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Abstract
This article improves on existing Bayesian methods to estimate the spectral density of stationary and nonstationary time series
assuming a Gaussian process prior. By optimising an appropriate eigendecomposition using a smoothing spline covariance
structure, our method more appropriately models data with both simple and complex periodic structure. We further justify
the utility of this optimal eigendecomposition by investigating the performance of alternative covariance functions other than
smoothing splines.We show that the optimal eigendecomposition provides amaterial improvement, while the other covariance
functions under examination do not, all performing comparatively well as the smoothing spline. During our computational
investigation, we introduce new validation metrics for the spectral density estimate, inspired from the physical sciences. We
validate our models in an extensive simulation study and demonstrate superior performance with real data.

Keywords Spectral density estimation · Nonstationary · Reversible jump · Markov chain Monte Carlo · Gaussian process

1 Introduction

Spectral density estimation (SDE) is a common method to
understand the autocovariance structure of a stationary time
series and perhaps the key technique to detect periodicities
in time series data. Of particular importance in the physical
sciences, such as mass spectrometry (Todd 1991, 1995), are
the peaks of a power spectrum, and the frequencies at which
they occur. However, most real-world processes are nonsta-
tionary. This has necessitated the development ofmethods for
SDE for nonstationary time series. In this article, we improve
upon existing Bayesian techniques to estimate time-varying
power spectra.

Our analysis takes place in a nonparametric Bayesian
framework and implements a reversible jump Markov chain
Monte Carlo (RJMCMC) algorithm, assuming a Gaussian
process (GP) prior. Aligning with the existing literature on
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locally stationary time series (Dahlhaus 1997; Adak 1998),
we partition a given time series into a finite number of sta-
tionary segments. The true log power spectrum is estimated
within the Whittle likelihood framework (Whittle 1957) and
appropriate optimisation, using the local log periodograms.
In doing so, no parametric assumption is made about the
time series data itself (time domain), only about the log peri-
odograms (frequency domain).

Our key improvement over existing techniques is the
optimisation of an appropriate eigendecomposition, where
a smoothing spline covariance structure is used. Therein, we
maximise the Whittle likelihood with respect to the number
of eigenvalues. This produces a suitable estimate of the power
spectrum for both simple and complex spectra. To demon-
strate the robustness of this smoothing spline optimisation,
we also investigate alternative GP covariance functions. We
specify to the stationary case and validate our estimates
against analytically known autoregressive (AR) processes.
We show that other covariance functions provide no ben-
efit over the eigendecomposition of the smoothing spline.
In the process thereof, we introduce new validation metrics
that more appropriately reflect the needs of the physical sci-
ences, where the amplitude and frequency of the peaks are
paramount.

Our article builds off a rich history of nonparametric fre-
quentist andBayesianmodelling to analyse and fit data. First,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-022-10103-4&domain=pdf
http://orcid.org/0000-0002-9907-8435


45 Page 2 of 22 Statistics and Computing (2022) 32 :45

smoothing splines are the bedrock for such analysis. Cog-
burn and Davis (1974) and Wahba (1980) pioneered the use
of smoothing splines for spectral density estimation in the
stationary case, with improvements made by Gangopadhyay
et al. (1999), Choudhuri et al. (2004) and others (Wood et al.
2002). Guo et al. (2003) used smoothing spline ANOVA in
the locally stationary case. Variations in smoothing splines,
such as B-splines (Eilers and Marx 1996), P-splines (Wood
2017) and others (Wahba 1990; Gu 2013), have been used
across a range of implementations in the statistics literature.

Alternative covariance functions for GPs, other than
smoothing splines, have been used in a wide range of appli-
cations to model and analyse data. Rasmussen and Williams
(2005) provide an overview of modelling complex phe-
nomena with combinations of covariance functions in GPs.
Paciorek and Schervish (2003) perform GP regression and
investigate smoothness over a class of nonstationary covari-
ance functions, while Plagemann et al. (2008) utilise such
functions within a Bayesian regression framework. More
recently, nonparametric regression methods with automatic
kernel learning have produced a GP regression framework
for kernel learning (Duvenaud et al. 2013) and other frame-
works (Lu et al. 2016; Wilson and Adams 2013). However,
alternative covariance functions have been used infrequently
for the problem of SDE.

More recently, smoothing splines and GPs have been used
to study the spectra of nonstationary processes. Whereas the
work of Wahba (1980) and Carter and Kohn (1997) places
priors over spectra of stationary processes, more recent work
has extended this to nonstationary time series, predicated on
the work of Dahlhaus (1997) and Adak (1998). Reversible
jump MCMC algorithms have been used to partition nonsta-
tionary time series into stationary segments. The number and
location of these can be estimated flexibly from the data, and
the uncertainty quantified, both in the time (Wood et al. 2011;
James andMenzies 2021; Prakash et al. 2021) and frequency
domain (Rosen et al. 2009, 2012).

In particular, Rosen, Wood and Stoffer have used a
smoothing spline GP covariance structure and RJMCMC
algorithms in conjunction effectively to perform SDE in the
nonstationary setting. Their work partitions nonstationary
time segments into locally stationary segments, first with pre-
determined partitions (Rosen et al. 2009) and then adaptively
(Rosen et al. 2012), in each caseusing aproduct of localWhit-
tle likelihoods to estimate the time series’ time-varyingpower
spectrum. The model includes a particular eigendecomposi-
tion of the covariance matrix associated with the smoothing
spline. For computational savings, the first 10 eigenvectors
are used—this number is fixed.

The main limitation of the aforementioned work is the
global degree of smoothness induced by the fixed eigen-
decomposition. In our article’s experiments, we show that
this model generally underfits real-world processes. These

usually exhibit more complexity than the autoregressive pro-
cesses that are canonically used in the validation of such
SDE models. This leads to a systemic bias in the literature
towards models that produce excessively smooth spectral
estimates. Indeed, Hadj-Amar et al. (2019) examined the
10-eigenvector model of Rosen et al. (2012) and concluded
that the fixed decomposition tends to produce estimates that
are overly smooth. Our article ameliorates this problem by
varying the number of eigenvalues used and optimising it by
maximising the Whittle likelihood. Quantitatively, we pro-
duce better results than othermodels asmeasured by new and
existing validation metrics, and qualitatively, our estimates
provide a more appropriate level of smoothness upon visual
inspection.

The article is structured as follows: in Sect. 2,we introduce
the mathematical model, including our key improvement. In
Sect. 3, we describe the validationmetricswe use in the paper
to evaluate our spectral density estimates, including exist-
ing metrics and a new framework for measuring distances
between non-trivial sets of peaks. In Sect. 4, we describe our
simulation study, incorporating both our chosen alternative
covariance functions and introducing our newvalidationmet-
rics. In Sect. 5, we apply our method to real data and observe
more appropriate fitting of our model to real-world data with
complex periodograms. In Sect. 6, we summarise our find-
ings regarding the performance and appropriate smoothness
produced by eigendecomposition optimisation versus varia-
tion in covariance functions in our GP model.

2 Mathematical model

2.1 Spectral density estimation of stationary time
series

Let (Xt )t=1,...,n be a discrete real-valued time series.

Definition 1 (Xt ) is stationary if

1. Each random variable Xt is integrable with a finite com-
mon mean μ for each t . By subtracting the mean, we may
assume henceforth μ = 0.

2. The autocovariance E[(Xt −μ)(Xt+k −μ)] is a function
only of k, which we denote γ (k).

We shall reserve the letter n to denote the length of a
stationary time series and T to denote the length of a not-
necessarily-stationary time series. Spectral analysis allows us
to study the second-order properties, particularly periodicity,
of a stationary time series expressed in the autocovariance
structure. The power spectral density function (PSD) is
defined as follows:
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f (ν) =
∞∑

k=−∞
γ (k) exp(−2π iνk), for − 1

2
≤ ν ≤ 1

2
. (1)

Most important are the Fourier frequencies ν j = j
n , j =

0, 1, ..., n − 1. Define the discrete Fourier transform (DFT)
of the time series:

Z(ν j ) = 1√
n

n∑

t=1

Xt exp(−2π iν j t), for j = 0, ..., n − 1.

(2)

Whittle initially showed that under certain conditions, the
DFTs have a complex normal (CN) distribution (Whittle
1957, 1954):

Z ∼ CN(0,F), where F = diag[ f (ν0), ... f (νn−1)]. (3)

For each Fourier frequency component, a noisy but unbiased
estimate of the PSD f (νk) is the periodogram (Choudhuri
et al. 2004), defined by I (ν j ) = |Z(ν j )|2. By symmetry, the
periodogram contains m = [ n2 ] + 1 effective observations,
corresponding to j = 0, 1, ...,m − 1. Rosen et al. (2009,
2012) outline a signal plus noise representation of the peri-
odogram:

log I (ν j ) = log f (ν j ) + ε j , (4)

where ε j is a log(Exp(1)) random variable. Recall that a ran-
dom variable Y is said to have distribution Exp(1) if it has
cumulative density function P(Y ≤ y) = 1− e−y . With this
definition, the representation (4) assumes each noise vari-
able ε j (noise in the log periodogram) is an independent and
identically distributed (i.i.d.) whose distribution is identical
to log(Y ). This model is justified by the following result: for
a wide class of theoretical models, Theorem 10.3.2 of Brock-
well and Davis (1991) proves that the vector of quotients

( I (ν0)

f (ν0)
, ...,

I (νm−1)

f (νm−1)

)
(5)

converges in distribution to a vector of i.i.d. Exp(1) ran-
dom variables. We reiterate that this theorem applies to the
noise variables in the log periodogram, not the original time
series. In particular, we make use of no parametric assump-
tions regarding the underlying process or noise of the original
time series (time domain) and only of the log periodogram
(frequency domain) as specified by (4).

For our applications, we assume the quotient I
f is approx-

imately exponentially distributed with mean 1. This is a
simpler representation of the second moment of the distri-
bution, reducing the problem of covariance estimation to a
simpler problem of mean estimation. Note the periodogram

oscillates around the true spectral density, so there is a del-
icate balance between inferring the spectrum of a process
and excessive smoothing, leading to negligible inference.
We remark that unlike most statistical models, this does not
assume Gaussian noise; in fact, by the aforementioned theo-
retical results, we assume exponentially distributed random
noise instead.

