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Abstract
Classification (supervised-learning) of multivariate functional data is considered when the elements of the random func-
tional vector of interest are defined on different domains. In this setting, PLS classification and tree PLS-based methods for
multivariate functional data are presented. From a computational point of view, we show that the PLS components of the
regression with multivariate functional data can be obtained using only the PLS methodology with univariate functional data.
This offers an alternative way to present the PLS algorithm for multivariate functional data. Numerical simulation and real
data applications highlight the performance of the proposed methods.

Keywords Multivariate functional data analysis · Supervised learning · Classification · Partial least squares regression (PLS)

1 Introduction

Inmany areas, high-frequency data aremonitored in time and
space. For example, (i) in medicine, a patient’s state can be
diagnosed by time-related recordings (e.g. electroencephalo-
gram, electrocardiogram) or/and images (e.g. fMRI) and (ii)
in finance, the stocks markets are naturally recorded in time
and space. Analyzing such data requires adapted techniques,
mainly because of the high dimension and their complex
time and space correlation structure. Since the pioneer works
of Ramsey and Silverman (2005), this data is well-known
in statistics as functional data and, nowadays, it is a well-
established statistical research domain. Viewed as a sample
of a randomvariablewith values in some infinite dimensional
space, functional data is mostly associated with a random
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variable indexed by a continuous parameter such as the time,
wavelengths, or percentage of some cycle.

Dimension reduction techniques are used in order to tackle
the issue of high dimension and correlation. Among these,
the most basic and elementary one is the selection of privi-
leged features of data by expert’s knowledge (see e.g Saikhu
et al. (2019); Javed et al. (2020)). Some other works focused
on deep learning models, in particular, long short-termmem-
ory models have been proposed for time series (Hochreiter
and Schmidhuber 1997; Karim et al. 2017, 2019). They
have the advantage of being less dependent on prior knowl-
edge but are usually not interpretable. Maybe the most used
methodologies for dealing with functional data are based on
building latent models such as principal component anal-
ysis/regression (PCA, PCR) (Ramsey and Silverman 2005;
Jacques and Preda 2014; Escabias et al. 2004 and partial least
squares (PLS) Aguilera et al. (2010); Preda et al. (2007).

In this paper we are focused on supervised classification
with binary response Y and multivariate functional data pre-
dictor X = (X (1), . . . , X (d))�, where for j = 1, . . . , d,
X ( j) are univariate functional random variables, X ( j) =
{X ( j)(t), t ∈ I j }, and I j is some compact continuous index
set.

The supervised classification of univariate functional data
(d = 1) has been the source of various contributions. James
and Hastie (2001) extended multivariate linear discriminant
analysis (LDA) to irregularly sampled curves. As maxi-
mizing the between-class variance with respect to the total
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variance leads to an ill-posed problem, Preda et al. (2007)
proposed a partial least square-based classification approach
for univariate functional data. Using the concept of depth,
López-Pintado and Romo (2006) introduced robust proce-
dures to classify functional data. Non-parametric approaches
have also been investigated, using distances and similarities
measures, see e.g Ferraty and Vieu (2003), and Galeano et al.
(2015) for an overview of the use of Mahalanobis distance.
Tree-based techniques applied to functional data classifica-
tion are quite recent: Maturo and Verde (2022) introduced
tree models using functional principal component scores as
features, and Möller and Gertheiss (2018) presented a tree
based on curve distances.

In the multivariate functional data setting, the supervised
classification is mainly investigated when all domains I j are
identical, I j = [0, T ] for j = 1, . . . , d and T > 0, that is,
all the d-components of X are defined on the same domain.
Under this assumption, Blanquero et al. (2019) proposed a
methodology that allows for optimal selection of the most
informative time instants in the data. In Górecki et al. (2015),
regressionmodels are used to classifymultivariate functional
data by reduction dimension techniques based on basis pro-
jection. Recently, Gardner-Lubbe (2021) proposed a linear
discriminant analysis. To avoid the ill-posed problem of the
maximization of the between variance in the functional case,
the authors use discretization techniques, by pooling data at
specific time points.

The classification of multivariate functional data with
different domains (the domains I j are different) is rarely
explored. This framework is more flexible and makes pos-
sible the use of different types of data simultaneously (e.g.
time series, images) (Happ and Greven 2018). To the best
of our knowledge, only Golovkine et al. (2022) proposed a
supervised classification method in this setting. They intro-
duced a tree-based method for unsupervised clustering and
demonstrated the applicability of their method to supervised
classification. Their method is based on principal compo-
nent analysis for multivariate functional defined on different
domains (MFPCA), presented in (Happ and Greven 2018).

The use ofMFPCA as ordinary principal component anal-
ysis (PCA) for supervised learning leads to some non-trivial
issues, such as the number and the selection of the princi-
pal components to be retained in the model. Therefore, the
partial least square (PLS) approach has been an interesting
alternative, as the obtained PLS components are based on
the relationship between predictors and the response. Since
the introduction of PLS regression on univariate functional
data predictors in Preda and Saporta (2002), many contri-
butions have been proposed, particularly in the univariate
functional framework. As already mentioned above, Preda
et al. (2007) demonstrated the ability to use PLS for linear
discriminant analysis. In Aguilera et al. (2010) the authors
show the relationship between the PLS of univariate func-

tional and ordinary PLS on the coefficients obtained from
basis expansion approximation. An alternative non-iterative
functional partial least square for regression is developed
in Delaigle and Hall (2012), and they demonstrate consis-
tency and establish convergence rates. For interpretability
purposes, Guan et al. (2022) has recently introduced a mod-
ified partial least squares approach to obtaining the sparsity
of the coefficient function.
To the best of our knowledge, PLS regression for multivari-
ate functional data has been explored only in one domain
setting. In Dembowska et al. (2021), the authors proposed a
two-step approach for dealing with multivariate functional
covariates. The first step consists of computing indepen-
dently the PLS components for each (univariate) dimension
X ( j), j = 1, . . . , d. Then, they extract new uncorrelated
features based on linear combinations of the obtained PLS
components. In Beyaztas and Shang (2022) the aim is to pro-
vide a robust version of PLS for multivariate functional data.
They have extended Aguilera et al. (2010) basis expansion
results on multivariate functional data and proposed a partial
robust M-regression in this framework.

We extend the recent contribution in Beyaztas and Shang
(2022) by investigating more exhaustively PLS procedures,
in particular, we derive the relationship between the PLS
regression with univariate functional data (FPLS) and the
PLS regression with multivariate functional data (MFPLS).
This relationship provides a way to estimate the PLS compo-
nents for multivariate functional data from the corresponding
univariate ones. In the one-domain setting, it provides, from a
computational point of view, a new estimating procedure. In
the case of different domains, this relationship makes it pos-
sible to treat each univariate functional data with a different
domain separately and then combine the FPLS components
to obtain the MFPLS ones.

The different dimension framework makes it possible to
mix functional data of heterogeneous types (e.g. images and
time series). Inspired by the Tree Penalized Linear Discrim-
inant Analysis (TPLDA) introduced in Poterie et al. (2019),
we propose a tree classifier based on PLS regression scores.
Similarly to the TPLDA, our tree model uses a predefined
structure group of dimensions.

The paper is organized as follows. Section2 presents the
PLS methodology for binary classification. It introduces the
PLS regression with multivariate functional data defined
on different domains and establishes the relationship with
the univariate functional PLS approach. The presentation
of the TMFPLS methodology ends this section. Section3
presents simulation studies for regression and classification
purposes and compares the performances of our approaches
with existing methods. We also apply the MFPLS and TMF-
PLS methods to benchmark data for multivariate time series
classification in Sect. 4. A discussion is given in Sect. 5.
The appendix contains detailed proofs of some theoretical
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results. The supplementary material includes additional fig-
ures related to the numerical experiments.

