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Abstract
To minimize the variance of Monte Carlo estimators, we develop a novel exponential embedding technique that extends
the classical concept of sufficient statistics in importance sampling. Our method demonstrates bounded relative error and
logarithmic efficiency when applied to normal and gamma distributions, especially in rare event scenarios. To illustrate this
innovative technique, we address the problem of credit risk measurement in portfolios and present an efficient simulation
algorithm to estimate the likelihood of significant portfolio losses, leveraging multi-factor models with a normal mixture
copula. Finally, supported by comprehensive simulation studies, our approach offers a more effective and efficient way to
simulate moderately rare events.
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1 Introduction

Many scientific and statistical applications involve calcu-
lating a small probability and/or expectation of a compli-
cated function of a given random variable, as discussed in
Asmussen and Glynn (2007). Often, the statistic in question
is too complex for an analytical solution, necessitating the use
of Monte Carlo simulation methods. More specifically, con-
sider a probability space (�,F , P). Here, � is the sample
space corresponding to the outcomes of a certain experiment
(whichmaybe hypothetical),F is theσ -algebra of subsets of
�, and P is a probability measure defined on these subsets.
Now let X = (X1, . . . , Xd)

ᵀ be a d-dimensional random
vector on a probability space (�,F , P) and let P(·) be
a real-valued function from Rd to R, where ᵀ denotes the
transpose. The problem of interest is to calculate a functional
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of the form

m = EP [P(X)], (1)

where EP [·] is the expectation operator under the probability
measure P . WhenP(X) is an indicator function 1{X∈A} for
A ∈ F , then m = P{X ∈ A}.

Due to the complexity of estimating such a compli-
cated function, analytical calculation of EP [P(X)] is often
unavailable, and one must apply simulation methods. How-
ever, naiveMonte Carlomethods are inefficient in computing
small probabilities because the estimator’s variance gradu-
ally dominates its mean, such that many repeated trials are
needed to achieve acceptable accuracy. Consequently, impor-
tance sampling based on exponential tilting was proposed
by Siegmund (1976) as a variance reduction technique in
rare-event simulation for the case of independent and iden-
tically distributed (i.i.d.) random variables.1 The basic idea
is to sample under an alternative probability and adjust by
the likelihood ratio (Radon–Nikodym derivative). Usually,
the alternative distribution is designed based on a certain
criterion within a family of parameterized distributions.
Introducing this change of measure always yields an unbi-
ased estimator. The likelihood ratio functionmust be positive
and hence is usually constructed as the exponential function.
This family of alternative distributions is also known as the

1 The idea of importance sampling appeared even earlier, e.g., in Ulam
etal. (1947), Kahn and Harris (1951).
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exponential tilting family. For various extensions and appli-
cations, see, e.g., Glynn and Iglehart (1989), Sadowsky and
Bucklew (1990), Ben Rached etal. (2018) ,Owen etal. (2017)
and references therein. A comprehensive introduction can be
found in Asmussen and Glynn (2007) and Owen (2013).

From a theoretical point of view for importance sampling,
one must propose algorithms for the efficient simulation of
the right tail of a given random variable. In the case of dis-
tributions with light right tails (i.e., those that decay at an
exponential rate or faster), under some regularity assump-
tions, the standard exponential tilting importance sampling
estimator, cf. Asmussen and Glynn (2007), satisfies the log-
arithmic efficiency property, which is a useful metric used to
assess the efficiency of an estimator. In contrast, for heavy-
tailed distributions, such as the example of log normals and
Weibulls with shape parameters strictly less than 1, the expo-
nential tilting method cannot be applied. Therefore, efficient
algorithms have been developed to estimate tail probabilities
involving heavy tails. In this regard, Asmussen and Bin-
swanger (1997) provide the first logarithmic efficiency for
such probabilities. Asmussen and Kroese (2006) propose an
estimator with a bounded relative error under distributions
with regularly varying tails.

In addition than the independent importance sampling
algorithm, more complex state-dependent importance sam-
pling has been proposed in the literature over the last few
years to estimate probabilities for sums of heavy-tailed inde-
pendent random variables, (e.g., Dupuis and Wang 2004;
Dupuis etal. 2007; Blanchet and Liu 2008; Blanchet and
Li 2011; Blanchet and Lam 2012; Amar etal. 2023). Some
researchers address the left-tail region, that is, the probability
that sums of nonnegative random variables fall below a suffi-
ciently small threshold (e.g., Asmussen etal. 2016;Ben Issaid
etal. 2017;BenRached etal. 2015, 2018, 2020a, b, 2021; Fuh
etal. 2023a).

Applications of importance sampling have been given in
other fields in the literature. To name a few, the improve-
ment of the convergence rate in stochastic gradient-based
optimization algorithms has been given in Zhao and Zhang
(2015), Richtárik and Takáč (2016), Johnson and Guestrin
(2018),Katharopoulos andFleuret (2018),Csiba andRichtárik
(2018), andFuh etal. (2023b).Metelli etal. (2018) andMetelli
etal. (2020) apply importance sampling in the target policy.

A useful tool in importance sampling for rare event sim-
ulation (m = P{X ∈ A}) is exponential tilting (e.g.,
Siegmund 1976; Sadowsky and Bucklew 1990), for which
the above-mentioned algorithm is more efficient for large-
deviation rare events (m of the order 10−5 or less) than
arbitrary events (say,m is not rare). Examples of such events
occur in telecommunications (m = bit-loss rate, probability
of buffer overflow) and reliability (m = the probability of
failure before time t). Efficient Monte Carlo simulation of

such events is proposed by Sadowsky and Bucklew (1990)
based on the large deviations theory given by Ney (1983).

Other than the above-mentioned extremely rare event
simulation, in this paper, we are interested in simulating
moderately rare events, that is, when m = P{X ∈ A} is
small, say, of the order 10−2 or 10−3 or so; i.e., {X ∈ A}
is a moderate-deviation rare event. Such problems appear
in the construction of confidence regions for asymptotically
normal statistics (e.g., Efron and Tibshirani 1994), and in the
computation of value-at-risk (VaR) in riskmanagement (e.g.,
Duffie and Singleton 2003; Glasserman etal. 2000, 2002;
Fuh etal. 2011). For the calculation of VaR in financial risk
management, the reduction in terms of the computational
time is essential, cf. Chapter 9 of Glasserman (2004). For a
more general EP [P(X)] such as portfolio loss (e.g., Li 2000;
Glasserman and Li 2005; Glasserman etal. 2007, 2008; Bas-
samboo etal. 2008; Chan and Kroese 2010), see Sect. 3 for
details.

To provide a more accurate simulation algorithm for a
moderately rare event, instead of using large-deviation expo-
nential tilting, an alternative choice of the tilting parameter
is based on the criterion of minimizing the variance of the
importance sampling estimator directly. For example, Johns
(1988), Do and Hall (1991), Fuh and Hu (2004) study effi-
cient simulations for bootstrapping the sampling distribution
of statistics of interest. Su and Fu (2000), Fu and Su (2002)
minimize the variance under the original probability mea-
sure. Fuh etal. (2011) apply the importance samplingmethod
for VaR computation under a multivariate t-distribution, in
which the authors also show that their proposed method con-
sistently outperforms, in the sense of variance reduction,
existing methods derived from large deviations theory under
various settings.

Our criterion in the search for desirable tilting parameters
is tominimize the variance of the estimator. Numerically, this
procedure is based on a pre-sampling stochastic approxima-
tion algorithm. This problem has been well-studied in Egloff
etal. (2005), Kawai (2009), and Kawai (2018). Overall our
algorithm has two stages. We first search the desired tilt-
ing parameters and then obtain samples under the alternative
distribution. This is similar to adaptive importance sampling
with stochastic approximation in Ahamed etal. (2006) in the
sense that we both seek to use stochastic approximation to
learn the optimal sampling distribution. However, our meth-
ods treat the search step as a separate stage other than an
adaptive online procedure.Moreover, the proposed exponen-
tial tilting family is based on sufficient statistics.

Note that for events of large deviations P{X ∈ A =
(a,∞)} for some a > 0, Sadowsky and Bucklew (1990)
show that the asymptotically optimal alternative distribution
is obtained through exponential tilting; that is, Q(dx) =
C exp(θx)P(dx), where C is a normalizing constant and θ

determines the amount of tilting. The optimal amount of tilt-

123



Statistics and Computing (2024) 34 :65 Page 3 of 29 65

ing θ is such that the expectation of X under the Q-measure
equals the dominating point, which is located at the boundary
a of A. However, for a moderately deviating rare event, Do
and Hall (1991) and Fuh and Hu (2004) show that typically
the tilting point θ∗ of the optimal alternative distribution is
inside (a,∞). This is different from that given by large devi-
ations theory. However, it is shown in Fuh andHu (2004) that
θ∗ − a approaches 0 as a → ∞; see Example 1 in Sect. 2.

Along this line, the proposed exponential embedding is
based on the idea of sufficient statistics. To illustrate the
concept of sufficient exponential embedding, we consider
a one-dimensional normal distributed random variable. Let
X ∼ N (0, 1) be a random variable with the standard
normal distribution, with probability density function (pdf)
e−x2/2/

√
2π . Then the sufficient exponential embedding is

dQ

dP
= exp{θx + ηx2}

E[exp{θx + ηx2}]
= √

1 − 2η exp{ηx2 + θx − θ2/(2 − 4η)}.

Note that here for the normal distribution, the sufficient
statistic is T (x) = [x x2]. In contrast to the classical one-
parameter exponential embedding, the sufficient exponential
embedding is based on two parameters (θ, η) correspond-
ing to the sufficient statistic T (x) = [x x2]. A systematic
study of this innovative technique will be given in Sect. 2,
in which we also use the idea of the conjugate measure of
Q, Q̄(dx) = C exp(−(θx + ηx2))P(dx), to characterize
the optimal tilting (θ, η) by solving the equation wherein the
expectation of (X , X2) under the Q-measure equals the con-
ditional expectation of (X , X2) under the Q̄-measure given
the rare event. To illustrate this innovative technique, we
tackle the complex issue of assessing credit risk in portfolios
that include financial instruments such as loans and bonds.
We propose a streamlined simulation algorithm to efficiently
estimate the probability of substantial portfolio losses.

There are two aspects in this study. To begin with, based
on the criterion of minimizing the variance of the importance
sampling estimator, we propose an innovative importance
sampling algorithm based on an unconventional sufficient
(statistic) exponential embedding. Here we term this suffi-
cient exponential tilting because the form of the embedding
is selected based on the sufficient statistic of the underly-
ing distribution, for which more than one parameter (usually
two parameters) can be tilted in our method; for instance, the
tilting parameters can be the location and scale parameters
in the multivariate normal distribution. Theoretical inves-
tigations, including bounded relative error and logarithmic
efficiency analysis (Theorems 5–6), and numerical stud-
ies are given to support the proposed importance sampling
method. Note that in Theorem 5 for normal distribution, to
simulate {X > a} for large a > 0, we show that optimal

sufficient exponential tilting outperforms traditional optimal
one-parameter exponential tilting in the sense of reducing
asymptotic variance. In Theorem 6 for gamma distribution,
to simulate {X > a} and {X < 1/a} for large a > 0, we
show that optimal sufficient exponential tilting outperforms
traditional optimal one-parameter exponential tilting. Fur-
thermore, we show that for the normal, multivariate normal,
and gamma distributions, our simulation study shows that
sufficient exponential tilting performs 2 to 5 times better than
classical one-parameter exponential tilting for some simple
rare event simulations. Note that the innovative tilting for-
mula is more suitable for the grouped normal mixture copula
model, and is of independent interest. In particular, when
applying sufficient exponential tilting in the normal mixture
models, the tilting parameter can be either the shape or the
rate parameter for the underlying gamma distribution, which
results in a more efficient simulation.

Next, by utilizing a fast computational method for how
the rare event occurs and the proposed importance sampling
method, we provide an efficient simulation algorithm for a
multi-factor model with the normal mixture copula model to
estimate the probability that the portfolio incurs large losses.
To be more precise, in this stage, we use the inverse Fourier
transform to handle the distribution of total losses, i.e., the
sum of n “weighted” independent but non-identically dis-
tributed Bernoulli random variables. An automatic variant
of Newton’s method is introduced to determine the opti-
mal tilting parameters. Note that the proposed simulation
device is based on importance sampling for a joint proba-
bility other than the conditional probability used in previous
studies, which is also shown to achieve variance reduction in
the asymptotic sense in terms of bounded relative error (The-
orem 7). Finally, to illustrate the applicability of our method,
we mention numerical results of the proposed algorithm
under various copula settings, and highlight insights into the
trade-off between the reduced variances and increased com-
putational time.

The remainder of this paper is organized as follows. Sec-
tion2 presents a general account of importance sampling
based on sufficient exponential embedding. Section3 for-
mulates the problem of estimating large portfolio losses,
presents the normal mixture copula model, and studies the
proposed optimal importance sampling for portfolio loss
under the normalmixture copulamodel. Section4 concludes.
Some proofs and numerical results are deferred to “Appen-
dices A–D”.

2 Sufficient exponential tilting

To calculate the value of (1) using importance sampling, one
selects a sampling probability measure Q under which X
has a pdf q(x) = q(x1, . . . , xd)with respect to the Lebesgue
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measure L . Q is assumed to be absolutely continuous with
respect to the original probability measure P . Therefore,
Eq. (1) can be written as

∫

Rd
P(x) f (x)dx =

∫

Rd
P(x)

f (x)

q(x)
q(x)dx

= EQ

[
P(X)

f (X)

q(X)

]
, (2)

where EQ[·] is the expectation operator under which X has
a pdf q(x) with respect to the Lebesgue measure L . The
ratio f (x)/q(x) is called the importance sampling weight,
the likelihood ratio, or the Radon–Nikodym derivative.

Here,we focus on the exponentially tilted probabilitymea-
sure of P . Instead of considering the commonly adopted
one-parameter exponential tilting in the literature (Asmussen
and Glynn 2007), we propose a sufficient exponential tilting
algorithm. To the best of our knowledge, the use of sufficient
exponential embedding is novel in the literature. As will be
seen in the examples in Sect. 2.1, the tilting probabilities for
existent two-parameter distributions, such as the gamma and
normal distributions, can be obtained by solving simple for-
mulas.

Let Qθ,η be the tilting probability measure, where sub-
script θ = (θ1, . . . , θp)

ᵀ ∈ Rp and η = (η1, . . . , ηκ)
ᵀ ∈

Rκ are the tiltingparameters.Here p andκ denote the number
of parameters, respectively. Let h1(x) be a function fromRd

toRp, and h2(x) be a function fromRd toRκ . Denote� and
H as the parameter spaces such that the moment-generating
function 	(θ, η) := E[eθᵀh1(x)+ηᵀh2(x)] of (h1(X), h2(X))
exists for θ ∈ � ⊂ Rp and η ∈ H ⊂ Rκ . Let fθ,η(x) be the
pdf of X under the exponentially tilted probability measure
Qθ,η, defined by

fθ,η(x) = eθ
ᵀh1(x)+ηᵀh2(x)

	(θ, η)
f (x)

= eθ
ᵀh1(x)+ηᵀh2(x)−ψ(θ,η) f (x), (3)

where ψ(θ, η) = ln	(θ, η) is the cumulant function. Note
that in (3), we present one type of parameterization which is
suitable for our derivation. Explicit representations of h1(x)
and h2(x) for specific distributions are given in the exam-
ples and remarks in Sect. 2.1, which include the normal and
multivariate normal distributions as well as the gamma dis-
tribution.

