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Abstract
Principal component analysis (PCA) is a standard dimensionality reduction technique used in various research and applied
fields. From an algorithmic point of view, classical PCA can be formulated in terms of operations on a multivariate Gaussian
likelihood. As a consequence of the implied Gaussian formulation, the principal components are not robust to outliers. In
this paper, we propose a modified formulation, based on the use of a multivariate Cauchy likelihood instead of the Gaussian
likelihood, which has the effect of robustifying the principal components.We present an algorithm to compute these robustified
principal components.We additionally derive the relevant influence function of the first component and examine its theoretical
properties. Simulation experiments on high-dimensional datasets demonstrate that the estimated principal components based
on the Cauchy likelihood typically outperform, or are on a par with, existing robust PCA techniques. Moreover, the Cauchy
PCA algorithm we have used has much lower computational cost in very high dimensional settings than the other public
domain robust PCA methods we consider.

Keywords Principal component analysis · Robust · Cauchy log-likelihood · High-dimensional data

1 Introduction

In the analysis of multivariate data, it is frequently desirable
to employ statistical methods which are insensitive to the
presence of outliers in the sample. To address the problem
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of outliers, it is important to develop robust statistical proce-
dures. Most statistical procedures include explicit or implicit
prior assumptions about the distribution of the observations,
but often without taking into account the effect of outliers.
The purpose of this paper is to present a novel robust version
of PCA which has some attractive features.

Principal component analysis (PCA) is considered to be
one of the most important techniques in statistics. However,
the classical version of PCA depends on either a covariance
or a correlation matrix, both of which are very sensitive to
outliers. We develop an alternative method to classical PCA,
which is far more robust, by using a multivariate Cauchy
likelihood to construct a robust principal components (PC)
procedure. It is an adaptation of the classic method of PCA
obtained by replacing the Gaussian log-likelihood function
by the Cauchy log-likelihood function, in a sense that will
be explained in Sect. 2.2. Although we do not claim that
the interpretation of standard PCA in terms of operations on
a Gaussian likelihood is new, see Bolton and Krzanowski
(1999), this fact does not appear to have been exploited in
the development of a robust PCA procedure, as we do in this
paper. An important reason for using themultivariate Cauchy
likelihood is that this likelihoodhas only onemaximumpoint,
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but the single most important motivation is that it leads to a
robust procedure.

In the next section we review briefly some of the tech-
niques employed for estimating PCA parameters and for
directing a PCA in ways which are robust against the pres-
ence of outliers.We also present robustness preliminaries that
include some important techniques which are necessary to
assess whether the method used is robust or not. In Sect. 3 we
develop theCauchy-PCAand theoretically explore its robust-
ness properties. Finally, in Sect. 4 we present the numerical
algorithms for computing the Cauchy PCs, and also give the
results of a number of very high-dimensional real-data and
simulated examples. Our approach is seen to be competitive
with, and often gives superior results to, that of the projec-
tion pursuit (PP) algorithm of Croux et al. (2007), Croux
et al. (2013) and other competitors discussed later. Finally
we conclude the paper in Sect. 5.

1.1 Literature review on robust PCA

It is well known that PCA is an important technique for high-
dimensional data reduction. PCA is based on the sample
covariance matrix �̂ and it involves searching for a linear
combination y j = uT x j of the x components of the vector
that maximize the sample variance of the components of y.
According to Mardia et al. (1979), for example, the solution
will be given by the equation

�̂ = U�UT ,

where � = diag{λ1, . . . , λp} and its diagonal elements λi
are the sample variances, whileU is an orthogonalmatrix, i.e.
UUT = UTU = Ip, whose columnsui are the corresponding
eigenvectors which represent the linear combinations. The
PCs are efficiently estimated in practice via Singular Value
Decomposition (SVD).

Classical PCA, unfortunately, is non-robust, since it based
on the sample covariance or sample correlation matrix, both
of which are very sensitive to outlying observations; see Sect.
2. However, this problem has been handled by two different
methods which result in robust versions of PCA by:

i. replacing the standard covariance or correlation matrix
with a robust estimator; or

ii. maximising (or minimising) a different objective func-
tion to obtain a robust PCA.

Many different proposals had been developed to carry out
robust PCA, such as using PP, M−estimators and so on.

Despite maximum likelihood estimation, perhaps, being
considered as themost important statistical inferencemethod,
sometimes this approach can lead to incorrect results when
the underlying assumptions are not satisfied, for instance,

when data contain outliers or deviate slightly from the
supposed model. A generalization of maximum likelihood
estimation proposed by Huber (1964), which is called M-
estimation, aims to produce a robust statistic by constructing
approaches that are resistant to deviations from the underline
assumptions. M-estimators were also defined for the multi-
variate case by Maronna (1976).

Campbell (1980) provided a procedure for robust PCA by
examining the estimates of means and covariances which are
less affected by outlier observations, and by exploring the
observations which have a large effect on the estimates. He
replaced the sample covariance sample by an M−estimator.
Hubert and Verboven (2003) introduced a new approach to
create robust PCA. It combines the advantages of two meth-
ods, the first one is based on replacing the covariance or
correlation matrix by its robust estimator, while the second
one is based on maximizing the objective function for this
robust estimator.

A robust PCA based on the PP method was developed by
Li andChen (1985), usingHuber’sM-estimator of dispersion
as the projection index. The objective of PP is to seek projec-
tions, of the high-dimensional data set onto low-dimensional
subspaces, that optimise a function of "interestingness". The
function that should be optimised is called an index or objec-
tive function and its choice depends on a feature that the
researcher is concerned about. This property gives the PP
technique a flexibility to handle many different statistical
problems range from clustering to identifying outliers in a
multivariate data set.

Bolton and Krzanowski (1999) characterized the PCs for
PP in terms of maximum likelihood under the assumption
of normality. PCA can be considered as a special case of
PP as well as many other methods of multivariate analysis.
Li and Chen (1985) used Huber’s M-estimator of dispersion
as projective index to develop a robust PCA based on the
PP approach. The sample median was used as a projective
index to develop a robust PCA by Xie et al. (1993). In their
simulation studies, Xie et al. (1993) observed a PCA resistant
to outliers and deviations from the normal distribution.