2.2 Gaussian process regression

Definition 2 A Gaussian process is a collection of ran-
dom variables, any finite collection of which have a mul-
tivariate Gaussian distribution (Rasmussen and Williams
2005). Such a process f (x) is uniquely determined by its
mean function m(x) = E[ f (x)] and covariance function
k(x, x′) = E[( f (x) − m(x))( f (x′) − m(x′)]. We write
f (x) ∼ GP(m(x), k(x, x′)).

We assume the standard “noisy observation” Gaussian addi-
tive error model y = f (x) + ε, in which ε is i.i.d Gaussian
noise with variance σ 2

n (Rasmussen and Williams 2005).
Then, the prior over the noisy observations is cov(y) =
k(x, x′) + σ 2

n I . The joint distribution of observed response
values, y, and function values evaluated at test points under
the prior distribution, f∗, are expressed as

[
y
f∗

]
∼ N

(
0,

[
k(x, x) + σ 2

n I k(x, x∗)
k(x∗, x) k(x∗, x∗)

])
.

Finally, the GP regression predictive equations are as follows
(Rasmussen and Williams 2005):

f∗|x, y, x′ ∼ N(f̄∗, cov(f∗)), (6)

where the mean and covariance are defined as

f̄∗ := E[f∗|x, y, x∗] = k(x∗, x)[k(x, x) + σ 2
n I ]−1y,

(7)

cov(f∗) := k(x∗, x∗) − k(x∗, x)[k(x, x) + σ 2
n ]−1k(x, x∗).

(8)

2.3 Model and priors: stationary case

We follow (Choudhuri et al. 2004; Rosen et al. 2012)
and use the Whittle likelihood function to model the
log periodogram within a Bayesian regression framework.
Let y = (y(ν0), ..., y(νm−1)) be the log of the peri-
odogram, f = ( f (ν0), ..., f (νm−1)) be the PSD, and g =
(g(ν0), ..., g(νm−1)) be the log of the PSD. The likelihood
of the log periodogram given the true power spectrum can be
approximated by
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p(y|f)=(2π)−m/2
m−1∏

j=0

exp

(
−1

2

[
log f (ν j ) + I (ν j )

f (ν j )

])
.

(9)

Following (Rosen et al. 2009, 2012), we rewrite Eq. (4) as

y(ν j ) = g(ν j ) + ε j , (10)

To obtain a flexible estimate of the spectrum, we place a
GP prior over the unknown function g. That is, we assume
g ∼ N (0, k(x, x∗)). This is determined by its covariance
function.Most of the SDE literature to date has used smooth-
ing splines (Wahba 1980) or other spline varieties for this
covariance structure. In subsequent sections, we investigate
both smoothing splines and other covariance functions. We
choose kernels that have been frequently examined else-
where in the literature: the squared exponential, Matern3/2,
Matern5/2, Sigmoid kernel and combinations of these such as
the squared exponential + Sigmoid (Rasmussen andWilliams
2005; Paciorek and Schervish 2003; Plagemann et al. 2008;
Lu et al. 2016; Wilson and Adams 2013).

2.4 Nonstationary model and priors

In this section, we describe the model assumed through-
out the paper and associated priors. For the majority of
this paper, the precise form of nonstationarity we assume
is a Dahlhaus piecewise stationary process (Dahlhaus 1997),
which can be described as follows. Let a time series of length
T , (Xt )t=1,...,T , consist of an unknown number of segments
m and change points τ1, ..., τm−1 between segments. For
notational convenience, set τ0 = 0, τm = T . Then, the entire
time series Xt can be written

Xt =
m∑

i=1

1[τi−1+1,τi ]Xi
t , (11)

where each Xi
t is an independent and stationary time series

over the interval [τi−1 + 1, τi ]. Following the notation of
Sect. 2.3, let ni = τi − τi−1 be the length of the i th segment,
mi = [ ni2 ] + 1 be the effective length of each periodogram,
and let fi ∈ R

mi denote the PSD of the stationary time series
Xi
t .
By independence of the processes, the Whittle likelihood

approximation of the nonstationary model for a given parti-
tion τ = (τ1, ..., τm−1) is as follows:

L(f1, ..., fm |τ , y1, ..., ym) =
m∏

i=1

p(yi |fi ), (12)

where each local Whittle likelihood p(yi |fi ) is calculated
according to (9).

Following Rosen et al. (2012), we place the following
prior distributions on both the number of segments m and
the segment partitions τ ∈ R

m−1.

1. The prior on the number of segments m is an integer-
valued uniform distribution with minimal number 1 and
maximum number M .

2. The prior on each change point τi , i > 0 is a uniform
distribution conditional on the previous change point τi−1.
Specifically, we allow τi to take any value with equal
probability within a range [τi−1 + tmin, T ]. This requires
the specification of a minimal possible segment length
tmin, which we set to be 40.

3. The priors on each log PSD gi = log fi , i = 1, ...,m are
independent and are specified as in Sect. 2.3.

2.5 MCMC implementation and choice of covariance
functions

The primary contribution of this paper is an improvedmethod
for SDE of nonstationary time series. Our work uses the
RJMCMC of Rosen et al. (2012), found in Appendix C.
This scheme partitions the time series into locally stationary
segments and models the log PSD log f (˚) of the segments
with a Gaussian process with covariance matrix �. For
computational savings, they employ an eigendecomposition
� = QDQT and retain only the 10 largest eigenvectors in
D. That is, they let D10 be the truncated diagonal matrix
and set X = QD1/2

10 as their design matrix. Let β be a vec-
tor of unknown regression coefficients with prior distribution
N (0, τ 2 I ) (where τ 2 is a smoothing parameter). Then, the
successive estimate for the PSD is log f (˚) = Xβ, iterated
within the RJMCMC.

Given that the eigendecomposition is so critical, the exact
number of eigenvalues should be estimated using the data.
Using a fixed number of 10 eigenvalues (as do Rosen et al.,
detailed above) yields a smoothing spline that may be too
smooth depending on the process being estimated. If the
true spectrum is highly smooth, our estimator will exhibit
too much variance; if the spectrum is particularly complex,
our estimator will exhibit excessive bias. Instead, we select
an optimal number of eigenvalues M by analysing posterior
samples of the log spectrum for a range of eigenvectors, inte-
grating over all possible values of regression coefficients, and
maximising the marginal likelihood. We select our number
of eigenvalues as follows:

M̂ = argmaxM≥1

∫
p(y|M, XM , β)p(β|M, XM )dβ, (13)

where y is the log periodogram data, XM is the design matrix
under an eigendecomposition using M eigenvalues, and β is
a vector of coefficients determining the weight for respective
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eigenvectors. We refer to the corresponding eigendecompo-
sition � = QDM̂ QT as the optimal smoothing spline.

We remark that the determination of this M̂ requires post-
processing after a sequence of independent MCMC runs,
both in the stationary and nonstationary case, and in all imple-
mented experiments throughout the paper. Specifically, M̂ is
not computed within any individual MCMC iteration, but by
analyzing separate chains for each possible number of eigen-
values M .

We also remark that the value of M̂ will generally be larger
formore complex spectra,with a smaller number of eigenvec-
tors being sufficient for relatively simple AR(1) and AR(2)
processes. As for sample size, the relationship with M̂ may
be a little more complex. A larger length of the time series n
or T may increase the complexity of the spectrum and hence
M̂ , but not necessarily. For example, sampling a very large
number of data points from a simple AR(1) process would
not yield a higher optimal value of M̂ . In fact, a small sample
size could lead to additional difficulty. If an autoregressive
process is of insufficient length, it may be difficult to extract
information about the underlying signal in the periodogram.
This is particularly important for time series that would gen-
erate complex spectra such as the AR(4) processes outlined
in this paper. A larger length of the time series will also
lead to greater computational cost when computing the peri-
odogram. This could be costly in a reversible jump procedure
(especially when there are relatively few segments), as this
computation must occur many times until the algorithm’s
termination.

In subsequent sections, we also explain the possibility of
implementing a penalty on the number of eigenvalues. This
would yield an alternative eigendecomposition we will refer
to as the penalised optimal smoothing spline.

In subsequent sections, we examine the performance of
the optimal smoothing spline against both simulated and real
data. First, we specialise to the stationary case, where we
may validate this optimal smoothing spline in the case of
autoregressive processes with known analytic spectra. In this
setting, there is no need for the partition of the time series,
so the RJMCMC scheme reduces to a Metropolis–Hastings
scheme described in Appendix 1. In this implementation,
we are also free to substitute alternative GP covariance func-
tions k(x, x′) (see Definition 2 and Appendix 1). The optimal
smoothing spline compares favourably not only to the 10-
eigenvector decomposition but also to the other covariance
functions and provides further justification of its utility.

Having established that the optimal smoothing spline per-
forms the best of our covariance functions in the stationary
case, we proceed to a simulated nonstationary time series,
once again using theRJMCMC.By examining three adjoined
autoregressive processes with varying spectral complexity,
we demonstrate the improvement in our method over the

10-eigenvector decomposition by validating each segment
against its known analytic spectra. Finally, we proceed to
test our optimal smoothing spline on real data, which is
much less smooth than the autoregressive processes studied
until this point. We show that the 10-eigenvector decompo-
sition drastically underfits the many peaks of more complex
real-world data. Whenever we use the reversible jump proce-
dure to partition a nonstationary time series, we present our
results conditional on the modal number of change points as
a default.

2.6 Penalised likelihood

In this section, we discuss the possibility and potential advan-
tages of imposing a penalty term in the selection of best
number of eigenvalues M . Imposing a penalty term would
inevitably select a smaller number of eigenvalues and carries
several advantages:

1. If desired, it would keep the estimate of the PSD smoother.
2. This could reduce aliasing arising due to an insufficient

number of data points.
3. When we are uncertain of ideal model complexity, we

may prefer simpler models.
4. Different usersmay impose different costs of error. A user

more sensitive to biasmay favour the optimal, while a user
more sensitive to variance may use a smaller number of
eigenvalues.