Consider sufficient exponential embedding. Equation (2)
becomes
∫

Rd
P(x) f (x)dx =

∫

Rd
P(x)

f (x)

fθ,η(x)
fθ,η(x)dx

= EQθ,η

[
P(X)e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)

]
.

Because of the unbiasedness of the importance sampling esti-
mator, its variance is

VarQθ,η

[
P(X)e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)

]

= EQθ,η

[(
P(X)e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)

)2
]

− m2,

(4)

where m = ∫
Rd P(x) f (x)dx . For simplicity, we assume

that the variance of the importance sampling estimator exists.
A simple example is thatP(X) is bounded and the parame-
ters (θ, η) lie in the domain discussed as above. For instance,
in the one-dimensional Gaussian case withP(X) = 1{X>a}
or P(X) = 1{X<a}, it is possible to determine the exact
domain on which the variance is finite. The same is true in
the case where X is a gamma distribution. We will consider
these two cases in Theorems 5 and 6.

Define the first term of the right-hand side (RHS) of (4)
by G(θ, η). Then minimizing

VarQθ,η

[
P(X)e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)

]

is equivalent to minimizing G(θ, η). Standard algebra gives
a simpler form of G(θ, η):

G(θ, η) := EQθ,η

[(
P(X)e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)

)2
]

= EP

[
P2(X)e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)

]
, (5)

which is used to find the optimal tilting parameters. In the
following theorem, we show that G(θ, η) in (5) is a convex
function in θ and η. This property ensures that there exists no
multi-mode problem in the search stage when determining
the optimal tilting parameters.

TominimizeG(θ, η), the first-order condition requires the
solutionof θ, η, denotedby θ∗, η∗, to satisfy∇θG(θ, η) |θ=θ∗
= 0, and ∇ηG(θ, η) |η=η∗= 0, where ∇θ denotes the gradi-
ent with respect to θ and∇η denotes the gradient with respect
to η. Under the condition that X is in an exponential family,
and ψ(θ, η) are bounded continuously differentiable func-
tions with respect to θ and η, by the dominated convergence
theorem, simple calculation yields

∇θG(θ, η) = EP

[
P2(X)(−h1(X)

+∇θψ(θ, η))e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)
]
,

∇ηG(θ, η) = EP

[
P2(X)(−h2(X)

+∇ηψ(θ, η))e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)
]
;
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therefore, (θ∗, η∗) is the root of the following system of non-
linear equations:

∇θψ(θ, η) = EP
[
P2(X)h1(X)e−(θᵀh1(X)+ηᵀh2(X))

]

EP
[
P2(X)e−(θᵀh1(X)+ηᵀh2(X))

] , (6)

∇ηψ(θ, η) = EP
[
P2(X)h2(X)e−(θᵀh1(X)+ηᵀh2(X))

]

EP
[
P2(X)e−(θᵀh1(X)+ηᵀh2(X))

] . (7)

To simplify theRHSof (6) and (7),we define the conjugate
measure Q̄P

θ,η of the measure Q with respect to the payoff
function P as

d Q̄P
θ,η

dP
= P2(X)e−(θᵀh1(X)+ηᵀh2(X))

EP [P2(X)e−(θᵀh1(X)+ηᵀh2(X))]
= P2(X)e−(θᵀh1(X)+ηᵀh2(X))−ψ̄(θ,η),

where ψ̄(θ, η) is log 	̄(θ, η) with 	̄(θ, η) = EP [P2(X)
e−(θᵀh1(X)+ηᵀh2(X))]. Then theRHSof (6) equalsEQ̄P

θ,η
[h1(X)],

the expected value of h1(X) under Q̄P
θ,η, and the RHS of (7)

equals EQ̄P
θ,η

[h2(X)], the expected value of h2(X) under

Q̄P
θ,η.
The following theorem establishes the existence, unique-

ness, and characterization for the minimizer of (5). Before
that, to ensure the finiteness of the moment-generating func-
tion 	(θ, η), we add a condition that 	(θ, η) is steep,
cf. Asmussen and Glynn (2007). To define steepness, let
θ−
i = (θ1, . . . , θi , . . . , θp) ∈ � such that all θk are fixed for
k = 1, . . . , i − 1, i + 1, . . . , p except the i-th component.
Denote η−

j ∈ H correspondingly for j = 1, . . . , κ . Now,

let θi,max := sup{θi : 	(θ−
i , η) < ∞} for i = 1, . . . , p,

and η j,max := sup{η j : 	(θ, η−
j ) < ∞} for j = 1, . . . , κ

(for light-tailed distributions, we have 0 < θi,max ≤ ∞ for
i = 1, . . . , p, and 0 < η j,max ≤ ∞ for j = 1, . . . , κ).
Then steepness means 	(θ, η) → ∞ as θi → θi,max for
i = 1, . . . , p, or η j → η j,max for j = 1, . . . , κ .

The following conditions are used in Theorem 1:

i) 	̄(θ, η)	(θ, η) → ∞ as θi → θi,max for i = 1, . . . , p,
or η j → η j,max for j = 1, . . . , κ;

ii) G(θ, η) is a continuously differentiable function on�×
H , and

max
i=1,...,p, j=1,...,κ

{
lim

θi→θi,max

∂G(θ, η)

∂θi
, lim
η j→η j,max

∂G(θ, η)

∂η j

}
> 0.

(8)

Note that condition i) or ii) is used to guarantee the existence
of the minimum point. More details can be found in the proof
of Theorem 1.

Theorem 1 Suppose themoment-generating function	(θ, η)

of (h1(X), h2(X)) exists for θ ∈ � ⊂ Rp and η ∈ H ⊂ Rκ .

Assume 	(θ, η) is steep. Furthermore, assume either i) or
ii) holds. Then G(θ, η) defined in (5) is a convex function
in (θ, η), and there exists a unique minimizer of (5), which
satisfies

∇θψ(θ, η) = EQ̄P
θ,η

[h1(X)], (9)

∇ηψ(θ, η) = EQ̄P
θ,η

[h2(X)]. (10)

Proof To prove Theorem 1, we require the following three
propositions. Proposition 2 is taken from Theorem VI.3.4.
of Ellis (1985), Proposition 3 is a standard result from con-
vex analysis, and Proposition 4 is taken from Theorem 1 of
Soriano (1994). Note that although the function domain is
the whole space in Propositions 3 and 4, the results for a
subspace still hold with similar proofs.

Proposition 2 f (x) is differentiable at x ∈ int(X ) if and

only if the d partial derivatives ∂ f (x)
∂xi

for i = 1, . . . , d exist

at x ∈ int(X ) ⊂ Rd and are finite.

Proposition 3 Let f : Rd → R be continuous on all of
x ∈ Rd . If f is coercive (in the sense that f (x) → ∞ if
‖x‖ → ∞), then f has at least one global minimizer.

Proposition 4 Let f : Rd → R, and let f , a continuously
differentiable, convex function, satisfy (8). Then a minimum
point for f exists.

Below,wefirst show thatG(θ, η) is a strictly convex function.
For any given λ ∈ (0, 1), and (θ, η), (θ ′, η′) ∈ � × H ⊂
Rp × Rκ , by the convexity of ψ(·, ·), we have

ψ(λθ + (1 − λ)θ ′, λη + (1 − λ)η′) = ψ(λ(θ, η)

+(1 − λ)(θ ′, η′))
≤ λψ(θ, η) + (1 − λ)ψ(θ ′, η′). (11)

Note that λ(θ, η)+ (1− λ)(θ ′, η′) = (λθ + (1− λ)θ ′, λη+
(1 − λ)η′) is a (p + κ)-dimensional vector. Then

G(λ(θ, η) + (1 − λ)(θ ′, η′))
= G(λθ + (1 − λ)θ ′, λη + (1 − λ)η′)

= Ep

[
P2(X) exp

( − ((λθ + (1 − λ)θ ′)ᵀh1(X)

+(λη + (1 − λ)η′)ᵀh2(X))

+ψ(λθ + (1 − λ)θ ′, λη + (1 − λ)η′)
)]

≤ Ep

[
P2(X) exp

( − ((λθ + (1 − λ)θ ′)ᵀh1(X)

+(λη + (1 − λ)η′)ᵀh2(X))

+λψ(θ, η) + (1 − λ)ψ(θ ′, η′)
)]

by (11)
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= Ep

[
P2(X) exp

( − λ(θᵀh1(X) + ηᵀh2(X))

+λψ(θ, η) − (1 − λ)(θ ′ᵀh1(X) + η′ᵀh2(X))

+(1 − λ)ψ(θ ′, η′)
)]

< EP

[
λP2(X)e−(θᵀh1(X)+ηᵀh2(X))+ψ(θ,η)

+(1 − λ)P2(X)e−(θ ′ᵀh1(X)+η′ᵀh2(X))+ψ(θ ′,η′)
]

= λG(θ, η) + (1 − λ)G(θ ′, η′).

Next, we prove the existence of (θ, η) in the optimiza-
tion problem (5). To obtain the global minimum of G(θ, η),
we note that G(θ, η) is strictly convex from the above argu-

ment, and ∂G(θ, η)
∂θi

and ∂G(θ, η)
∂ηi

exist for i = 1, . . . , p,

j = 1, . . . , κ . Proposition 2 establishes that G(θ, η) is con-
tinuously differentiable for (θ, η) ∈ �×H . By the definition
of G(θ, η) in (5), it is easy to see that condition i) implies
that G(θ) is coercive. Then by Proposition 3, G(θ, η) has
a unique minimizer. Clearly ii) implies that conditions in
Proposition 4 hold.

To prove (9) and (10), we simplify the right-hand side of
(6) and (7) under Q̄P

θ,η. Standard algebra yields

EP
[
P2(X)h1(X)e−(θᵀh1(X)+ηᵀh2(X))

]

EP
[
P2(X)e−(θᵀh1(X)+ηᵀh2(X))

] = EQ̄P
θ,η

[h1(X)],

EP
[
P2(X)h2(X)e−(θᵀh1(X)+ηᵀh2(X))

]

EP
[
P2(X)e−(θᵀh1(X)+ηᵀh2(X))

] = EQ̄P
θ,η

[h2(X)]

for i = 1, . . . , p, j = 1, . . . , κ . This implies the desired
result. 
�
Remark 1 (a) To keep the exponentially tilted probability
measure Qθ,η within the same exponential family as the
original probability measure P , one possible selection of
h1(x) and h2(x) is based on the sufficient statistic of the
original probability distribution. For example, for the nor-
mal distribution, the sufficient statistic is T (x) = [x x2]
and thus h1(x) = x and h2(x) = x2; for the gamma distri-
bution, the sufficient statistic is T (x) = [log x x] and thus
h1(x) = log x and h2(x) = x , and for the beta distribution,
the sufficient statistic is T (x) = [log x log(1− x)] and thus
h1(x) = log x and h2(x) = log(1 − x). Such a device can
be applied to other distributions as well, such as the lognor-
mal distribution, the inverse Gaussian distribution, and the
inverse gamma distribution.

(b)Now,weprovide a heuristic explanation for this device.
The idea of using a sufficient statistic for exponential tilting
is that we can treat this tilting as a sufficient exponential tilt-
ingwithin the same given parametric family. Furthermore, by
using the Fisher–Neyman factorization theorem in the expo-

nential family,wenote that this device provides themaximum
degree of freedom for exponential tilting within the same
exponential family. We also expect to have an analogy paral-
lel to the Rao–Blackwell theorem for sufficient exponential
tilting: minimize the mean square loss among all possible
importance sampling in the same exponential embedding.

2.1 Examples for multivariate normal and gamma
distributions

To illustrate the proposed sufficient exponential tilting, we
present examples of the multivariate normal distribution and
the gamma distribution. We choose these two distributions
to indicate the location and scale properties of the sufficient
exponential tilting used in our general framework. In these
examples, by using a suitable re-parameterization, we obtain
neat tilting formulas for each distribution based on its suf-
ficient statistic. Our simulation studies also show that the
proposed sufficient exponential tilting performs 2 to 5 times
better than classical one-parameter exponential tilting for
some simple rare events.

We here check the validity of applying Theorem 1 for
the example. First, we note that both the multivariate normal
distribution and the gamma distribution are steep. Next, it is
easy to see that the sufficient conditions 	̄(θ)	(θ) → ∞
as θi → θi,max for i = 1, . . . , p, or η j → η j,max for
j = 1, . . . , κ in Theorem 1 hold in each example. For
example, when X ∼ Nd(0, 
), then 	(θ) = O(e‖θ‖2)
approaches ∞ sufficiently quickly. Another simple exam-
ple illustrated here is when P(X) = 1{X∈A} and A :=
[a1,∞)×· · ·×[ad ,∞), with ai > 0 for all i = 1, . . . , d, and
X has a d-dimensional standard normal distribution; in this
case it is easy to verify that the sufficient conditions in Theo-
rem 1 hold. For gamma distribution X ∼ Gamma(α, β), we

have	(θ, η) = (1/β)−α�(α+θ)

�(α)(β−η)α+θ and 	̄(θ, η) = (1/β)−α�(α−θ)

�(α)(β+η)α−θ .

Then it is easy to see that 	(θ, η)	̄(θ, η) → ∞ as η ↑ β or
η ↓ −β.

Example 1 Multivariate normal distribution.
To illustrate the concept of sufficient exponential embed-

ding, we first consider a one-dimensional normal distributed
random variable as an example. Let X be a random variable
with the standard normal distribution, denoted by N (0, 1),
with probability density function (pdf) dP

dL = e−x2/2/
√
2π.

By using the sufficient exponential embedding in (3) with
h1(x) := x and h2(x) := x2, we have

dQθ,η/dL

dP/dL
= exp{θh1(x) + ηh2(x)}

E[exp{θh1(X) + ηh2(X)}]
= √

1 − 2η exp{ηx2 + θx − θ2/(2 − 4η)}.
(12)
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In this case, the tilting probability measure Qθ,η is N (θ/(1−
2η), 1/(1 − 2η)), with η < 1/2, a location-scale family.