More recently, there has been further work on devel-
oping approaches to robust PCA. Croux et al. (2007) and
Croux et al. (2013) also suggested a robust PCA using
a version of PP. Candès et al. (2011) proposed a robust
penalized PCA, termed Principal Component Pursuit (PCP).
Another approach, developed by Zhang et al. (2013), is
based on a Robust Regularized Singular Value Decompo-
sition (RRSVD). We will contrast our methodology against
the three aforementioned algorithms in numerical examples,
focusing especially on the ultra high-dimensional case where
p >> n.
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2 Preliminaries on standard PCA

PCA is an orthogonal linear transformation that projects the
data to a new coordinate system according to the variance of
each direction. Given a data matrixX ∈ R

n×p with each row
correspond to a sample, the first direction u1 that maximizes
the variance is defined through

u1 = argmax||u||2=1 ||(X − 1n x̄T )u||22,

where 1n is an n-dimensional vector whose elements are
all set to 1 while x̄ = 1

n

∑n
i=1 xi is the empirical mean.

The process is repeated k times and at each iteration the
to-be-estimated principal direction has to be orthogonal to
all previously-computed principal directions. Thus, the k-th
direction which has to be orthogonal to the previous ones is
defined by

uk = argmax||u||2=1 ||(X − 1n x̄T )u||22 subject to uk ⊥ u j

with j = 1, ..., k − 1 .

2.1 Non-robustness of standard PCA

Wewill show that the influence function for the largest eigen-
value of the covariance matrix and the respective eigenvector
are unbounded with respect to the norm of an outlier sample.
Suppose that � is the covariance matrix of a population with
distribution function F , i.e.,

� =
∫

Rp
(x − μ)(x − μ)T dF(x), (1)

where μ = ∫
Rp xdF(x) corresponds to the mean vector.

Assume that the leading eigenvalue of � has multiplicity 1,
then we denote it by λ and the leading eigenvector by û (i.e.,
u1 = û).

Let T be an arbitrary functional, F a distribution and
z ∈ R

p an arbitrary point in the relevant sample space. The
influence function is defined as

I FT (z; F) = lim
ε→0+

T ((1 − ε)F + ε�z) − T (F)

ε
, (2)

where �z is a unit point mass located at z.
A robust estimator for T means that the influence function

is bounded with respect to the norm of the outlier z.

Proposition 1 The influence function for the leading eigen-
vector of � is given by1

I Fû(z, F) = −(
(z − μ)T û

)
(� − λIp)+(z − μ). (3)

1 We use A+ to denote the Moore-Penrose inverse of a matrix A.

Similarly, the IF for the largest eigenvalue of � is

I Fλ(z, F) = (
(z − μ)T û

)2 − λ. (4)

The detailed calculations are presented inAppendix 1. The
following result shows that outliers with unbounded influ-
ence function do exist.

Corollary 1 Let z = μ + γ û + ηv where v is orthogonal to
û and does not belong to the null space of � and γ, η �= 0
then

lim
z: ||z||2→∞ ||I Fû(z, F)||2 = ∞,

and similarly for I Fλ(z, F).

Proof Direct substitution of z into the influence function
gives:

I Fû(z, F) = −((γ û + ηv)T û)(� − λIp)+(γ û + ηv)

= −γ η(� − λIp)+v.

Since v does not belong to the null space of �, it holds that
(� − λIp)+v �= 0 thus ||(� − λIp)+v||2 = c �= 0. Hence,

||I Fû(z, F)||2 = |γ ||η|c.

Given that ||z||22 = γ 2 +η2 +||μ||22 +γμT û+ημT v, either
sending |γ | → ∞ or |η| → ∞ completes the proof.

Similarly,

I Fλ(z, F) = γ 2 − λ → ∞,

as |γ | → ∞. ��

2.2 Generalizations of standard PCA

Standard PCA can be viewed as a special case of a more
general optimization problem. We present two such general-
ization: the first one leads to PP algorithms while the second
leads to a maximum likelihood formulation. Let u be a unit
vector and define the projection values

ci (u) = xTi u, i = 1, . . . , n,

and a function � : Rn → R acting on the projected values.
The first generalization of PCA is defined as the maximiza-
tion of �:

u1 = argmax||u||2=1 �(c1(u), ..., cn(u)) .

As in the standard PCA, the following principal directions
are obtained after removing the contribution of the current
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PC from the data. When � is the sample variance then we
recover the standard PCA.

The second generalization interprets the computation of
the principal component as amaximum likelihood estimation
problem. By letting,

lG(μ, σ 2|c1, . . . , cn) = −n

2
log σ 2 − n

2σ 2

n∑

i=1

(ci − μ)2.

(5)

be the Gaussian log-likelihood, the first principal direction
can be obtained by solving the minimax problem:

min||u||2=1
max
μ,σ 2

lG(μ, σ 2|c1(u), . . . , cn(u)).

Indeed, the inner maximization can be solved analytically
which leads to the optimal solution

μ̂(u) = 1

n

n∑

i=1

ci (u) =: c̄(u)

and

σ̂ 2(u) = 1

n

n∑

i=1

(ci (u) − c̄(u))2.

Unsurprisingly, the optimal values are the sample mean and
the sample variance. Using the above formulas it is straight-
forward to show that

argmin||u||2=1 lG
(
μ̂(u), σ̂ 2(u)|c1(u), . . . , cn(u)

)

= argmax||u||2=1 σ̂ 2(u) . (6)

Variations of PCA can be derived by changing the likeli-
hood function and in the next section we analyze the case of
Cauchy distribution.

3 Cauchy PCA

The Cauchy log-likelihood function is given by

lC (μ, σ |c1(u), . . . , cn(u))

= n log
σ

π
−

n∑

i=1

log
{
σ 2 + (ci (u) − μ)2

}
. (7)

where μ and σ are the two parameters of the Cauchy distri-
bution. The first Cauchy principal direction is also obtained
by solving the minimax optimization problem:

min||u||2=1
max
μ,σ

lC (μ, σ 2|c1(u), . . . , cn(u)). (8)

In contrast to the Gaussian case, the inner maximization
cannot be performed analytically. Therefore an iterative
approach needs to be utilized. Here, we apply the Newton-
Raphson method with initial values the median and half the
interquartile range for the location and scale parameters,
respectively. According to Copas (1975), although the mean
of the Cauchy distribution does not exist and it has infinite
variance, the Cauchy log-likelihood function lC (μ, σ ) has a
unique maximum likelihood estimate, (μ̂, σ̂ ).

