 4.4 3.2 4.1

A8 100 4.0 3.8 2.3 2.8 4.0 3.8 2.7 2.4

300 3.4 3.3 1.8 3.0 3.3 3.4 2.3 2.3

Student-t distribution with 10 degrees of freedom

A6 100 4.4 4.0 2.4 2.8 4.2 3.7 2.6 2.1

300 4.4 4.1 2.9 4.1 4.2 4.2 2.9 3.0

A7 100 4.4 4.3 2.6 3.0 4.8 4.7 3.4 2.0

300 5.1 5.0 3.3 4.8 5.1 5.2 3.7 3.3

A8 100 4.8 4.3 2.7 2.7 4.3 4.0 2.9 1.4

300 4.7 4.8 2.9 3.6 4.1 4.4 2.9 2.7

B3. TARmodel: zt = 0.8zt−1I{zt−1≤−1}−0.8zt−1I{zt−1>−1}
+ εt , where εt

i.i.d.∼ N (0, 1);

B4. AR(1)-ARCH(2) model: zt = 0.2zt−1 + εt , εt =
ξt

√
ht , ht = 0.2 + 0.2ε2t−1 + 0.2ε2t−2, where ξt

i.i.d.∼
N (0, 1).

Note that we found similar results based on the Akaike
information criterion –AIC– (Akaike 1974).

Figure 2 displays the rejection frequencies considering a
5% nominal level of the statistics C�, Q�, Q22, and QWL

when an AR(p) model erroneously fits data of size n ∈
{100, 300} fromBL (B1) andRCAR (B2)models at lag value
m = �√n�. The results for both models are based on param-
eter values ϕ varying from 0 to 2.5, asmentioned. In addition,
Fig. 3 shows the rejection probability of the aforementioned
tests (of nominal level 0.05) employing the nonlinear TAR
(B3) and AR(1)-ARCH(2) (B4) models. For n ∈ {100, 300},
the tests are calculated at lags m ∈ {2, 4, 6, 8, 10} and
m ∈ {3, 6, 9, 13, 17}, respectively. From Figs. 2 and 3, note
that the performance of the proposed statistic C� is, in gen-
eral, the best, especially for small sample sizes. Thus, we
conclude that the proposed statistics are helpful for testing
for linearity of stationary time series.
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Fig. 2 Rejection frequencies of the indicated statistic for the bilinear (B1) and RCAR (B2) models with 0 < ϕ < 2.5 and listed sample sizes n
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Fig. 3 Rejection frequencies of the indicated statistic for the TAR (B3) and AR(1)-ARCH(2) (B4) models with the listed sample size n
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Fig. 4 Empirical power based on 5% nominal level of the indicated statistic and sample size n when AR(1)-ARCH(1) erroneously fits data
generated from AR(1)-ARCH(2), AR(1)-GARCH(1,1), AR(2)-ARCH(2), and TAR with GJR-GARCH(1,1) models named as D1, D2, D3, and D4,
respectively

4.2 Testing the AR-ARCHmodels

In order to examine the ability for discriminating power for
the mean and conditional variance parts of a time series
model, we consider the AR-GARCH model versus nonlin-
ear models with GARCH errors. The process {zt } satisfies
the null hypothesis H0 of heteroskedasticity given by

zt = φzt−1 + εt , εt = ξt
√
ht ,

ht = ω + α1ε
2
t−1, ξt

i.i.d.∼ N (0, 1).

The alternative models are:

D1. AR(1)-ARCH(2) model: zt = 0.5zt−1 + ξt
√
ht , ht =

0.01 + 0.4ε2t−1 + 0.3ε2t−2;
D2. AR(1)-GARCH(1,1) model: zt = 0.5zt−1 + ξt

√
ht ,

ht = 0.041 + 0.4ε2t−1 + 0.5ht−1;

D3. AR(2)-ARCH(2) model: zt = 0.5zt−1 + 0.2zt−2 +
ξt

√
ht , ht = 0.01 + 0.4ε2t−1 + 0.2ε2t−2;

D4. TAR model with GJR-GARCH(1,1) error:

zt = 0.4zt−1 + 0.5zt−1I{zt−1>0} + ξt
√
ht ,

ht = 0.1 + (0.3 + 0.4I{εt−1<0})ε2t−1 + 0.4ht−1.