For the event of P(X) = 1{X>a} for a > 0, define Q̄θ,η

as N (−θ/(1 + 2η), 1/(1 + 2η)) with η > −1/2. Applying
Theorem 1, (θ∗, η∗) is the root of

θ

1 − 2η
= EQ̄θ,η

[X | X > a] and

1

1 − 2η
+ θ2

(1 − 2η)2
= EQ̄θ,η

[X2 | X > a], (13)

which is equivalent to

μ = EQ̄
μ,σ2

[X | X > a] and σ 2 + μ2

= EQ̄
μ,σ2

[X2 | X > a].

under the standard parameterization.
Take the one-parameter exponential embedding case, with

σ fixed. Standard calculation gives 	(θ) = eθ
2/2, ψ(θ) =

θ2/2, and ψ ′(θ) = θ . Using the fact that X | {X > a} is a
truncated normal distribution with minimum value a under
Q̄, θ∗ must satisfy θ = φ(a+θ)

1−�(a+θ)
−θ , cf. Fuh and Hu (2004).

Table 1 presents numerical results for the normal dis-
tribution. As demonstrated in the table, using sufficient
exponential tilting for the simple event, 1{X>a}, yields per-
formance 2 to 3 times better than one-parameter exponential
tilting in terms of variance reduction factors. Note that here
we adopt the automatic Newton method (Teng etal. 2016) to
search the optimal parameters for all experiments.

Due to the convex property G(θ, η) and the uniqueness of
the optimal tilting parameters, the optimal tilting formula is
robust and not sensitive to the initial value in most cases. To
illustrate this phenomenon, we consider theG(θ, η) function
for the simple event X > 2 under the standard normal dis-
tribution in Fig. 1. As shown in the figure, θ is not sensitive
to the initial values; note that the range of the initial val-
ues becomes vital for finding optimal η due to the constraint
η < 1/2.Moreover, there exists a flat area for simultaneously
tilting both parameters θ, η.

We now proceed to a d-dimensional multivariate normal
distribution. Let X = (X1, . . . , Xd)

ᵀ be a random vector
with the standard multivariate normal distribution, denoted
by N (0, I), with pdf det(2πI)−1/2 e−(1/2) xᵀ

I
−1x , where I

is the identity matrix. By using the sufficient exponential
embedding in (3), we have

dQθ,η/dL

dP/dL
= exp{θᵀx + xᵀMx}

E[exp{θᵀX + XᵀMX}]

= eθ
ᵀx+xᵀMx− 1

2 (θ
ᵀ(I−2M)−1θ)

√|(I − 2M)−1| ,

where |·| denotes the determinant of a matrix, and M =(
ai j

) ∈ R
d×d ,

with ai j = ηi for i = j and ai j = ηd+1 for i �= j .
In this case, the tilting probability measure Qθ,η is N ((I −
2M)−1θ, (I − 2M)−1).

For the event of P(X) = 1{X∈A}, define Q̄θ,η as
N ((I + 2M)−1(−θ), (I + 2M)−1). Similar to the above
one-dimensional normal distribution, we consider the stan-
dard parameterization by letting μ := (I − 2M)−1θ ,

 := (I − 2M)−1, and define Q̄μ,
 as N (−(2I −

−1)−1(
−1)μ, (2I − 
−1)−1). Applying Theorem 1,
(μ∗, 
∗) is the root of

μ = EQ̄μ,

[X | X ∈ A], (14)

K (μ,
) = EQ̄μ,


[
Xᵀ(∇ηi M)X | X ∈ A

]

for i = 1, 2, . . . , d + 1, (15)

where

∇ηi M = (b jk) ∈ R
d×d for i = 1, 2, . . . , d + 1, (16)

K (μ,
) = 1

2
Tr

(
−(∇ηi


−1)(
)
)

− 1

2
μᵀ(∇ηi


−1)μ.(17)

Here in (16), Tr(A) is the trace of matrix A; the value of
b jk is defined as follows: for each i = 1, . . . , d,

b jk =
{
1, if i = j = k,

0, otherwise,

and for i = d + 1,

b jk =
{
1, if i �= k,

0, otherwise.

Remark 2 The left-hand sides (LHSs) of (14) and (15)
are derivatives of the cumulant function ψMN (θ, η) :=
log(

√| (I − 2M)−1 |)+ 1
2 (θ

ᵀ(I−2M)−1θ) for a multivari-
ate normal with respect to parameters θ and η, respectively.
Note that in the RHS of (17), Jacobi’s formula is adopted for
the derivative of the determinant of the matrix (I − 2M)−1

and ∇ηi

−1 is

∇ηi

−1 = ∇ηi (I − 2M) = (m jk) ∈ R

d×d for i = 1, 2, . . . ,

d + 1,

where for each i = 1, . . . , d,

m jk =
{

−2, if i = j = k,

0, otherwise,

123



65 Page 8 of 29 Statistics and Computing (2024) 34 :65

Fig. 1 G(θ, η) function for simple event X > 2 under standard normal distribution

Table 1 Sufficient exponential
importance sampling for normal
distribution

[X ∼ N (0, 1)] Variance reduction factors
a Crude for P(X > a) θ∗ η∗ (θ∗, η∗)

1 1.566 × 10−1 4 1 9

2 2.300 × 10−2 19 4 58

3 1.370 × 10−3 226 36 785

4 3.000 × 10−5 6616 832 30,807

and for i = d + 1,

m jk =
{

−2, if i �= k,

0, otherwise.

Table 2 presents the numerical results for the standard
bivariate normal distribution. As shown in the table, for event
types 1{X1+X2>a},1{X1>a,X2>a}, and 1{X1X2>a,X1>0,X2>0},
tilting different parameters results in different performance
in variance reduction. Although sometimes tilting the vari-
ance parameter or the correlation parameter alone provides
poor performance, combining them as mean parameter tilt-
ing yields 2 to 3 times better performance than one-parameter
exponential tilting.

Note that for easy implementation, we here consider the
standard parameterization and directly tilt μ = (μ1, μ2),
σ = (σ1, σ2), and ρ in this example; that is, in this case,

(I − 2M)−1θ = μ and (I − 2M)−1 =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
.

In addition, we illustrate the G(μ, σ, ρ) function for simple
event X + Y > 3 under the standard bivariate normal dis-
tribution in Fig. 2, where neither μ nor σ are sensitive to the
initial values; although the range of the initial values becomes
vital for finding optimal ρ, G(ρ) is flat for most ρ.2

Example 2 Gamma distribution. Let X be a random variable
with a gamma distribution, denoted by Gamma(α, β), with

2 Note that to draw the figure, we assume μ = μ1 = μ2 and σ = σ1 =
σ2 for easy presentation.

pdf dP
dL = (βα/�(α)) xα−1e−βx . By using the sufficient

exponential embedding in (3) with h1(x) := log(x) and
h2(x) := x , we have

dQθ,η/dL

dP/dL
= exp{θh1(x) + ηh2(x)}

E[exp{θh1(X) + ηh2(X)}]
= exη+θ log(x) �(α)

(1/β)−α(β − η)−α−θ�(α + θ)
.(18)

In this case, the tiltingprobabilitymeasureQθ,η isGamma(α+
θ, β−η). For the event ofP(X) = 1{X>a} for a > 0, define
Q̄θ,η asGamma(α−θ, β+η). Applying Theorem 1, (θ∗, η∗)
is the root of

− log(β − η) + ϒ(α + θ) = EQ̄θ,η

[
log (X) | X > a

]
,(19)

α + θ

β − η
= EQ̄θ,η

[X | X > a] , (20)

where ϒ(α + θ) is a digamma function equal to �′(α +
θ)/�(α + θ).

Table 3 presents the numerical results for the gamma
distribution. Note that the commonly used one-parameter
exponential tilting involves a change only for the parameterβ
(i.e., changing β to β−η∗) in the case of the gamma distribu-
tion. However, observe that tilting the other parameter α (i.e.,
α → α + θ∗) for some cases yields 2 to 3 times better per-
formance than the one-parameter exponential tilting in terms
of variance reduction factors. This is due to the −θ < α and
η < β constraint. For instance, consider the case in which
we tilt only one parameter, either θ or η, as follows. For the
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Fig. 2 G(μ, σ, ρ) function for simple event X + Y > 3 under standard bivariate normal distribution

Table 2 Sufficient exponential
importance sampling for
standard bivariate normal
distribution

[X ∼ N2(0, I)] Variance reduction factors
k Crude μ∗ σ ∗ ρ∗ (μ∗, σ ∗, ρ∗)

P(X1 + X2 > a) 3 1.663 × 10−2 24 2 2 43

4 2.400 × 10−3 138 4 2 354

5 1.800 × 10−4 1064 8 4 4036

P(X1 > a, X2 > a) 1 2.532 × 10−2 9 1 2 16

1.5 4.600 × 10−3 34 2 7 68

2 5.800 × 10−4 227 5 18 504

P(X1X2 > a, X1 > 0, X2 > 0) 2 1.538 × 10−2 21 2 3 46

3 4.800 × 10−3 57 2 3 145

5 5.600 × 10−4 425 5 3 1213

simple event 1{X>a}, we can either choose parameter η such
that −β < η < β or parameter θ such that −α < θ and
α− θ ∈ R\{0,−1,−2, . . .} (see “Appendix B”), to obtain a
largermean for the tilted gammadistribution. In this case, it is
clear that θ -tilting yields a larger parameter search space and
thus achieves better performance than η-tilting. For simple
event 1{1/X>a}, the optimal tilting parameters θ∗ and η∗ can
be obtained by solving the revised version of (19) and (20),
where the condition is revised from X > a to 1/X > a. Note
that event 1{1/X>a} shows the opposite effect.

Additionally, Fig. 3 illustrates the G(θ, η) function for
simple event X > 10 under the gamma distribution. The
range of the initial values becomes vital for finding optimal
θ, η due to the θ > −α and η < β constraint. Moreover,
similar to the case in Fig. 1c, there exists a flat area for simul-
taneously tilting both parameters θ, η.

Remark 3 Observed from the above examples, the proposed
sufficient exponential tilting yields improvements in terms
of variance reduction in two aspects. First, in some cases,
tilting multiple parameters simultaneously via our sufficient
exponential tilting algorithm greatly improves the variance
reduction performance; for example, in the case of simulating
simple moderate-deviation rare events, for the normal distri-
bution, although changing σ or ρ alonemay not helpmuch in
variance reduction, changing them together with μ can yield
3 to 4 times better performance than traditional mean-shift

one-parameter tilting. Second, in some cases, tilting other
parameters results in better performance; for instance, for the
gamma distribution, changing the shape parameter α leads to
better performance for some rare events, though traditional
one-parameter tilting always changes the rate parameter β.
Moreover, for the simple cases, the computational time of
such two-parameter tilting is almost the same as that of one-
parameter tilting since our algorithm always converges in
3 or 4 iterations when locating optimal tilting parameters.
Analyses for more complex mixture distributions regarding
the computational cost are provided in Sect. 4.

For other events of interest, however, e.g., E(X1{0<X<a}),
other than the presented rare event cases, the proposed
sufficient exponential tilting method always yields better
performance than one-parameter tilting because optimal two-
parameter tilting includes the solution of one-parameter
tilting. For example, in the case of simulating E(X1{0<X<1})
for the standard normal distribution, tilting the standard devi-
ation together with the mean via our method yields 10 times
better variance reduction performance than tilting the mean
only.
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Table 3 Sufficient exponential importance sampling for gamma distribution

[X ∼ Gamma(α = 4, β = 1/2)]
Variance reduction factors Variance reduction factors

a Crude for P(X > a) θ∗ η∗ (θ∗, η∗) a Crude for P(1/X > a) θ∗ η∗ (θ∗, η∗)

10 2.613 × 10−1 3 2 6 0.2 2.438 × 10−1 2 4 9

20 1.050 × 10−2 46 23 129 0.5 1.864 × 10−2 15 41 79

30 1.800 × 10−4 1311 562 4190 1.5 3.100 × 10−4 301 1326 3,407

35 3.000 × 10−5 11,718 4788 22,015 2.5 6.000 × 10−5 2121 11,886 20,584

Fig. 3 G(θ, η) function for simple event X > 10 under gamma distribution X ∼ Gamma(α = 4, β = 1/2)

2.2 Bounded relative error and logarithmic
efficiency analysis

Here we state the theoretical results of both bounded rel-
ative error and logarithmic efficiency for the normal and
gamma distributions under the case of simple rare events.
Note that the optimal tilting parameters in Theorems 5 and 6
are approximately optimal tilting parameters, in the standard
large deviation sense, to be defined in “Appendices A and B”.

Theorem 5 Let X be a random variable from the standard
normal distribution N (0, 1) with pdf ϕ(x). Denote ϕθ,η(x)
as the pdf of N (θ/(1 − 2η), 1/(1 − 2η)).

For the simulation of the rare event probability p =
P(X > a), the domains of the tilting parameters θ and η are
� = (−∞,∞) and H = [−1/2, 1/2), respectively, and the
approximatedoptimal tilting parameters are θ∗ = a(1−2η∗)
and η∗ → −1/2 as a → ∞. Moreover, the approximated
optimal sufficient exponential tilting entails logarithmic effi-
ciency but not bounded relative error; i.e., for all ε > 0, we
have

lim
a→∞

1

p2−ε

∫ ∞

a

ϕ(x)

ϕθ∗,η∗(x)
ϕ(x)dx = 0.

Moreover, optimal sufficient exponential tilting outperforms
traditional optimal one-parameter exponential tilting in the
sense of reducing asymptotic variance.

Theorem 6 Let X be a random variable from the gamma
distribution Gamma(α, β) with pdf f (x). Denote fθ,η(x) as
the pdf of Gamma(α + θ, β − η).

(i) For the simulation of rare event probability p =
P(X > a), the domains of the tilting parameters θ and η

are� = {θ | −α < θ and α− θ ∈ R\{0,−1,−2, . . .}} and
H = (−β, β), and the approximated optimal tilting param-
eters are η∗ = (aβ − α − θ∗)/a and θ∗ → ∞ as a → ∞,
such that θ∗/a → c with c ∈ (0, 2β).

Moreover, the approximatedoptimal sufficient exponential
tilting entails bounded relative error; i.e.,

lim
a→∞

1

p2

∫ ∞

a

f (x)

fθ∗,η∗(x)
f (x)dx = 0.

Therefore, optimal sufficient exponential tilting outperforms
traditional optimal one-parameter exponential tilting, which
has only logarithmic efficiency for simulating {X > a}.

(ii) For the simulation of rare event probability p =
P(X < 1/a), the domains of the tilting parameters θ and η

are� = {θ | −α < θ < α and α−θ ∈ R\{0,−1,−2, . . .}}
and H = (−∞, β), and the approximated optimal tilting
parameters are η∗ = β−a(α+θ∗) and θ∗ → α as a → ∞.

Moreover, approximated optimal sufficient exponential
tilting entails bounded relative error; i.e.,

lim
a→∞

1

p2

∫ 1/a

0

f (x)

fθ∗,η∗(x)
f (x)dx = 0.
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Furthermore, the ratio of the expected squared estimators
between optimal sufficient exponential tilting and optimal
one-parameter tilting is less than one, indicating that the
former outperforms the latter.

The proofs of Theorems 5 and 6 are given in “Appen-
dices A and B”, respectively.