2 Methods

2.1 Basic principles and notations

We are dealing with multivariate functional data defined
on different domains in a similar framework as Happ and
Greven (2018). As a general model for multivariate func-
tional data analysis, let X be a stochastic process represented
by a d-dimensional vector of functional random variables
X = (X (1), . . . , X (d))�, defined on the probability space
(�,A,P).

In the classical setting ( Ramsey and Silverman (2005);
Jacques and Preda (2014); Górecki et al. (2015)), the compo-
nents X ( j), j = 1, . . . , d, are assumed real-valued stochastic
processes defined on some finite continuous interval [0, T ].
In our setting, we consider the general frameworkwhere each
component X ( j) is defined on some specific continuous com-
pact domain I j of Rd j , with d j ∈ N− {0}. Thus, for d j = 1
we deal in general with time or wavelength domains whereas
for d j = 2, the domain I j indexes images or more complex
shapes. It is also assumed that X ( j) is a L2-continuous pro-
cess, and it has squared integrable paths, i.e. each trajectory
of X ( j) belongs to the Hilbert space of the square-integrable
functions defined on I j , L2(I j ). These general hypotheses
ensure that integrals involving the variables X ( j) are well-
defined. Let defineH = L2(I1)× ...×L2(Id) be the Hilbert
space of vector functions

H= {
f =( f (1), . . . , f (d))�, f ( j) ∈ L2(I j ), j =1, . . . , d

}

endowed with the inner product

〈〈 f , g〉〉H=
d∑

j=1

〈 f ( j), g( j)〉L2(I j )=
d∑

j=1

∫

I j

f ( j)(t)g( j)(t)dt .

where dt is the Lebesgue measure on I j . In the following, if
there’s no confusion, the index H will be omitted and |||, |||
will denote the norm induced by 〈〈, 〉〉.

2.2 The linear functional regressionmodel

When the aim is the prediction (the supervised context), the
stochastic process X is associated to a response variable of
interest Y through the conditional expectation E(Y |X).

Let consider the real-valued response variable Y be defined
on the same probability space as X ,

Y : � → R.

Without loss of generality, we assume that Y and X are zero-
mean,

E(Y ) = 0, E(X ( j)(t)) = 0, j = 1, . . . , d t ∈ I j (1)

and Y has a finite variance.
The functional linear regression model assumes that

E(Y |X) exists and is a linear operator as a function of X .
Thus, we have:

Y = 〈〈X , β〉〉 + ε, (2)

where

– β ∈ H denotes the regression parameter (coefficient)
function,

β =
(
β(1), . . . , β(d)

)�
,

– ε denotes the residual term which is assumed to be of
finite variance E(ε2) = σ 2 and uncorrelated to X .

In the integral form, the model in (2) is written as:

Y =
d∑

j=1

∫

I j

X ( j)(t)β( j)(t)dt + ε. (3)

Under the least squares criterion, the estimation of the coef-
ficient function β is, in general, an ill-posed inverse problem
(Aguilera et al. 2010; Preda and Saporta 2002; Preda et al.
2007). From a theoretical point of view, this is due to the
infinite dimension of the predictor X , which makes that its
covariance operator is not invertible (Cardot et al. 1999).
Hence, dimension reduction methods such as principal com-
ponent analysis (Happ and Greven 2018) and expansion of
X into a basis of functions (Aguilera et al. 2010) can be used
in order to obtain an approximation of linear form in (3).

2.2.1 Expansion (of the predictor) into a basis of functions

For each dimension jH, j = 1, . . . , d, let consider in L2(I j )

the set �( j) = {ψ( j)
1 , . . . , ψ

( j)
Mj

} of Mj linearly independent

functions. Denote with M = ∑d
j=1 Mj .

Assuming that the functional predictor X and the regres-
sion coefficient function β admit the expansions

X ( j)(t) =
Mj∑

k=1

a( j)
k ψ

( j)
k (t), β( j)(t) =

Mj∑

k=1

b( j)
k ψ

( j)
k (t), (4)
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∀t ∈ I j , j = 1, . . . , d, the functional regression model in
(3) is equivalent to the multiple linear regression model:

Y = (Fa)�b + ε (5)

where

– a is the vector of size M obtained by concatenation of
vectors a( j) = (a( j)

1 , a( j)
2 , . . . , a( j)

Mj
)�, j = 1, . . . , d,

– b is the coefficient vector of size M obtained by con-
catenation of vectors b( j) = (b( j)

1 , b( j)
2 , . . . , b( j)

Mj
)�, j =

1, . . . , d, and
– F is the block matrix of size M×M with diagonal blocks
F( j), j = 1, . . . , d,

F =

⎛

⎜⎜⎜
⎝

F(1) 0 . . . 0
0 F(2) . . . 0
...

...

0 0 . . . F(d)

⎞

⎟⎟⎟
⎠

. (6)

For each j = 1, . . . , d, F( j) is the matrix of inner prod-
ucts between the basis functions, with elements F( j)

k,l =
〈ψ( j)

k , ψ
( j)
l 〉L2(I j ), 1 ≤ k, l ≤ Mj .

Hence, under the assumption of basis expansion hypothesis
(4), the estimation of the coefficient function, β, is equivalent
to the estimation of the coefficient vector b in a classical mul-
tiple linear regression model with a design matrix involving
the basis expansion coefficients of the predictor (the vector a)
and the metric provided by the choice of the base’s functions
(the matrix F).

The least-square criterion for the estimation of b yields
in some settings (e.g. large number of basis functions) to
multicollinearity and high dimension issues, similar to the
univariate setting (see (Aguilera et al. 2010) formore details).
Two well-established methods of estimation, principal com-
ponent regression (PCR) and partial least squares regression
(PLS) are reputed for the efficiency of their estimation algo-
rithm and the interpretability of the results. As mentioned in
Jong (1993) in the finite-dimensional setting and in Aguilera
et al. (2010) for the functional one, for a fixed number of com-
ponents, the PLS regression fits closer than the PCR. Thus,
the PLS regression provides a more efficient solution (sum
of square errors criterion). Numerical experiments confirm
these results for the regressionwith univariate functional data
(see for more details Delaigle and Hall (2012); Guan et al.
(2022)).
In the next section, we present the proposed PLS regression
of multivariate functional data.

2.3 PLS regression withmultivariate functional
data: MFPLS

PLS regression penalizes the least squares criterion by max-
imizing the covariance between linear combinations of the
predictor variables X (the PLS components) and the response
Y . It is based on an iterative algorithm building at each step
PLS components as predictors for the final regression model.
In the multivariate setting, analogously to the univariate case
(Preda and Saporta 2002), the weights for the linear combi-
nations are obtained as the solution to the Tucker criterion:

max
w∈H

Cov2(〈〈w, X〉〉,Y ), (7)

with w = (w(1), . . . , w(d))� such that |||w|||H = 1.
The following proposition establishes the solution to the

above maximization problem.

Proposition 1 The solution of (7) is given by

w( j)(t) = E(X ( j)(t)Y )
√∑d

k=1

∫
Ik E

2(X (k)(s)Y )ds
,

∀t ∈ I j , j = 1, . . . , d. (8)

	

Let denote by ξ the PLS component defined as the linear
combination of variables X given by the weights w, i.e.,

ξ = 〈〈X , w〉〉 =
d∑

k=1

∫

Ik
X (k)(t)w(k)(t)dt .

The iterative PLS algorithm works as follows:

• Step 0: Let X0 = X and Y0 = Y .
• Step h, h ≥ 1: Define wh as in Proposition 1 with

X = Xh−1 and Y = Yh−1. Then, define the h-th PLS
component as

ξh = 〈〈Xh−1, wh〉〉,

Compute the residuals Xh and Yh of the linear regression
of Xh−1 and Yh−1 on ξh ,

Xh = Xh−1 − ρhξh,

Yh = Yh−1 − chξh,

where ρh = E(Xh−1ξh)

E(ξ2h )
∈ H and ch = E(Yh−1ξh)

E(ξ2h )
∈

R.
• Go to the next step (h = h + 1).
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Moreover, the following proprieties, stated in the univariate
setting (Proposition 3 in Preda and Saporta (2002)), are still
valid in the multivariate case. Let L(X) denotes the linear
space spanned by X .