For each model, the power of the test for the statistics
C�, QWL, and QLM are calculated at lagsm ∈ {2, 4, 6, 8, 10}
and m ∈ {3, 6, 9, 13, 17} associated with n ∈ {100, 300}.
The results are shown in Fig. 4. Note that the performance
of the proposed test is in general better when compared with
the other two tests.

Worth noting that, in general, as the lag order increases, the
power of the portmanteau tests decreases, especially under
models like the TARmodel, for several reasons including the
following:
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Table 3 p-values for testing the neglected nonlinearity in AR models with the indicated statistic for the listed company from the S&P 500 index

Company p-value Company p-value

C� Q� Q22 QWL C� Q� Q22 QWL

Alcoa Inc 0.00 0.00 0.00 0.00 Deere and Co 0.00 0.03 0.00 0.01

Apple Inc 0.00 0.01 0.41 0.19 D.R. Horton 0.06 0.21 0.02 0.11

Adobe Systems Inc 0.00 0.15 0.00 0.00 Danaher Corp 0.00 0.01 0.00 0.00

Analog Devices Inc 0.00 0.00 0.00 0.00 Walt Disney Co 0.00 0.10 0.00 0.01

Archer-Daniels-Midland 0.07 0.52 0.01 0.05 Duke Energy 0.00 0.00 0.00 0.00

Autodesk Inc 0.00 0.06 0.01 0.02 Ecolab Inc 0.00 0.00 0.00 0.00

American Electric Power 0.00 0.00 0.00 0.00 Equifax Inc 0.96 0.55 0.99 0.99

AES Corp 0.00 0.00 0.00 0.00 Edison Int’l 0.00 0.00 0.00 0.00

AFLAC Inc 0.00 0.00 0.00 0.00 EMC Corp 0.01 0.02 0.03 0.12

Allergan Inc 0.95 0.46 0.92 0.99 Emerson Electric 0.00 0.03 0.00 0.00

American Intl Group Inc 0.00 0.00 0.00 0.00 Equity Residential 0.00 0.41 0.00 0.00