Remark 4 Note that two matters affect the domain of tilt-
ing parameter spaces � and H . First, it is necessary to
ensure realistic parameters for the tilted distribution; e.g.,
the η < 1/2 constraint for the normal distribution (η < β

for the gamma distribution) guarantees the variance (the ratio
parameter) of the tilted distribution to be positive. Second,
other constraints are needed to ensure the finiteness of the
expected squared estimator for the given event; e.g., in the
simulation of rare event {X > a}, η ≥ −1/2 is needed for the
normal distribution and η > −β for the gamma distribution.

3 An application: portfolio loss under the
normal mixture copula model

Consider a portfolio of loans consisting of n obligors, each of
whom has a small probability of default. We further assume
that the loss resulting from the default of the k-th obligor,
denoted as ck (monetary units), is known. In copula-based
credit models, dependence among default indicator for each
obligor is introduced through a vector of latent variables X =
(X1, . . . , Xn), where the k-th obligor defaults if Xk exceeds
some chosen threshold χk . The total loss from defaults is
then denoted by

Ln = c11{X1>χ1} + · · · + cn1{Xn>χn}, (21)

where1 is the indicator function. Particularly, the problem of
interest is to estimate the probability of losses, P(Ln > τ),
especially at large values of τ .

As mentioned earlier in the introduction, the widely-used
normal copula model might assign an inadequate probability
to the event of many simultaneous defaults in a portfolio. In
view of this, Bassamboo etal. (2008) and Chan and Kroese
(2010) set forth the t-copula model for modeling portfolio
credit risk. In this paper, we further consider the normal mix-
ture model (McNeil etal. 2015), including the normal copula
and t-copula models as special cases, for the generalized d-
factor model of the form

Xk = ρk1V1Z1 + · · · + ρkdVd Zd + ρkVd+1εk , k = 1, . . . , n,

(22)

in which

• Z = (Z1, . . . , Zd)
ᵀ follows a d-dimensional multivari-

ate normal distribution with zero mean and covariance
matrix 
, where ᵀ denotes vector transpose;

• V = (V1, . . . , Vd+1) are non-negative scalar-valued ran-
dom variables which are independent of Z , and each
Vj is a shock variable independent from each other, for
j = 1, . . . , d + 1;

• εk ∼ N (0, σ 2
ε ) is an idiosyncratic risk associated with

the k-th obligor, for k = 1, . . . , n;
• ρk1, . . . , ρkd are the factor loadings for the k-th obligor,

and ρ2
k1 + · · · + ρ2

kd ≤ 1;

• ρk =
√
1 − (

ρ2
k1 + · · · + ρ2

kd

)
, for k = 1, . . . , n.

Model (22) is the so-called grouped normal mixture cop-
ula in McNeil etal. (2015), which is constructed by drawing
randomly from this set of component multivariate normals
based on a set of weights controlled by the distribution of V .
This model enables us to blend in multiplicative shocks via
the variables V , which could be interpreted as shocks that
arise from new information. Note that in model (22), we con-
sider a multi-factor model to capture the effect of different
factors. In addition, rather than multiplying all components
of a correlated Gaussian vector Z with a single V , we instead
multiply different subgroups with different variates Vj ; the
Vj are themselves comonotonic [see Section 7.2.1 inMcNeil
etal. (2015)].

Let W = (W1, . . . ,Wd+1) and Vj = g(Wj ) for j =
1, . . . , d + 1. Note that in this paper, we mainly focus
on the class of Vj with Wj ∼ Gamma(α j , β j ), j =
1, . . . , d + 1. With Vj = g(Wj ) = √

ν j/Wj and Wj ∼
Gamma(ν j/2, 1/2) (for j = 1, . . . , d +1), we therefore cre-
ate subgroups whose dependence properties are described
by normal mixture copulas with different ν j parameters. The
groups may even consist of a single member for each ν j
parameter, as indicated in Section 7.3 of McNeil etal. (2015)
and references therein. With the above setting, in the degen-
erated case that W1 = W2 = · · · = Wd+1 is a common
gamma random variable (i.e., Wj ∼ Gamma(ν/2, 1/2) for
j = 1, . . . , d + 1), X forms a multivariate t-distribution,
which is the most popular form in financial modeling. In
addition, we consider the case that Vj = g(Wj ) = √

Wj ,
j = 1, . . . , d + 1 and Wj is with a generalized inverse
Gaussian (GIG) distribution. The GIG mixing distribution, a
special case of the symmetric generalized hyperbolic (GH)
distribution, is very flexible for modeling financial returns.
Moreover, GH distributions also include the symmetric nor-
mal inverse Gaussian (NIG) distribution and a symmetric
multivariate distribution with hyperbolic distribution for its
one-dimensional marginal as interesting examples. Note that
this class of distributions has become popular in the finan-
cial modeling literature. An important reason is their link to
Lévy processes (such as Brownian motion or the compound

123



65 Page 12 of 29 Statistics and Computing (2024) 34 :65

Poisson distribution) that are used to model price processes
in continuous time. For example, the generalized hyperbolic
distribution has been used to model financial returns in Eber-
lein and Keller (1995) and Eberlein etal. (1998). The reader
is referred to McNeil etal. (2015) for more details.

Note that the number of factors used formodel (22) usually
depends on the number of obligors in the credit portfolio
and their characteristics, e.g., the number of sectors that the
obligors belong to. In addition, in practice we would expect
the factor loadings to be fairly sparse, cf. Glasserman etal.
(2008).

We now define the tail probability of total portfolio losses
conditional on Z and V . Specifically, the tail probability of
total portfolio losses conditional on the factors Z and V ,
denoted as �(Z , V ) is defined as

�(Z , V ) = P(Ln > τ | (Z , V )). (23)

The desired probability of losses can be represented as

P(Ln > τ) = E
[
�(Z , V )

]
. (24)

For an efficient Monte Carlo simulation of the probability
of total portfolio losses (24), we apply importance sam-
pling to the distributions of the factors Z = (Z1, . . . , Zd)

ᵀ

and V = (V1, . . . , Vd+1)
ᵀ = (g(W1), . . . , g(Wd+1))

ᵀ (see
(22)). In other words, we attempt to choose importance sam-
pling distributions for both Z andW that reduce the variance
in estimating the integral E[�(Z , V )] against the original
densities of Z and W .

As noted in Glasserman and Li (2005) for normal copula
models, the simulation of (24) involves two rare events: the
default event and the total portfolio loss event. For the nor-
mal mixture model (22), this makes the simulation of (24)
even more challenging. For a general simulation algorithm
for this type of problem, we simulate P(Ln > τ) as the
expected value of �(Z , V ) in (24). Our device is based on a
joint probability simulation rather than the conditional prob-
ability simulation considered in the literature. Moreover, we
note that the simulated distributions—the multivariate nor-
mal distribution Z and the commonly adopted multivariate
gamma distribution for W—are both two-parameter distri-
butions.3 This motivates us to study a sufficient exponential
tilting in the next section.

3.1 Sufficient exponential tilting for normal mixture
distributions

Recall that in (22), the latent random vector X follows
a multivariate normal mixture distribution. In this section,

3 Here we treat the mean vector and variance-covariance matrix of Z
as two parameters.

for simplicity, we consider a one-dimensional normal mix-
ture distribution as an example to demonstrate the proposed
sufficient exponential tilting. Let X be a one-dimensional
normal mixture random variable with only one factor (i.e.,
d = 1) such that X = ξV Z = ξg(W )Z , where ξ ∈ R,
Z ∼ N (0, 1), W ∼ Gamma(α, β), and V (as well as W )
is a non-negative and scalar-valued random variable which
is independent of Z . Since the randomvariableW is indepen-
dent of Z , by using sufficient exponential embedding with
h1(z) and h2(z) for Z and h̃1(w) and h̃2(w) for W , we have

dQθ1,η1,θ2,η2/dL

dP/dL
= exp{θ1h1(z) + η1h2(z)}

E[exp{θ1h1(Z) + η1h2(Z)]}
exp{θ2h̃1(w) + η2h̃2(w)}

E[exp{θ2h̃1(W ) + η2h̃2(W )]} , (25)

where θ1, η1 are the tilting parameters for Z and θ2, η2 are
the tilting parameters for W .

As Z follows a standard normal distribution N (0, 1) and
W follows a gamma distribution Gamma(α, β), from (12)
and (18), Eq. (25) becomes

dQθ1,η1,θ2,η2/dL

dP/dL
= 1

σ
exp{μz − μ2/2 + σ 2 − 1

2σ 2 (z − μ)2}

×ewη2+θ2 log(w) �(α)

(1/β)−α(β − η2)
−α−θ2�(α + θ2)

,

whereμ = θ1/(1−2η1) and σ 2 = 1/(1−2η1).4 The optimal
tilting parameters θ∗

1 , η
∗
1 for Z can be obtained by solving the

modified version of (13) for the normal distribution; θ∗
2 and

η∗
2 for W are the solutions of the modified version of (20)

and (19) for the gamma distribution, where condition X > a
is modified to accommodate the event. For example, condi-
tion X > a is modified to

√
WZ > a in (13), (20), and (19)

for the example in Table 4. Note that due to the fact that
W is independent of Z , the optimal tilting can be done sep-
arately for the normal and gamma distributions. Moreover,
for demonstration and to promote reproducibility, we release
our implementation5 for searching the optimal parameters for
the normal, gamma, and normal mixture distributions (cor-
responding to the results in Tables 1, 3, and 4, respectively);
the optimal parameters for each setting are also listed in the
released code.

Table 4 shows the numerical results for this one-dimensi
onal, one-factor normal mixture distribution with V = g(W )

= √
W . Since for a normal mixture random variable, the

variance is associated with the random variable W , tilting
the standard deviation-related parameter η1 with θ1 of the
normal random variable Z is relatively insignificant in com-
parison to tilting the parameters of W (i.e., θ2 or η2) with

4 To simplify the notation, we here use μ and σ 2.
5 https://github.com/jerewang/codes.twoparameters.is.git.
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θ1. This is shown in Table 4. In addition, similar to the case
demonstrated in Example 2, in this case, tilting θ2 with θ1
also yields better performance than tilting η2 with θ1 in the
sense of variance reduction, which is consistent with the the-
oretical results in “Appendices A and B” and the numerical
results in Table 3 (see Remark 7 also).

Next, we summarize tilting for the event in which the k-th
obligor defaults if Xk exceeds a given threshold χk as “ABC-
event tilting,” which involves the calculation of tail event

{(A + B)C > τ } ,

where A denotes the normally distributed part of the system-
atic risk factors, B denotes the idiosyncratic risk associated
with each obligor, and C denotes the non-negative and
scalar-valued random variables which are independent of
A and B,6 For example, for the normal mixture copula
model in (22), the d-dimensional multivariate normal ran-
dom vectors Z = (Z1, . . . , Zd) are associated with A, εk
is associated with B, and the non-negative and scalar-valued
random variables W are associated with C. Table 5 sum-
marizes the exponential tilting used in Glasserman and Li
(2005), Bassamboo etal. (2008), Chan and Kroese (2010),
Scott and Metzler (2015) and our paper. Note that Glasser-
man and Li (2005) consider the normal copula model so
that there is no need for tilting C, and that Bassamboo etal.
(2008), Chan and Kroese (2010), Scott and Metzler (2015)
only consider the one-dimensional t-distribution, whereas
we consider the multi-dimensional normal mixture distribu-
tion.Moreover, except for the proposedmodel, the other four
methods adopt so-called one-parameter tilting. For example,
even though Scott and Metzler (2015) consider the tilting
of A and C, the same as our setting, only one parameter is
tilted for each of the two distributions (i.e., mean for the
normal distribution and shape for the gamma distribution);
in our method, however, the tilting parameter can be either
the shape or the rate parameter for the underlying gamma
distribution, which results in a more efficient simulation.

Remark 5 When considering the t-distribution for Xk (i.e.,
Vj = √

ν j/Wj with Wj ∼ Gamma(ν j/2, 1, 2) for j =
1, . . . , d+1), traditional one-parameter tilting for the gamma
distribution has bounded relative error, whereas it has only
logarithmic efficiency for the normal distribution. This fact
explainswhyBassamboo etal. (2008) tilt only the gammadis-
tribution (i.e., event C in Table 5). However, in this paper, we
additionally tilt the normal distribution to improve the “sec-
ond order” efficiency via the proposed sufficient exponential
tilting (see Theorem 6 ii)). Moreover, when considering
Vj = √

Wj , j = 1, . . . , d + 1 with Wj ∼ Gamma(α j , β j ),
sufficient exponential tilting outperforms traditional one-

6 Here we omit the coefficients before A B, and C for simplicity.

parameter exponential tilting, which has only logarithmic
efficiency (see Theorem 6 i)).

3.2 Exponential tilting for%(Z,V)

In this subsection, we use notation similar to that in Sect. 2.
Let Z = (Z1, . . . , Zd)

ᵀ be a d-dimensional multivari-
ate normal random variable with zero mean and identity
covariance matrix I,7 and denote V = (V1, . . . , Vd+1)

ᵀ =
(g(W1), . . . , g(Wd+1))

ᵀ as non-negative scalar-valued ran-
dom variables, which are independent of Z . Under the
probability measure P , let fz(z) = fz(z1, . . . , zd) and
fw(w) = fw(w1, . . . , wd+1)be the probability density func-
tions of Z and W , respectively, with respect to the Lebesgue
measureL . As alluded to earlier, our aim is to calculate the
expectation of �(Z , V ),

m = EP
[
�(Z , V )

]
(26)

under the probability measure P .8

To evaluate (26) via importance sampling, we choose a
sampling probability measure Q, under which Z and W
have the corresponding probability density functions qz(z) =
qz(z1, . . . , zd) and qw(w) = qw(w1, . . . , wd+1). Assume
that Q is absolutely continuous with respect to P; Eq. (26)
can then be written as

EP
[
�(Z , V )

] = EQ

[
�(Z , V )

fz(Z)

qz(Z)

fw(W )

qw(W )

]
. (27)

Let Qμ,
,θ,η be the sufficient exponential tilted probabil-
ity measure of P . Here subscripts μ = (μ1, . . . , μd)

ᵀ, and

, constructed via ρ and σ = (σ1, . . . , σd)

ᵀ, are the tilting
parameters for random vector Z ,9 and θ = (θ1, . . . , θd+1)

ᵀ

and η = (η1, . . . , ηd+1)
ᵀ are the tilting parameters for W .