Proposition 2 For any h ≥ 1, {ξk}hk=1 forms an orthogonal
system of L(X) and the following expansion formula hold:

Y = c1ξ1 + c2ξ2 + ... + chξh + Yh,
X ( j)(t) = ρ

( j)
1 (t)ξ1+ρ

( j)
2 (t)ξ2+...+ρ

( j)
h (t)ξh+X ( j)

h (t),
∀t ∈ I j , j = 1, . . . , d.

	

The right-hand side term of the expansion of Y provides

the PLS approximation of order h of (2),

〈〈X , β〉〉 ≈ c1ξ1 + c2ξ2 + ... + chξh (9)

and the residual part,

ε ≈ Yh .

Nevertheless, the above properties don’t furnish the direct
relationship between Y and X as in (2). In order to do that,
let’s write the components ξh as a linear function of X , i.e.,
as a dot product inH.

Lemma 1 Let {vk}hk=1, vk ∈ span{w1, . . . , wh}, be defined
by:

v
( j)
h (t) = w

( j)
h (t) −

h−1∑

k=1

〈〈ρk, wh〉〉v( j)
k (t),

t ∈ I j j = 1, . . . , d. (10)

Then, {vk}hk=1 forms a linearly independent system inH and

ξh = 〈〈vh, X〉〉 =
d∑

j=1

∫

I j

X ( j)(t)v( j)
h (t)dt .

	

Thus, as for the principal component analysis X (Happ and
Greven 2018), the PLS regression computes the components
as the dot product of X and the functions {vk}hk=1. These
components are suitable for regression, as they capture the
maximum amount of information between X and Y accord-
ing to Tucker’s criterion. Obviously, by Lemma 1 and (9) we
can write:

c1ξ1 + c2ξ2 + ... + chξh = 〈〈X , βh〉〉

with

βh =
h∑

i=1

civi . (11)

Thus, the PLS regression model obtained with h components
is given by

Y = 〈〈X , βh〉〉 + εh,

with εh = Yh .

Remark 1 For h ≥ 1, let Vh = (
v1 . . . vh

)
and Wh =(

w1 . . . wh
)
be two row-vectors ofHh . From Lemma 1, the

relationship between Vh andWh given in (10) can be written
in matrix form as

Vh = Wh − PhVh, (12)

where Ph is the h × h matrix,

Ph =

⎛

⎜⎜⎜⎜⎜
⎝

0 〈〈ρ1, w2〉〉 〈〈ρ1, w3〉〉 . . . 〈〈ρ1, wh−1〉〉 〈〈ρ1, wh〉〉
0 0 〈〈ρ2, w3〉〉 . . . 〈〈ρ2, wh−1〉〉 〈〈ρ2, wh〉〉
.
.
. . . .

.

.

.

0 0 0 . . . 0 〈〈ρh−1, wh〉〉
0 0 0 . . . 0 0

⎞

⎟⎟⎟⎟⎟
⎠

Let Ih×h be the identity matrix of size h×h. Since Ih×h +
Ph is non-singular, then equation (12) yields to

Vh = (Ih×h + Ph)
−1Wh . (13)

As the functions {wk}hk=1 are computed directly from Propo-
sition 1, the equation (13) provides a straightforward way to
obtain the weights {vk}hk=1 and, therefore by (11), we obtain
the coefficient function approximation βh .

Remark 2 It is worth noting that, contrary to eigenfunc-
tions of the PCA of X Happ and Greven (2018), {vk}hk=1
is not an orthogonal system by the inner product 〈〈, 〉〉.
Nonetheless, it provides orthogonal PLS components, i.e.
E(ξkξl) = E(ξ2k )δk,l , where δk,l is the Kronecker symbol.

The next part focuses on the relationship between the
partial least squares regression of univariate functional data
(FPLS) and the proposed multivariate version (MFPLS)
given by Proposition 1. More precisely, we show that the
MFPLS regression can be solved by iterating FPLS within a
two-stage approach.

2.3.1 Relationship between MFPLS and FPLS

For each j in 1, . . . d, let w̃
( j)
1 be the weight function cor-

responding to the first PLS component obtained by FPLS
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regression of Y on dimension X ( j) (Proposition 2 in Preda
and Saporta (2002)),

w̃
( j)
1 (t) = E(X ( j)(t)Y )

√∫
I j

E2(X ( j)(s)Y )ds
, t ∈ I j .

Obviously, the functions w̃
( j)
1 and w

( j)
1 (as defined in Propo-

sition 1) are related by the following relationship

w
( j)
1 = u1, j w̃

( j)
1 , (14)

with u1, j = ||E(X ( j)Y )||L2(I j )

|||E(XY )||| ∈ R

and || · ||L2(I j ) stands for the norm induced by the usual
inner product in L2(I j ).

Let note that the vector u1 = (
u1,1, ..., u1,d

)�
is such that

||u||Rd = 1. Hence, we can establish a relationship between
the PLS components of MFPLS and FPLS in the following
way. For each j in 1, . . . , d, let denote by ξ

( j)
1 the first PLS

component obtained by the FPLS regression of Yon the j-th
dimension of X . Then, the first PLS component of theMFPLS
of Yon X , ξ1, is obtained as the first PLS component of the
PLS regression of Yon {ξ (1)

1 , . . . , ξ
(d)
1 }.

Based on the iterative PLS process, that relationship can be
applied to the computation of higher-order MFPLS compo-
nents.

That relationship allows us to define a new methodology
for the computation of MFPLS regression when the func-
tional predictor X is approximated into a basis of functions.

2.3.2 Using the basis expansion for the MFPLS algorithm

Under the hypothesis (4), for any j = 1, . . . d, let denote
with �( j) the vector

�( j) =
(
F( j)

)1/2
a( j)

where
(
F( j)

)1/2
is the squared root of the matrix F( j) and

a( j) is the vector of (random) coefficients of the expansion
of X ( j) in the basis of functions {ψ( j)

1 , . . . , ψ
( j)
Mj

}.
Then, Proposition 2 in Aguilera et al. (2010) makes the

MFPLS procedure equivalent to the following algorithm.
MFPLS algorithm

• Step 0: Let�( j)
0 = �( j) for all j = 1, . . . , d and Y0 = Y .

• Step h, h ≥ 1:

1. For each j = 1, . . . , d,

– define ξ
( j)
h as the first PLS component obtained

by the ordinary PLS regression ofYh−1 on�
( j)
h−1,

ξ
( j)
h =

Mj∑

k=1

�
( j)
h−1,kθ

( j)
h,k , (15)

where θ
( j)
h ∈ R

Mj is the associated weight vec-
tor.

2. Define the h-thMFPLScomponent ξh as thefirstPLS
component of the regression ofYh on {ξ (1)

h , . . . , ξ
(d)
h },

ξh =
d∑

k=1

ξ
(k)
h uh,k, (16)

where uh ∈ R
d is the associated weight vector.

3. – For each j = 1, . . . , d, compute the residuals
�

( j)
h of the linear regression of �

( j)
h−1 and Yh−1

on ξh ,

�
( j)
h = �

( j)
h−1 − r ( j)

h ξh,

where r ( j)
h = E(ξh�

( j)
h−1)

E(ξ2h )
∈ R

Mj .

– compute the residual Yh of the linear regression
of Yh−1 on ξh ,

Yh = Yh−1 − chξh,

where ch = E(Yh−1ξh)

E(ξ2h )
∈ R.

• Go to the next step (h = h + 1).

Remark 3 1. The number of PLS components (h) retained
in the approximation of the regression model (9) is usu-
ally chosen by cross-validation, optimizing some criteria
as the Mean Squared Error (MSE) or, for binary classifi-
cation, the Area under the ROC Curve (AUC).