Fixing μ and σ , the outer minimization is also non-
analytic and a fixed point iteration is applied to calculate
u. The iteration is given by

û = ûun
||ûun||2 , (9)

where ûun is the unnormalized direction which is obtained
from the differentiation of the Lagrangian function with
respect to u and it is given by

ûun =
n∑

i=1

(xTi û − μ̂)xi

σ̂ 2 + (
xTi û − μ̂

)2 . (10)

Once the first principal direction has been computed, its
contribution from the datasetX is removed and the same pro-
cedure to estimate the next principal direction is repeated.
This iterative process is repeated k times to estimate the first
k PCs. The removal of the contribution makes the princi-
pal directions orthogonal to each other. We summarize the
estimation of k Cauchy PCs in the following pseudo-code
(Algorithm 1).

Algorithm 1 Cauchy PCA
for j = 1, ..., k do

• Initialize ûun and normalize û = ûun/||ûun ||2
while not converged do

• Fix û and set

ci (û) = xTi û, i = 1, ..., n.

• Via Newton-Raphson algorithm find

(μ̂, σ̂ ) = argmaxμ,σ lC (μ, σ ; c1(û), . . . , cn(û)).

• Fix (μ̂, σ̂ ) and using fixed point iteration (i.e., (10) & (9)) find

û = argminu lC (μ̂, σ̂ |c1(u), . . . , cn(u)) − λ(||u||22 − 1)

end while
• Set the j-th Cauchy principal direction

u j = û.

• Remove the contribution from the dataset

X = X(Ip − u juTj ),

end for
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3.1 Robustness of the leading Cauchy principal
direction

Let θ = (μ, σ )T be the parameter vector of theCauchydistri-
bution and consider the infinite-sample normalized Cauchy
log-likelihood function

l(u|θ) =
∫

x∈Rp
g(c(u), θ) dF(x), (11)

where g(c, θ) = log(σ/π)− log(σ 2 + (c−μ)2) and c(u) =
xTu. We will estimate the influence function for the leading
Cauchy principal direction

û = argmin||u||2=1 l(u|θ F (u)), (12)

where

θ F (u) = (μF (u), σF (u))	 = argmaxθ l(x
Tu|θ)

are the optimal Cauchy parameters for a given direction u.
Since û is restricted to be a unit vector, the standard con-

dition for the minimum, i.e., ∂
∂u l(u|θ F (u))

∣
∣
u=û = 0 is not

valid. The appropriate condition is defined by

Pû
∂

∂u
l(u|θ F (u))

∣
∣
∣
∣
u=û

= 0, (13)

where Pu is the projection matrix given by Pu = Ip − uuT .

Remark 1 An equivalent condition is to satisfy hT
∂
∂u l(u|θ F (u))

∣
∣
u=û = 0 for all h such that hT û = 0 and

||h||2 = 1. Both derived conditions are essentially a conse-
quence of the Lagrangian formulation of the constraint opti-
mization problem. Indeed, the Lagrange condition implies
that at the minimum the direction of the objective function’s
derivative should be parallel to the direction of the con-
straint’s derivative which translates to ∂

∂u l(u|θ F (u))
∣
∣
u=û =

λû where λ �= 0 is the Lagrange multiplier.

Let ḡ(x;u) = g(xTu|θ)
∣
∣
θ=θF (u)

be the likelihood func-
tion computed at θ = θF (u) and let denote its partial
derivatives as

ḡc(x;u) = ∂

∂c
g(xTu|θ)

∣
∣
∣
∣
θ=θF (u)

and

ḡθ (x;u) = ∂

∂θ
g(xTu|θ)

∣
∣
∣
∣
θ=θF (u)

.

Similarly, ḡcc, ḡcθ and ḡθθ denote the second order deriva-
tives. The following proposition establishes the expression
for the influence function of the leading Cauchy principal
direction, û.

Proposition 2 Under the assumption of IF (û) and A being
invertible matrices, the influence function of û is

I Fû(z, F) = A−1b, (14)

where

A = Ip

∫

Rp
ḡcθ (x; û)xT ûdF(x)

−Pû

∫

Rp
ḡcc(x; û)xT xdF(x)Pû

+Pû

∫

Rp
xḡcθ (x; û)dF(x) IF (û)−1

×
∫

Rp
ḡθc(x; û)xT dF(x)Pû

and

b = b(z) = ḡc(z, û)z

+
∫

Rp
xḡcθ (x; û)dF(x) IF (û)−1 ḡθ (z; û),

while

IF (û) =
∫

Rp
ḡθθ (x; û)dF(x)

is the expected Fisher information matrix under F for the
parameters of the Cauchy distribution computed at û.

Proof The proof consists of several straightforward series
expansions and implicit function calculations. The complete
proof is given in Appendix 1. ��

The following boundedness result for the influence func-
tion states the conditions under which Cauchy PCA is robust.

Corollary 2 Let the assumptions of the proposition hold. If
z �⊥ û or if z ⊥ û = 0 but μF (û) = 0 then the influence
function for û is bounded.

Proof First, observe that matrix A does not depend on z. It
is only b that depends on z and our goal is to prove that b
is bounded with respect to z. Second, we have to compute
the partial derivatives ḡc(z; û) and ḡθ (z; û). Straightforward
calculations lead to

ḡc(z; û) = − 2(zT û − μF (û))

σ 2
F (û) + (zT û − μF (û))2

ḡμ(z; û) = 2(zT û − μF (û))

σ 2
F (û) + (zT û − μF (û))2

and

ḡσ (z; û) = 1

σF (û)
− 2σF (û)

σ 2
F (û) + (zT û − μF (û))2

.

123



26 Page 6 of 14 Statistics and Computing (2024) 34 :26

Let us now define an arbitrary scaling of the outlier
z → αz and prove boundedness of b as we send α → ∞.
We consider the first case where z �⊥ û. It holds that
limα→∞ ḡc(αz; û)αz = −(zT û)−1z, limα→∞ ḡμ(αz; û) =
0 and limα→∞ ḡσ (αz; û) = 1

σF (û)
therefore b is bounded

with respect to α.
For the second case, we have

lim
α→∞ ḡc(αz; û)αz = lim

α→∞
2μF (û)

σ 2
F (û) + μF (û)2

αz = 0,

lim
α→∞ ḡμ(αz; û) = 2μF (û)

σ 2
F (û) + μF (û)2

= 0

and

lim
α→∞ ḡσ (αz; û) = 1

σF (û)
− 2σF (û)

σ 2
F (û) + μF (û)2

= − 1

σF (û)

since μF (û) = 0 by assumption. Thus b is bounded with
respect to α for the second case, too. ��

The only case not covered by the corollary is when zT û =
0 and μ(û) �= 0. Our experiments presented in the following
section show that outliers that are orthogonal to the Cauchy
principal direction do sometimes influence the estimation of
the Cauchy principal direction yet not significantly.