Imposing penalty terms is an intricate and complex ques-
tion depending on the exact problem at hand. In this paper, we
take an approach informed by observations of the behaviour
of the marginal log likelihood against the number of eigen-
values. Observe subsequent plots of the log likelihood, both
in synthetic experiments (Figs. 1 and 2 ) and real data (Fig. 4).
Initially, an increasing number of eigenvectors provide a sub-
stantial (approximately) linear increase in the marginal log
likelihood, followed by a clear “elbow” in the plots,where the
rate of increase drastically reduces or levels off altogether.
We wish to isolate this elbow using a penalised approach.
Specifically, we want to impose a linear penalty term on the
logmarginal likelihood—this will help isolate the value ofM
in which the growth of the log marginal likelihood changes
from “fast” to “slow”.

For this purpose, let L(M) denote the log marginal likeli-
hood

L(M) = log
∫

p(y|M, XM , β)p(β|M, XM )dβ. (14)

Consider an interval of consideration, [Mmin, Mmax]. In our
implementation, Mmin = 10, while Mmax is usually 70. Let
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Fig. 1 Analytic and estimated log PSD for 10-eigenvector and optimal
decomposition of the smoothing spline models for a AR(1), bAR(2), c
AR(4). Log likelihood vs number of eigenvectors for d AR(1), e AR(2)

and f AR(4) process. The peak in the log likelihood determines the
number of eigenvectors in the optimal model

α = L(Mmax) − L(Mmin)

Mmax − Mmin
(15)

be the “overall gradient” of the log likelihood curve. We
impose the following penalty to determine the optimal
penalised M̂p:

M̂p = argmaxMmin≤M≤Mmax
L(M) − αM (16)

= argmaxMmin≤M≤Mmax
log

×
(∫

p(y|M, XM , β)p(β|M, XM )dβ

)
− αM .

(17)

Essentially, this penalised optimal M̂p aims to select the value
of M at the elbow of the log marginal likelihood curve at
“the point” (a heuristic) where (at least in the examples we
observe) quick linear growth changes to much slower linear
growth.

3 Validationmetrics

In this section, we describe in detail both existing and new
validation metrics—these will be used in the subsequent
simulation study (Sect. 4) to compare our spectral density
estimates ĝ of autoregressive processes with the known ana-

lytic log PSD g. First, we outline the existing metrics we use,
and thenwedescribe in detail a new framework formeasuring
distances between spectral peaks, including the possibility of
multiple non-trivial peaks in more complex spectra.

3.1 Existingmetrics

The three existingmetrics we use are rootmean squared error

(RMSE), defined as
√

1
m

∑m−1
j=0 (ĝ(ν j ) − g((ν j ))2, mean

absolute error (MAE), defined as 1
m

∑m−1
j=0 |ĝ(ν j ) − g(ν j )|,

and the Wasserstein distance between the finite sets {g(ν j )}
and {ĝ(ν j )}. Specifically, this converts a finite set to a uni-
form probability measure over its elements and computes the
Wasserstein distance between these measures.

In further detail, let S be a finite subset ofR. To S, we can
associate a uniform measure defined as a weighted sum of
Dirac delta measures

μS = 1

|S|
∑

s∈S
δs . (18)

Integrating μS yields a cumulative density function F and
its associated quantile function F−1. Concretely, if S =
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Fig. 2 Analytic and estimated log PSD for 10-eigenvector and opti-
mal decomposition of smoothing spline models for nonstationary time
series. aRealisation of the time series. Spectral estimates for b Segment
1. c Segment 2. d Segment 3, each using the optimal and penalised opti-
mal spline. e Plot of log marginal likelihood vs number of eigenvectors,

using Eq. (14). The optimal number of eigenvectors is 61. f Plot of
the penalised log likelihood function, using Eq. (17). The penalised
optimal number of eigenvectors is 29. Spectral estimates for Spectral
surface (time-varying PSD) for g 10-eigenvector and h optimal eigen-
decomposition
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{s1, ..., sn} ⊂ R, then

F =
n−1∑

j=1

j

n
1[s j ,s j+1) + 1[sn ,∞), (19)

F−1 =
n∑

j=1

s j1(
j−1
n ,

j
n )

. (20)

Given two finite sets S, T , their L1-Wasserstein distance is
computed as dW (S, T ) = W1(μS, μT ) and be computed as

dW (S, T ) = W1(μS, μT ) =
∫ 1

0
|F−1 − G−1|dx, (21)

where F−1 and G−1 are defined as in (20) from S and T ,
respectively. For more detail, see (James andMenzies 2022),
Appendix C.

3.2 Sets of spectral peaks and the proximity
matching criterion

Our new validation metrics are inspired by applications in
the physical sciences. There, a single dominant peak is often
the greatest importance to observing scientists (Todd 1991).
Such a peak has two attributes, its amplitude, max g and the
frequency at which it occurs, argmax g. With this in mind,
we introduce the simplest form of two validation metrics,
|max ĝ−max g| and | argmax ĝ−argmax g|, measuring how
well the spectral density estimation determines the amplitude
and frequency of the greatest peak.

Next, we consider the possibility of multiple peaks in an
analytic or estimated power spectrum, as is the case for an
AR(4) process. The remainder of this section is dedicated to
carefully exploring this possibility, including how tomeasure
distance between (non-trivial) sets of estimated and analyti-
cal spectral peaks.

First, we consider the simplest possible case, assuming
the following a priori:

1. the analytic and estimated power spectra have the same
number of peaks, ρ1, ..., ρr for g and ρ̂1, ..., ρ̂r for ĝ;

2. there is a bijection between the two sets of peaks, for
which each ρi is the closest peak of g to ρ̂i , and vice
versa.

Informally, this is the ideal situation, in which the peaks of g
can bematched one-to-one to their closest counterpart among
the peaks of ĝ, and vice versa. In this ideal case, we can define
a validation metric between peaks’ collective amplitudes and
frequencies, respectively, for any p ≥ 1 as follows:

( |g(ρ1) − ĝ(ρ̂1)|p + ... + |g(ρr ) − ĝ(ρ̂r )|p
r

) 1
p

, (22)

( |ρ1 − ρ̂1|p + ... + |ρr − ρ̂r |p
r

) 1
p

. (23)

If p = 2, we return a (normalised) Euclidean distance
between tuples (ρ1, ..., ρr ) and (ρ̂1, ..., ρ̂r ) ∈ R

r . If p = 1,
we return an L1 distance between the tuples. In subsequent
paragraphs, we will see why the normalisation is appropriate
for a more general framework.

More generally, we wish to outline a framework that
specifically tests forwhether this bijection exists, and define a
validation measure that is well-defined regardless of whether
the bijection exists. For this purpose, let S be the finite set
of the (non-trivial) peaks of an analytic log power spectrum
g, and Ŝ be the set of (non-trivial) peaks of an estimate ĝ.
The most naive definition of a peak as a local maximum of
g or ĝ, respectively, may be unsuitable for this purpose—
due to the wiggly nature of spectral density estimates, there
may exist local maxima of ĝ that are insubstantial and should
be excluded. An algorithmic framework for the refinement
of peaks in the power spectra must be employed. A flexible
algorithmic framework that does this for local maxima and
minima is detailed in Appendix 2. For example, local max-
ima that are significantly less than the global maximum of
the log PSD may be excluded as insubstantial under a vari-
ety of definitions and parameters. In our experiments with
the AR(4) process, only a simple approach is needed: set
δ = 2; any local maximum ρ̂ of ĝ with ĝ(ρ̂) < max ĝ − δ is
excluded. The same results are produced for any δ ∈ [2, 4],
demonstrating the robustness of this refinement procedure.
As this is applied to the log power spectrum, such an inequal-
ity is preserved when scaling the initial time series Xt by an
affine transformation X ′

t = aXt+b. As an additional remark,
we note that the precise number r of (non-trivial) peaks is
inevitably determined by the precise refinement algorithm
we use. We discuss further details in Appendix 2.

Having identified such sets S and Ŝ, either through a
choice of parameters within such a framework or by man-
ual inspection, we define the proximity matching criterion as
follows: say S and Ŝ satisfy this criterion if:

1. there is a function f : S → Ŝ, where for each s ∈ S, f (s)
is the unique closest element of Ŝ to s;

2. there is a function f̂ : Ŝ → S, where conversely for each
ŝ ∈ Ŝ, f̂ (ŝ) is the unique closest element of S to ŝ;

3. The functions f and f̂ are mutually inverse.

For example, suppose an analytic log PSD g has a set
of non-trivial peaks S = {0.1, 0.2}. If a certain estimate
ĝ1 has a set of non-trivial peaks Ŝ1 = {0.11, 0.19}, then
there exists a bijection between S and Ŝ1 that associates
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with each element of S the closest element of Ŝ1, and
vice versa. The bijection can be written down explicitly
as f : S → Ŝ1, f (0.1) = 0.11, f (0.2) = 0.19 and
f̂ : Ŝ1 → S, f̂ (0.11) = 0.1, f̂ (0.19) = 0.2. Then, sets
S and Ŝ1 satisfy the proximity matching criterion.

For a second example, suppose an alternative estimate
ĝ2 has a set of non-trivial peaks Ŝ2 = {0.11, 0.12}. Then,
there is no bijection that matches each element of Ŝ2 to the
closest element on S, as both 0.11 and 0.12 are closest to the
same element 0.1 ∈ S. Thus, no such proximity-matching
bijection exists. For another example, if a third estimate ĝ3
has a set of non-trivial peaks Ŝ3 = {0.11}, then no bijection
exists with S, so the criterion is not satisfied.

This criterion formalises the ideal case described above,
where the (non-trivial) peaks of g and ĝ can be matched one-
to-one and hence labelled ρ1, ..., ρr and ρ̂1, ..., ρ̂r via the
mutually inverse bijective functions f and f̂ . Simply put,
the criterion formalises the notion that one can naturally pair
up the non-trivial peaks of g and ĝ to facilitate a convenient
comparison.