Define the likelihood ratios

rz,μ,
(z) = fz(z)

qz,μ,
(z)
and rw,θ,η(w) = fw(w)

qw,θ,η(w)
, (28)

where qz,μ,
(z) and qw,θ,η(w) denote the probability den-
sity functions corresponding to qz(z) with tilting parameters

7 Although here we consider the identity covariancematrix for simplic-
ity, it is straightforward to extend this to any valid covariance matrix

.
8 Note that Theorem 1 works for a random variable from an exponen-
tial family. In this section, we simply apply the proposed importance
sampling to simulate the portfolio loss. In the case of simulating a rare
event probability, in which X is in a non-convex set, further decompo-
sition based on mixture distribution tilting is required, cf. Fuh and Hu
(2004), Glasserman etal. (2008). This line will be further studied in a
separate paper.
9 To simplify the notation, we use μ to denote one dimensional and
high dimensional parameters.
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Table 4 Sufficient exponential importance sampling for normal mixture distribution

[Z ∼ N (0, 1),W ∼ Gamma(α = 2, β = 1/2)] Variance reduction factors
a Crude θ∗

1 η∗
1 (θ∗

1 , η
∗
1) θ∗

2 η∗
2 (θ∗

1 , θ
∗
2 ) (θ∗

1 , η
∗
2)

P(
√
WZ > a) 2 1.344 × 10−1 3 1 5 1 1 4 4

4 2.808 × 10−2 7 2 10 2 1 15 12

8 9.500 × 10−4 30 8 44 4 3 281 206

12 2.000 × 10−5 105 18 178 11 4 6691 3100

Table 5 ABC-event tilting

One-parameter tilting (traditional) Sufficient exponential tilting (proposed)
Glasserman and Li (2005) Bassamboo etal. (2008) Chan and Kroese (2010) Scott and Metzler (2015) Our paper
Multivariate normal dist t-dist. Normal mixture dist

A ✓ ✗ ✓ ✓ ✓

B ✓ ✗ ✓ ✗ ✗

C NA ✓ ✗ ✓ ✓

μ and 
 and qw(w) with tilting parameters θ and η, respec-
tively. Then, combined with (28), Eq. (27) becomes

EQ

[
�(Z , V )

fz(Z)

qz(Z)

fw(W )

qw(W )

]

= EQμ,
,θ,η

[
�(Z , V )rz,μ,
(Z)rw,θ,η(W )

]
.

Denote G(μ,
,θ,η)=EP
[
�2(Z , V )rz,μ,
(Z)rw,θ,η(W )

]
,

which is assumed to be finite. By using the same argument as
that in Sect. 2, we minimize G(μ,
, θ, η) to get the tilting
formula. That is, tilting parameters μ∗, 
∗, θ∗, and η∗ are
chosen to satisfy10

∂G(μ,
, θ, η)

∂μ
= �0, ∂G(μ,
, θ, η)

∂

= �0, (29)

∂G(μ,
, θ, η)

∂θ
= �0, ∂G(μ,
, θ, η)

∂η
= �0. (30)

(Fast) inverse Fourier transform for non-identical ck

To obtain the optimal tilting parameters in (29) and (30), we
must calculate the conditional default probability �(z, v) =
P(Ln > τ | Z = z, V = v) in (21). We here apply the
fast inverse Fourier transform (FFT) method described as
follows. Note that using the definition of the latent factor Xk

for the k-th obligor in (22), the conditional default probability
P(Xk > χk | Z = z, V = v) given Z = (z1, . . . , zd)ᵀ and
V = (v1, . . . , vd+1)

ᵀ becomes

pz,v,k = P

(

εk >
χk − ∑d

i=1 ρki Vi Zi

ρkVd+1

∣∣∣∣ Z = z, V = v

)

.

10 This partial derivative is componentwise.

(31)

With non-identical ck , the distributionof the sumofn inde-
pendent but non-identically distributed weighted Bernoulli
random variables becomes difficult to evaluate. Here we
adopt the inverseFourier transform to calculate�(z, v) (Ober-
hettinger 2014). Recall that Ln | (Z = z, V = v) equals

Lz,v
n =

n∑

�=1

c�H
z,v
� ,

where Hz,v
� ∼ Bernoulli(pz,v,�) (see Eq. (31)), and the

support of Lz,v
n is a discrete set with a finite number of values.

Its Fourier transform is

φLz,v
n
(t) = E[eit Lz,v

n ] = E[eit(
∑n

i=1 c�H
z,v
� )]

=
n∏

�=1

E[eitc�Hz,v
� ] =

n∏

�=1

φHz,v
�
(tc�),

where φHz,v
�
(s) = 1− pz,v,�+ pz,v,�eis . For random variable

Lz,v
n , we can recover qz,vk = P(Lz,v

n = k) by inverting the
Fourier series:

qz,vk = 1

2π

∫ π

−π

eikt
n∏

�=1

φHz,v
�
(tc�)dt, (32)

where k = 1, 2, . . . ,∞.
An FFT algorithm computes the discrete Fourier trans-

form (DFT) of a sequence, or its inverse. To reduce the
computational time, this paper uses the FFT to approxi-
mate the probability in (32). With Euler’s relation eiθ =
cos θ + i sin θ , we can confirm that φLz,v

n
(t) has a period of

123



Statistics and Computing (2024) 34 :65 Page 15 of 29 65

2π ; i.e., φLz,v
n
(t) = φLz,v

n
(t + 2π) for all t , due to the fact

that ei(t+2π)k = eitk .
With this periodic property, we now evaluate the char-

acteristic function φLz,v
n

at N equally spaced values in the
interval [0, 2π ] as

bz,vm = φLz,v
n

(
2πm

N

)
, m = 0, 1, . . . , N − 1,

which defines the DFT of the sequence of probabilities
qz,vk . By using the corresponding sequence of characteris-
tic function values above, we can recover the sequence of
probabilities; that is, we aim for the sequence of qz,vk ’s from
the sequence of bz,vm ’s, which can be achieved by employing
the inverse DFT operation

q̃ z,vk = 1

N

N−1∑

m=0

bz,vm e−i2πkm/N , k = 0, 1, . . . , N − 1.

Finally, the approximation of �(z, v) can be calculated as

�̃(z, v) = 1 − PFFT(L
z,v
n ≤ τ) = 1 −

τ∑

�=0

q̃ z,v� , (33)

where PFFT(·) denotes the probability approximated using a
fast inverse Fourier transform.

Note that even “exact” FFT algorithms have errors
when using finite-precision floating-point arithmetic, but
these errors are typically very small. Most FFT algorithms
have outstanding numerical properties; for example, the
bound on the relative error for the Cooley–Tukey algorithm
is O(ε log N ). To attest the approximation performance,
Table 6 provides several examples showing the approxi-
mation error and computational time of the inverse Fourier
transform. In the table,we set the number of obligorsn = 250
and assume pz,v,� = 0.1 (i.e., Hz,v

� ∼ Bernoulli(0.1))
for simplicity. To check the approximation performance, we
first consider the case with equal ci = 1, where the probabil-
ity (denoted as PBinomial(·)) is evaluated analytically via the
cumulative density function of the binomial distribution with
parameters n = 250 and p = 0.1. Observe that the differ-
ences between the approximated probabilities (PFFT(·)) and
the analytical ones (PBinomial(·)) are negligible, i.e., the bias is
extremely small. Moreover, we investigate the case with five
different ci , in which we compare the approximated prob-
abilities with those generated via simulation with 500,000
samples; as shown in Table 6, the approximated probabili-
ties all liewithin the corresponding 95%confidence intervals.
We note also that the computational time grows linearly with
the number of different ci .11

11 All of the experiments were obtained by running programs viaMath-
ematica 11 on a MacBook Pro with a 2.6 GHz Intel Core i7 CPU.

Bounded relative error analysis

To state that when one simulates the portfolio loss probability
P(Ln > τ) in (24), the optimal sufficient exponential tilting
has bounded relative error, we first define the following nota-
tion. To set the stage, recall Ln in (21). Let u(x) be a function
that increases at a subexponential rate such that u(x) → ∞
as x → ∞, and set the default thresholds for the k-th obligor
to be χk = aku(n), where ak > 0 is a positive constant; that
is, we consider

Ln = c11{X1>a1u(n)} + · · · + cn1{Xn>anu(n)}. (34)

Let W = (W1, . . . ,Wd ,Wd+1) := (W̃ ,Wd+1). Due to
the independence of {Wj , j = 1, . . . , d + 1}, we can define

L∗ =
(

fz(Z)

qz,μ,
(Z)

)(
fw(W )

qw,θ,η(W )

)

=
(

fz(Z)

qz,μ,
(Z)

)(
fw̃(W̃ )

qw̃,θ,η(W̃ )

)(
fwd+1(Wd+1)

qwd+1,θ,η(Wd+1)

)
.

IfWd+1 follows a gammadistributionGamma(α, β), we have

L∗ =
(

fz(Z)

qz,μ,
(Z)

)(
fw̃(W̃ )

qw̃,θ,η(W̃ )

)

×ewη+θ log(w) �(α)

(1/β)−α(β − η)−α−θ�(α + θ)
. (35)

Here the domains of the tilting parameter spaces are the same
as those in Theorems 5 and 6.

The asymptotic optimal tilting parameters μ∗, σ ∗ for Z
can be obtained by using the same method of solving (14)
and (15), in which the indicated set 1{X∈A} is replaced by
�(Z , V ) in (27); θ∗ and η∗ forW can be obtained by using the
samemethod of solving (19) and (20), in which the indicated
set 1{X>a} is replaced by �(Z , V ) in (27).12

Theorem 7 Under the setting inmodel (22)with Vj = g(Wj )

for j = 1, . . . , d + 1, and the assumption that Wd+1 ∼
Gamma(α, β), let the sequence {(ck, ak) : k ≥ 1}, defined in
(34), take values in a finite setD . In addition, the proportion
of each element (ck, ak) ∈ D in the portfolio converges to
q j > 0 as n → ∞. Considering τ = nb for some b > 0, let
An = {Ln > nb}. Then, we have

lim sup
n→∞

E∗L2∗1{An}
(P(Ln > nb))2

< ∞,

where E∗ denotes the expectation under the probability mea-
sure Q in (35). In other words, optimal sufficient exponential
tilting has bounded relative error.

12 Note that here we do not tilt the correlation parameters.
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The proof of Theorem 7 is given in “Appendix C”.

3.3 Algorithms

This subsection summarizes the steps when we implement
the proposed sufficient exponential importance sampling
algorithm, which consists of two components: tilting param-
eter search and tail probability calculation. The aim of the
first component is to determine the optimal tilting param-
eters. We implement the search phase using an automatic
Newton method (Teng etal. 2016). We here define the con-
jugate measures Q̄μ,
 for Z and Q̄θ,η for W of the measure
Q.13 With these two conjugate measures and the results
in (14), (15), (20), and (19), we define functions gμ(μ),
g
(
), gθ (θ), and gη(η) as

gμ(μ) = μ − EQ̄μ,

[Z | Ln > τ ], (36)

g
(
) = K (μ,
) − EQ̄μ,


[
Zᵀ(∇ηi M)Z | Ln > τ

]

for i = 1, 2, . . . , d + 1, (37)

gθ (θ) = [− log(β1 − η1) + ϒ(α1 + θ1), . . . ,

− log(βd+1 − ηd+1) + ϒ(αd+1 + θd+1)]ᵀ
−EQ̄θ,η

[ ln (W ) | Ln > τ ] , (38)

gη(η) =
[
α1+θ1
β1−η1

, . . . ,
αd+1+θd+1
βd+1−ηd+1

]ᵀ − EQ̄θ,η
[W | Ln > τ ] ,

(39)

where ∇ηi M in (37) is defined in (16). To find the optimal
tilting parameters, we must find the roots of the above four
equations. With Newton’s method, the roots of (36), (37),
(38), and (39) are found iteratively by

δ(k) = δ(k−1) − J−1
δ(k−1)gδ(δ

(k−1)), (40)

where the Jacobian of gδ(δ) is defined as

Jδ[i, j] := ∂

∂δ j
gδ,i (δ). (41)

In (40) and (41), δ can be replaced with μ, 
, θ , and η, and
J−1
δ is the inverse of the matrix Jδ .
To measure the precision of the roots to the solutions in

(36), (37), (38), and (39), we define the sum of the square
error of gδ(δ) as ‖gδ(δ)‖ = g′

δ(δ)gδ(δ); a δ(n) is accepted
when ‖gδ(δ(n))‖ is less than a predetermined precision level

13 Note that these two conjugate measures are different from that
defined in Sect. 2, which is additionally with respect to a general payoff
function P . As the payoff function here is the probability of losses
in (24) and thus can be represented as the expectation of an indica-
tor function (which is similar to the simple examples in Sect. 2.1), we
here follow the conjugate measure in Fuh etal. (2018) for the following
calculation—the event of the probability becomes the condition of the
expectation (see Equations (36)–(39)). Ta
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ε. To illustrate the algorithm, we here use the setting Vj =
g(Wj ) = √

ν j/Wj and Wj ∼ Gamma(ν j/2, 1/2) (for j =
1, . . . , d + 1) as an example. The detailed procedures of the
first component are described as follows:

• Determine optimal tilting parameters:

(1) Generate independent samples z(i) from N (0, I) and
w

(i)
j from Gamma(ν j/2, 1/2) for i = 1, . . .B1; cal-

culate v(i)j =
√
ν j/w

(i)
j for j = 1, . . . , d + 1.

(2) Set μ(0), 
(0), θ(0), and η(0) properly; k = 1.
(3) Calculate gδ(0) functions via (36), (37), (38), and (39).
(4) Calculate the Jδ and their inverse matrices for the gδ

functions.
(5) Calculate δ(k) = δ(k−1)− J−1

δ(k−1)gδ(δ
(k−1)) in (40) for

δ = μ,
, θ, η.
(6) Calculate gδ(k) functions via (36), (37), (38), and (39).

If ∀ δ ∈ {μ,
, θ, η}, ‖gδ(δ(k))‖ < ε, set δ∗ = δ(k)

and stop. Otherwise, return to step (4).

We proceed to describe the second component that cal-
culates the probability of losses, in which optimal tilting
parameters μ∗, 
∗, θ∗ and η∗ are used (see step (6) for the
first component above). The detailed procedures of the sec-
ond component are summarized as follows:

• Calculate the probability of losses, P(Ln > τ):

(1) Generate independent samples z(i) from N (μ∗, 
∗)
and w

(i)
j from Gamma(ν j/2 − θ∗

j , 1/2 + η∗
j ) for

i = 1, . . .B2; calculate v
(i)
j =

√
ν j/w

(i)
j for j =

1, . . . , d + 1.
(2) Estimatem by m̂ = 1

B2

∑B2
i=1 �̃(z

(i), v(i)) rz,μ∗,
∗(z)
rw,θ∗,η∗(w) in (28), where �̃(z, v) is calculated by the
analytical form from (33) and μ∗, 
∗, θ∗, and η∗ are
obtained from step (6) of the first component of the
algorithm.

As a side note, in the above sufficient exponential tilting
algorithm, a component-wise Newton method is adopted to
determine the optimal tilting parameters μ,
, θ , and η; this
differs fromAlgorithm 2 in Teng etal. (2016), which involves
only one-parameter tilting for μ.

Remark 6 To implement the proposed importance sampling,
we require an additional searching stage. The searching stage
employs the recursive formula in (40), in which the function
gδ(·) and the Jacobian Jδ do not have closed-form formulas
and must be approximated by Monte Carlo simulation. For
easy presentation, as V (or W ) dominates the performance
[as stated in 3.3 of Bassamboo etal. (2008)], we here use the
case for estimating η∗ (see Eq. (39)) to illustrate the approx-
imation.