3.2 Several Cauchy principal components

We briefly mention possibilities for estimating several
Cauchy principal components. There are two obvious
approaches: one approach, the sequential approach, is to
repeat the algorithm described above on the subspace orthog-
onal to û = û1 to obtain û2, the second Cauchy principal
component, where û1 is the first Cauchy principal compo-
nent; then repeat the procedure on the subspace orthogonal
to û1 and û2 to obtain û3; and so on. A second approach, the
simultaneous approach, is to decide in advance how many
principal components we wish to determine, p say, and then
use a p-dimensional multivariate Cauchy likelihood, which
has p+ p(p+ 1)/2 free parameters, to obtain û1, . . . , ûp . It
turns out that these two approaches lead to equivalent results
in classical (Gaussian) PCA but when a Cauchy likelihood
is used the two approaches produce different sets of princi-
pal components. Our current thinking is this: the sequential
approach is easier to implement (essentially the same com-
putations can be used at each step) and it is faster. However,
the simultaneous approach could potentially be preferable
if we know in advance how many principal components we
wish to estimate. Further investigation is required.

3.3 Cauchymeasures of variability explained

Suppose we obtain mutually orthogonal PC unit vectors
û1, . . . , ûm from the robust outputs of a Cauchy PCA. We
may wish either to perform a type of scree plot or to assess
the "variability explained" by different PCs, but it is not clear
at the outset how best to do this. One possibility is to use the
connection between maximising the variance along different
choices of u and minimising the likelihood in the Gaussian
case, and motivate by analogy. For example, suppose that
�̂C,1, . . . , �̂C,m are the minimised Cauchy log-likelihoods
corresponding to the orthogonal PC unit vectors û1, . . . , ûm .
We may then choose a suitable function g(·) and define
λ̂ j = g(�̂C, j ), j = 1, . . . ,m. Then we could proceed as
though λ̂1, . . . , λ̂m had been obtained in a standard (Gaus-
sian) PCA analysis. How might we choose the function g?
One potentially interesting possibility would be to choose
g to be the inverse function of h(σ̂ 2) = − n

2 {log(σ̂ 2) + 1},
where h maps the maximised variance to the minimised log-
likelihood in the Gaussian case. Specifically, we define

λ̂ j = g(�̂C, j ) = exp
(
−2�̂C, j/n − 1

)
.

This approach would automatically inherit the robustness
properties of the Cauchy PCA, but the resulting λ̂ j would
be on a scale roughly comparable with that of the eigenval-
ues produced in a classical PCA. It would be of interest to
explore this and other possibilities in future work.

4 Numerical results

4.1 Simulation studies

In this section we will empirically validate our proposed
methodology, via simulation studies. We searched for R
packages that offer robust PCA in the n << p case and came
up with FastHCS (Vakili 2018), rrcovHD (Todorov 2016),
rpca (Sykulski 2017), RobRSVD (Zhang and Pan 2013) and
pcaPP (Filzmoser et al. 2018). Out of them, pcaPP (Pro-
jection Pursuit PCA) is the only one that does not require
hyper-parameter tuning, e.g. selection of the LASSO penalty
λ or choice of the percentage of observations used to estimate
a robust covariance matrix. However, we will also consider
the PCPmethodCandès et al. (2011) and theRRSVDmethod
(Zhang et al. 2013), implemented in the packages rpca and
RobSRVD, respectively, using the default arguments as for
the selection of the regularization parameters. Our proposed
method has been implemented in the R package cauchypca
(Tsagris et al. 2023).
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Table 1 Mean angular
difference between the robust
eigenvectors computed with the
contaminated data and the
sample eigenvector computed
with the uncontaminated data
when n = 100 and p = 500

Angle Method k = − Inf k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

φ = 0◦ Cauchy 32.942 32.663 32.069 30.826 31.189 30.052 30.940

PP 82.365 58.013 56.593 56.030 54.910 54.389 55.129

PCP 26.541 24.937 29.349 33.424 36.914 40.751 43.684

RRSVD 11.638 13.415 27.545 42.257 44.996 45.582 45.514

φ = 30◦ Cauchy 32.466 30.376 30.317 30.025 32.275 30.449 28.911

PP 81.260 71.713 71.368 67.510 70.299 73.250 68.656

PCP 26.261 25.029 34.191 42.224 48.044 49.491 50.596

RRSVD 11.585 13.336 34.357 44.784 50.115 51.751 52.295

φ = 60◦ Cauchy 32.334 29.662 31.679 29.376 30.258 29.301 30.714

PP 82.812 82.046 82.053 83.922 82.835 81.922 83.365

PCP 26.492 24.853 30.976 42.456 53.146 61.125 66.160

RRSVD 11.904 11.720 33.878 64.627 68.753 69.250 69.888

φ = 90◦ Cauchy 32.244 33.068 33.552 33.974 33.618 34.740 34.264

PP 82.109 82.252 82.632 82.778 82.781 82.581 83.321

PCP 27.449 28.700 26.632 33.912 78.228 85.871 86.962

RRSVD 12.010 12.329 13.272 88.483 88.689 88.696 88.478

The norm of the outliers is ek and their angle with the population eigenvector, computed without any contam-
ination present, is denoted by φ

4.1.1 Setup of the simulations

Initially, we created a p × p (orthonormal) basis B by
using QR decomposition on some randomly generated data.
We then generated eigenvalues λi ∼ Exp(0.4), where
i = 1, . . . , p and hence we obtained the covariance matrix
��� = B���BT , where ��� = diag(λi ). The first column of B
served as the first eigenvector, computed using the uncon-
taminated data, and was the benchmark in our comparative
evaluations. Following this step, we simulated n random vec-
tors X ∼ Np (0,���) and in order to check the robustness of
the results to the center of the data, all observations were
shifted right by adding 50 everywhere. A number of out-
liers equal to 2% of the sample size were introduced. These
outliers were x̄ + eκz ∈ R

p, where x̄ is the sample mean
vector, z are unit vector(s) and eκ a real number denoting
their norm, where κ varied from 3 up to 8 increasing with a
step size equal to 1 and the angle between the outliers z and
the first “clean” eigenvector spanned from 0◦ up to 90◦. In all
cases, we subtracted the spatial median or the variable-wise
median2 and scaled them by the mean absolute deviation.