2. The approach of Beyaztas and Shang (2022) is an exten-
sion of the basis expansion result from Aguilera et al.
(2010). It was proposed for one domain definition. Note
that our approach is more flexible since it allows different
intervals. The case of one domain is then a special case of
the proposed methodology (see Sect. 3.1.1 for numerical
comparison).

3. Let introduce in the step h - point 3 of the algorithm the
computation of functions w

( j)
h and ρ

( j
h , j = 1, . . . , d, as

w
( j)
h = uh, jH

( j)θ
( j)
h ψ( j),

ρ
( j)
h = H( j)r ( j)

h ψ( j)
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where H( j) = (
F( j)

)−1/2
.

Then, by Lemma 1, the functions {vk}hk=1 can also be
computed through the MFPLS algorithm, allowing to
compute the regression coefficient function in (11).

4. Computational details: Let consider (X1,Y1), . . . ,

(X n,Yn) be an i.i.d. sample of size n ≥ 1 of (X ,Y ).
Then, for each j = 1, . . . , d, the vector a( j) is repre-
sented by the sample n× Mj matrix of coefficients A( j),

A( j) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a( j)
1,1 . . . a( j)

1,l . . . a( j)
1,Mj

...
...

...

a( j)
k,1 . . . a( j)

k,l . . . a( j)
k,Mj

...
...

...

a( j)
n,1 . . . a( j)

n,l . . . a( j)
n,Mj

.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

�( j) = A( j)(F( j))1/2.

Let define Y = (Y1, . . . ,Yn)
�. Then, the matrix version

of the MFPLS algorithm (step h) can be rewritten as:
1 For each j = 1, . . . , d, define ξ

( j)
h ∈ R

n as the first PLS

component obtained by the ordinary PLS ofYh on �
( j)
h−1

2 The h-th MFPLS ξh is the first component obtained by

the ordinary PLS of Yh on
(
ξ

(1)
h , . . . , ξ

(d)
h

)
.

3 For j = 1, . . . , d, the residuals �
( j)
h are computed by

�
( j)
h = �

( j)
h−1 − ξhr

( j)
h

with r( j)
h = 1

ξ�
h ξh

ξ�
h �

( j)
h−1 is the projection coefficient.

And the residual Yh is

Yh = Yh−1 − ξhch

with ch = 1

ξ�
h ξ h

ξ�
h Yh−1.

Although the proposed methodology is for regression
problems with scalar response, it can be used for binary
classification by using the relationship between linear dis-
criminant analysis and linear regression (Aguilera et al. 2010;
Preda et al. 2007). The next section addresses a classification
application based on PLS regression.

2.3.3 From PLS regression to PLS binary-classification

Using the previous notations, let X be the predictor vari-
able (not necessarily zero-mean) and Y be the response. The
binary classification setting assumes that Y is a Bernoulli

variable, Y ∈ {0, 1}, Y ∼ B(π1) with π1 = P(Y = 1). The
PLS regression can be extended to binary classification after
a convenient encoding of the response.

Let define the variable Y ∗ as

Y ∗ =
⎧
⎨

⎩

√
π1
π0

, if Y = 0

−
√

π0
π1

, if Y = 1,
(17)

with π0 = 1 − π1.
Then, the coefficient function β of the regression of Y ∗ on X
corresponds (up to a constant) to that defining the the Fisher
discriminant score denoted by �(X):

�(X) = α + 〈〈X , β〉〉,

with α= -〈〈μ, β〉〉, and μ = E(X) ∈ H.
Finally, the predicted class Ŷ0 of a new curve X0 is given

by

Ŷ0 =
{
0 if �(X0) > 0
1 otherwise.

See for more details Preda et al. (2007).
In this paper we estimate the coefficient function β by the
MFPLS approach.

2.4 MFPLS tree-basedmethods

Alternatives to linear models such Support Vector Machine
or SVM (see e.g Rossi and Villa (2006); Blanquero et al.
(2019a)), clusterwise regression (see e.g Preda and Saporta
(2005); Yao et al. (2011); Li et al. (2021)) could be extended
to multivariate functional data. In this section, we present a
tree-based methodology (TMFPLS) combined with MFPLS
models. The variable selection feature of tree methods is
particularly adapted in the framework of multivariate func-
tional data and allows predicting the response throughout
more complex but still interpretable relationships. It repre-
sents in some way a generalization of the finite-dimensional
setting presented in Poterie et al. (2019) to the case of multi-
variate functional data. The procedure consists in split a node
of the tree by successively selecting an optimal discriminant
score (according to some impurity measure) among discrim-
inant scores obtained from MFPLS regression models with
different subsets of predictors. In the presented methodol-
ogy, we limit our attention to the case of binary classification
(Y ∈ {0, 1} ).

2.4.1 The algorithm

Let consider (X1,Y1), . . . , (X n,Yn) be an i.i.d. sample of
size n ≥ 1 of (X ,Y ), where Y is a binary response vari-
able and X = (X (1), . . . , X (d)) amultivariate functional one.
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Moreover, we assume that there exists a well-defined group
structure (potentially overlapping) of the dimensions of X ,
i.e. there exists K subgroups, K ≥ 1,G1, . . . ,GK of variables
{X (1), . . . , X (d)}. Notice that groups are not necessarily dis-
joint. These groups of variables define the candidates to be
used to split the node of the tree (the score will be calculated
with the only variables in the candidate group).

Inspired by Poterie et al. (2019)’s methodology, our algo-
rithm is composed of two main steps. In a nutshell, with
the help of MFPLS methodology, the first step provides
the results of the splitting according to candidates groups
G1, . . . ,GK whereas the second one selects the best splitting
candidate using an impurity criterion. These two steps are
applied to all current nodes (start with the root node contain-
ing all the sample – n observations) until the minimum purity
threshold is reached.
Consider the current node of the tree to be split:

• Step 1: The MFPLS candidate scores.
For each candidate group of variable Gi , i = 1, . . . , K ,
perform MFPLS of Y on Gi and denote with �i the esti-
matedMFPLS score (prediction) obtainedwith the group
Gi . Then, the result of the split with �i is represented
by two new sub-nodes obtained according to the predic-
tions of the observations (X j ,Y j ) in the current node:
{�i (X ) > 0} and {�i (X ) ≤ 0}.

• Step 2: Optimal splitting.
Select the optimal splitting according to group G∗ which
maximizes the decrease of impurity function �Q (see
(Poterie et al. 2019) for more details),

G∗ = argmax
G∈{G1,...,GK }

�QG .

Therefore, the optimal splitting for the current node is the
one obtained with the MFPLS score � corresponding to
G∗.

A node is terminal if its impurity index is lower than a defined
purity threshold. In order to avoid overfitting, a pruning
method can be employed. Here, we use the same technique as
in Poterie et al. (2019), i.e. the optimal depth of the decision
tree (m∗) is estimated using a validation set.

3 Simulation study

This section deals with finite sample properties on simulated
data to evaluate the performances of MFPLS and TMFPLS
approaches with competitor methods based onMFPCA. Two
different cases are presented. In the first one, all the com-
ponents X ( j) of X are defined on the same one domain
I = [0, T ], T > 0. In the second case, X is a bivariate func-

tional vector X = (X (1), X (2))� with X (1) = (X (1)(t))t∈I1
and a two-domain variable X (2) = (X (2)(t))t∈I2×I2 , where
I1, I2 ⊂ R. Thus, in this second one, a sample from the
functional variable X corresponds to a set of curves and 2-D
images of domains I1 and I2 × I2 respectively.

All computation results reported in this section were
obtained using a computer that has a Windows 10 operating
system, 11th Gen Intel(R) Core(TM) i7-1165G7 2.80GHz
and 16.00Go Go of RAM memory.

3.1 One domain case

3.1.1 Setting 1: scalar response

Since the main concurrent MFPLS was proposed for regres-
sion (Beyaztas and Shang 2022), we conduct in this section
the regression simulation framework described in Beyaztas
and Shang (2022) and compare their method with MFPLS.