Let ĝη(η) be the Monte Carlo estimator of gη(η), defined
as

ĝη(η) =
[
α1+θ1
β1−η1

, . . . ,
αd+1+θd+1
βd+1−ηd+1

]ᵀ − 1

B1

B1∑

s=1

Y (s),

where Y (1), . . . ,Y (B1) are random samples under Q̄θ,η.
However, it is difficult to generate samples from Q̄θ,η because
it involves the payoff function �(Z , V ). Recall that substi-
tuting (8) for Q̄θ,η in (39) yields

gη(η) =
[
α1+θ1
β1−η1

, . . . ,
αd+1+θd+1
βd+1−ηd+1

]ᵀ

− EP [�2 (Z , V )We−(θᵀ log(W )+ηᵀW )]
EP [�2 (Z , V ) e−(θᵀ log(W )+ηᵀW )] .

Therefore, we can estimate gη(η) by

ĝη(η) =
[
α1+θ1
β1−η1

, . . . ,
αd+1+θd+1
βd+1−ηd+1

]ᵀ

−
∑B1

s=1 �
2
(
Z (s), V (s)

)
W (s)e−(θᵀ log(W (s))+ηᵀW (s))

∑B1
s=1 �

2
(
Z (s), V (s)

)
e−(θᵀ log(W (s))+ηᵀW (s))

,

(42)

where Z (1), . . . , Z (B1) and V (1), . . . , V (B1) (andW (1), . . . ,

W (B1)) are i.i.d. samples under P . Note that under the finite-
ness of the second moment assumption in (4), the standard
strong law of large numbers implies that the second term on
the right-hand side of (42) converges P-almost surely to

EP [�2 (Z , V )We−(θᵀ log(W )+ηᵀW )]/EP [�2 (Z , V )

e−(θᵀ log(W )+ηᵀW )],

which is EQ̄θ,η
[W | Ln > τ ] by the definition of conjugate

measure Q̄θ,η.
To approximate the second term on the right-hand side

of (42), we apply a similar technique to that in Fuh and
Hu (2004), which uses a small number of B1 to locate the
optimal tilting parameters. By (39), (42), and a similar argu-
ment to that in Theorem 1 of Bassamboo etal. (2008), we
have 1{Ln>τ } ∼ 1{Wd+1>a} when Vj = g(Wj ) = √

Wj for
j = 1, . . . , d + 1. This implies that

EQ̄θ,η
[W | Ln > τ ] ∼ EQ̄θ,η

[
W | Wd+1 > a

]

=
∫ ∞
a x · xα−1 exp(−βx)dx
∫ ∞
a xα−1 exp(−βx)dx

.

Since P(Wd+1 > a) is small when a is large, the preced-
ing equation indicates thatwemay lose numerical/simulation
precision. Therefore, we multiply both the numerator and
denominator of the preceding equation by exp(ηx+θ log x),
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for suitable θ = ξ , η = β − (α + ξ)/a for a large ξ as sug-
gested in (B20) and (B21), and compute

EQ̄θ,η
[W | Ln > τ ] ∼

∫ ∞
a x · xα+θ−1 exp(−(β − η)x)dx
∫ ∞
a xα+θ−1 exp(−(β − η)x)dx

.

(43)

Thenwe run the simulation in (42) based on (43).Note that
over an important part of the set [a,∞), xα+θ−1 exp(−(β −
η)x) is a moderately sized number such that the conditional
expectation in (43) can be simulated quite accurately with
a reasonably small size of B1. On the other hand, simi-
lar techniques can be used for the case Vj = g(Wj ) =√
ν j/Wj ; that is, we turn to estimate EQ̄θ,η

[W | Ln > τ ] ∼
EQ̄θ,η

[
W | Wd+1 < 1/a

]
(check “Appendix B”).

3.4 Numerical results

We compare the performance between our method and
those proposed in Bassamboo etal. (2008) and Chan and
Kroese (2010). For comparison purposes, we adopt the
same sets of parameter values as those in Table 1 of Bas-
samboo etal. (2008), where the latent variables Xk in 22
follow a t-distribution, i.e., V1 = V2 = √

ν1/W1 and
W1 ∼ Gamma(ν1/2, 1/2). The model parameters were cho-
sen to be n = 250, ρ11 = 0.25, the default thresholds for
each individual obligors χi = 0.5 × √

n, each ci = 1,
τ = 250 × b, b = 0.25, and σε = 3. Table 7 reports
the results of the exponential change of measure (ECM)
proposed in Bassamboo etal. (2008) and conditional Monte
Carlo simulation without and with cross entropy (CondMC
and CondMC-CE, respectively) in Chan and Kroese (2010).
As observed from the table, the proposed algorithm (the last
four columns) offers substantial variance reduction compared
with crude simulation; in general, it compares favorably to
the ECM and CondMC estimators. Moreover, for a fair com-
parison with the results of CondMC-CE, we first follow the
CondMC method by integrating out the shock variable ana-
lytically; then, instead of using the cross-entropy approach,
we apply the proposed importance sampling method for
variance reduction. Under this setting, the proposed method
yields variance reductions comparable to those of CondMC-
CE.

In addition to the above results, we additionally conducted
experimentswith the following setup, the results ofwhich are
reported and discussed in “Appendix D”. First, we compare
the performance of the proposed method with crude simula-
tion, under three-factor normal mixture models, in which the
t-distribution or the GIG distribution for Xk is considered.
(Note that we compare the performance of our method only
with crude Monte Carlo simulation henceforth, as most of
the literature focuses on simulating one-dimensional cases.)

The cases with different losses resulting from default of the
obligors are also investigated. Finally, we compare the com-
putational time of crude Monte Carlo simulation with that
of the proposed importance sampling under several scenar-
ios, and provide insight into the trade-off between reduced
variance and increased computational time. Detailed setups
for all the experiments for portfolio losses are also found in
Appendix 3.4.

4 Conclusion

This paper introduces a comprehensive framework for a
sufficient exponential tilting algorithm, supported by both
theoretical foundations and empirical evidence from numer-
ical experiments. We employ this approach in a multi-factor
model featuring a normal mixture copula. Traditional meth-
ods for calculating portfolio credit risk—such as direct
analysis or basic Monte Carlo simulation—are insufficient
due to the large portfolio size, diverse obligor characteris-
tics, and the interconnected yet infrequent nature of default
events. To address these challenges, we offer an optimized
simulation algorithm that more accurately estimates the like-
lihood of significant portfolio losses when a normal mixture
copula is involved. In summary, our computational method
brings two main innovations to the table. First, from a statis-
tical standpoint, we introduce an unconventional sufficient
(statistic) exponential embedding that serves as a versatile
tool in importance sampling. Secondly, our work appears
to be the first to specifically tackle high-dimensional impor-
tance samplingwithinmulti-factormodels that go beyond the
standard normal copula assumptions. In the broader context,
the relevance and application of our work extend beyond
credit risk to extreme event modeling in various domains,
such as pandemics, highlighting its importance and versatil-
ity. The computational challenges associated with extreme
event modeling are well-known, and our paper contributes
significantly to this arena.

There are several possible future directions based on this
model. To name a few, first, we will explore more proper-
ties of the proposed sufficient exponential tilting, and apply
it to more practical cases, to see how far it can go. Second,
as suggested by a reviewer, it could be helpful to discuss
computing the value-at-risk or expected shortfall for general
financial risk management or for insurance company inter-
estswhenmanaging the large number of obligors involved, as
these remain demanding topics in practice. Third, although
in this paper the default time is fixed and the default bound-
ary is exogenous, the default time could be any time before a
pre-fixed time T and the default boundary could depend on
firm characteristics andmay be state- and time-dependent. To
capture these phenomena,wewill considermore complicated
dynamic models, for which importance sampling should be
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Table 7 Performance of proposed algorithm with equal loss resulting from default of obligors for a one-factor model (t-distribution)

Bassamboo etal. (2008) Chan and Kroese (2010) Importance sampling (IS)
ECM CondMC CondMC-CE IS CondMC-IS

ν P(Ln > τ) V.R. factor V.R. factor P(Ln > τ) V.R. factor P(Ln > τ) V.R. factor

4 8.13 × 10−3 65 271 2440 8.11 × 10−3 338 8.09 × 10−3 1600

8 2.42 × 10−4 878 1690 20,656 2.36 × 10−4 6212 2.47 × 10−4 14,770

12 1.07 × 10−5 7331 12,980 2.08 × 105 1.04 × 10−5 16,100 1.10 × 10−5 1.57 × 105

16 6.16 × 10−7 52,185 81,170 1.30 × 106 6.34 × 10−7 2.78 × 105 6.20 × 10−7 1.89 × 106

20 4.38 × 10−8 301,000 4.19 × 105 1.27 × 107 4.12 × 10−8 5.44 × 106 4.14 × 10−8 1.61 × 107

more sophisticated. Before that, it would be interesting to
develop an importance sampling algorithm for first-passage
time events (i.e., the probability that sums of non-negative
random variables fall below a sufficiently small threshold),
and study the performance of sufficient exponential tilting in
the domain of state-dependent importance sampling. Finally,
as credit derivatives are among the fastest growing con-
tracts in the derivatives market (Chen and Sopranzetti 2003;
Ericsson etal. 2009; Hirtle 2009), another interesting future
research direction would be to apply the proposed technique
to credit derivative valuation.
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Appendix A Proof of Theorem 5

(I) Obtaining the expected squared estimator with optimal
tilting parameters.

We first approximate the optimal tilting parameters θ∗ and
η∗.

With ϕ(x) as the pdf of the standard normal distribution,
the expected squared estimator for the event {X > a} is

∫ ∞

a

ϕ(x)

ϕθ,η(x)
ϕ(x)dx

=
∫ ∞

a

1√
1 − 2η

e−(θx+ηx2)+θ2/(2−4η) 1√
2π

e−x2/2dx

=
e

θ2

1−4η2 erfc
(
a+2aη+θ√

4η+2

)

√
2
√
1 − 2η

√
2 + 4η

, (A1)

where erfc(·) denotes the complementary error function.
Note that the above integral is finite if η ≥ −1/2. Then,

we approximate (A1) and define g(θ, η) as

e
θ2

1−4η2 erfc
(
a+2aη+θ√

2+4η

)

√
2
√
1 − 2η

√
2 + 4η

∼
e

θ2

1−4η2 2
φ
(√

2(a+2aη+θ)/
√
2+4η

)

√
2(a+2aη+θ)/

√
2+4η√

2
√
1 − 2η

√
2 + 4η

= e
θ2

1−4η2
− (a+2aη+θ)2

2+4η

√
2π

√
1 − 2η(a + 2aη + θ)

:= g(θ, η). (A2)

By taking the partial derivatives of (A2) with respect to θ and
setting it to 0, we have

∂g(θ, η)

∂θ
= 0 ⇒ θ∗ =

√
−2η + a2 + 1 − 2ηa. (A3)

Note that in (A3) we omit the other solution θ∗ =
−√−2η + a2 + 1 − 2ηa as we here consider the event
{X > a} for a positive and large a. By substituting θ∗ in (A3)
into ∂g(θ,η)

∂η
, we have ∂ log g(θ,η)

∂η
> 0 for −1/2 ≤ η < 1/2

(note that constraint η < 1/2 guarantees that the variance of
the tilted distribution is positive; see the example for the nor-
mal distribution inSect. 2.1.)Therefore,wehaveη∗ → −1/2
as a → ∞.

From (A3), as a → ∞, θ∗ → a(1− 2η). By substituting
θ∗ = a(1− 2η)+� ∼ a(1− 2η), as� → 0, into (A2), we
have

Vη =
∫ ∞

a

ϕ(x)

ϕθ∗,η(x)
ϕ(x)dx

∼ e
(a(1−2η))2

1−4η2
− (a+2aη+a(1−2η))2

2+4η

√
2π

√
1 − 2η(a + 2aη + a(1 − 2η))

= e−c1a2

√
2π2ac2

,

(A4)

where

c1 = 1, c2 = √
1 − 2η. (A5)

(II) Bounded relative error analysis.
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Recall p = P(X > a). Since p = 1 − �(a) ∼ φ(a)
a

implies exp(−a2) ∼ 2πa2 p2, from (A4) and (A5), we have

1

p2

∫ ∞
a

ϕ(x)

ϕθ∗,η(x)
ϕ(x)dx ∼ 1

p2
e−c1a2

√
2π2ac2

= 2πa2

e−a2
e−c1a2

√
2π2ac2

=
√
π

2

a

c2
e−(c1−1)a2 =

√
π

2

a

c2
. (A6)

Equation (A6) clearly indicates that optimal sufficient expo-
nential tilting does not exhibit bounded relative error.
(III) Logarithmic efficiency analysis.

Regarding logarithmic efficiency, we have

1

p2−ε

∫ ∞

a

ϕ(x)

ϕθ∗,η(x)
ϕ(x)dx ∼ 1

p2−ε

e−c1a2

√
2π2ac2

=
√
π

2

a

c2
e−(c1−1)a2

(
(
√
2πa)−ε

e
a2ε
2

)

= π
1−ε
2 (1/2)

1+ε
2
a1−ε

c2
e−(ε/2)a2 . (A7)

By (A7),wehave logarithmic efficiency for optimal sufficient
exponential tilting.
(IV) Ratio between Vη and V0.

By (A4), we have

Vη

V0
=

e−c1a
2

√
2π2ac2

e−c1a
2

√
2π2a

= 1

c2
= 1√

1 − 2η
. (A8)

Note that the ratio in (A8) goes to 1/
√
2 as η∗ → −1/2when

a → ∞ (see the results two lines below (A3)). Therefore, the
proposed optimal sufficient exponential tilting outperforms
optimal one-parameter tilting in the sense of second (small)
order asymptotic logarithmic efficiency.

Appendix B Proof of Theorem 6

B.1 For event {X > a}
(I) Obtaining the expected squared estimator with optimal
tilting parameters.

For the gamma distribution with event {X > a}, we
approximate θ∗ and η∗ as follows. From (18), we have

dP

dQθ,η

= e−xη−θ log(x) (1/β)
−α(β − η)−α−θ�(α + θ)

�(α)
,(B9)

where �(·) is the gamma function. As a → ∞, plug (B9)
into (5) and adopt Laplace’s method to yield

EP

[
e−Xη−θ log(X) (1/β)

−α(β − η)−α−θ�(α + θ)

�(α)
1{X>a}

]

∼ e−aη−θ log(a) (1/β)
−α(β − η)−α−θ�(α + θ)

�(α)

×EP [1{X>a}] := g(θ, η). (B10)

Note that as 1{X>a} is a function of α, β, and a only, it is
thus related to neither θ nor η. Then, we approximate the
optimal tilting parameters θ∗ and η∗ by considering the log
upper bound log g(θ, η). By taking the partial derivatives of
log g(θ, η) with respect to θ and η and set to be 0, we have

∂ log g(θ, η)

∂θ
= − log(a) − log(β − η) + ϒ(α + θ) (B11)

∂ log g(θ, η)

∂η
= α − a(β − η) + θ

β − η
= 0 ⇒ η∗ = aβ − α − θ

a
,

(B12)

where ϒ(·) is the digamma function.
To obtain the optimal θ∗ and η∗, we adopt the inequality

log x− 1
x ≤ ϒ(x) ≤ log x− 1

2x , for all x > 0. Then we have

ϒ(α + θ) ∼ log(α + θ) − 1

α + θ
.