At each case, we computed the first eigenvector for the
Cauchy-PCA and for each of the three competitors (PP, PCP
andRSVD). The performancemetric is the angle (in degrees)
between the first robust eigenvector and the first eigenvector
computedwith the uncontaminated data using classical PCA.
All experiments were repeated 100 times and the results were
averaged.

2 The results are pretty similar for either type of median and we here
show the results of he variable-wise median.

4.1.2 Comparative results

Tables 1, 2, 3, 4, 5 and 6 present the performance of the first
Cauchy-PCA eigenvector and of the first eigenvector of the
PCP, RRSVD and PP methods for a variety of norms of the
outlier, with different angles (φ) between the outlier and the
leading true eigenvector, for the n < p case. The case of
n < p was selected as statistical inference in this case is
more challenging than the p < n case3. Additionally, this
case is also ordinarily met in the field of bioinformatics were
the -omics data count tens of thousands of variables (genes,
single nucleotide polymorphisms, etc.) but only tens or at
most hundreds of observations.

As observed inTables 1, 2, 3, 4, 5 and 6 the average angular
difference between the Cauchy and the PP PCA ranges from
20◦ up to more than 50◦, which is evidently quite substantial,
providing evidence that Cauchy PCA has performed in a
superior manner to the projection pursuit method of Croux
et al. (2007, 2013). In particular, the tables demonstrate that
Cauchy PCA is less error prone than PP PCA but, as is seen
in Tables 5 and 6, the error decreases for both methods with
increasing sample size. Further, the mean angular difference
between the two methods increases as the angle φ increases.
For instance, in Tables 1 and 2, when k = 8 and φ = 0◦ the
difference between the two methods is 20◦, whereas when
φ = 90◦ the difference increases to 48◦.

3 In this paper we focus on high-dimensional simulations and real-date
examples (p > n) but in results not presented in the paper we found
that Cauchy PCA is also very competitive and performs strongly in low
dimensional settings (p < n).
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Table 2 Mean angular
difference between the robust
eigenvectors computed with the
contaminated data and the
population eigenvector,
computed without
contamination, when n = 100
and p = 500

Angle Method k = − Inf k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

φ = 0◦ Cauchy 52.661 51.541 51.238 50.305 50.182 49.931 50.156

PP 83.615 38.055 32.860 30.262 26.274 24.704 27.092

PCP 49.769 39.433 29.251 27.698 28.575 29.517 30.814

RRSVD 44.933 40.721 21.616 7.816 6.987 7.047 6.997

φ = 30◦ Cauchy 52.143 50.306 48.416 47.711 48.466 48.173 47.168

PP 83.515 67.140 65.470 59.381 64.785 68.706 61.046

PCP 49.465 37.034 26.299 25.133 26.625 28.023 29.014

RRSVD 44.767 39.278 21.750 22.563 27.129 30.045 30.780

φ = 60◦ Cauchy 52.883 49.620 49.658 48.094 47.825 47.339 48.829

PP 84.434 83.380 83.674 84.709 84.262 83.490 84.108

PCP 50.291 45.617 41.009 42.352 47.546 53.198 56.500

RRSVD 45.549 42.541 37.198 55.869 59.692 60.394 60.570

φ = 90◦ Cauchy 52.457 54.071 53.727 53.230 53.481 53.599 53.228

PP 83.562 83.965 83.779 84.049 84.442 83.559 84.463

PCP 50.639 53.017 49.668 54.337 81.853 87.132 87.780

RRSVD 45.265 47.465 45.551 89.650 89.776 89.736 89.744

The normof the outliers is ek and their anglewith the population eigenvector, computedwithout contamination,
is denoted by φ

Table 3 Mean angular
difference between the robust
eigenvectors computed with the
contaminated data and the
sample eigenvector computed
with the uncontaminated data
when n = 100 and p = 1000

Angle Method k = − Inf k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

φ = 0◦ Cauchy 39.245 36.880 36.970 36.898 35.434 38.080 35.862

PP 83.606 83.735 81.657 81.530 82.086 85.044 84.656

PCP 40.357 35.945 36.439 40.622 44.234 47.941 51.428

RRSVD 17.134 16.148 29.576 49.462 53.667 54.558 53.500

φ = 30◦ Cauchy 36.888 37.176 33.386 34.020 37.686 37.100 36.653

PP 83.736 81.170 84.614 82.235 84.088 83.774 83.775

PCP 35.115 34.276 42.814 51.274 58.276 58.185 59.257

RRSVD 13.899 13.690 37.581 53.664 60.843 59.549 60.232

φ = 60◦ Cauchy 40.543 38.683 38.139 34.088 37.482 34.013 34.956

PP 83.975 82.534 83.706 85.408 84.417 83.317 83.436

PCP 35.120 33.347 38.373 47.606 61.916 66.702 71.564

RRSVD 13.660 14.504 32.818 64.691 73.380 72.402 74.171

φ = 90◦ Cauchy 38.441 39.094 35.089 39.127 42.763 36.071 39.850

PP 82.615 83.233 85.794 84.196 84.764 81.440 83.373

PCP 36.055 35.139 33.371 40.544 80.551 85.685 87.623

RRSVD 14.291 14.163 13.358 88.715 89.037 88.925 88.993

The norm of the outliers is ek and their angle with the population eigenvector, computed without any contam-
ination present, is denoted by φ

With regard to the other two competitors, Cauchy PCA
outperforms both of them in the n = 100 &p = 500 case
scenario as observed in Table 1, which presents the depar-
ture from the first (sample) eigenvector calculated using the
uncontaminated data. Examination of the same case scenario,
but measuring the angular departure from the population
eigenvector (Table 2) shows that Cauchy PCA performs
worse than the other two competitors when the angle φ is
equal to 0◦ or 30◦. For the larger values of φ, though, Cauchy

PCA outperforms them. The same conclusion is drawn for
all other case scenarios.