Aon plc 0.00 0.00 0.00 0.00 EQT Corporation 0.00 0.03 0.00 0.00

Apache Corporation 0.00 0.02 0.00 0.00 Eaton Corp 0.04 0.21 0.51 0.54

Anadarko Petroleum 0.00 0.15 0.00 0.00 Entergy Corp 0.00 0.03 0.00 0.00

Avon Products 0.00 0.17 0.09 0.01 Exelon Corp 0.22 0.33 0.06 0.29

Avery Dennison Corp 0.00 0.00 0.00 0.00 Ford Motor 0.00 0.04 0.00 0.01

American Express Co 0.00 0.00 0.00 0.01 Fastenal Co 0.09 0.14 0.04 0.22

Bank of America Corp 0.00 0.00 0.00 0.00 FedEx Corporation 0.00 0.03 0.00 0.00

Baxter International Inc 0.00 0.00 0.33 0.20 Fiserv Inc 0.00 0.00 0.00 0.00

BBT Corporation 0.00 0.01 0.00 0.00 Fifth Third Bancorp 0.00 0.00 0.00 0.00

Best Buy Co. Inc 0.00 0.01 0.00 0.00 Fluor Corp 0.01 0.03 0.01 0.05

Becton Dickinson 0.00 0.10 0.00 0.00 Frontier Commun 0.00 0.00 0.00 0.00

Franklin Resources 0.00 0.00 0.00 0.00 Gannett Co 0.00 0.09 0.02 0.02

Brown-Forman Corp 0.00 0.00 0.02 0.00 General Dynamics 0.00 0.06 0.00 0.02

Baker Hughes Inc 0.00 0.00 0.00 0.00 General Electric 0.00 0.00 0.00 0.00

The Bank of NY Mellon 0.00 0.00 0.00 0.00 General Mills 0.54 0.77 0.81 0.41

Ball Corp 0.00 0.00 0.00 0.00 Genuine Parts 0.00 0.01 0.00 0.00

Boston Scientific 0.01 0.04 0.01 0.12 Gap (The) 0.00 0.00 0.00 0.00

Cardinal Health Inc 0.01 0.03 0.01 0.07 Grainger Inc 0.00 0.03 0.00 0.00

Caterpillar Inc 0.01 0.06 0.08 0.13 Halliburton Co 0.00 0.00 0.00 0.00

Chubb Corp 0.00 0.00 0.00 0.00 Hasbro Inc 0.05 0.08 0.28 0.18

Coca-Cola Enterprises 0.00 0.00 0.00 0.00 Health Care REIT 0.00 0.00 0.00 0.00

Carnival Corp 0.00 0.00 0.00 0.00 Home Depot 0.00 0.07 0.00 0.01

CIGNA Corp 0.04 0.00 0.66 0.93 Hess Corporation 0.83 0.33 0.92 0.97

Cincinnati Financial 0.00 0.00 0.00 0.00 Harley-Davidson 0.02 0.00 0.58 0.92

Clorox Co 0.00 0.00 0.00 0.00 Hewlett-Packard 0.00 0.04 0.00 0.00

Comerica Inc 0.00 0.00 0.00 0.04 Block H and R 0.00 0.01 0.00 0.00

CMS Energy 0.00 0.00 0.00 0.00 Hormel Foods Corp 0.01 0.06 0.00 0.04

CenterPoint Energy 0.00 0.00 0.00 0.00 The Hershey Company 0.13 0.27 0.56 0.20

Cabot Oil and Gas 0.00 0.01 0.00 0.00 Intel Corp 0.00 0.10 0.00 0.00

ConocoPhillips 0.23 0.19 0.42 0.44 International Paper 0.00 0.29 0.00 0.00

Campbell Soup 0.00 0.00 0.00 0.00 Interpublic Group 0.00 0.03 0.00 0.00

CSX Corp 0.02 0.15 0.03 0.03 Ingersoll-Rand PLC 0.02 0.10 0.50 0.44

Cablevision Corp 0.00 0.00 0.00 0.00 Johnson Controls 0.00 0.01 0.33 0.01

Chevron Corp 0.00 0.03 0.01 0.01 Jacobs Eng. Group 0.22 0.07 0.35 0.68

Dominion Resources 0.00 0.00 0.00 0.00 Johnson and Johnson 0.00 0.00 0.00 0.00
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• When the lag is large compared to the overall sample size,
we usually get less reliable estimates of autocorrelation
and, consequently, less power in the portmanteau test.

• As we increase the lag order, we are including more lags
in the test, which means we are estimating more param-
eters. This results in a loss of degrees of freedom in the
test statistics. With fewer degrees of freedom, the test
becomes less sensitive to detecting the absence of auto-
correlation.

• TAR models have different nonlinear thresholds which
complicate the estimation of the autocorrelation function
at higher lag orders, making it more challenging to detect
the absence of autocorrelation.

5 Empirical applications

5.1 Test for nonlinearity in ARmodels using stock
returns

We demonstrate the usefulness of the proposed tests for
detecting nonlinearity in AR models for a set of weekly
stock returns.We select 92 companies studied by Kapetanios
(2009) and Psaradakis and Vávra (2019). These companies
are a subset of the Standard & Poor 500 composite index
(S&P 500), spanning over the period from 18 June 1993 to
31 December 2007 (n = 781 observations).