3.3 Measures between sets of non-trivial peaks

So far, we have defined a criterion that specifies themost con-
venient case, where one can conveniently measure distances
between matched sets of peaks S and Ŝ using (22) and (23).
Finally, we define ameasure between sets S and Ŝ that makes
sense in full generality, even when the proximity matching
criterion fails. Again let p ≥ 1; we adopt the semi-metrics
defined in James et al. (2020) and let

d p(S, Ŝ) =
(∑

ŝ∈Ŝ d(ŝ, S)p

2|Ŝ| +
∑

s∈S d(s, Ŝ)p

2|S|
) 1

p

, (24)

where d(ŝ, S) is the minimal distance from ŝ to S, and vice
versa. This validation semi-metric can be applied to measure
the collective distance between the sets of peaks of an analytic
and estimated spectra under any circumstance, conditional on
an appropriate selection of non-trivial peaks. (Such selection
may be performed algorithmically or by inspection). More-
over, in the case where the proximity matching criterion is
satisfied and the sets of peaks can bematched up and labelled
as ρ1, ..., ρr and ρ̂1, ..., ρ̂r , it simply reduces to to the met-
ric (23), together with its normalising factor, between tuples
(ρ1, ..., ρr ) and (ρ̂1, ..., ρ̂r ) ∈ R

r .
To summarise, we have defined a general validation

(semi)-metric between the collective sets of peaks of an
analytic and estimated power spectra g and ĝ, respectively.
For full generality and precision, the sets of peaks must be
selected from the data with a flexible algorithmic framework
suitable for the application at hand and not merely chosen
by observation from the shape of the analytic spectrum. In

the most suitable case, this semi-metric will reduce to what
is still a new validation metric defined in Eq. (23).

4 Simulation study

In this section, we study the properties of our estimators
with a detailed simulation study. We simulate three station-
ary autoregressive processes, AR(1), AR(2) and AR(4) and
validate our spectral density estimates against their known
analytic power spectra. For each experiment, we run 50
simulations with our MCMC scheme, either RJMCMC or
Metropolis–Hastings, as described in Sect. 2. Each sampling
scheme consists of 10,000 iterations, with 5000 used for
burn-in, and each process contains n = 500 data points. Fol-
lowing the notation of Sect. 2, we set m = 251 and consider
Fourier frequencies ν j = j

n , j = 0, 1, ...,m − 1, the appro-
priate range of the periodogram and spectrum. As such, the
range of the frequency axis in all plots is 0 ≤ ν ≤ 1

2 . When-
ever we report results from our validation metrics (described
in Sect. 3), we always average results across the 50 performed
simulations. Henceforth, εt denotes a white noise random
variable with distribution N (0, 1).

First, we generate data from an AR(1) process xt =
0.9xt−1 + εt . We compute the log periodogram from the
observed data and estimate the log PSD and GP hyperpa-
rameters with our MCMC scheme. Table 1 indicates that the
best performing covariance functions are the squared expo-
nential and Sigmoid. The log PSD has high power at low
frequency and gradually declines in power when moving
towards higher frequency components. The spectrum does
not exhibit any sharp peaks and it is unsurprising that the
highly smooth squared exponential performs well in estimat-
ing the log PSD. The worst performing covariance function
is the 10-eigenvector decomposition of the smoothing spline
of Rosen et al. (2012). There is little improvement with the
optimal smoothing spline model in this case, as shown in
Fig. 1a. This experiment suggests that for a simple spectrum,
there is limited improvement in optimising the number of
basis functions in the smoothing spline and alternative GP
covariance functions provide superior performance.

Next, we generate data from an AR(2) process xt =
0.9xt−1 − 0.8xt−2 + εt , compute the log periodogram and
estimate the log PSD and GP hyperparameters with the
MCMC schemes. Table 1 indicates that several covariance
functions perform similarly well: SQE+Sigmoid, squared
exponential, both Matern functions and the optimal spline.
The Sigmoid kernel and 10-eigenvector decomposition of
the spline perform worse. The log PSD has a relatively flat
gradient and a mild peak at ν ∼ 0.15. Once again, smoother
covariance functions tend to perform better, while the Sig-
moid covariance function, popularised for its ability tomodel
abrupt changes in data modelling problems (Rasmussen and
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Table 1 Results for synthetic
data experiments

AR(1) model
Covariance function RMSE MAE Wasserstein | argmax g − argmax ĝ| |max g − max ĝ|
Spline10 0.26 0.20 0.18 0 0.90

Splineoptimal 0.25 0.19 0.16 0 0.93

Squared exponential 0.16 0.12 0.12 0 0.49

Matern3/2 0.19 0.15 0.13 0 0.51

Matern5/2 0.19 0.14 0.12 0 0.49

Sigmoid 0.15 0.11 0.11 0 0.34

SQE+Sigmoid 0.18 0.14 0.13 0 0.40

AR(2) model

Spline10 0.33 0.26 0.24 0.0020 0.73

Splineoptimal 0.21 0.17 0.14 0.0020 0.36

Squared exponential 0.22 0.17 0.15 0.0020 0.56

Matern3/2 0.21 0.17 0.14 0.0020 0.24

Matern5/2 0.19 0.15 0.13 0.0020 0.37

Sigmoid 0.32 0.24 0.22 0.0040 0.85

SQE+Sigmoid 0.21 0.17 0.15 0.0020 0.53

AR(4) model

Spline10 0.82 0.63 0.54 0.20 2.23

Splineoptimal 0.43 0.33 0.26 0.20 1.57

Squared exponential 0.45 0.31 0.27 0.20 1.98

Matern3/2 0.37 0.27 0.21 0.20 1.75

Matern3/2 0.40 0.29 0.24 0.20 1.90

Sigmoid 0.97 0.75 0.41 0.21 2.12

SQE+Sigmoid 0.45 0.32 0.26 0.20 2.06

Mean error over 50 simulations is recorded for various covariance functions and validation metrics. Each
MCMC scheme consists of 10,000 iterations where 5000 are used for burn-in. For each AR process, n = 1000

Williams 2005), is a poor performer. Figure 1b demonstrates
a substantial improvement in estimating the log PSD when
an optimal number, larger than 10, of basis functions is used.
In particular, the estimator does a better job of detecting the
maximum amplitude of the power spectrum.

Third, we follow (Edwards et al. 2019), generate data
from an AR(4) process xt = 0.9xt−1 − 0.9xt−2 + 0.9xt−3 −
0.9xt−4 + εt and again estimate the log PSD and GP hyper-
parameters with the MCMC schemes. The log PSD of the
AR(4) process is more complex than the prior two experi-
ments. There are two peaks of different amplitudes in the
spectrum, and the spectrum changes more abruptly than the
AR(1) and AR(2) spectra. Table 1 indicates that the best
performing covariance functions are the optimal smoothing
spline and the two Matern functions. The worst perform-
ing covariance functions are the 10-eigenvector smoothing
spline and the Sigmoid kernel. Once again, we see a substan-
tial improvement in estimation when an optimal number of
basis functions is used, displayed in Fig. 1c.

As the AR(4) process has two peaks, we may also test
the proximity matching criterion of Sect. 3.2 and mea-
sure the distance between the collective sets of peaks of

the estimated and analytic power spectra. In Table 2, we
note that in this relatively simple example with just two
peaks, all covariance functions satisfy this criterion. As such,
the more general semi-metric (24) reduces to the simpler
metric between frequencies (23). We also include the col-
lective distance between amplitudes in the table, as defined
in (22). These distances show that the optimal smoothing
spline does the best job at estimating both peaks at the same
time.

Figure 1d–f plots the Whittle likelihood against the
number of eigenvectors for the AR(1), AR(2) and AR(4)
processes, respectively—this selects the optimal number of
basis functions for each. We see that consistently more than
10 basis functions are required to optimally model the data;
in fact, the choice of 10 basis functions in the eigendecom-
position is only really appropriate for the AR(1) and AR(2)
spectrum. Even the synthetic AR(4) spectrum, but more so
real-world processes, benefits from an optimised decom-
position that can better suit their complexity and lack of
smoothness. Indeed, real-world time series may have mul-
tiple periodic components represented in complex power
spectra with multiple peaks, of varying amplitudes. The
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Table 2 Amplitude distance between collective sets of peaks of analytic
and estimated AR(4) power spectra g and ĝ, respectively

AR(4) process: distance between sets of peaks
Covariance function Amplitude distance

Spline10 1.64

Splineoptimal 0.99

Squared exponential 1.24

Matern3/2 1.18

Matern5/2 1.31

Sigmoid kernel 1.57

SQE+Sigmoid 1.34

The proximity matching criterion is satisfied in every instance

fixed 10-eigenvector decomposition is excessively smooth
for these more complex spectra. In Appendix A, we examine
an alternative AR(4) process, known in the literature for its
difficulties.

Next, we include a simulation study to demonstrate the
efficacy of our improved method at both segmenting a non-
stationary time series and then estimating the power spectrum
of each locally stationary segment. We generate a piecewise
autoregressive time series by concatenating three AR pro-
cesses of segment length n = 1000:

xt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.9xt−1 − 0.9xt−2 + 0.9xt−3 − 0.9xt−4 + εt ,

1 ≤ t ≤ 1000;
0.8xt−1 − 0.6xt−2 + 0.9xt−3 − 0.8xt−4 + εt ,

1001 ≤ t ≤ 2000;
0.7xt−1 − 0.15xt−2 + 0.1xt−3 − 0.6xt−4 + εt ,

2001 ≤ t ≤ 3000.

(25)

A realisation of this process is displayed in Fig. 2a. We
remark that this is a more complex synthetic time series than
that simulated by Rosen et al. (Figure 1, Rosen et al. 2012) in
which they concatenate AR(1) and AR(2) processes. Indeed,
an important part of the improvement in our methodology
is the fact that their method suffers from limitations when
the underlying spectra are more complex than that of AR(1)

or AR(2) processes, while our method has the flexibility to
estimate the complex spectra of more involved processes and
real-world data.

As before, we plot the Whittle likelihood against the
number of eigenvectors in Fig. 2e—this selects the opti-
mal number of basis functions for the optimal smoothing
spline. We remark that the optimal number of basis func-
tions is computed by optimising over the entire time-varying
spectral surface. In this experiment,we also plot the penalised
marginal likelihood function defined by (16) in Fig. 2f. These
two figures clearly demonstrate the need for optimising the
number of eigenvectors. Indeed, the 10-eigenvector decom-
position provides the lowest likelihood of the data, while 61
eigenvectors are optimal and 29 are optimal in the penalised
framework. Figure 2b–d shows that the optimal and penalised
optimal smoothing spline models provide improved perfor-
mance over each segment relative to the benchmark model
of Rosen et al.

First, we report the posterior distributions of the number
and locations of the change points. The three-segment model
(m = 3) is selected with probability 1. The first change point
(corresponding to the synthetic break at t = 1000) is esti-
mated to have the following distribution: t = 1032 with
probability 0.39, t = 1035 with probability 0.53, t = 1070
with probability 0.08. The second change point is estimated
to be t = 2002 with probability 1.