Further, the error is not highly affected by the angle φ,
or the norm of the outliers. It can be seen that in Tables 3
and 5 in the special case of φ = 90◦, the error increases
for the Cauchy PCA by by between 2 and 3 degrees, thus
corroborating the result of Corollary 2. However, this effect,
as in Table 1, is rather small, though noticeable.
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Table 4 Mean angular
difference between the robust
eigenvectors computed with the
contaminated data and the
population eigenvector,
computed without any
contamination present, when
n = 100 and p = 1000

Angle Method k = − Inf k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

φ = 0◦ Cauchy 63.270 60.974 60.037 58.714 58.842 58.979 57.249

PP 85.393 84.114 84.439 82.361 82.844 84.768 84.562

PCP 64.198 49.691 36.109 31.369 31.034 31.202 31.359

RRSVD 57.164 52.969 32.356 8.890 6.958 6.947 6.949

φ = 30◦ Cauchy 64.491 60.580 55.797 56.266 56.495 54.088 55.364

PP 85.608 81.008 84.503 84.978 85.365 84.057 85.353

PCP 62.493 45.252 30.468 27.658 27.231 29.968 29.884

RRSVD 54.985 51.605 27.335 22.504 26.409 29.639 30.559

φ = 60◦ Cauchy 62.119 60.970 57.423 55.130 58.564 55.829 58.283

PP 86.038 84.787 83.836 86.697 86.197 85.106 83.581

PCP 61.565 58.927 48.871 48.174 51.647 56.869 57.637

RRSVD 54.686 54.108 42.334 53.512 59.261 60.162 60.320

φ = 90◦ Cauchy 61.018 64.737 60.228 61.855 65.235 61.248 62.159

PP 85.616 85.758 86.108 84.983 86.240 83.462 85.702

PCP 60.803 61.382 60.299 62.057 84.325 87.586 88.494

RRSVD 53.384 56.066 54.323 89.666 89.767 89.776 89.847

The norm of the outliers is ek and their angle with the population eigenvector, computed without any contam-
ination present, is denoted by φ

Table 5 Mean angular
difference between the robust
eigenvectors computed with the
contaminated data and the
sample eigenvector computed
with uncontaminated data when
n = 500 and p = 1000

Angle Method k = − Inf k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

φ = 0◦ Cauchy 18.799 19.252 20.000 19.447 19.330 19.512 19.749

PP 69.851 26.850 25.832 25.404 26.065 25.830 25.949

PCP 12.674 12.138 12.362 15.395 19.697 23.213 27.752

RRSVD 5.917 5.964 7.092 16.501 24.362 25.591 25.917

φ = 30◦ Cauchy 20.703 18.714 18.621 18.333 18.452 18.107 18.318

PP 69.145 40.523 39.729 39.242 38.855 38.765 39.198

PCP 13.191 13.206 20.384 25.916 27.618 27.863 28.164

RRSVD 6.289 7.629 18.340 26.056 28.263 28.780 29.556

φ = 60◦ Cauchy 19.987 18.400 18.310 18.265 18.199 18.261 18.208

PP 69.925 63.975 63.073 63.504 62.546 63.248 63.153

PCP 12.895 12.338 15.854 28.237 36.506 42.643 44.460

RRSVD 6.155 6.387 13.837 31.282 39.193 44.007 45.639

φ = 90◦ Cauchy 20.179 20.257 22.069 22.702 22.435 21.944 22.615

PP 70.241 69.976 69.683 70.958 69.477 69.914 69.335

PCP 13.152 12.990 13.076 12.969 38.323 87.626 87.968

RRSVD 6.317 6.229 6.167 10.662 88.934 88.680 89.089

The norm of the outliers is ek and their angle with the population eigenvector, computed without any contam-
ination present, is denoted by φ

4.2 High dimensional real datasets

Two real gene expressiondatasets,GSE13159andGSE311614,
downloaded from the Biodataome platform (Lakiotaki et al.
2018), were used in the experiments. The dimensions of the
datasets were equal to 2096× 54, 630 and 1, 035× 54, 675,

4 From a biological standpoint, the data have already been uniformly
pre-processed, curated and automatically annotated.

respectively. We randomly selected 2000 variables and com-
puted the outliers using the high dimensional Minimum
Diagonal Product (MDP) Ro et al. (2015). In accordance
with the simulations studies, we removed the 2% of the most
extreme outliers detected by MDP and computed the first
classical PC (benchmark eigenvector), the first Cauchy-PCA
eigenvector and the first PP-PCA eigenvector computed with
the uncontaminated data. We then added those outliers and
increased their norm by ek , where k = (0, 3, 4, . . . , 8) and
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Table 6 Mean angular
difference between the robust
eigenvectors computed with the
contaminated data and the
population eigenvector,
computed without any
contamination present, when
n = 500 and p = 1000

φ = 0◦ Cauchy 31.308 31.608 31.820 31.199 31.787 31.598 32.041

PP 71.663 8.607 4.404 3.419 3.340 3.277 3.335

PCP 28.024 26.416 21.575 17.766 19.613 21.992 24.674

RRSVD 25.851 25.710 21.465 9.806 3.655 3.268 3.332

φ = 30◦ Cauchy 32.699 30.645 30.957 30.569 30.173 29.708 29.886

PP 71.110 32.605 31.443 30.797 30.613 30.658 30.640

PCP 28.709 20.384 12.198 11.348 12.505 12.289 11.994

RRSVD 26.465 22.039 12.151 11.393 13.708 14.223 14.922

φ = 60◦ Cauchy 32.351 30.677 29.711 30.281 30.325 29.789 29.962

PP 71.549 61.752 60.767 61.431 60.369 60.405 60.372

PCP 28.189 26.267 22.755 25.970 31.494 36.652 38.270

RRSVD 26.045 24.835 20.430 27.175 33.629 37.807 39.393

φ = 90◦ Cauchy 32.688 32.499 34.030 33.747 34.303 33.767 34.018

PP 72.250 72.059 70.539 72.413 71.731 72.365 72.465

PCP 29.023 28.192 28.811 28.601 47.069 88.198 88.341

RRSVD 26.936 26.070 26.670 28.073 89.268 89.313 89.515

The norm of the outliers is ek and their angle with the population eigenvector, computed without any contam-
ination present, is denoted by φ

computed the first Cauchy-PCA eigenvector and the first
PP-PCA eigenvector. In all cases, we subtracted the spa-
tial median or the variable-wise median and scaled them by
the mean absolute deviation. The performance metric is the
angle (in degrees) between the first robust (based on Cauchy
or PP-PCA) eigenvector and the first population eigenvec-
tor, computed with the uncontaminated data, and the time
required by each method. This procedure was repeated 200
times and the average results are graphically displayed in Fig.
1a–d.