Consider the domain I = [0, 1] and the 3-dimensional
functional predictor X = (X (1), X (2), X (3))�:

X ( j)(t) =
5∑

k=1

γkυk(t), t ∈ I, j = 1, 2, 3,

with γk ∼ N (0, 4k−3/2) and υk(t) = sin kπ t − cos kπ t ,
k = 1, . . . , 5.

The functional coefficient β is defined by

β(t) = (
sin(2π t), sin(3π t), cos(2π t)

)�
.

Then, the regression model generating the data is given by

Y = 〈〈X , β〉〉 + ε,

where ε ∼ N (0, σ 2).
We define the noise variance as

σ 2 = E(〈〈X , β〉〉2)
SNR

,

where SNR is the signal-to-noise ratio. We consider 5 values
of SNR: SNR ∈ {0.5, 1.62, 2.75, 3.88, 5}.
The approach proposed in Beyaztas and Shang (2022) is a
generalization of the result in Aguilera et al. (2010) to the
multivariate case (MFPLS_D). It exploits an equivalence
between the PLS of multivariate functional covariates and
ordinary PLS of the projection scores of covariates in basis
functions. Our method has a different procedure, as we com-
pute multivariate PLS components using the univariate PLS
components (see Sect. 2.3.2).
As in Beyaztas and Shang (2022) we use 200 equidistant dis-
crete times points on I where raw data of X are observed,
and 400 independent copies of X are simulated. Among these
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copies, 50% are used for learning and the remaining for val-
idation.

We also compare our method to principal component
regression1(MFPCR). A number of 200 replications of the
three different inference procedures are done.

The number of components in all approaches is chosen by
10-fold cross-validation procedures. To transform the raw
data into functions, smoothing is used with 20 quadratic
splines basis functions.

Performances of the three approaches are measured by the
mean squared prediction error (MSPE):

MSPE = 1

200

∑

i∈Vset
(Yi − Ŷi )

2

with Ŷi is the predicted response for the i − th observation
in the validation sample (Vset), Yi the true value.

The results of the experiences are summarized in Table 1.
All methods provide comparable results. Although the

proposedmethod (MFPLS) is more time-consuming (around
60 milliseconds), Table 1 shows that MFPLS andMFPLS_D
give similar performances.

3.1.2 Setting 2: binary response

In the following experiment, we focus on a classification
problem with one-dimensional domain I = [0, 1].

Here, we build two different classes (Class 1 and Class 2)
of functional data, visualized in Fig. 2. They are related to
some pattern (a shape with peaks) appearing at some loca-
tions of the curves. This simulation setting is a kind of visual
pattern-recognition problem (Fukushima 1988). The pattern
of interest is identifiable by eyes but challenging to detect
with algorithms. An example may be epileptic spikes detec-
tion in electroencephalogram recordings (see for instance
Abd El-Samie et al. (2018) for more details).

The performances of MFPLS, TMFPLS, and linear dis-
criminant analysis on principal component scores (MFPCA-
LDA) are compared in this simulation study.

Consider the domain I = [0, 1], and the 2-dimensional
functional predictor X = (X (1), X (2))�:

X (1)(t) =
4∑

s=1

ashs(t) + ε(1)(t) ,

X (2)(t) =
4∑

s=1

(1 − as)hs(t) + ε(2)(t),

where

1 From Beyaztas and Shang (2022) scripts: https://github.com/
UfukBeyaztas/RFPLS

Fig. 1 Examples of N = 25 realizations of X for Y = 1 (Setting 2)

• a = (
a1 a2 a3 a4

)�
is a random vector taking values

in {−1, 0, 1}4. Note that in this case, a can possibly
take 34 = 81 different values, which are denoted by
V1, . . . , V81.

• h1, . . . , h4 are triangle functions:

hs(t) = (1 − 10|t − us |)+ , s = 1, . . . , 4,

with u1 = 0.2, u2 = 0.4, u3 = 0.6, and u4 = 0.8.
• ε(1) and ε(2) are two independent white noises functions
with variance Var(ε( j)(t)) = 0.20, for j = 1, 2 and
t ∈ I.

We consider that V1 = (
1 1 0 0

)�
, V2 = (

0 1 1 0
)�

, V3 =
−V1 and V4 = −V2. The vectors V5, . . . , V81 are the 76 other
possible values of a. Let the response variable Y be

Y =
{
1 if a ∈ {V1, V2, V3, V4}
0 if a ∈ {V5, . . . , V81}

Ifas �= 0, s = 1, . . . , 4, thismeansweobserve a peak on X (1)

at the position t = us , which could be positive (as = 1) or
negative (as = −1). Then, Y = 1, if two consecutive peaks
(both negatives or positives) occur at the beginning of X (1).
Namely the peaks of interest are observed at t = 0.2, 0.4 or
t = 0.4, 0.6. The four cases where Y = 1 are illustrated in
Fig. 1.

According to the distribution of a, we study two scenarios
(see Fig. 2):
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Fig. 2 Example of curves X in Setting 2, under both scenarios. Class 1 (red curves, Y = 1) and class 0 (blue curves, Y = 0). Scenario 2 (right)
shows more heterogeneity in class 1 compared to Scenario 1 (left)

• Scenario 1: Positive peaks.
P(a = V1) = P(a = V2) = 1

4 and P(a = V3) =
P(a = V4) = 0.

P(a = V5) = P(a = V6) = . . . = P(a = V81) =
1

162 .• Scenario 2: Positive and negative peaks.
P(a = V1) = P(a = V2) = P(a = V3) = P(a =

V4) = 1
8 .

P(a = V5) = P(a = V6) = . . . = P(a = V81) =
1

162 .

Remark 4 • In the two scenarios P(Y = 1) = P(Y = 0) =
0.5.

• In Scenario 1, the curves X where Y = 1 are com-
posed exclusively of the realizations of events V1 and
V2; in X (1), they have consecutive positive peaks at
t = 0.2, 0.4, or at t = 0.4, 0.6.

• Scenario 2 is more complex. The four cases: V1, V2, V3
and V4 have the same probability to occur. In this case, the
curves X for Y = 1 are more heterogeneous compared
to Scenario 1. The four cases, represented in Fig. 1, the-
oretically have the same proportion in the sample.

The functional form of X is reconstructed using 20
quadratic spline functions with equidistant knots. For a given
scenario, we did 200 experiments. At each, 75 % of the data
are used for learning and 25 % for validation.

The number of components for the MFPLS (in both
models) is chosen by 10-fold cross-validation. Moreover,
MFPCA-LDA is performed for comparison. It consists,
firstly in the estimation of principal components (using
Happ (2017) package) and then applying linear discrimi-
nant analysis to them. As in the previous model, the number

of components is chosen by 10-fold cross-validation. We
also compute the approach proposed in Beyaztas and Shang
(2022) (MFPLS_D). To use it for classification, the transfor-
mation proposed in Sect. 2.3.3 is employed. The number of
components in MFPLS_D is also chosen by 10-fold cross-
validation.

By defining the set of groups as G1 = 1,G2 = 2,G3 =
{1, 2}, the decision tree looks for the best splits among those
obtained using separately univariate functions and the ones
obtained using both dimensions. In order, to have an esti-
mation of the optimal depth m∗, we randomly take 75% of
learning data to train an intermediate TMFPLS, and 25%
for pruning (by AUC metric). This procedure is repeated 10
times and m̂∗ is the frequent value among the 10 repetitions.
The final tree is then trained on the whole learning data, with
the maximum tree depth fixed to m̂∗, and the minimum cri-
terion of impurity at 1%.

Results

In Scenario 1, Table 2 shows that AUC differences are
about 8% between MFPLS and TMFPLS. Furthermore,
MFPCA-LDA andMFPLS_D are competitive with MFPLS.
Table 2 also exhibits that the training procedure of TMFPLS
is time-consuming compared to the other methods, about 66
times more than the time for training MFPLS. This can be
explained by the fact that at each split in the tree, we used a
cross-validation procedure to choose the number of compo-
nents. Also, the results clearly show that MFPLS_D is the
fastest method.

