
Statistics and Computing (2022) 32:12
https://doi.org/10.1007/s11222-021-10069-9

Product-form estimators: exploiting independence to scale up Monte
Carlo

Juan Kuntz1,2 · Francesca R. Crucinio1 · Adam M. Johansen1,2

Received: 6 April 2021 / Accepted: 6 November 2021 / Published online: 21 December 2021
© The Author(s) 2021

Abstract
We introduce a class of Monte Carlo estimators that aim to overcome the rapid growth of variance with dimension often
observed for standard estimators by exploiting the target’s independence structure. We identify the most basic incarnations
of these estimators with a class of generalized U-statistics and thus establish their unbiasedness, consistency, and asymptotic
normality. Moreover, we show that they obtain the minimum possible variance amongst a broad class of estimators, and we
investigate their computational cost and delineate the settings in which they are most efficient. We exemplify the merger of
these estimators with other well known Monte Carlo estimators so as to better adapt the latter to the target’s independence
structure and improve their performance. We do this via three simple mergers: one with importance sampling, another with
importance sampling squared, and a final one with pseudo-marginal Metropolis–Hastings. In all cases, we show that the
resulting estimators are well founded and achieve lower variances than their standard counterparts. Lastly, we illustrate the
various variance reductions through several examples.

Keywords Dimensionality reduction, Importance sampling · Pseudo-marginal methods · Limit theorems · Product-form
distributions · Conditional independence · U-statistics · Variance reduction

1 Introduction

Monte Carlo methods are sometimes said to overcome the
curse of dimensionality because, regardless of the target’s
dimension, their rates of convergence are square root in the
number of samples drawn. In practice, however, one encoun-
ters several problems when computing high-dimensional
integrals using Monte Carlo, prominent among which is the
issue that the constants present in the convergence rates
typically grow rapidly with the target’s dimension. Hence,
even if we are able to draw independent samples from
a high-dimensional target, the number of samples neces-
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sary to obtain estimates of a satisfactory accuracy is often
prohibitively large (Silverman 1986; Snyder et al. 2008;
Bengtsson et al. 2008; Agapiou et al. 2017). However, many
of these targets possess strong independence structures [e.g.,
see Gelman and Hill (2006), Gelman (2006), Koller and
Friedman (2009), Hoffman et al. (2013), Blei et al. (2003),
and themany references therein]. In this paper, we investigate
whether the rapid growth of the constants can be mitigated
by exploiting these structures.

Variants of the following toy example are sometimes given
to illustrate the issue [e.g., p. 95 inChopin andPapaspiliopou-
los (2020)]. Let μ be a K -dimensional isotropic Gaussian
distribution with unit means and variances, and consider
the basic Monte Carlo estimator for the mean (μ(ϕ) = 1)
of the product (ϕ(x) := x1x2 . . . xK ) of its components
(x1, . . . , xK ):

μN (ϕ) : = 1

N

N∑

n=1

ϕ(Xn
1 , . . . , X

n
K )

= 1

N

N∑

n=1

Xn
1 · · · Xn

K , (1)
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where (Xn
1 , . . . , X

n
K )Nn=1 denote i.i.d. samples drawn fromμ.

Because the estimator’s asymptotic variance equals 2K − 1,
the number of samples required to obtain a reasonable
estimate of μ(ϕ) grows exponentially with the target’s
dimension. Hence, it is impractical to use μN (ϕ) if K is
even modestly large. For instance, if K = 20, we would
require ≈ 1010 samples to obtain an estimate with standard
deviation of 0.01 = μ(ϕ)/100, reaching the limits of most
present-day personal computers, and if K = 30, we would
require ≈ 1013 samples, exceeding these limits.

There is, however, a trivial way of overcoming the issue
for the above example that does not require any knowledge
about μ beyond the fact that it is product-form. Because μ

is the product μ1 × · · · × μK of K univariate unit-mean-
and-variance Gaussian distributions μ1, . . . , μK and ϕ is
the product ϕ1 · · · ϕK of K univariate functions ϕ1(x1) =
x1, . . . , ϕK (xK ) = xK , we can express μ(ϕ) as the product
μ1(ϕ1) · · · μK (ϕK ) of the corresponding K univariatemeans
μ1(ϕ1), . . . , μK (ϕK ). As we will see in Sect. 2.1, estimat-
ing each of these univariate means separately and taking the
resulting product, we obtain an estimator for μ(ϕ) whose
asymptotic variance is K :

μN×(ϕ) := 1

NK

N∑

n1=1

· · ·
N∑

nK=1

ϕ(Xn1
1 , . . . , XnK

K )

=
⎛

⎝ 1

N

N∑

n1=1

Xn1
1

⎞

⎠ · · ·
⎛

⎝ 1

N

N∑

nK=1

XnK
K

⎞

⎠ . (2)

Consequently, the number of samples necessary for μN×(ϕ)

to yield a reasonable estimate of μ(ϕ) only grows linearly
with the dimension, allowing us to practically deal with K s
in the millions.