Broadly speaking the effect of the PP PCA does not seem
to have been affected substantially by the centering method,
i.e. subtraction of the spatial or the variable-wise median.
On the contrary, the Cauchy PCA is affected by the type
of median employed to this end. Centering with the spatial
median yields high error levels for all norms of the outliers,
for both datasets, whereas centering with the variable-wise
median produces much lower error levels. On average, the
difference in the error between Cauchy PCA and PP PCA is
about 30◦ for the GSE31159 dataset (Fig. 1a) and about 14◦
for the GSE3161 dataset (Fig. 1b). However, the error of the
Cauchy PCA increases and the stabilizes in the GSE31159
dataset whereas the error of the PP PCA is stable regardless
of the normof the outliers. A different conclusion is extracted
in the GSE31161 where the error of either method decreases
as the normof the outliers increases, until it reaches a plateau.

With regards to computational efficiency, the PP PCA is
not affected by either centering method, whereas Cauchy
PCA seems to be affected in the GSE31159 dataset but not
in the GSE31161 dataset as seen in Fig. 1c, d. Cauchy PCA
centeredwith the variable-wisemedian is, on average, 5 times
faster than PP PCA.

The reason why PCP and RSVD were excluded from
examination with the real datasets is their high computa-
tional cost. Table 7 contains the duration (in seconds) of each
algorithm required for one run with an increasing number of
variables, from100 up to 5000 variables, for each dataset. For
the dataset GSE13159 and 2000 variables, the PCP method
requires more than 3.5 h and the RRSVD requires 1.3 h. The
figures were created using 200 replications. If we add these
two other competingmethods and perform only 50 iterations,
for the GSE13159, the PCP method would require 8 * 3.5 *
50 = 1400 h which means 58 days and the RRSVD would
require an extra 8 * 1.29 * 50 = 516 h or 21.5 days.

5 Conclusion

The starting point for this paper is the observation that clas-
sical PCA can be formulated purely in terms of operations
on a Gaussian likelihood. Although this observation is not
new, the specifics of this formulation of classical PCA do
not appear to be as widely known as might be expected. The
novel idea underlying this paper is to formulate a version of
PCA in which a Cauchy likelihood is used instead of a Gaus-
sian likelihood, leading to what we call Cauchy PCA. Study
of the resulting influence function shows that Cauchy PCA
has very good robustness properties. Moreover, we have pro-
vided an implementation of Cauchy PCAwhich runs quickly
and reliably. Numerous simulation and real-data examples,
mainly in high-dimensional settings, show that, in terms of
quality of performance, Cauchy PCA typically outperforms,
or is on a par with, alternative robust versions of PCA whose
implementations are in the public domain; and Cauchy PCA
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Fig. 1 The first row presents the angle between the first Cauchy PC
of the “contaminated” data and the leading eigenvector computed with
the uncontaminated data and the angle between the first Projection Pur-

suit PC of the "contaminated" data and the leading sampe eigenvector,
computed without any contamination present, for increasing norms of
the outliers. The second row contains the time in seconds

Table 7 Time in seconds
required by each algorithm for
one run for various number of
variables

Dataset p = 100 p = 200 p = 500 p = 1000 p = 2000 p = 5000

GSE13159 Cauchy 0.69 0.66 2.20 2.47 5.00 16.66

PP 0.28 0.50 1.48 3.05 6.06 99.06

PCP 22.66 89.50 645.06 3230.42 12772.17 41452.56

RRSVD 1610.44 1221.17 2334.49 1526.66 4649.86 24281.81

GSE31161 Cauchy 0.23 0.33 1.05 0.86 3.08 7.05

PP 0.07 0.11 0.28 0.72 9.97 19.34

PCP 8.16 49.50 437.19 1688.15 5455.61 13496.62

RRSVD 125.05 142.95 172.92 251.82 3656.37 11576.80
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is typically far superior to all of these other methods in terms
of computational cost in very high dimensional settings.
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Appendix A Proof of Proposition 1

Proof The perturbed distribution (1− ε)F(x) + ε�z(x) has
perturbed mean value

με = μ + ε(z − μ)

and perturbed covariance matrix

�ε = � + ε((z − μ)(z − μ)T − �) − ε2(z − μ)(z − μ)T

Denoting by λε the leading eigenvalue of �ε and by uε

the corresponding eigenvector, it holds that

�εuε = λεuε and uTε uε = 1 . (A1)

Next, we expand the perturbed eigenvector and eigenvalue
around the unperturbed ones as follows:

uε = u0 + εu1 + O(ε2)

and

λε = λ0 + ελ1 + O(ε2)

with

�u0 = λ0 and uT0 u0 = 1 .

Substituting the formulas into (A1), and equating the zero-
th and first order we get

�u0 = λ0u0 and uT0 u0 = 1 .

and

((z − μ)(z − μ)T − �)u0 + �u1 = λ0u1 + λ1u0 (A2)

and

uT0 u1 = 0 .

Multiplying (A2) from the left with uT0 , we get

λ1 = uT0 ((z − μ)(z − μ)T − �)u0 + uT0 �u1
= (uT0 (z − μ))2 − λ0

For u1, we rearrange (A2) to

(� − λ0I)u1 = λ1u0 − ((z − μ)(z − μ)T − �)u0

and then multiply from the left with the pseudo-inverse of
� − λ0I to obtain

(� − λ0I)+(� − λ0I)u1
= λ1(� − λ0I)+u0 − (� − λ0I)+((z − μ)(z − μ)T − �)u0

Using the properties ( Mardia et al. (1979)): (�−λ0I)+(�−
λ0I) = I − u0uT0 and (� − λ0I)+u0 = 0, we obtain

u1 − u0uT0 u1 = (� − λ0I)+(z − μ)(z − μ)Tu0
− (� − λ0I)+λ0u0

⇒u1 = ((z − μ)Tu0)(� − λ0I)+(z − μ)

and the proof is completed. ��

Appendix B Proof of Proposition 2

Let us first make the symbolism more explicit and denote
lF (u|θ) the Cauchy log-likelihood function with respect to
the distribution F and ûF the respective leadingCauchy prin-
cipal direction. Then, our goal is to calculate the limit of