Following the procedure presented by Psaradakis and
Vávra (2019), we fit an AR(p) model for each series, where
the order of p was selected by minimizing the BIC accord-
ing to the algorithm explained in Sect. 4.1 (Ng and Perron
2005). The asymptotic p-values (at 5% significance level)
for tests based on the statistics C�, Q�, Q22, and QWL, with
m = ln�n�, are reported in Table 3. Since the conditional het-
eroskedasticity is often considered as amain characteristic of
asset returns, we expect that the AR model will not capture
the nonlinear features in most of the stock returns considered
in our analysis and the null hypothesis of linearity should be
rejected.

From the results in Table 3, we found that the linearity
assumption is rejected by the proposed tests in 81(88.0%)

cases comparedwith 64(69.6%), 74(80.4%), and 71(77.2%)

cases on the basis of the test statistics Q�, Q22, and QWL,
respectively. This arguably suggests that the proposed tests
are preferable to test the presence of nonlinearity in ARmod-
els for asset returns.

5.2 Goodness-of-fit-tests for nonlinear time series
models

Weexamine the ability of the portmanteau tests to distinguish
an unsuitablemodel forweekly stock returns ofAon plc com-
pany studied in Sect. 5.1. We find a strong evidence against

Table 4 p-values for testing the adequacy of the indicated model for
Aon plc returns based on the listed statistic

Fitted model C� QWL LM

ARCH(1) 0.003 0.049 0.137

AR(1)-ARCH(1) 0.001 0.025 0.126

ARCH(2) 0.008 0.076 0.125

GARCH(1,1) 0.208 0.467 0.658

linearity in the AR model for the returns of this company by
using portmanteau tests. The Aon plc returns are displayed
in Fig. 5 which shows that the log-return series have high
persistence in volatility with negative skewness and excess
kurtosis. We conclude, therefore, that these returns might
exhibit conditional heteroskedasticity effects, and a model
that belongs to the ARCH family with a Student-t distribu-
tion of the error process might better explain the leptokurtic
distribution of the returns. Thus, we fit ARCH(1), AR(1)-
ARCH(1), ARCH(2), and GARCH(1,1) models and apply
the test statisticsC�, QWL, and QLM at lag valuem = 6. The
asymptotic p-values for testing the model adequacy based on
these proposed statistics are reported in Table 4. From this
table, the test statistic QLM fails to detect the inadequacy in
all of the fitted models, whereas the test statistic QWL sug-
gests that the ARCH(1), ARCH(2) and GARCH(1,1) models
might be suitable to describe for the Aon plc returns. Only
the proposed test statistics suggest a clear indication of inad-
equacy of the ARCH(1), AR(1)-ARCH(1), and ARCH(2)
models, while the GARCH(1,1) model might be an adequate
model for the Aon plc returns according to the proposed test
statistics.

6 Conclusions

In this article, we have introduced four mixed portmanteau
statistics for assessing the adequacy of time series models.
The tests we propose are based on a linear combination of
three auto-and-cross-correlation components. The first and
second components are derived from the autocorrelations of
residuals and their squared values, respectively. Meanwhile,
the third component takes into account the cross-correlations
between the residuals and their square values, considering
both positive and negative lags. Two of these tests can be
viewed as an extended version of the Ljung and Box test,
while the others can be considered an extension of the Box
and Pierce test. Based on our simulation study, it is rec-
ommended to use the proposed tests, which can be seen as
an extended version of the Ljung and Box test. These tests
demonstrate better control over the type I error probabil-
ity compared to existing tests. Furthermore, they generally
exhibit more statistical power than tests relying on the statis-
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Fig. 5 Time series of weekly closing returns of the AON plc company from 18 June 1993 to 31 December 2007 (left) and histogram of their
log-returns

tics introduced byLi andMak (1994),McLeod andLi (1983),
Psaradakis and Vávra (2019), and Wong and Ling (2005).