Scenario 2 shows more differences between the methods:
MFPLS, MFPLS_D and MFPCA-LDA are non-effective
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Table 1 Means and standard
deviations (in parentheses) of
MSPEs obtained and estimation
times in the experiments

SNR MFPLS MFPLS_D MFPCR

MSPE Time (in s) MSPE Time (in s) MSPE Time (in s)

0.50 10.85(1.56) 0.79(0.40) 10.63(1.48) 0.13(0.05) 10.73(1.48) 0.19(0.08)

1.62 3.42(0.45) 0.74(0.06) 3.43(0.45) 0.11(0.05) 3.45(0.45) 0.14(0.02)

2.75 2.04(0.30) 0.79(0.09) 2.07(0.29) 0.10(0.01) 2.08(0.31) 0.15(0.02)

3.88 1.45(0.26) 0.75(0.07) 1.47(0.22) 0.13(0.08) 1.47(0.31) 0.15(0.06)

5.00 1.11(0.16) 0.73(0.06) 1.15(0.17) 0.10(0.04) 1.15(0.18) 0.14(0.03)

Table 2 Results of Setting 2.
For the two scenarios, the
presented metrics (AUC,
Sensibility, etc.) are the means
and the standard deviations (in
parentheses) of those obtained
in the experiences

AUC Sensibility Specificity Time(in s)

Scenario 1

TMFPLS 0.98(0.02) 0.97(0.03) 0.99(0.02) 39.48(9.49)

MFPLS 0.90(0.03) 0.76(0.06) 1.00(0.00) 0.61(0.12)

MFPCA-LDA 0.90(0.03) 0.76(0.06) 1.00(0.00) 0.63(0.13)

MFPLS_D 0.90(0.03) 0.76(0.06) 1.00(0.00) 0.06(0.02)

Scenario 2

TMFPLS 0.97(0.02) 0.96(0.04) 0.98(0.03) 60.74(125.90)

MFPLS 0.50(0.06) 0.49(0.07) 0.52(0.10) 0.54(0.13)

MFPCA-LDA 0.56(0.11) 0.53(0.20) 0.56(0.22) 0.57(0.13)

MFPLS_D 0.50(0.06) 0.50(0.06) 0.50(0.07) 0.05(0.01)

compared to TMFPLS. Hence, TMFPLS outperforms these
methods in a complex task classification such as Scenario 2.
It is worth noting that in this case, the (mean) time for the
estimation of TMFPLS has significantly increased compared
to Scenario 1.

This is because the estimated trees in Scenario 1 have
fewer ramifications than the estimated ones in Scenario 2. As
an illustration, we can refer to Figs. 3 and 5, which represent
examples of trees estimated respectively from Scenario 1 and
Scenario 2. These trees are randomly selected among the 200
estimated for each scenario. Moreover, Figs. 4 and 6 present
the associated discriminant functional coefficients used for
splitting rules in the trees. We provide insight on how to
interpret them.

In Scenario 1, the tree uses in the first splitting rule
(depth=0) a coefficient function that only depends on the
first dimension. The fact that this function has a negative
peak at t = 0.4 can be interpreted as if a curve X has a low
value of X (1) at this region, it will belong to the left node
of depth= 1. Note that this node has exclusively curves of
class Y = 0. This makes sense since in Scenario 1, X curves
where Y = 1 are defined as having peaks in X (1) at points
(0.2, 0.4) or (0.4, 0.6). In otherwords, a high value at t = 0.4
characterizes the class Y = 1.
At the depth= 1, the coefficient function depends only on
the second dimension. The resulting separation doesn’t lead

to total purity in the node, however, the coefficient states
that curves X in the right node with high values of X (2) at
(0.2, 0.4) are more frequent in class Y = 0. This last rule is
not senseless, since Fig. 1 shows that curves X for a = V1
don’t have peaks in X (2) at t = 0.2 and t = 0.4.
Using only these two coefficients, we can say that for curve
X if at t = 0.4 X (1) doesn’t have a peak, X is of class Y = 0.
However, if X (1) has a peak at t = 0.4, and X (2) has small
values at regions (0.2, 0.4), X is probably of class Y = 1.
The other coefficient functions help to refine the predictions
by giving more and more precise rules at each step.

In the scenario 2, the goal is to estimate a more complex
rule of classification, since the amplitudes (a1, a2, a3, a4) can
be either positive or negative for curves X of class Y = 1.
As already mentioned, compared to Scenario 1, the example
estimated tree (Fig. 5) has more ramifications. As in the clas-
sical tree, it is challenging to give a clear interpretation of
TMFPLS in a such case, especially, when using only Fig. 5
and Fig. 6. There are numerous coefficient functions that we
have to take into account. One need,whichwe should address
in the future, is to provide more insightful visualizations in
this case. However, this tree shows how TMFPLS can be
flexible and can therefore be used in a complex classification
framework.
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Fig. 3 Example of post-pruned
tree in Scenario 1(Setting 2).
Dimension(s) used for the
splitting is in red

Fig. 4 Scenario 1: TMFPLS
estimated coefficient functions
(from left to right) at each split

Fig. 5 Example of post pruned tree in Scenario 2( Setting 2)
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Fig. 6 Scenario 2: Coefficient functions in the estimated tree

3.2 Different domains case

3.2.1 Setting 3: Image and time series classification

Our approach allows the use of images and time series
simultaneously. In this part, we highlight the use of various
domains instead of focusing only on one dimension domain.
Framework Consider the domains I1 = [0, 50], I2 =
[0, 1] × [0, 1], and X = (X (1), X (2))�:

X (1)(t) = Z1h(t) + ε(1)(t), t ∈ I1
X (2)(t) = Z2q(t) + ε(2)(t), t ∈ I2.

The noise term ε = (ε(1), ε(2))� is composed of two inde-
pendent dimensions: the first one ε(1) is a white noise of
variances σ 2, while the second one ε(2) is a gaussian random
field. ε(2) is associated with aMatern covariance model, with
sill, range, and nugget parameters equal to 0.25, 0.75, and σ ,
respectively (see (Ribeiro et al. 2001) for more details). The
variables Z1 and Z2 are Bernoulli variables with values in
{0, 1}. The (deterministic) functions h and q are given by:

h(t) = 3.14

(
1 − |t − 10|

4

)

+
q(s) = −2 log

(√
(s(1) − 0.5)2 + (s(2) − 0.5)2

)

where (.)+ denotes the positive part, t ∈ I1, s =
(s(1), s(2)) ∈ I2.

The response variable Y is constructed as follows:

Y =
{
1 if Z1Z2 = 1
0 otherwise.

In other words, Y = 1 if and only if both variables Z1, Z2

are simultaneously 1 (see Fig. 7).
50 equidistant discrete points and 50 × 50 pixels are

observed respectively for the first and the second dimension.

To get the functional form of X , the first and second compo-
nents are projected respectively into the space spanned by 20
quadratic spline functions, and the 4 two-dimensional splines
(Happ 2017).

The variances of the functions q and h along their domain
are approximately 1. The signal-to-noise ratio (SNR) is then
(approximately) the same on both dimensions and depends
only on σ

SNR = 1

σ 2 .

By controlling the parameter σ , we consider several values
of SNR: 0.5, 0.7, 1.2, 2.1 and 4.9.

We set P(Z1 = 1) = P(Z2 = 1) = 3/4, then P(Y =
1) = 9/16 � 0.56. A set of 500 curves are simulated: 75%
are used for learning, while the remaining 25% is for the
validation set.

For each value of SNR, three MFPLS models are com-
puted. The two first use exclusively one dimension of the
predictor: MFPLS(1) uses X (1) and MFPLS(2) X (2). The
third one uses both functional components (MFPLS). The
purpose is to assess the amount of performance using one-
dimensional domain and multiple-dimensional domain. We
also compute MFPCA-LDA for comparison purposes, the
principal component analysis is performed by Happ (2017)
package.