With the above approximation and the substitution of η∗ in
(B12), Eq. (B11) becomes

− log(a) − log(β − η) + log(α + θ) − 1

α + θ

= log
α + θ

a(β − η)
− 1

α + θ

= log
α + θ

aβ − (aβ − α − θ)
− 1

α + θ

= log 1 − 1

α + θ
< 0. (B13)

Also, as α + θ > 0 (see the example for the gamma distri-
bution in Sect. 2.1), we have

η∗ = aβ − α − θ

a
< β. (B14)

Note that the domain of θ is −α < θ and α − θ ∈
R\{0,−1,−2, . . .}, whereas −β < η ensures that the
expected squared estimator for the event X > a is finite,
and η < β guarantees that the rate parameter of the tilted
distribution is positive. By (B13) and (B14) and the above
constraints, we have

1. −α < θ∗ → ∞ as a → ∞;
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2. η∗ = β − α+θ
a → β − c as θ → ∞ and a → ∞ such

that θ/a → c, where c denotes a constant with the range
0 < c < 2β.

With f (x) as the pdf of the gammadistribution,Gamma(α,
β), the expected square estimator with η∗ = (aβ−α− θ)/a
is

Vθ =
∫ ∞

a

f (x)

fθ,η∗(x)
f (x)dx

=
∫ ∞

a
e−xη−θ log x (1/β)

−α(β − η)−α−θ�(α + θ)

�(α)

(βα/�(α))xα−1e−βxdx

= (1/β)−α(β)α((α + θ)/a)−α−θ�(α + θ)

(�(α))2

× ((2βa − α − θ)/a)−α+θ�(α − θ, 2βa − α − θ)

(�(α))2
,

(B15)

where �(s, x) = ∫ ∞
x t s−1e−t dt is the upper incomplete

gamma function.
Let θ = 0; we have

V0 = (1/β)−α(β)α((α)/a)−α�(α)((2βa − α)/a)−α�(α, 2βa − α)

(�(α))2
.

(B16)

(II) Bounded relative error analysis.
Using the asymptotic behavior

�(s, x)

xs−1e−x
→ 1 as x → ∞, (B17)

from (B15), for optimal sufficient exponential tilting,wehave

lim
a→∞,θ→∞

1

p2

∫ ∞

a

f (x)

fθ,η∗(x)
f (x)dx = 0,

where p = P(X > a).
Proof. Let θ/a → c for a constant c > 0 as a → ∞ and

θ → ∞.

1

p2

∫ ∞

a

f (x)

fθ,η∗ (x)
f (x)dx

= C × ((α + θ)/a)−α−θ ((2βa − α − θ)/a)−α+θ �(α − θ, 2βa − α − θ)

�2(α, βa)

∼ C × ((α + θ)/a)−α−θ ((2βa − α − θ)/a)−α+θ (2βa − α − θ)α−θ−1e−2βa+α+θ

((βa)α−1e−βa)2

= C × ((α + θ)/a)−α−θaα−θ (2βa − α − θ)−1e−2βa+α+θ

((βa)α−1e−βa)2

= C × a2−αβ2−2αeα

2βa − α − θ
× ((α + θ)/a)−α−θ e−θ(log a−1)

= C × a2−αβ2−2αeα

2βa − α − θ
× ((α + ca)/a)−α−cae−ca(log a−1)

= C × a2−αβ2−2αeα

2βa − α − θ
× (c(1 + (α/c)/a))−α−cae−ca(log a−1)

= C × a2−αβ2−2αeαc−α

2βa − α − θ
× (1 + (α/c)/a)−α−cae−ca(log a−1+log c)

= C ′ × a2−α

2βa − α − θ
e−ca(log a−1+log c), (B18)

where bothC andC ′ are constants unrelated to a. Note that as
a → ∞ and θ → ∞, (1 + (α/c)/a)−ca in (B18) converges
to exp(−α) and thus the last term in the above equations
approaches 0. Therefore,when simulating the event {X > a},
we have bounded relative error for optimal sufficient expo-
nential tilting of the gamma distribution.

For traditional optimal one-parameter tilting on parameter
η∗, from (B16) and (B17), it is clear that

lim
a→∞,θ→∞

1

p2

∫ ∞

a

f (x)

fθ,η∗(x)
f (x)dx = ∞,

which means there is no bounded relative error for optimal
one-parameter tilting for the gamma distribution when sim-
ulating the event {X > a}.
(III) Logarithmic efficiency analysis for optimal one-parame
ter tilting.

Concerning logarithmic efficiency for optimal one-param
eter tilting, from (B16), we have

1

p2−ε

∫ ∞

a

f (x)

fθ,η∗ (x)
f (x)dx

= (1/β)−α(β)α((α)/a)−α�(α)((−α + 2aβ)/a)−α�(α,−α + 2aβ)

(�(α, βa)/�(α))2−ε

∼ (1/β)−α(β)α((α)/a)−α�(α)((−α + 2aβ)/a)−α

(�(α))2−ε

× (−α + 2aβ)α−1eα−2aβ

((βa)α−1e−βa)2−ε
. (B19)

From (B19), it is clear that for all ε > 0,

lim
a→∞

1

p2−ε

∫ ∞

a

f (x)

fθ,η∗
f (x)dx = 0,

whichmeans that traditional optimal one-parameter tilting on
η is of logarithmic efficiency. This is consistent with Exam-
ple 1.3 of Chapter VI in Asmussen and Glynn (2007).

B.2 For event {X < 1/a}
(I) Obtaining the expected squared estimator with optimal
tilting parameters.

For simulation of rare event 1{X<1/a}, by using Laplace’s
method, we consider

EP

[
e−Xη−θ log(X) (1/β)

−α(β − η)−α−θ�(α + θ)

�(α)
1{X<1/a}

]

∼ e−η/a−θ log(1/a) (1/β)
−α(β − η)−α−θ�(α + θ)

�(α)

E[1{X<1/a}].
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Denote

g(θ, η) := e−η/a+θ log(a) (1/β)
−α(β − η)−α−θ�(α + θ)

�(α)

E[1{X<1/a}].

Note that as 1{X<1/a} is a function of α, β, and a only and is
thus related to neither θ nor η, we have

∂ log g(θ, η)

∂θ
= log(a) − log(β − η) + ϒ(α + θ) (B20)

∂ log g(θ, η)

∂η
= a(α + θ) − (β − η)

a(β − η)
= 0 ⇒ η∗ = β − a(α + θ),

(B21)

where ϒ(·) is the digamma function.
For all x > 0, log x − 1

x ≤ ϒ(x) ≤ log x − 1
2x ; thus we

have

ϒ(α + θ) ∼ log(α + θ) − 1

α + θ
.

With the above approximation and the substitution of η∗ in
(B21), Eq. (B20) becomes

log(a) − log(β − η) + log(α + θ) − 1

α + θ

= log
a(α + θ)

β − η
− 1

α + θ

= log
a(α + θ)

β − (β − a(α + θ))
− 1

α + θ
= log 1 − 1

α + θ
< 0.

(B22)

From (B21), we have

1. With constraintα−θ∗−1 > −1, we have−α < θ∗ < α.
Next, by (B22), g(θ, η) is a decreasing function of θ , and
we have θ∗ ↑ α;

2. η∗ = β − a(α + θ) → β − 2aα → −∞, as a → ∞.

Note that constraintα−θ−1 > −1 ensures that the expected
square estimator for simulating the event {X < 1/a} is finite.
A similar constraint can be found in Example 1.4 of Chap-
ter VI in Asmussen and Glynn (2007).

For easier presentation and notational simplicity, we here-
after denote z = 1/a. The expected square estimator with
η∗ = zβ−(α+θ)

z thus becomes

Vθ =
∫ z

0

f (x)

fθ,η∗ (x)
f (x)dx

=
∫ z

0
e−xη−θ log x (1β)

−α(β − η)−α−θ�(α + θ)

�(α)

(βα/�(α))xα−1e−βx dx

= (1/β)−α(β)α((α + θ)/z)−α−θ�(α + θ)

(�(α))2

× ((2βz − α − θ)/z)−α+θ γ (α − θ, 2βz − α − θ)

(�(α))2
, (B23)

where γ (s, x) = ∫ x
0 t s−1e−t dt is the lower incomplete

gamma function.
Letting θ = 0, we have

V0 = (1/β)−α(β)α((α)/z)−α�(α)((2βz − α)/z)−αγ (α, 2βz − α)

(�(α))2
.

(B24)

(II) Bounded relative error analysis.
Using the asymptotic behavior

γ (s, x)

xs
→ 1

s
as x → 0, (B25)

and (B23), for optimal sufficient exponential tilting we
have

lim
z→0,θ→α

1

p2

∫ z

0

f (x)

fθ,η∗(x)
f (x)dx < ∞.

Proof.

1

p2

∫ z

0

f (x)

fθ,η∗ (x)
f (x)dx

= C × ((α + θ)/z)−α−θ ((2βz − α − θ)/z)−α+θ γ (α − θ, 2βz − α − θ)

γ 2(α, βz)

∼ C × ((α + θ)/z)−α−θ ((2βz − α − θ)/z)−α+θ (2βz − α − θ)α−θ /(α − θ)

(βz)2α/α2

∼ C ′ × z2α × z−2α = C ′, (B26)

when replacing θ = α −� with � → 0 as z → 0 in (B26);
note that C ′ is a constant unrelated to z. Therefore, when
simulating the event {X < 1/a}, we have bounded relative
error for optimal sufficient exponential tilting of the gamma
distribution.

For traditional optimal one-parameter tilting on parame-
ter η, from (B24) and (B25), it is clear that

lim
z→0

1

p2

∫ z

0

f (x)

fθ,η∗
f (x)dx < ∞,

yielding bounded relative error.
(III) Ratio between Vθ and V0.

As both optimal sufficient exponential tilting and optimal
one-parameter tilting exhibit bounded relative error, we now
compare their expected squared estimators as follows.
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Vθ

V0
= (1/β)−α(β)α((α + θ)/z)−α−θ�(α + θ)((2βz − α − θ)/z)−α+θ γ (α − θ, 2βz − α − θ)

(1/β)−α(β)α((α)/z)−α�(α)((2βz − α)/z)−αγ (α, 2βz − α)

= (α + θ)−α−θ�(α + θ)(2βz − α − θ)−α+θ γ (α − θ, 2βz − α − θ)

(α)−α�(α)(2βz − α)−αγ (α, 2βz − α)

∼ (α + θ)−α−θ�(α + θ)(2βz − α − θ)−α+θ (2βz − α − θ)α−θ /(α − θ)

(α)−α�(α)(2βz − α)−α(2βz − α)α/α

= (α + θ)−α−θ�(α + θ)α

(α)−α�(α)(α − θ)
= (α + θ)−α−θ−1�(α + θ)

(α)−α−1�(α)

= (α)α+1�(α + θ)

(α + θ)α+θ+1�(α)
.

Using Stirling’s formula

�(z + 1) ∼ √
2π z

(
z

e

)z

,

we have

Vθ

V0
∼

(α)α+1√2π(α + θ − 1)

(
α+θ−1

e

)α+θ−1

(α + θ)α+θ+1
√
2π(α − 1)

(
α−1
e

)α−1

= (α)α+1
√
α + θ − 1(α + θ − 1)α+θ−1

(α + θ)α+θ+1
√
α − 1(α − 1)α−1eθ

< 1, (B27)

for −α < θ ↑ α. From (B27), it thus can be said that there
is an efficiency improvement in terms of relative bounded
error for optimal sufficient exponential tilting over traditional
optimal one-parameter tilting on ηwhen simulating the event
{X < 1/a}.

Appendix C Proof of Theorem 7

To prove Theorem 7, we must study the asymptotic behavior
of the portfolio loss probability P(Ln > nb) in the following
proposition.

Proposition 8 Under the assumptions of Theorem 7, con-
sider τ = nb for some b > 0. Then

lim
n→∞ u(n)αP(Ln > nb) = K , (C28)

for 0 < b < ē, where K is a positive constant and ē is the
limiting average loss when all the obligors default.

Since the proof is similar in spirit to Theorem1ofBassamboo
etal. (2008), it is omitted.

More specifically, as indicated in Bassamboo etal. (2008),
rare event probability P(Ln > nb) (or pz,w,k defined in (31))
occurs primarily when the shock variables V1, . . . , Vd , Vd+1

take large values, whereas Zi , ρki and ρk , for i = 1, . . . , d
and k = 1, . . . , n exert little influence on the occurrence of
the rare event. Put differently, only V1, . . . , Vd , Vd+1 are sig-
nificantly affected by conditioning on the rare event, whereas
all the other variables are not. Without loss of generality, we
assume W1 = · · · = Wd = 1, Wd+1 = W = V with Wd+1

following a gamma distribution in the proof.
Now we give a proof of Theorem 7 based on sufficient

exponential tilting in “Appendix B i”) and a Chernoff upper
bound for pz,w,k defined in (31). Note that in the proof, we
assume the tilting parameters are in the domain of the param-
eter spaces, like those in Theorems 5 and 6.

Proof of Theorem 7. We are given a constant K1 > 0. To
prove the theorem we re-express

E∗L∗21{An} = E∗
[
L∗21{

An ,W≤ u(n)
K1

}
]

+E∗
[
L∗21{

An ,W>
u(n)
K1

}
]
.

Recall from Theorem 5 that we can put θ∗
1 = a(1 − 2η∗)

and η∗
1 = 0 for simplicity. This implies that μ∗ = a and

σ ∗2 = 1. By Theorem 6 i), we replace a by u(n) to yield
η∗
2 = β − (α + θ∗

2 )/u(n) and θ∗
2 → ∞ as n → ∞. For

notational simplicity, we replace (η∗
2, θ

∗
2 ) by (η∗, θ∗).

The proof is divided into two steps.
Step 1. For a constant K1 > 0, we establish that

lim sup
n→∞

u(n)2αE∗
[
L2∗1{

An ,W>
u(n)
K1

}
]
< ∞. (C29)

By (35) with suitable chosen θ∗ such that θ∗/u(n) → c <
β as n → ∞, and hence both θ∗, η∗ > 0, then we have on
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the set {An,W >
u(n)
K1

},

L∗ =
(

fz(Z)

qz,μ∗,
(Z)

)

×e−η∗W−θ∗ logW (1/β)−α(β − η∗)−α−θ∗
�(α + θ∗)

�(α)

≤
(

fz(Z)

qz,μ∗,
(Z)

)
× C(η∗, θ∗)e−η∗ u(n)

K1
−θ∗ log u(n)

K1 , (C30)

where C(η∗, θ∗) = (1/β)−α(β−η∗)−α−θ∗�(α+θ∗)
�(α)

. Integrating

L2∗ over this set under P∗, we have

L2∗ ≤ KC2(η∗, θ∗)e−2η∗ u(n)
K1

−2θ∗ log u(n)
K1

= KC2(η∗, θ∗)e−2(β− 1
u(n) (α−θ∗)) u(n)K1

−2θ∗ log u(n)
K1 , (C31)

for some K > 0. Since θ∗ ↑ ∞ as n → ∞, (C29) follows
from (C31) by using the same procedure as that in the proof
of Theorem 6 i).