Simulation results indicate that combining R(1, 2) and
R(2, 1) in a test statistic significantly reduces the test’s
power. This can be justified by the lack of independence
between these two distinct components, as they share a
substantial amount of information about correlation. Conse-
quently, they will add complex redundant correlation which
leads to decrease the power in the proposed test.

Some of the test statistics that we have discussed have
high computational burdens, so we have implemented them
in an R package named portes (Mahdi and McLeod
2020). The idea discussed in this article may be extended
to formulate an omnibus portmanteau test that combines
the cross-correlations between the residuals and their square
values at both positive and negative lagswith the autocorrela-
tions of the residuals and their squaredvalues.The framework
we propose could be expanded to identify seasonality in time
series and to detect various types of nonlinearity dependence
in multivariate time series, as discussed by (Mahdi 2016).

In this article, our focus has been on measures derived
from second-order mixed moments. Nevertheless, there
is potential for extending these measures to higher-order
moments. Our simulation study revealed that severe skew-
ness, such as in the case of a skewed t-distribution, can distort
the size of all portmanteau tests.When distributional assump-
tions are relaxed, the robustness of bootstrapping and Monte
Carlo significance test approaches becomes evident (Efron
and Tibshirani 1994; Lin and McLeod 2006; Mahdi and Ian
McLeod 2012). Therefore, a possible extension of this article
could involve considering these approaches for calculating
p-values.
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Appendix

By Taylor’s theorem there exists a random vector θ̃n on the
line segment between θ0 and θ̂n such that

�̂(1,1) = �(1,1) + ∂�(1,1)

∂θ� (̂θn − θ0)

+1

2
(̂θn − θ0)

� ∂2�(1,1)(θ̃n)

∂θ�∂θ
(̂θn − θ0), (7.1)

where the second derivative
∂2�(1,1)(θ̃n)

∂θ�∂θ
depends on the

second-order derivatives
∂2γ(1,1)(k)

∂θ�∂θ
. By assumption, the

second-order partial derivatives are dominatedbyafixed inte-
grable function for every θ in a ball B around θ0, so that the
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probability of the event
{̂
θn ∈ B

}
tends to 1. Thus

�̂(1,1) = �(1,1) + ∂�(1,1)

∂θ� (̂θn − θ0)

+1

2
(̂θn − θ0)

�Op(1)(̂θn − θ0). (7.2)

As the sequence
(̂
θn − θ0

)
OP (1) = oP (1)OP (1) converges

to 0 in probabilitywhen θ̂n is consistent for θ0, we can rewrite
(7.2) by employing the first-order Taylor series approxima-
tion:

�̂(1,1) ≈ �(1,1) + ∂�(1,1)

∂θ� (̂θn − θ0), (7.3)

where

∂�(1,1)

∂θ� =
(

∂γ(1,1)(1)

∂θ� , · · · ,
∂γ(1,1)(m)

∂θ�

)�
,

∂γ(1,1)(k)

∂θ� = −1

n

n∑

t=k+1

εt

2h3/2t

∂ht
∂θ�

εt−k√
ht−k

−1

n

n∑

t=k+1

1√
ht

∂μt

∂θ�
εt−k√
ht−k

−1

n

n∑

t=k+1

εt−k

2h3/2t−k

∂ht−k

∂θ�
εt√
ht

−1

n

n∑

t=k+1

1√
ht−k

∂μt−k

∂θ�
εt√
ht

.