The number of components in the two approaches:
MFPLS and MFPCA-LDA are chosen by 10-fold cross-
validation using AUC. We did 200 simulations: models are
assessed by AUC on the validation set.

Table 3 shows that MFPLS gives better results than
MFPCA-LDAfor the lowest value of SNR, and the difference
between the methods disappears with the increase of SNR.
Using partially the data (models MFPLS(1) and MFPLS(2))
to predict the class variable is less efficient than using both
dimensions. Namely, Table 3 clearly shows the advantage of
using both of the components of the functional variables.
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Fig. 7 Construction of class 1 (Y = 1), curve X(t) in Setting 3, under SNR=0.5 If Y=0, X is random noise ε (left figures)

Table 3 Means and the standard deviations (in parentheses) of the
obtained AUC on the 200 experiences

SNR MFPLS MFPLS(1) MFPLS(2) MFPCA-LDA

0.50 0.93(0.03) 0.73(0.04) 0.80(0.04) 0.88(0.05)

0.73 0.95(0.02) 0.75(0.05) 0.81(0.04) 0.95(0.02)

1.16 0.97(0.01) 0.77(0.04) 0.81(0.04) 0.97(0.02)

2.10 0.98(0.01) 0.82(0.04) 0.80(0.04) 0.99(0.01)

4.94 1.00(0.01) 0.85(0.04) 0.81(0.04) 0.99(0.01)

This simulation demonstrates the ability of our method to
classify different domain data. In addition, as it’s specially
designed for supervised learning, it can be more effective
than principal component analysis-based techniques such as
MFPCA-LDA in a noisy context.

4 Real data application: Multivariate time
series classification

In this section, we compare the proposed methods with black
box models (LSTM, Random Forest, etc...) on benchmark
data (Table 4, from Table 1 of (Karim et al. 2019)), rang-
ing from online character recognition to activity recognition.
These data, suitable for multivariate functional time series
data and binary classification, have been used by various
works to assess newmethodologies (see e.g. Pei et al. (2017);
Schäfer and Leser (2017)).

The proposed models (MFPLS, TMFPLS) are com-
pared with discriminant analysis (MFPCA-LDA) on scores
obtained by Multivariate functional principal component
analysis (Happ 2017), and non-functional models; the Long
Short-Term Memory Fully Convolutional Network (LSTM-
FCN) and Attention LSTM-FCN (ALSTM-FCN), proposed
by Karim et al. (2019). We also present the benchmark
of these last models named SOTA, which gives the best

performances among Dynamic time warping (DTW), Ran-
dom Forest (RF), SVM with a linear kernel, SVM with a
3rd-degree polynomial kernel (SVM-Poly), and other state-
of-the-art methods (see Karim et al. (2019) for more details).

The challenge is to show that our models based on regres-
sion can be competitive. The splitting of the data into training
and test samples (see Table 4) is that of Karim et al. (2019).
The different models mentioned above are compared by the
accuracy metric, the rate of well-predicted classes obtained
on the test datasets.

4.1 Choice of hyperparameters

As for some datasets (CMUsubject, KickVsPunch, etc...),
the sample size is small (less than 50 observations, see Table
5) the number of components in MFPLS and MFPCA is
chosen by 20-fold cross-validation (contrary to 10-fold in
previous parts). The maximum tree depthm∗ is an important
hyperparameter. It may significantly affect the performance
of our tree-based model, as it helps to prevent the overfitting
of TMFPLS. We estimate m∗ by cross-validation alike pro-
cedure. More precisely, we randomly take 75% of learning
data to train an intermediate TMFPLS and 25% for pruning.
This procedure is repeated 10 times and let m̂∗ be the most
occurred number from these 10. The final tree is then trained
on the whole learning data, with the maximum tree depth
fixed to m̂∗. As in the previous section, group are defined as
G1 = 1, . . . ,Gd = d,Gd+1 = {1, ..., d}, to see whether
FPLS gives better splitting than MFPLS. Testing several
combinations of dimensions takes time, the ideal choice of
groups would be guided by some prior knowledge of the data
structure.

Two strategies are used for the number of components
in the decision tree: TMFPLS H-1 denotes the decision tree
where only one component inMFPLS is used, andTMFPLS
H-CV is the decision tree where the number of components
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Table 4 Datasets summary. T
denotes the number of sampling
time points, d: the data
dimensions, and Ratio of the
train-test split. All datasets are
available in https://github.com/
titu1994/MLSTM-FCN/
releases/tag/v1.0

Dataset d T Task Ratio Sources

CMUsubject16 62 534 Action Recognition 50–50 split Carnegie (2022)

ECG 2 147 ECG Classification 50–50 split Oleszewski (2012)

EEG 13 117 EEG Classification 50–50 split Lichman (2013)

EEG2 64 256 EEG Classification 20–80 split (Lichman 2013)

KickvsPunch 62 761 Action Recognition 62–38 split Carnegie (2022)

Movement AAL 4 119 Movement Classification 50–50 split Lichman (2013)

NetFlow 4 994 Action Recognition 60–40 split Sübakan et al. (2014)

Occupancy 5 3758 Occupancy Classification 35–65 split Lichman (2013)

Ozone 72 291 Weather Classification 50–50 split Lichman (2013)

Wafer 6 198 Manufacturing Classification 25–75 split Oleszewski (2012)

WalkVsRun 62 1918 Action Recognition 64–36 split Carnegie (2022)

Table 5 Comparison of MFPLS, TMFPLS, and other non-FDA clas-
sification methods by their accuracies (%) in the test set. Bold metrics
correspond to the best accuracy for each dataset, and underline indicate

the second best. [1]: Tuncel and Baydogan (2018), [2]: Schäfer and
Leser (2017), [3]:RF, [4]: SVM-Poly, [5]: DTW

Datasets NTrain NTest MFPLS TMFPLS H-1 TMFPLS H-CV MFPCA-LDA Karim et al. SOTA Methods

CMUsubject16 29 29 86.21 89.66 100 89.66 100 100 [1]

ECG 100 100 85 83 87 88 86 93 [2]

EEG 64 64 48.44 54.69 53.12 46.88 65.63 62.5 [3]

EEG2 600 600 81.83 68.67 82.67 72.17 91.33 77.5 [3]

KickVsPunch 16 10 90 90 60 80 100 100 [2]

MovementAAL 157 157 67.52 56.69 53.50 61.78 79.63 65.61 [4]

NetFlow 803 534 84.64 86.52 85.77 80.90 95 98 [2]

Occupancy 41 76 71.05 61.84 59.21 80.26 76 67.11 [4]

Ozone 173 173 73.99 73.41 73.41 79.19 81.5 75.14 [5]

Wafer 298 896 85.04 87.39 97.99 97.32 99 99 [2]

WalkVsRun 28 16 100 100 100 100 100 100 [2]

is estimated by 20-fold cross-validation as in MFPLS. The
first tree is faster to train than the second one, and it’s less
likely to overfit the data. However, the second one is expected
to be a more efficient model, since it is able to estimate more
complex coefficient functions β.

For all functional datamethods, we use 30 B-Splines basis
functions by dimension to have a functional representation
(Ramsey and Silverman 2005) of each dataset (see Fig. 8
in Appendix Appendix B for the smoothed functions). This
number of basis functions is chosen arbitrarily small com-
pared to the minimum number of discrete time points (117)
of the original raw datasets.

4.2 Results

Table 5 shows that, inmost cases, ourmodels (MFPLS, TMF-
PLS) and MFPCA-LDA are competitive with that of Karim
et al. (2019) and SOTA. In about half of the cases, TMFPLS
or MFPLS reach the highest or the second-highest accuracy.
TMFPLS is generally more performing than MFPLS. Note
also that MFPCA-LDA is competitive with the proposed

methodologies. The main difference between MFPCA-LDA
andMFPLS is that for the first one, components are searched
with no regard to the response variable Y .