In Fig. 2b, the optimal smoothing spline more effectively
captures abrupt peaks in the PSD. We remark that the slight
overfitting exhibited by the optimal spline would not lead
to erroneous inference, as this overfitting only occurs at
frequency components with limited power. In Fig. 2c, the
optimal spline does a superior job at estimating both peaks
in amplitude, while avoiding overfitting at frequency compo-
nents that exhibit themost power. In Fig. 2d,we see twopeaks
in the PSD with significantly varying amplitude. There, the
optimal model more appropriately determines the amplitude
and frequency of the greatest peaks, just like our validation
metrics in Table 1 recorded.

Figure 2g and h displays the two time-varying PSD esti-
mated using the original 10-eigenvector decomposition and
our optimal spline, respectively. Figure 2h clearly generates a
more intricate surface than Fig. 2g, which is inappropriately

Table 3 Results for experiment
on synthetic nonstationary time
series described in Eq. (25)

Piecewise autoregressive model

Method RMSE MAE Wasserstein | argmax g − argmax ĝ| |max g − max ĝ|
Spline10 2.81 2.04 1.65 0.21 6.81

Splineoptimal 1.32 1.01 0.58 0.21 5.21

Splinepenalised optimal 1.33 0.96 0.70 0.20 6.22

Each validation metric is obtained by averaging the validation metrics on each segment, comparing the
estimated log power spectra to the analytic known spectra. The optimal number of eigenvalues is 61, the
penalised optimal is 29
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Fig. 3 Estimate for the posterior distribution for a slowly varying
autoregressive process defined in (26). The modal number of change
points is 1, and conditional on this, the location of the change point is
approximately uniform, subject to minimum bounds on each segment
length

smooth. In particular, the scale of the z-axis demonstrates the
optimised model’s improvement when estimating appropri-
ate peaks at respective frequencies in the PSD.

Finally, we include an alternative synthetic experiment,
where an autoregressive process slowly varies over time,
rather than exhibiting clear synthetic breaks. We consider a
T = 500 length time series examined by Rosen et al, defined
by

xt = (−0.5 + t

T
)xt−1 + εt (26)

In this instance, the optimal and penalised optimal number
of eigenvalues is M = 10, as expected for a relatively simple
(time-varying) AR(1) process. The modal number of seg-
ments is m = 2. Conditional on two segments (that is, one
change point), the estimated posterior distribution of this
change point is displayed in Fig. 3. As expected for a pro-
cess with no clear change point, the posterior distribution is
approximately uniform, subject to the constraints of a mini-
mal possible segment length.

5 Real data

In this section, we analyse the spectra of two canonical
datasets, sunspots (Choudhuri et al. 2004) and airline passen-
ger data (Box et al. 2015). Both time series are well studied,
with the former being particularly well studied in the spectral
density estimation literature.We compare the performance of
the optimal smoothing spline model and the 10-eigenvector
smoothing spline. Unlike AR processes, real data do not pos-
sess analytic power spectra to validate estimates against. Both

time series require transformations to ensure they are station-
ary. For the sunspots data, following Choudhuri et al. (2004),
we perform the following transformation:

St = y
1
2
t − μ({y

1
2
t : t = 1, ..., n}).

That is, we take the square root of the observations and then
mean-centre the resulting values. For the airline passenger
data, we perform an original transformation based on first
differences of fourth roots:

At = y
1
4
t − y

1
4
t−1.

The two transformed time series are displayed in Fig. 4a and
b . As before, the number of basis functions is optimised to
maximise the marginal Whittle likelihood. For the sunspots
and airline passenger data, respectively, the optimal num-
ber of basis functions is 24 and 49, seen in Fig. 4c and d,
respectively. The modal number of change points in both
instances is 1, which is fitting as the transformed time series
are approximately stationary. Thus, applying the stationary
or nonstationary model from Sect. 2 yields identical results.
The priors we use are detailed in that section.

Figure 4e and f demonstrates that our improved method
models these complex processes substantially better than the
existing 10-eigenvector model of Rosen et al. (2012), and
that the latter does not have the complexity to model such
processes. In Fig. 4e, the optimal smoothing spline captures
the abruptness and amplitude of the one significant peak, as
well as most of the movement of the log periodogram, while
removing someof its characteristic noise. The10-eigenvector
spline fails to capture these features, with only slight recog-
nition of that early peak. In Fig. 4f, the optimal smoothing
spline captures all five peaks of this spectrum and most of
its complex undulating behaviour; the 10-eigenvector spline
fails to capture the prominent peaks in the data or provide
any meaningful or accurate inference of the spectrum.

6 Conclusion

This paper has proposed and demonstrated the use of an
improved algorithm for spectral density estimation of station-
ary and nonstationary time series. In addition to performing
better quantitativelywith respect to new and existingmetrics,
we have shown significantly better performance at appropri-
ately matching the abruptness and complexity present in the
PSD of real-world processes. The existing 10-eigenvector
decomposition of Rosen et al. (2012) appropriately models
smooth processes like the AR(1) and AR(2), but substan-
tially underfits the real data we have presented; our optimal
smoothing spline has a greater capability to fit both smooth
and abruptly changing spectra.
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Fig. 4 Transformed time series for a sunspots, b airline passenger data. Log likelihood vs number of eigenvectors for c sunspots, d airline passenger
data. Estimated log PSD for 10-eigenvector and optimal decomposition smoothing spline models for e sunspots, f airline passenger data
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As further justificationof theutility of the optimised eigen-
decomposition, we examine alternative covariance functions
other than the smoothing spline and compare these against
both the optimal and existing splinemodel in several settings.
Our simulation study confirms that most well-known covari-
ance functions perform acceptably well when analysing the
power spectral density for stationary time series. Generally,
smoother covariance functions such as the squared expo-
nential and Matern perform better in the cases of smoother
and simpler spectra, while models that combine station-
ary and nonstationary covariance functions such as the
SQE+Sigmoid appear to generalise best across more com-
plex spectral densities. The 10-eigenvector decomposition of
the smoothing spline, as usedwithin (Rosen et al. 2012), is the
worst performing model. In particular, we demonstrate that
eigenvector optimisation is what constitutes improvement in
this case, not alternative covariance functions. Simply put,
given that the eigendecomposition is so critical, it really
should be learned from the data.

Our paper is not without limitations: first, while this paper
improves upon the existing work of Rosen et al. (2012), there
is no change to the underlying transdimensional sampling.
Changing the transdimensional part of the model may lead
to numerous further complications. If we were to make the
algorithm locally adaptive in different segments of the time
series, this could lead to an explosion in the number of model
parameters and hence the computational cost of the proce-
dure. In addition, allowing different numbers of eigenvalues
in each segment could complicate the priors and likelihood
computations that are involved in determining the segments
themselves.

There are a variety of interesting directions for future
research. First, future work could explore computationally
feasible ways of creating a locally adaptive framework for
PSD estimation in nonstationary time series, despite the
challenges described above. That is, one could conceivably
partition a locally stationary time series while at the same
time optimising the number of basis functions used in the
MCMC scheme within each segment, rather than over the
entire time series period, as we have done. Future mod-
elling frameworks could consider Bayesian and frequentist
methods for identifying and learning the most appropriate
covariance functions, or combinations thereof, to use within
each segment of the time series. This could be performed
within a Bayesian or non-Bayesian framework. We could
also combine the eigendecomposition with the other covari-
ance functions we have explored, including a learned choice
of best covariance function throughmodel averaging. Finally,
our new validation metrics focused on collective sets of
peaks, including the proximity matching criterion and algo-
rithms for the appropriate refinement of peaks, could be
employed in other contexts. These could be used together
to measure a model’s effectiveness at specifically identi-

fying a set of multiple peaks arising from more complex
data.
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Appendix A: Percival–Walden AR process

In this brief section, we apply our methodology to a rather
challenging autoregressive process that has been highlighted
several times in the literature (Box et al. 2015; Percival and
Walden 1993) and is commonly known as the Percival–
WaldenAR(4). This process is defined as xt = 2.7607xt−1−
3.8106xt−2 +2.6535xt−3 −0.9238xt−4 +εt , simulated over
length n = 1024. As in Sect. 4, we simulate the process
and validate our spectral density estimates against the known
analytic power spectrum. In this experiment, the optimal and
penalised optimal smoothing spline coincide, with 23 eigen-
vectors. The spectral estimates are plotted in Fig. 5 while
validation metrics are provided in Table 4.

This experiment also provides an examplewhere the prox-
imity matching criterion of Sect. 3.2 fails. We can simply
observe that the analytic log power spectrum g has two
peaks, while the spectral estimate ĝ for both Spline10 and the
(penalised) optimal smoothing spline have one peak each.

Fig. 5 Analytic and estimated log PSD for 10-eigenvector and optimal
decomposition of the smoothing spline model for the Percival–Walden
AR(4), defined in Appendix A. The optimal and penalised optimal
smoothing splines coincide, with 23 eigenvectors. One can see that
the spectral estimates each only have one spectral peak, while the ana-
lytic PSD has two, providing an example where the proximity matching
criterion of Sect. 3.2 fails
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Table 4 Results for synthetic experiments on the Percival–Walden
AR(4), defined in Appendix A. The optimal and penalised optimal
splines coincide, with 23 eigenvectors. In this instance, the proxim-

ity matching criterion from Sect. 3.2 fails, so the distance between sets
of peaks in Eq. (24)must be used.We include this distance both between
sets of frequencies and amplitudes

Percival–Walden process: validation metrics

Method RMSE MAE Wasserstein | argmax g − argmax ĝ| |max g − max ĝ| Frequency distance (24) Amplitude
distance (24)

Spline10 0.91 0.61 0.51 0.002 1.17 0.0083 0.8575

Splineoptimal 0.50 0.36 0.31 0.01 0.81 0.013 0.136

As such, Table 4 includes the values of the semi-metric pre-
sented in (24) in Sect. 3.3. We observe that the (penalised)
optimal smoothing spline provides a better approximation of
the amplitudes of the two peaks than the existing method of
Rosen et al.

Appendix B: Discussion of select existing
methods

Alongside the statistics community, many signal processing
practitioners and engineers have long been interested in the
study of time series’ power spectra. Thus, it is worth not-
ing the differences between a framework such as ours and
frequentist or signal processing-based methods for power
spectral density estimation.