By the ergodic theorem, for large n, and after taking the
expectationwith respect toFt−1, it is straightforward to show
that

∂γ(1,1)(k)

∂θ�
a.s.→ −X̃11(k),

where

X̃11(k) = E

(
1√
ht

∂μt

∂θ�
εt−k√
ht−k

)

is a 1 × l vector, which can be consistently estimated by

X11(k) = 1

n

n∑

t=k+1

1
√
ĥt

∂μt

∂θ�
ε̂t−k√
ĥt−k

. (7.4)

It follows that �̂(1,1) stated in (7.3) can be expressed
as �̂(1,1) ≈ �(1,1) − X11(̂θn − θ0), where X11 =
(X�

11(1), · · · , X�
11(m))� is the resultant m × l matrix. Thus,

by scaling each termby the variance of the standardized resid-
ual, we have

√
n R̂(1,1) ≈ √

n(̂r(1,1)(1), · · · , r̂(1,1)(m))�

= √
n(ρ(1,1)(1), · · · , ρ(1,1)(m))�

− X11
√
n(̂θn − θ0). (7.5)

When ξt is normally distributed, the random vector
√
n R̂(1,1)

is asymptotically normal distributed with amean of zero vec-
tor and a variance Im−X11�

−1X�
11, where Im is the identity

m × m matrix.
For the case of �̂(2,2) and R̂(2,2), Li and Mak (1994) and

Ling and Li (1997) showed that

√
n R̂(2,2) ≈ √

n(̂r(2,2)(1), · · · , r̂(2,2)(m))�

= √
n(ρ(2,2)(1), · · · , ρ(2,2)(m))�

− 1

σ 2 X22
√
n(̂θn − θ0), (7.6)

where X22 = (X�
22(1), · · · , X�

22(m))� is an m × l matrix,
and X22(k) is given by

X22(k) = 1

n

n∑

t=k+1

ĥ−1
t

∂ht
∂θ�

(
ε̂2t−k

ĥt−k
− 1

)

. (7.7)

The authors proved that
√
n R̂(2,2) is asymptotically normal

distributed with a mean of zero vector and a variance Im −
1
4X22�

−1X�
22.

Now, we consider the case that r = 1 and s = 2. Analo-
gous to the reasoning in equations (7.1-7.3), we can express
the first-order Taylor series approximation of �̂(1,2) as fol-
lows:

�̂(1,2) ≈ �(1,2) + ∂�(1,2)

∂θ� (̂θn − θ0), (7.8)

where

∂�(1,2)

∂θ� =
(

∂γ(1,2)(1)

∂θ� , · · · ,
∂γ(1,2)(m)

∂θ�

)�
,

∂γ(1,2)(k)

∂θ� = −1

n

n∑

t=k+1

εt

2h3/2t

∂ht
∂θ�

(
ε2t−k

ht−k
− 1

)

−1

n

n∑

t=k+1

1√
ht

∂μt

∂θ�

(
ε2t−k

ht−k
− 1

)

−1

n

n∑

t=k+1

ε2t−k

h2t−k

∂ht−k

∂θ�
εt√
ht

−1

n

n∑

t=k+1

2εt−k

ht−k

∂μt−k

∂θ�
εt√
ht

.

By the ergodic theorem, for large n, note that

∂γ(1,2)(k)

∂θ�
a.s.→ −X̃12(k),
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where

X̃12(k) = E

(
1√
ht

∂μt

∂θ�

(
ε2t−k

ht−k
− 1

))

is a 1 × l vector, which can be consistently estimated by

X12(k) = 1

n

n∑

t=k+1

1
√
ĥt

∂μt

∂θ�

(
ε̂2t−k

ĥt−k
− 1

)

. (7.9)

Thus, �̂(1,2) stated in (7.8) may be expressed as �̂(1,2) ≈
�(1,2) − X12(̂θn − θ0), and

√
n R̂(1,2) ≈ √

n(̂r(1,2)(1), · · · , r̂(1,2)(m))�

= √
n(ρ(1,2)(1), · · · , ρ(1,2)(m))�

− 1

σ
X12

√
n(̂θn − θ0), (7.10)

where X12 = (X�
12(1), · · · , X�

12(m))�.
Similarly, for the case r = 2 and s = 1, it is straightfor-

ward to show that

√
n R̂(2,1) ≈ √

n(̂r(2,1)(1), · · · , r̂(2,1)(m))�

= √
n(ρ(2,1)(1), · · · , ρ(2,1)(m))�

− 1

σ
X21

√
n(̂θn − θ0), (7.11)

where X21 = (X�
21(1), · · · , X�

21(m))�, and X21(k) is a 1×l
vector given by

X21(k) = 1

n

n∑

t=k+1

1
√
ĥt−k

∂μt−k

∂θ�

(
ε̂2t

ĥt
− 1

)
. (7.12)