For the KickVsPunch dataset, the performance of TMF-
PLS H-1 is better than the one by TMFPLS H-CV. This
is because TMFPLS H-CV could easily overfit when the
training sample is small (NTrain < 20). This is one of the
well-known drawbacks of the decision tree. Tuning hyper-
parameters is then crucial and may have a huge impact on
performances.

5 Conclusion and discussion

Statistical learning ofmultivariate functional data evolving in
complex spaces leads to challenging questions that need the
development of new methods and techniques. In this paper,
we are interested in some of these methods in the case of dif-
ferent functional domain settings. Namely, we propose least
squares regression and classification models for multivari-
ate functional predictors. The first classification model relies
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on the partial least square (PLS) regression (MFPLS) while
the second one (TMFPLS) combines PLS with a decision
tree. Technical arguments on the PLS methods are given.
The finite sample performance of the regression and clas-
sification models are assessed by simulations and real data
(EEG, Ozone, wafer,...) applications where we compare the
proposed methods with some benchmarks, in particular a
PLS regression model of the literature (Beyaztas and Shang
2022) and well known principal components regression and
some machine learning models.

Amain specificity of our proposed models is that the mul-
tivariate functional data considered are defined on different
domains compared to the literature. This allows dealing with
heterogeneous types of data (e.g. images, time series, etc.)
with a potentially large number of applications as shown by
the given classification case study on images and functional
time series. We also give a relationship between the partial
least square of multivariate functional data with its univariate
counterparts. To the best of our knowledge, the proposed tree
classification model is new.

The finite sample properties show our models’ com-
petitiveness with regard to some existing methods. The
multivariate time series classification case study highlights
the competitive performance of MFPLS and TMFPLS with
black-box models (LSTM, RF,...) on benchmark data. These
performances may be improved by using prior knowledge
of the benchmark data (groups of variables, suitable prepro-
cessing,...).

In this paper we focus on continuous functional predic-
tors, a possible extension of the proposed models would be
including additional type (e.g, qualitative) of covariates.

The EEG and ozone data considered in the finite sam-
ple study may have spatial dependence. The classification
approaches seem not affected by these data dependencies,
but this deserves future investigation.

As in a number of functional data analysis, a tuning param-
eter related to the number of basis functions used to smooth
the raw data or reduce the dimension of the functional space,
has to be selected. In this paper, we fix or use a cross-
validation approach for the choice of this parameter. Other
alternatives may be based on bootstrap methods or criteria
like AIC, BIC.

This work highlights the good behavior of TMFPLS and
a way to deal with non-linearity in classification problems of
multivariate functional data. However, with heterogeneous
high-dimensional data, tree-basedmethods may be challeng-
ing. An alternative method could be cluster-wise regression
techniques by extending the univariate case studied by Preda
and Saporta (2005) to our context. Some other methods as
lasso classification techniques can also be explored (see e.g
Godwin (2013)).

Appendix A Technical arguments

Proof of Proposition 1 Here C-S (1) andC-S (2) stand respec-
tively for Cauchy-Schwartz inequality on integrals and sums.

Cov2(〈〈X , w〉〉, Y ) = E
2 (〈〈X , w〉〉Y )

=
⎡

⎣
d∑

j=1

[∫

I j

E

(
X ( j)(t)Y

)
w( j)(t)dt

]⎤

⎦

2

C-S(1) �⇒ Cov2(〈〈X , w〉〉, Y )≤
⎡

⎣
d∑

j=1

(∫

I j

E
2(X ( j)(t)Y )dt

)1/2

(∫

I j

[w( j)(t)]2dt
)1/2

⎤

⎦

2

C-S (2) �⇒ Cov2(〈〈X , w〉〉, Y ) ≤
⎡

⎣
d∑

j=1

∫

I j

E
2(X ( j)(t)Y )dt

⎤

⎦

⎡

⎣
d∑

j=1

∫

I j

[w( j)(t)]2dt
⎤

⎦

︸ ︷︷ ︸
|||w|||2=1

Cov2(〈〈X , w〉〉, Y ) ≤
d∑

j=1

∫

I j

E
2(X ( j)(t)Y )dt

The C-S inequalities become equalities, meaning the maxi-
mums are reached, if for j = 1, . . . , d there exist non-null
scalars a and a′ such as:

• w( j)(t) = aE(X ( j)(t)Y ), t ∈ I j

•
(∫

I j

[w( j)(t)]2dt
)1/2

= a′
(∫

I j
E
2(X ( j)(t)Y )dt

)1/2
.

The first condition implies the second one, indeed if

w( j)(t) = aE(X ( j)(t)Y ) then

(∫

I j

[w( j)(t)]2dt
)1/2

=

|a|
(∫

I j

E
2(X ( j)(t)Y )dt

)1/2

, hence a′ = |a|.
To have |||w||| = 1, we take a =⎛

⎝
p∑

j=1

∫

I j

E
2(X ( j)(t)Y )dt

⎞

⎠

−1/2

.

Thus, the solution of (7) is

w( j)(t) = E(X (i)(t)Y )
(∑p

j=1

∫
I j

E2(X ( j)(t)Y )dt
)1/2 , t ∈ I j . (A1)

	


Proof of Proposition 2 X first order residual definition is X =
ξ1ρ1 + X1, where X1 holds
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E(ξ1X1) = 0Rd ⇐⇒ E(ξ1X
( j)
1 (t)) = 0 t ∈I j , 1≤ j ≤d.

(A2)

Analogously higher-order residuals also verify

E(ξh Xh) = 0Rd ∀h ∈ N
∗. (A3)

To show that {ξk}hk=1 forms an orthogonal system, we use a
proof by induction, similarly to Tenenhaus et al. (1995).

The base case verifies. Indeed, (A2) implies that

E(ξ1ξ2) =
d∑

j=1

∫

I j

E

(
ξ1X

( j)
1 (t)

)
w

( j)
2 (t)dt = 0.

Assume the induction hypothesis H0, H0: {ξk}hk=1 forms an
orthogonal system h ≥ 1

E(ξhξh+1) =
d∑

j=1

∫

I j

E

(
ξh X

( j)
h (t)

)
w

( j)
h+1(t)dt

(A3) �⇒ E(ξhξh+1) = 0

E(ξh−1ξh+1) =
d∑

j=1

∫

I j

E

(
ξh−1X

( j)
h (t)

)
w

( j)
h+1(t)dt

Since Xh−1 = ρhξh + Xh

�⇒ E(ξh−1ξh+1) =
d∑

j=1

∫

I j

E

(
ξh−1X

( j)
h−1(t)

)

︸ ︷︷ ︸
=0 by (A3)

dt

− ρ
( j)
h (t)

∫

I j

E (ξh−1ξh)︸ ︷︷ ︸
=0 byH0

d∑

j=1

w
( j)
h+1(t)dt,

then E(ξh−1ξh+1) = 0

The same procedure can be used to show that E(ξ jξh+1) =
0 ∀ j ≤ h − 2. Hence, {ξk}hk=1 forms an orthogonal system
∀h ≥ 1.

The expansion formulas are implications of this point. 	

Proof of Lemma 1 For h = 1, we have v1 = w1, as ξ1 =
〈〈X , w1〉〉, the base case verifies.

Assume that 〈〈X , v j 〉〉 = ξ j is true up to order h (∀ j ≤ h).
Recall that,

ξh+1 = 〈〈Xh, wh+1〉〉. (A4)

The second equation of Proposition 2, gives that

Xh = X −
h∑

i=1

ρi 〈〈vi , X〉〉.

Then

ξh+1 = 〈〈X , wh+1〉〉 −
h∑

i=1

〈〈vi , X〉〉〈〈ρi , wh+1〉〉

= 〈〈X , wh+1 −
h∑

i=1

〈〈ρi , wh+1〉〉vi
︸ ︷︷ ︸

vh+1

〉〉

This concludes the proof. 	


Appendix B Additional figures

Fig. 8 Presentation of some of the benchmark datasets (those with less than 10 dimensions). The smoothing is done using a basis of 30 splines
functions for each dimension
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