Step 2. We show that for K1 > 0 with K1 sufficiently
large,

lim
n→∞ u(n)2αE∗

[
L2∗1{

An ,W≤ u(n)
K1

}
]
< ∞. (C32)

Recall from (31) with χk = aku(n), we have

pz,w,k = P

(

εk >
aku(n)

ρkW
−

d∑

i=1

ρki

ρk
Zi | Z ,W

)

≤ P

(

εk >
c1u(n)

W
−

d∑

i=1

di Zi | Z ,W
)

, (C33)

where c1 = mink ak/ρk anddi = maxk ρki/ρk .As εk is light-
tailed with an existing moment-generating function, there
exist constants K2 and c2 such that

P

(

εk >
c1u(n)

W
−

d∑

i=1

di Zi

∣∣∣∣ Z ,W

)

≤ K2 exp

{
− c2

(
c1u(n)

W
−

d∑

i=1

di Zi

)}
P-a.s. (C34)

By (C34) and the existence of the moment-generating
functions of Zi , i = 1, . . . , d, there exist constants K3 and
c3 > 0 such that

L∗1{An } ≤
(

fz(Z)

qz,μ∗,
(Z)

)
× C(η∗, θ∗) exp{−η∗W − θ∗ logW }Kn

3

× exp

{
− nc3

(
c1u(n)

W

)}
1{An } P-a.s.

We restrict our discussion to the set
{
An,W ≤ u(n)

K1

}
.

Then we have

L∗ ≤
(

fz(Z)

qz,μ∗,
(Z)

)
C(η∗, θ∗) exp{−η∗W − θ∗ logW }

Kn
3 exp

{
− nc3

(
c1u(n)

W

)}

≤
(

fz(Z)

qz,μ∗,
(Z)

)
C(η∗, θ∗)

exp

{
−

(
β − (α + θ∗)

u(n)

)
u(n)

K1
− θ∗ log u(n)

K1

}

× exp

{
−

(
β − (α + θ∗)

u(n)

)(
W − u(n)

K1

)

−θ∗
(
logW − log

u(n)

K1

)}
P-a.s.

× exp

{
− nc3

(
c1u(n)(

1

W
− K1

u(n)
)

)}

Kn
3 exp

{
− nc3

(
c1u(n)

K1

u(n)

)}
.

Note that the likelihood ratio fz(Z)/qz,μ∗,
(Z) is upper

bounded by a constant for all Z . exp{−(β − (α+θ∗)
u(n) )

u(n)
K1

−
θ∗ log u(n)

K1
} has an upper bound for n large enough. Also note

that for n large enough,

(β − (α + θ∗)
u(n)

)(W − u(n)

K1
) + θ∗(logW − log

u(n)

K1
)

≤ nc3c1u(n)(W − u(n)

K1
) P-a.s.

It follows that on the set {An,W ≤ u(n)
K1

}, which is equiva-

lent to {An,
1
W ≥ K1

u(n) }, we have exp
{

− nc3

(
c1u(n)(

1
W −

K1
u(n) )

)}
→ 0, as n → ∞. Then for n large enough, there

exists a constant K4 > 0 such that L∗ ≤ K4Kn
3 exp{−K1c3c1

n}. Now integrating L2∗ over this set under P∗, we can select
K1 large enough so that (C32) holds. This completes the
proof. �

Appendix D Numerical results for modeling
portfolio losses

We split the following discussion into three parts; the first
two are presented in “Appendix D.1” and the last is pre-
sented in “AppendixD.2”. First,we compare the performance
of the proposed method with crude simulation, under three-
factor normal mixture models, in which the t-distribution
for Xk is considered. (Note that we compare the perfor-
manceof ourmethodonlywith crudeMonteCarlo simulation
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Table 8 Performance of proposed algorithm with two different losses resulting from default of obligors for a three-factor model with inverse FFT
(t-distribution)

Two different losses (ci = (�2i�/n)2)
b P(Ln > τ) V.R. factor �ν P(Ln > τ) V.R. factor n P(Ln > τ) V.R. factor

0.7 4.79 × 10−3 832 (4, 4, 4, 4) 4.78 × 10−3 692 100 3.02 × 10−2 325

1 2.91 × 10−4 3078 (8, 6, 4, 4) 4.79 × 10−3 832 250 4.79 × 10−3 832

1.2 1.20 × 10−5 14,471 (8, 8, 8, 8) 8.64 × 10−5 7305 400 1.87 × 10−3 739

ρki P(Ln > τ) V.R. factor ρ̂ P(Ln > τ) V.R. factor σ1, σ2, σ3 P(Ln > τ) V.R. factor

0.1 4.79 × 10−3 832 −0.5 4.81 × 10−3 1055 (0.6, 0.4, 0.1) 4.84 × 10−3 700

0.3 2.96 × 10−3 876 0 4.80 × 10−3 745 (0.8, 0.6, 0.3) 4.79 × 10−3 582

0.5 4.27 × 10−4 739 0.5 4.79 × 10−3 832 (1, 0.8, 0.5) 4.79 × 10−3 832

Table 9 Performance of our
algorithm with equal loss
resulting from default of
obligors for a three-factor model
(t distribution)

Crude IS
τ P(Ln > τ) Variance P(Ln > τ) Variance V.R. factor

75 2.70 × 10−3 2.69 × 10−3 3.13 × 10−3 8.6212 × 10−6 313

100 2.60 × 10−4 2.60 × 10−4 2.44 × 10−4 3.95 × 10−8 6586

Table 10 Performance of our algorithm with five different losses resulting from default of obligors for three-factor model with inverse FFT
(t-distribution)

Five different losses (ci = (�5i�/n)2)
b P(Ln > τ) V.R. factor �ν P(Ln > τ) V.R. factor n P(Ln > τ) V.R. factor

2 2.38 × 10−2 141 (4, 4, 4, 4) 2.39 × 10−2 139 100 1.09 × 10−1 59

4 8.59 × 10−4 3414 (8, 6, 4, 4) 2.38 × 10−2 141 250 2.38 × 10−2 141

6 4.15 × 10−7 81,498 (8, 8, 8, 8) 1.84 × 10−3 1131 400 9.77 × 10−3 264

ρki P(Ln > τ) V.R. factor ρ̂ P(Ln > τ) V.R. factor σ1, σ2, σ3 P(Ln > τ) V.R. factor

0.1 2.38 × 10−2 141 −0.5 2.39 × 10−2 152 (0.6, 0.4, 0.1) 2.37 × 10−2 149

0.3 1.51 × 10−2 183 0 2.35 × 10−2 125 (0.8, 0.6, 0.3) 2.40 × 10−2 148

0.5 2.34 × 10−3 143 0.5 2.38 × 10−2 141 (1, 0.8, 0.5) 2.38 × 10−2 141

henceforth, as most of the literature focuses on simulating
one-dimensional cases.) Second, to evaluate the robustness
of the proposed method, we also compare its performance
with that of crude simulation, under three-factor normal
mixture models, in which a generalized inverse Gaussian
(GIG) distribution for Xk is considered. The cases with dif-
ferent losses resulting from default of the obligors are also

investigated. Finally, in “Appendix D.2”, we compare the
computational time of crude Monte Carlo simulation with
that of the proposed importance sampling under several sce-
narios, and provide insight into the trade-off between reduced
variance and increased computational time.

Except for the experiments in Table 12, which compares
the computational time under different numbers of samples,

Table 11 Performance of our algorithm with equal loss resulting from default of obligors for three-factor model (symmetric generalized hyperbolic
distribution)

Crude IS (tilting η) IS (tilting θ)
b P(Ln > τ) Variance P(Ln > τ) Variance V.R. factor P(Ln > τ) Variance V.R. factor

0.28 2.04 × 10−3 2.04 × 10−3 1.98 × 10−3 6.99 × 10−6 291 1.98 × 10−3 2.79 × 10−6 731

0.32 2.00 × 10−4 2.00 × 10−4 1.74 × 10−4 8.09 × 10−8 2473 1.75 × 10−4 3.04 × 10−8 6575

0.36 8.00 × 10−6 8.00 × 10−6 7.99 × 10−6 3.77 × 10−10 21,194 7.55 × 10−6 1.11 × 10−10 72,352
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we generate B1 = 5, 000 samples to locate the optimal tilt-
ing parameters and B2 = 10, 000 samples to calculate the
probability of losses in all of the remaining experiments.
Following the settings in Bassamboo etal. (2008), variances
under crude Monte Carlo simulation are estimated indirectly
by exploiting the observation that for a Bernoulli random
variable with success probability p, the variance equals
p(1 − p). Note that as mentioned in Sect. 3.1 and stated
in Theorem 7, for normal mixture random variables, tilting
the variance of the normal random variable Z is relatively
insignificant in comparison to tilting the parameters of W ;
therefore, in the experiments, we only conduct mean tilt-
ing for Z and θ - or η-tilting for W for multi-factor normal
mixture models. Note that even in this case, our sufficient
exponential importance sampling method differs from previ-
ous studies, as only θ in the normal distribution and η in the
gamma distribution are considered as the tilting parameter in
their methods.

Remark 7 When considering Vj = √
ν j/Wj for j =

1, . . . , d + 1 with Wj ∼ Gamma(ν j/2, 1/2), we mainly
deal with the event {Wd+1 < 1/a}, whereas when con-
sidering Vj = √

Wj , for j = 1, . . . , d + 1 with Wj ∼
Gamma(α j , β j ), we turn to address {Wd+1 > a}. As shown
in both theoretical results in “Appendices A and B” and the
simulation results in Table 3 in Sect. 2.1, when considering
{Wd+1 < 1/a}, tilting η only is fine because θ∗ → α as
a → ∞. However, it is fine to tilt only θ when considering
{Wd+1 > a}, because as a → ∞, η∗ → β − c for some
c > 0.

Computation and numerical experiments on
different model settings

Second, Tables 9, 8, and 10 compare the performance of the
proposed importance sampling method with that of crude
simulation for a three-factor t-copula model, a special case
of normal mixture copula models, where the latent variables
Xk follow a multivariate t-distribution, i.e., Vj = √

ν j/Wj

and Wj ∼ Gamma(ν j/2, 1/2) for j = 1, . . . , 4. The three
tables list the results with equal losses (Table 9) and different
losses (Table 8 and 10) resulting from the default of oblig-
ors with various parameter settings. Following the settings
in Bassamboo etal. (2008) and Chan and Kroese (2010), the
threshold for the i-th obligorχi is set to 0.5×√

n, the idiosyn-
cratic risk εk is set to N (0, 9), and the total loss τ is set to
n × b.

As shown in Tables 9, 8, and 10, our IS approach signif-
icantly outperforms crude simulation, especially when the
loss threshold τ increases and the probability decreases.
Moreover, in contrast to the results listed in Table 2 of Chan
and Kroese (2010), which show that the performance of
CondMC deteriorates when ρki increases, the performance
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of our method is demonstrated to be stable. This is due to
the fact that as ρki increases, the factor Z gains importance
in determining the occurrence of the rare event; CondMC
simply ignores the contribution of Z , whereas the proposed
method twists the distributions of both Z and W .

Third, in addition to the t-copula model, Table 11 shows
the results for another type of three-factor normal mixture
copula model, where Vj

2 follows a special case of the gener-
alized inverse Gaussian (GIG) distribution, i.e., Vj = √

Wj

with Wj ∼ Gamma(ν j/2, 1/2) for j = 1, . . . , 4 and �ν =
(8 6 4 4); except for b set to 0.28, 0.32, and 0.36, the other
model parameters are the same as those for the base case in
Table 9. From Table 11 we observe that our approach outper-
forms crude simulation, which attests the capability of the
proposed algorithm for normal mixture copula models. Note
also that in this setting, tilting the other parameter ν j/2 of
the gamma distribution (i.e., ν j/2 → ν j/2 − θ∗

j ) yields 2
to 4 times better performance than traditional one-parameter
exponential tilting (tilting η) in terms of the variance reduc-
tion factors, which is consistent with theoretical results in
“Appendices A and B” and the simulation demonstrated in
Example 2 in Sect. 2.1 and Sect. 3.1 (see also Remark 7).

Computational time of proposed importance
sampling algorithm

We now proceed to compare the computational time of crude
Monte Carlo simulation with that of our importance sam-
pling under several scenarios and provide insight into the
trade-off between reduced variance and increased computa-
tional time.14 Table 12 lists the computational time of crude
simulation and our method for the three cases listed in the
top-left corner of Table 9. We observe that using more sam-
ples (B1) to determine optimal tilting parameters greatly
improves the variance reduction performance, which how-
ever linearly increases the computational time to determine
the parameters15; note that the variance reduction factor
grows nonlinearly with the number of samples B1, and that
our search algorithm generally requires only 7 to 9 iterations
to achieve convergence.16 Despite the need for additional
computational time to find suitable tilting parameters, we
can use a mere B2 = 1000 samples to obtain rather good
estimateswith greatly reduced variances, especiallywhen the
tail probability is small. In the last column of Table 12, we
also report the ratio of the computational time consumed by

14 For our experiments, the software utilized was Mathematica 13.1;
the hardware platform was a MacBook Pro (16-inch, 2021) (M1 Pro
Chip with a 10-core CPU).
15 Moreover, increasing the number of tilting parameters only affects
the search time for the optimal tilting parameters, the time complexity
of which grows linearly with the number of considered parameters.
16 In all of the experiments reported here, the predetermined precision
level ε was set to 10−4.

the crude simulation generating a fair estimate (T∗
C , the value

with a star symbol on the left-hand side) to that consumed by
our importance sampling algorithm, including the time for
the parameter search (T1I ) and probability calculation (T2I ).
From the table, observe that for the case b = 0.5, crude sim-
ulation with 10, 000 and even 100, 000 fails to generate the
estimate, whereas our method yields a good estimate with
a 7,411 variance reduction ratio, but the crude simulation
requires 12.77 timesmore computational time than ours. The
relation between the variance reduction factor and the time
consumption ratio listed in the last two columns of Table 12
suggests that the proposed algorithm achieves good perfor-
mance and thus makes a practical contribution to portfolio
credit risk measurement in normal mixture copula models.

Remark 8 To find the optimal tilting parameters by solving
the system of (6)–(7), we must evaluate the RHSs of (6)–
(7). Table 12 shows that empirically, the proposed recursive
algorithm is efficient in locating optimal tilting parameters,
as it always converges within 10 iterations with a rather small
number of samples, e.g., B1 = 1000 (see Remark 6 for the
technique used for the searching stage).
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