We begin by describing Welch’s method, which is based
upon Barlett’s method. Welch’s method aims to reduce noise
in the resulting power spectral density estimate by sacrificing
the degree of frequency resolution. The data are subdivided
into overlapping segments, in each of which, a modified
periodogram is computed. Each modified periodogram is
averaged to produce a final estimate of the power spectral
density. There are two model parameters in Welch’s method:
the length of each segment and the degree of overlap in data
points between adjacent segments.

Practically, Welch’s method has several limitations in
comparison to Bayesian methods. First, the estimated power
spectral density when using methods such as these may be
less smooth (though not uniformly so). For scientists hoping
to make observations with respect to the maximum ampli-
tude and corresponding frequencies for any underlying time
series, the often rough nature of Welch’s method may make
inference more difficult. It is common in the Bayesian statis-
tics literature to use a flexible prior function on the log of the
power spectrum, such as a Gaussian process. The smooth-
ness of the Gaussian process may be highly dependent on
the covariance structure chosen by the modeller. Applying
covariance functions such as the squared exponential and
selectMatern family variants allows for smooth interpolation
in the resulting power spectral density estimate. Furthermore,
recent research has shown that the variance is not amonotonic

decreasing function of the fraction of overlap within adja-
cent segments (Barbe et al. 2010). Second, Welch’s method
is unable to algorithmically partition the time series based
on changes in the power spectral density. Procedures such
as the RJMCMC introduced in this paper identify points in
time where the power spectral density has changed. Hence,
one would be unable to determine locations in the time
domain which correspond to changes in the underlying peri-
odic nature of a process, if one were to use Welch’s method.

That said, many practitioners in the signal processing
literature use techniques such as wavelets in the case of
implementing spectral density estimation in a nonstation-
ary setting. For instance, the continuous wavelet transform
has been applied for spectral analysis in nonstationary sig-
nals. Wavelets overcome the obvious limitation with Fourier
transformation-driven methods, where abrupt changes in
time series’ behaviour is difficult to capture (due to its under-
lying construction as a sum of sinusoidal waves). Unlike sine
waves, which smoothly oscillate, wavelets are derived from
“step functions” that exist for a finite duration, allowing for
the efficient capture of abrupt changes in modelling tasks.

Third, many would argue that a Bayesian framework such
as ours provides a more principled approach to uncertainty
quantification than frameworks such as Welch’s method.
The methodology proposed in this paper consists of uncer-
tainty surrounding the power spectral density estimate, in
addition to uncertainty surrounding the change point loca-
tion. One clear advantage of Welch’s method in comparison
with the method we have proposed (and other MCMC-based
methods), however, is a significant computational advantage.
While there are certainly frequentist methods to estimate the
uncertainty in traditional signal processing methods, there
are always individuals who prefer the posterior distribu-
tions provided by Bayesian methods, including just from
a psychological perspective, including the ability to make
probabilistic statements about unknown parameters (Wasser-
man 2004).

Another commonly used framework for spectral density
estimation is the multitaper method. Multitaper analysis is
an extensions of traditional taper analysis, where time series
are tapered before applying a Fourier transformation as a
method of reducing potential bias resulting from spectral
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leakage. The multitaper method averages over a variety of
estimators with varying window functions (Thomson 1982;
Mann and Lees 1996). This results in a power spectrum that
exhibits reduced leakage and variance and retains important
information from the initial and final sequences from the
underlying time series. One major advantage of the multi-
taper method is that it can be applied in a fairly automatic
manner, and is therefore appropriate in situationswheremany
individual time series must be processed and a thorough
analysis of each individual time series is not feasible. One
possible limitation of the multitaper method is reduced spec-
tral resolution. The multitaper method has proved to be an
effective estimator in the presence of complex spectra. For
example, Percival and Walden (1993) highlight the estima-
tor’s effectiveness in detecting two peaks in the case of their
AR(4) process described in Appendix A. As we saw, our
methodology was unable to detect the two peaks. Of course,
there are many techniques currently being used in addition to
Welch’s method and the multitaper method described above.
The choice between frequentist and Bayesian methods may
depend on the precise problem and even the philosophical
outlook of the practitioner. The literature is enriched by a
robust continual development of both approaches.

Appendix C: Reversible jump sampling
scheme

We follow Rosen et al. (2017, 2012) in our core implemen-
tation of the reversible jump sampling scheme. We remark
that our method does not improve the trans-dimensional
component of the model, described by the reversible jump
scheme below. A time series partition is denoted ξm =
(ξ0,m, ..., ξm,m)withm segments.We have a vector of ampli-
tude parameters τ 2

m = (τ 21,m, ..., τ 2m,m)′ and regression
coefficients βm = (β ′

1,m, ...,β ′
m,m) that we wish to esti-

mate, for the j th componentwithin a partition ofm segments,
j = 1, ...,m. For notational simplicity, β j,m, j = 1, ...,m,

is assumed to include the first entry, α0 j,m . In the proceeding
sections, superscripts c and p refer to current and proposed
value in the sampling scheme.

First, we describe the between-model moves: let θm =
(ξ ′

m, τ 2′
m,β ′

m) be the model parameters at some point in
the sampling scheme and assume that the chain starts at
(mc, θcmc ). The algorithm proposes the move to (mp, θ

p
mp ),

by drawing (mp, θ
p
mp ) from the proposal distribution

q(mp, θ
p
mp |mc, θcmc ). That draw is accepted with proba-

bility

α = min

{
1,

p(mp, θ
p
mp |x)q(mc, θcmc |mp, θ

p
mp )

p(mc, θcmc |x)q(mp, θ
p
mp |mc, θcmc )

}
,

with p(·) referring to a target distribution, the product of the
likelihood and the prior. The target and proposal distributions
will vary based on the type of move taken in the sampling
scheme. First, q(mp, θ

p
mp |mc, θcmc ) is described as follows:

q(mp, θ
p
mp |mc, θcmc ) = q(mp|mc)q(θ

p
mp |mp,mc, θcmc )

= q(mp|mc)q(ξ
p
mp , τ

2p
mp ,β

p
mp |mp,mc, θcmc )

= q(mp|mc)q(ξ
p
mp |mp,mc, θcmc )q(τ

2p
mp |ξ p

mp ,mp,mc, θcmc )

× q(β
p
mp |τ 2p

mp , ξ
p
mp ,mp,mc, θcmc ).

To draw (mp, θ
p
mp ) one must first draw mp, followed by

ξ
p
mp , τ

2p
mp , and β

p
mp . First, the number of segments mp is

drawn from the proposal distribution q(mp|mc). Let M be
the maximum number of segments andmc

2,min be the number
of current segments whose cardinality is at least 2tmin data
points. The proposal is as follows:

q(mp = k|mc)

=
⎧
⎨

⎩

1/2 if k = mc − 1,mc + 1 and mc �= 1, M,mc
2,min �= 0

1 if k = mc − 1 and mc = M or mc
2,min = 0

1 if k = mc + 1 and mc = 1

Conditional on the proposed modelmp, a new partition ξ
p
mp ,

a new vector of covariance amplitude parameters τ
2p
mp and a

new vector of regression coefficients, β p
mp are proposed. In

Rosen et al. (2012), τ 2 is referred to as a smoothing parame-
ter. To impact the smoothness of the covariance function, the
parameter would have to impact pairwise operations. Given
that τ 2 sits outside the covariance matrix, we will refer to
τ 2 as an amplitude parameter (akin to signal variance within
the Gaussian process framework Rasmussen and Williams
2005).

Now, we describe the process of the birth of new seg-
ments. Suppose that mp = mc + 1. A time series partition,

ξ
p
mp = (ξ c0,mc , ..., ξ

c
k∗−1,mc , ξ

p
k∗,mp , ξ

c
k∗,mc , ..., ξ

c
mc,mc )

is drawn from the proposal distribution q(ξ
p
mp |mp,mc, θcmc ).

The algorithmproposes a partition by first selecting a random
segment j = k∗ to split. Then, a point t∗ within the segment
j = k∗ is randomly selected to be the proposed partition
point. This is subject to the constraint,

ξ ck∗−1,mc + tmin ≤ t∗ ≤ ξ ck∗,mc − tmin. The proposal dis-
tribution is computed as follows:

q(ξ
p
j,mp = t∗|mp,mc, ξ cmc ) = p( j = k∗|mp,mc, ξ cmc )

p(ξ p
k∗,mp = t∗| j = k∗,mp,mc, ξ cmc )

= 1

mc
2min(nk∗,mc − 2tmin + 1)

.
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The vector of amplitude parameters

τ
2p
mp = (τ 2c1,mc , ..., τ

2c
k∗−1,mc ,

τ
2p
k∗,mp , τ

2p
k∗+1,mp , τ

2c
k∗+1,mc , ..., τ

2c
mc,mc )

is drawn from the proposal distribution
q(τ

2p
mp |mp, ξ

p
mp ,mc, θcmc ) = q(τ

2p
mp |mp, τ 2c

mc). The algo-
rithm is based on the reversible jump algorithm of Green
(1995). It draws from a uniform distribution u ∼ U [0, 1]
and defines τ

2p
k∗,mp and τ

2p
k∗+1,mp in terms of u and τ 2ck∗,mc as

follows:

τ
2p
k∗,mp = u

1 − u
τ 2ck∗,mc ; (27)

τ
2p
k∗+1,mp = 1 − u

u
τ 2ck∗,mc . (28)

The vector of coefficients

β
p
mp = (βc

1,mc , ...,β
c
k∗−1,mc ,

β
p
k∗,mp ,β

p
k∗+1,mp ,β

c
k∗+1,mc , ...,β

c
mc,mc )

is drawn from the proposal distribution
q(β

p
mp |τ 2p

mp , ξ
2p
mp ,mp,mc, θcmc )=q(β

p
mp |τ 2p

mp , ξ
p
mp ,mp).