The assumptions on ξt imply that the random vectors√
n R̂(1,2) and

√
n R̂(2,1) are asymptotically normal dis-

tributed with mean zero and variance Im − 1
2X12�

−1X�
12

and Im − 1
2X21�

−1X�
21, respectively.

By utilizing the results from (7.5), (7.6), (7.10), and (7.11)
we can deduce the joint distribution of R̂(1,1), R̂(2,2), R̂(r ,s),
for the cases r = 1, s = 2 and r = 2, s = 1. Without
loss of generality, we establish the proof for the case r = 1
and s = 2. The proof for r = 2 and s = 1 readily ensues.
Therefore, if the model defined in (2.1) is correctly specified,

we obtain:

√
n

⎛

⎜
⎝

R̂(1,1)

R̂(2,2)

R̂(1,2)

⎞

⎟
⎠ ≈ √

nD

⎛

⎜⎜⎜⎜⎜
⎝

R(1,1)

R(2,2)

R(1,2)

1

n

∂


∂θ

⎞

⎟⎟⎟⎟⎟
⎠

,

where

D =
⎛

⎜
⎝

Im 0 0 −X11�
−1

0 Im 0 − 1
σ 2 X22�

−1

0 0 Im − 1
σ
X12�

−1

⎞

⎟
⎠ .

Note that {εt } i.i.d.∼ N (0, 1) so that the factors 1/σ 2 and 1/σ
can be replaced by 1/2 and 1/

√
2, respectively.

Let Wn = √
n(R�

(1,1), R
�
(2,2), R

�
(1,2), n

−1∂
/∂θ�)�. By
using a martingale difference approach in terms of Ft

and following the same arguments provided by (Wong
and Ling (2005), Theorem 1), one can easily show that

Wn
D→ N (0, V ); hence,

√
n(R̂

�
(1,1), R̂

�
(2,2), R̂

�
(1,2))

� D→
N3m(0,�12), where �12 = DV D�. The matrices D, V ,
and�12 can be consistently estimated by their sample values,
denoted by D̂, V̂ , and �̂12, respectively. Under the assump-
tions of the model stated in (2.1), we get

V̂ =

⎛

⎜⎜⎜
⎝

Im 0 0 X11

0 Im 0 X22

0 0 Im X12

X�
11 X�

22 X�
12 �−1

⎞

⎟⎟⎟
⎠

.

Thus, we reach

�̂12 = D̂V̂ D̂
� ≈

⎛

⎜
⎝

Im − X11�
−1X�

11 −(1/2)X11�
−1X�

22 −(1/
√
2)X11�

−1X�
12

−(1/2)X22�
−1X�

11 Im − (1/4)X22�
−1X�

22 −(1/
√
8)X22�

−1X�
12

−(1/
√
2)X12�

−1X�
11 −(1/

√
8)X12�

−1X�
22 Im − (1/2)X12�

−1X�
12.

⎞

⎟
⎠ .

For the ARMA models, we have X11 ≈ 0, X22 = 0, and
X12 = 0, whereas for GARCH models, we have X11 ≈ 0
and X12 = 0. Furthermore, for large n, when the model
stated in (2.1) is correctly specified, the off-diagonal block
matrices in thematrix �̂12 are approximately zero. Therefore,
in general, the matrix �̂rs has the form stated as

�̂rs =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

Im − X11 0 0

�−1X�
11

0 Im − 1
4X22 0

�−1X�
22

0 0 Im − 1
2Xrs

�−1X�
rs

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (7.13)
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with r 
= s ∈ {1, 2}. ��
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