1

ε
(ûFε,z − ûF )
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as ε → 0 where ûFε,z is the leading Cauchy principal
direction for the distribution Fε,z = (1 − ε)F + ε�z. The
optimality condition for the leading Cauchy principal direc-
tion reads

PûFε,z

∂

∂u
lFε,z

(
u|θ Fε,z(u)

)
∣
∣
∣
∣
u=ûFε,z

= 0 (B1)

and

PûF
∂

∂u
lF

(
u|θ F (u)

)
∣
∣
∣
∣
u=ûF

= 0

Moreover, ûFε,z is a unit vector which can be represented as

ûFε,z = cos(ρ)ûF + sin(ρ)h

where h is a unit vector perpendicular to ûF and ρ is a (small)
real number. Under these assumptions, ûFε,z is a unit vector
since

||ûFε,z ||22 = cos2(ρ)||ûF ||22 + sin2(ρ)||h||22 = 1

Obviously, ρ depends on ε and z (i.e., ρ = ρ(ε, z)) and
limε→0 ρ = 0 but we choose to avoid denoting their explicit
relationship because it is not required in our proof.Moreover,
a Taylor expansion for the representation leads to

ûFε,z = ûF + ρh + O(ρ2)

thus we obtain that

PûFε,z
= PûF − ρ(ûFhT + hûTF ) + O(ρ2)

Next, we compute the partial derivative using the chain
rule

∂

∂u
lF

(
u|θ F (u)

) =
∫

Rp

[
∂

∂c
g(c(u), θ F (u))

∂

∂u
c(u)

+ ∂

∂θ
g(c(u), θ F (u))

∂

∂u
θ F (u)

]

dF(x)

Therefore,

∂

∂u
lF

(
u|θ F (u)

)
∣
∣
∣
∣
u=ûF

=
∫

Rp

[
ḡc(x; ûF )x

+ ḡθ (x; ûF )
∂

∂u
θ F (u)

∣
∣
∣
u=ûF

]

dF(x)

=
∫

Rp
ḡc(x; ûF )xdF(x)

+
∫

Rp
ḡθ (x; ûF )dF(x)

∂

∂u
θ F (u)

∣
∣
∣
u=ûF

=
∫

Rp
ḡc(x; ûF )xdF(x)

The second summand equals to zero because ûF maxi-
mizes the Cauchy log-likelihood function thus it holds that∫
Rp ḡθ (x; ûF )dF(x) = 0. Similarly,

∂

∂u
lFε,z

(
u|θ Fε,z(u)

)
∣
∣
∣
∣
u=ûFε,z

=
∫

Rp
ḡc(x; ûFε,z)xdFε,z(x)

=(1 − ε)

∫

Rp
ḡc(x; ûFε,z)xdF(x) + ε ḡc(z; ûFε,z)z

Next, we further Taylor expand ḡc(x;uFε,z) using ûFε,z =
ûF + ρh + O(ρ2)

ḡc(x; ûFε,z) = ḡc(x; ûF ) + ρh
∂

∂u
ḡc(x;u)

∣
∣
∣
u=ûF

+ O(ρ2)

Using again the chain rule, we obtain that

∂

∂u
ḡc(x;u) = ḡcc(x;u)x + ḡcθ (x;u)

∂

∂u
θ F (u)

The computation of the partial derivative ∂
∂uθ F (u) follows.

Formula θ F (u) = argmaxθ lF (xTu|θ) implies that

∂

∂θ
lF (c(u)|θ)

∣
∣
∣
θ=θ F (u)

= 0 .

Differentiating with respect to u and using the implicit func-
tion theorem, we get

∂

∂u
θ F (u) = − ∂

∂u
∂

∂θ
lF (c(u)|θ)

∣
∣
∣
θ=θ F (u)

×
[

∂2

∂θ2
lF (c(u)|θ)

∣
∣
∣
θ=θ F (u)

]−1

= −
∫

Rp
xḡcθ (x;u)dF(x)

[∫

Rp
ḡθθ (x;u)dF(x)

]−1

Thus,

ḡc(x; ûFε,z) = ḡc(x; ûF ) + ρh
[
ḡcc(x; ûF )x

+
∫

Rp
xḡcθ (x; ûF )dF(x)

[∫

Rp
ḡθθ (x; ûF )dF(x)

]−1

ḡcθ (x; ûF )

]

+ O(ρ2)

Overall, (B1) becomes

[
PûF − ρ(ûFh

T + hûTF ) + O(ρ2)
]

·
[

(1 − ε)

∫

Rp
ḡc(x; ûFε,z )xdF(x) + ε ḡc(z; ûFε,z )z

]

= 0

⇒ PûF

∫

Rp
ḡc(x; ûFε,z )xdF(x) − ρ(ûFh

T + hûTF )
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×
∫

Rp
ḡc(x; ûF )xdF(x) + O(ρ2)

= εPûF

[∫

Rp
ḡc(x; ûF )xdF(x) − ḡc(z; ûFε,z )z

]

+ O(ερ)

⇒ ρh
[∫

Rp
ḡcc(x; ûF )xT xdF(x) +

∫

Rp
ḡc(x; ûF )ûTFxdF(x)

+
∫

Rp
xḡcθ (x; ûF )dF(x)

[∫

Rp
ḡθθ (x; ûF )dF(x)

]−1

×
∫

Rp
ḡcθ (x; ûF )xdF(x)

]

+ O(ρ2)

= εPûF

[∫

Rp
ḡc(x; ûF )xdF(x) − ḡc(z; ûFε,z )z

]

+ O(ερ)

where we use the facts that

PûFh = h

and

hT
∫

Rp
ḡc(x; ûF )xdF(x) = PûF

∫

Rp
ḡc(x; ûF )xdF(x)

= PûF
∂

∂u
lF

(
u|θ F (u)

)
∣
∣
∣
∣
u=ûF

= 0

Thus, the influence function is

I FûF (z, F) = lim
ε→0

ρh
ε

= A−1b

where

A = Id

[∫

Rp
ḡcc(x; ûF )xT xdF(x) +

∫

Rp
ḡc(x; ûF )ûTFxdF(x)

]

+
∫

Rp
xḡcθ (x; ûF )dF(x)

[∫

Rp
ḡθθ (x; ûF )dF(x)

]−1

×
∫

Rp
ḡcθ (x; ûF )xdF(x)

and

b = PûF

[∫

Rp
ḡc(x; ûF )xdF(x) − ḡc(z; ûFε,z)z

]
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