The pair of vectors β
p
k∗,mp and β

p
k∗+1,mp are drawn from

Gaussian approximations to the respective posterior condi-
tional distributions p(β p

k∗,mp |x p
k∗ , τ

2p
k∗,mp ,mp) and

p(β p
k∗+1,mp |x p

k∗+1, τ
2p
k∗+1,mp ,mp), respectively.Here, x p

k∗
and x p

k∗+1 refer to the subsets of the time series with respec-
tive segments k∗ and k∗ + 1. ξ

p
mp will determine x∗ p =

(x p′
k∗ , x

p′
k∗+1)

′. For the sake of exposition, we provide the fol-
lowing example: the coefficient β

p
k∗,mp is drawn from the

Gaussian distribution N (βmax
k∗ , �max

k∗ ), where βmax
k∗ is defined

as

argmaxβ
p
k∗,mp

p(β p
k∗,mp |x p

k∗ , τ
2p
k∗,mp ,mp)

and

�max
k∗ = −

{
∂2log p(β p

k∗,mp |x p
k∗ , τ

2p
k∗,mp ,mp)

β
p
k∗,mpβ

p′
k∗,mp

∣∣∣∣
β
p
k∗,mp=βmax

k∗

}−1

.

For the birth move, the probability of acceptance is α =
min{1, A}, where A is equal to

∣∣∣∣∂(τ
2p
k∗,mp , τ

2p
k∗+1,mp )(τ

2c
k∗,mc,u)

∣∣∣∣
p(θ p

mp |x,mp)p(θ p
mp |mp)p(mp)

p(θ p
mp |x,mp)p(θcmc |mc)p(mc)

× p(mc|mp)p(βc
k∗,mc )

p(mp|mc)p(ξm
p

k∗,mp |mp,mc)p(u)p(β p
k∗,mp )p(β

p
k∗+1,mp )

.

Above, p(u) = 1, 0 ≤ u ≤ 1, while p(β p
k∗,mp ) and

p(β p
k∗+1,mp ) are Gaussian proposal distributions N (βmax

k∗ ,

�max
k∗ ) and
N (βmax

k∗+1, �
max
k∗+1), respectively. The Jacobian is computed

as

∣∣∣∣∂(τ
2p
k∗,mp , τ

2p
k∗+1,mp )(τ

2c
k∗,mc , u)

∣∣∣∣

= 2τ 2ck∗mc

u(1 − u)
= 2(τ p

k∗,mp + τ
p
k∗+1,mp )

2.

Next, we describe the process of the death of new seg-
ments, that is, the reverse of a birth move, where mp =
mc − 1. A time series partition

ξ
p
mp = (ξ c0,mc , ..., ξ

c
k∗−1,mc , ξ

c
k∗+1,mc , ..., ξ

c
mc,mc ),

is proposed by randomly selecting a single partition from
mc − 1 candidates, and removing it. The partition point
selected for removal is denoted j = k∗. There are mc − 1
possible segments available for removal among the mc seg-
ments currently in existence. The proposal may choose each
partition point with equal probability, that is,

q(ξ
p
j,mp |mp,mc, ξ cmc ) = 1

mc − 1
.

The vector of amplitude parameters

τ
2p
mp = (τ 2c1,mc , ..., τ

2c
k∗−1,mc , τ

2c
k∗,mp , τ

2c
k∗+2,mc , ..., τ

2c
mc,mc )

is drawn from the proposal distribution
q(τ

2p
mp |mp, ξ

p
mp ,mc, θcmc )=q(τ

2p
mp |mp, τ 2c

mc ).One ampli-

tude parameter τ
2p
k∗,mp is formed from two candidate ampli-

tude parameters, τ 2ck∗,mc and τ 2ck∗+1,mc . This is done by
reversing the equations 27 and 28. That is,

τ
2p
k∗,mp =

√
τ 2ck∗,mcτ

2c
k∗+1,mc .

Finally, the vector of regression coefficients,

β
p
mp = (βc

1,mc , ..., β
c
k∗−1,mc , β

p
k∗,mp , β

c
k∗+2,mc , ..., β

c
mc,mc )

is drawn from the proposal distribution
q(β

p
mp |τ 2p

mp , ξ
p
mp ,mp,mc, θcmc ) = q(β

p
mp |τ 2p

mp , ξ
p
mp ,mp).

The vector of regression coefficients is drawn from a Gaus-
sian approximation to the posterior distribution

p(βk∗,mp |x, τ
2p
k∗,mp , ξ

p
mp ,mp) following the same proce-

dure for the vector of coefficients in the birth step. The
probability of acceptance is the inverse of the analogous birth
step. If themove is accepted then the followingupdates occur:
mc = mp and θcmc = θ

p
mp .
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Finally,wedescribe thewithin-modelmoves:henceforth,
m is fixed; accordingly, notation describing the dependence
on the number of segments is removed. There are two parts
to a within-model move. First, a segment relocation is per-
formed, and conditional on the relocation, the basis function
coefficients are updated. The steps are jointly accepted or
rejected with a Metropolis–Hastings step. The amplitude
parameters are updated within a separate Gibbs sampling
step.

The chain is assumed to be located at θc = (ξ c,βc). The
proposed move θ p = (ξ p,β p) is as follows: first, a partition
point ξk∗ is selected for relocation fromm−1 candidate parti-
tion points. Next, a position within the interval [ξk∗−1, ξk∗+1]
is selected, subject to the fact that the new location is at least
tmin data points away from ξk∗−1 and ξk∗+1, so that

Pr(ξ p
k∗ = t) = Pr( j = k∗)Pr(ξ p

k∗ = t | j = k∗),

where Pr( j = k∗) = (m − 1)−1. A mixture distribution for
Pr(ξ p

k∗ = t | j = k∗) is constructed to explore the space most
efficiently, so

Pr(ξ p
k∗ = t | j = k∗) =

πq1(ξ
p
k∗ = t |ξ ck∗) + (1 − π)q2(ξ

p
k∗ = t |ξ ck∗),

whereq1(ξ
p
k∗ = t |ξ ck∗) = (nk∗+nk∗+1−2tmin+1)−1, ξk∗−1+

tmin ≤ t ≤ ξk∗+1 − tmin and

q2(ξ
p
k∗ = t |ξ ck∗)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if |t − ξ ck∗ | > 1
1/3 if |t − ξ ck∗ | ≤ 1, nk∗ �= tmin and nk∗+1 �= tmin

1/2 if t − ξ ck∗ ≤ 1, nk∗ = tmin and nk∗+1 �= tmin

1/2 if ξ ck∗ − t ≤ 1, nk∗ �= tmin and nk∗+1 = tmin

1 if t = ξ ck∗ , nk∗ = tmin and nk∗+1 = tmin

The support ofq1 has nk∗+nk∗+1−2tmin+1 data pointswhile
q2 has at most three. The term q2 alone would result in a high
acceptance rate for the Metropolis–Hastings, but it would
explore the parameter space slowly.Theq1 component allows
for larger jumps, and produces a compromise between a high
acceptance rate and thorough exploration of the parameter
space.

Next, β p
j , j = k∗, k∗ +1 is drawn from an approximation

to
∏k∗+1

j=k∗ p(β j |x p
j , τ

2
j ), following the analogous step in the

between-model move. The proposal distribution, which is
evaluated at β p

j , j = k∗, k∗ = 1, is

q(β
p∗ |x p∗ , τ 2∗) =

k∗+1∏

j=k∗
q(β

p
j |x p

j , τ
2
j ),

where β
p∗ = (β

p′
k∗ ,β

p′
k∗+1)

′ and τ 2∗ = (τ 2k∗ , τ 2k∗+1)
′. The pro-

posal distribution is evaluated at current values of βc∗ =

(βc′
k∗ , βc′

k∗+1)
′. β p∗ is accepted with probability

α = min

{
1,

p(x p∗ |β p∗ )p(β p∗ |τ 2∗)q(βc∗|xc∗, τ 2∗)
p(xc∗|βc∗)p(βc∗|τ 2∗)q(β

p∗ |x p∗ , τ 2∗)

}
,

where xc∗ = (xc
′
k∗ , xc

′
k∗+1). When the draw is accepted,

update the partition and regression coefficients (ξ ck∗ , βc∗) =
(ξ

p
k∗ , β

p∗ ). Finally, draw τ 2p from

p(τ 2∗ |β∗) =
k∗+1∏

j=k∗
p(τ 2j |β j ).

This is a Gibbs sampling step, and accordingly the draw is
accepted with probability 1.

Appendix D: Metropolis–Hastings algorithm

In this section, we describe the Metropolis–Hastings algo-
rithm used in the stationary case for our simulation study
(Sect. 4). As seen in Appendix C, the above RJMCMC
reduces to a Metropolis–Hastings in the absence of the
between-model moves.

We estimate the log of the spectral density by its poste-
rior mean via a Bayesian approach and an adaptive MCMC
algorithm:

E(g|y) =
∫

E(g|y, `)p(`|y)dθ  1

M

M∑

j=1

E(ĝ|y, ` j ). (29)

Here, M is the number of post-burn-in iterations in the
MCMC scheme; ` j are samples taken from the posterior dis-
tribution p(`|y); p(`) is taken from a Gaussian distribution
N (μ, σ 2) centred around μ = θ [c] that maximises the log
marginal likelihood; σ is chosen arbitrarily; and ĝ is the fore-
cast log spectrum.

Monte Carlo algorithms have been highly prominent for
estimation of hyperparameters and spectral density in a non-
parametric Bayesian framework. Metropolis et al. (1953)
first proposed theMetropolis algorithm; this was generalised
by Hastings in a more focused, statistical context (Hastings
1970). The random walk Metropolis–Hastings algorithm
aims to sample from a target density π , given some can-
didate transition probability function q(x, y). In our context,
π represents the Whittle likelihood function multiplied by
respective priors. The acceptance ratio is:

α(x, y) =
⎧
⎨

⎩
min

(
π(y)q(y,x)
π(x)q(x,y) , 1

)
if π(x)q(x, y) > 0

1 if π(x)q(x, y) = 0.
(30)
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Our MCMC scheme calculates the acceptance ratio every
50 iterations; based on an ideal acceptance ratio (Roberts and
Rosenthal 2004), the step size is adjusted for each hyperpa-
rameter. The power spectrum and hyperparameters for the
GP covariance function are calculated in each iteration of
our sampling scheme and integrated over.

First, we initialise the values of our GP hyperparameters,
θ [c], our log PSD ĝc, our random perturbation size s2, and
the adaptive adjustment for our step size ξ . Starting values
for our GP hyperparameters are chosen based onmaximising
the marginal Whittle likelihood,

θ [c] = argmaxθ −(2π)−m/2
m−1∏

j=0

exp

(
−1

2

[
log f (ν j ) + I (ν j )

f (ν j )

])
. (31)

The latent log PSD is modelled with a zero mean GP,
That is, g ∼ GP(0, kθ (x, x ′)), and we follow the notation
of Rasmussen and Williams (2005) where k(x, x ′) refers to
any respective kernel. The adaptive MCMC algorithm sam-
ples from the posterior distribution of the log PSD and the
posterior distribution of any candidate covariance function’s
hyperparameters. First, the current and proposed values for
the mean and covariance of the Gaussian process are com-
puted. That is, the mean is computed:

ĝc = kθc (x
′, x)[kθc (x, x) + σ 2 I ]−1 log I (˚), (32)

and the covariance is computed:

V̂ c=kθc (x
′, x ′)−kθc (x

′, x)[kθc (x, x)+σ 2 I ]−1kθc (x, x
′).
(33)

New proposals for GP hyperparameters are determined via
a random walk proposal distribution. A zero-mean Gaus-
sian distribution is used to generate candidate perturbations,
where s2 is the variance of this Gaussian. That is

θ p ←− q(θ p|θc). (34)

Having drawn the proposed GP hyperparameters, a pro-
posedmean and covariance function of the logPSDare drawn
from the posterior distribution of the GP. Both the proposed
mean and covariance are computed similarly to the current
values, simply replacing the values of the hyperparameters
θc ←− θ p. So, the proposed mean of the log PSD is,

ĝ p = kθ p (x ′, x)[kθ p (x, x) + σ 2 I ]−1 log I (˚) (35)

and the proposed covariance is computed as follows

V̂ p = kθ p (x ′, x ′) − kθ p (x ′, x)[kθ p (x, x) + σ 2 I ]−1kθ p (x, x ′).
(36)

Having computed the proposed and current values of the log
PSD,weupdate the current logPSDbasedon theMetropolis–
Hastings transition kernel. First, we sample from a uniform
distribution u ∼ U (0, 1) and compute our acceptance ratio,

α = min

(
1,

p(log I (˚) | θ p, ĝ p)p(ĝ p)q(ĝc | log I (˚), θ p))

p(log I (˚) | θc, ĝc)p(ĝc)q(ĝ p | log I (˚), θc))
)

.

(37)

p(log I (˚) | θ p, ĝ p) is our Whittle likelihood com-
putation, the probability of the log PSD conditional on
hyperparameters θ and our candidate estimate of the latent
log PSD ĝ. p(ĝ p) represents the prior distribution on our
latent log PSD and q(ĝc | log I (˚), θ p)) is our proposal dis-
tribution, representing the probability of the estimated log
PSD conditional on the log periodogram and GP hyperpa-
rameters.

Should u < α, we update the current values of the log
PSD mean and spectrum to the proposed values. That is,

ĝc+1 ←− ĝ p (38)

V̂ c+1 ←− V̂ p. (39)

If u > α, both the mean and variance of the log PSD are
kept at their current values,

ĝc+1 ←− ĝc (40)

V̂ c+1 ←− V̂ c. (41)

Importantly, modelling the log PSD with a GP prior does
not mean that we are assuming a Gaussian error distri-
bution around the spectrum. In actuality, proposed spectra
are accepted and rejected through a Metropolis–Hastings
procedure—resulting in log PSD samples being drawn from
the true posterior distribution of the log PSD, log(exp(1)).
Having sampled the log PSD, we then accept/reject candi-
date GP hyperparameters with another Metropolis–Hastings
step. Our acceptance ratio is,

α = min

(
1,

p(log I (˚) | θ p)p(θc | θ p)

p(log I (˚) | θc)p(θ p | θc)

)
, (42)

where p(log I (˚) | θ) represents theWhittle likelihood mod-
elling the probability of the log PSD, log I (˚), conditional
on hyperparameters θ . p(θ p | θ) is the prior distribution we
place over GP hyperparameters, θ . Note that in this particular
case, the symmetric proposal distributions cancel out and our
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algorithm reduces simply to aMetropolis ratio. Againwe fol-
low the standard Metropolis–Hastings acceptance decision.
If u < α,

θc+1 ←− θ p, (43)

and the current hyperparameter values assume proposed val-
ues. Alternatively, if u > α,

θc+1 ←− θc, (44)

current value of the hyperparameters are not updated. Finally,
following (Roberts and Rosenthal 2004) we implement an
adaptive step-size within our random walk proposal. Every
50 iterations within our simulation, we compute the trail-
ing acceptance ratio. An optimal acceptance ratio, AccOpt

of 0.234 is targeted. If the acceptance ratio is too low, indi-
cating that the step size may be too large, then the step size
is systematically reduced. If Acceptance Ratio( j−49): j∀ j ∈
{50, 100, 150, ..., 10000} < AccOpt ,

s2 ←− s2 − ξ. (45)

If the acceptance ratio is too high, indicating that the
step size may be too small then step size is systemati-
cally increased. That is, when Acceptance Ratio( j−49): j∀ j ∈
{50, 100, ..., 10000} < AccOpt ,

s2 ←− s2 + ξ. (46)

Finally, the log PSD and the respective analytic uncertainty
bounds are determined by computing the median of the sam-
ples generated from the sampling procedure,

Ufinal
0.025 = median(U5000:10000

0.025 ) (47)

ĝ = median(ĝ5000:10000) (48)

Ufinal
0.975 = median(U5000:10000

0.975 ). (49)

Appendix E: Turning point algorithm

In this section, we provide more details for the identifica-
tion of non-trivial peaks (local maxima). We aim to outline
a broad and flexible framework for this purpose, in which
the exact procedure may be altered according to the specific
application. For example, one way to determine peaks of a
given spectral estimate is simply by inspection. We aim to
provide an algorithmic framework as an alternative to this.

Letg be an analytic or estimated logpower spectral density
function. We may begin, if necessary, by applying additional
smoothing to this function (though this step is optional and
can be omitted). Following (James et al. 2022), we apply a

two-step algorithm to the (possibly smoothed) function g,
defined on ν j = j

n , j = 0, 1, ...,m − 1. The first step pro-
duces an alternating sequence of local minima (troughs) and
local maxima (peaks), which may include some immaterial
turning points. The second step refines this sequence accord-
ing to chosen conditions and parameters. Themost important
conditions to initially identify a peak or trough, respectively,
are the following:

g(ν j0 ) = max{g(ν j ) : max(0, j0 − l) ≤ j ≤ min( j0 + l,m − 1)},
(50)

g(ν j0 ) = min{g(ν j ) : max(0, j0 − l) ≤ t ≤ min( j0 + l,m − 1)},
(51)

where l is a parameter to be chosen. Defining peaks and
troughs according to this definition alone has some flaws,
such as the potential for two consecutive peaks.

Instead, we implement an inductive procedure to choose
an alternating sequence of peaks and troughs. Suppose j0 is
the last determined peak. We search in the period j > j0 for
the first of two cases: if we find a time j1 > j0 that satisfies
(51) as well as a non-triviality condition g( j1) < g( j0), we
add j1 to the set of troughs and proceed from there. If we
find a time j1 > j0 that satisfies (50) and g(t0) ≥ g( j1), we
ignore this lower peak as redundant; if we find a time j1 > j0
that satisfies (50) and g( j1) > g( j0), we remove the peak j0,
replace it with j1 and continue from j1. A similar process
applies from a trough at j0.

As a side remark, for an analytic log PSD g, we could sim-
ply use the analytical and differentiable form to find critical
points as an alternative.

With either possibility, at this point, the function is
assigned an alternating sequence of troughs and peaks. How-
ever, some turning points are immaterial and should be
removed. Here, the framework can incorporate a flexible
series of options to refine the set of peaks.

As mentioned in Sect. 3.2, one relatively simple option
is simply to remove any local maximum (peak) ρ̂ of ĝ with
ĝ(ρ̂) < max ĝ − δ, for some sensible constant δ. In our
experiments, the same results are produced for any δ ∈ [2, 4],
demonstrating the robustness of this relatively simple idea.
Under an affine transformation of the original time series
X ′
t = aXt+b, the log PSD ĝ changes by an additive constant,

so this condition is unchanged when rescaling the original
data.

This relatively simple condition is sufficient for our appli-
cation. For the benefit of futurework, we list some alternative
options for an algorithmic refinement of the peaks (besides, of
course, inspection as the simplest option). In previous work,
we have analysed functions ν(t) that were necessarily valued
only in non-negative reals. Thus, onemay simply linearly the
log PSD g so that its minimum value is zero. Then, numer-
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ous options exist for refinement of non-trivial peaks (and
troughs).

For example, let t1 < t3 be two peaks, necessarily sep-
arated by a trough. We select a parameter δ = 0.2, and if
the peak ratio, defined as ν(t3)

ν(t1)
< δ, we remove the peak

t3. If two consecutive troughs t2, t4 remain, we remove t2
if ν(t2) > ν(t4), otherwise remove t4. That is, if the sec-
ond peak has size less than δ of the first peak, we remove
it. Alternatively, one may use this peak ratio on any peak,
comparing it to the global max, rather than just comparing
adjacent peaks. That is, let t0 be the global maximum. Then,
one could remove any peak t1 with

ν(t1)
ν(t0)

< δ.
Alternatively, we use appropriately defined gradient or

log-gradient comparisons between points t1 < t2. For exam-
ple, let

log-grad(t1, t2) = log ν(t2) − log ν(t1)

t2 − t1
. (52)

The numerator equals log( ν(t2)
ν(t1)

), a “logarithmic rate of

change”.Unlike the standard rate of change given by ν(t2)
ν(t1)

−1,
the logarithmic change is symmetrically between (−∞,∞).
Let t1, t2 be adjacent turning points (one a trough, one a peak).
We choose a parameter ε; if

| log-grad(t1, t2)| < ε, (53)

that is, the average logarithmic change is less than ε, we
remove t2 from our sets of peaks and troughs. If t2 is not the
final turning point, we also remove t1. After these refinement
steps, we are left with an alternating sequence of non-trivial
peaks and troughs. Finally, for this framework, we only need
the peaks, so we simply discard the troughs.

As a final remark, only at the end is the final number r of
non-trivial peaks determined. It is a function not only of the
log PSD function g, but also the precise conditions used to
select and refine the (non-trivial) peaks.
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