The central expression in (2) makes sense regardless of
whetherϕ is the product of univariate test functions. It defines
a type of (unbiased, consistent, and asymptotically normal)
Monte Carlo estimators for general ϕ and product-form μ

which we refer to as product-form estimators. Their salient
feature is that they achieve lower variances than the stan-
dard estimator (1) given the same number of samples from
the target. The reason behind the variance reduction is sim-
ple: if (Xn

1 )
N
n=1,. . . , (X

n
K )Nn=1 are independent sequences of

samples drawn respectively from μ1, . . . , μK , then every
‘permutation’ of these samples has law μ, that is,

(Xn1
1 , . . . , XnK

K ) ∼ μ ∀n1, . . . , nK ≤ N . (3)

Hence, μN×(ϕ) in (2) averages over NK tuples with law μ

while its conventional counterpart (1) only averages over
N such tuples. This increase in tuple number leads to a
decrease in estimator variance, and we say that the product-

form estimator is more statistically efficient than the standard
one. Moreover, obtaining these NK tuples does not require
drawing any further samples from μ and, in this sense,
product-form estimators make the most out of every sam-
ple available (indeed, we will show in Theorem 2 that they
are minimum variance unbiased estimators, or MVUEs, for
product-form targets). However, in contrast to the tuples
in (1), those in (2) are not independent (the same compo-
nents are repeated across several tuples). For this reason,
product-form estimators achieve the sameO(N−1/2) rate of
convergence that the standard ones do and the variance reduc-
tionmaterializes only in lower proportionality constants (i.e.,
limN→∞ Var (μN×(ϕ))/Var (μN (ϕ)) = C for some constant
C ≤ 1).

The space complexity of product-form estimators scales
linearly with dimension: to utilize all NK permuted tuples
in (2) we need only store K N numbers,

X1
1, . . . , X

N
1 ; . . . ; X1

K , . . . , XN
K .

However, unless the test function possesses special struc-
ture, the estimators’ time complexity scales exponentially
with dimension: brute-force computation of the sum in (2)
requires1 O(NK ) operations. Consequently, the use of
product-form estimators for general ϕ proves to be a bal-
ancing act in which one must weigh the cost of acquiring
new samples from μ (be it a computational one if the sam-
ples are obtained from simulations, or a real-life one if they
are obtained from experiments) against the extra overhead
required to evaluate these estimators, and it is limited to K s
no greater than ten.

If, however, the test function ϕ possesses some ‘product
structure,’ thenμN×(ϕ) canoftenbe evaluated in far fewer than
O(NK ) operations. The most extreme examples of such ϕ

are functions that factorize fully and sums thereof (which we
refer to as ‘sums of products’ or ‘SOPs’), for which the eval-
uation cost is easily lowered to just O(K N ). For instance,
in the case of the toy Gaussian example above, we can eval-
uate the product-form estimator in O(K N ) operations by
expressing it as the product of the component-wise sam-
ple averages and computing each average separately (i.e.,
using the final expression in (2)). This cheaper approach
just amounts to a dimensionality reduction technique: we
re-write a high-dimensional integral as a polynomial of low-
dimension integrals, estimate each of low-dimension integral

1 On our O notation: The exact dependence on dimension of the esti-
mators’ evaluation costs depends on that of the test function ϕ. Hence,
when discussing a generic ϕ, we say that the estimator’s evaluation cost
is O(Nd ) for some d to mean that it is O( f (K )Nd ) for some unspeci-
fied factor f (K ) factor independent of that accounts for ϕ’s evaluation
cost. When discussing classes of ϕ for which this factor is clear, we
specify it. For example, we say that evaluation cost of the rightmost
term in (2) is O(K N ) rather than O(N ).
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separately, and plug the estimates back into the polynomial to
obtain an estimate of the original integral. More generally, if
the test function can be expressed as a sum of partially factor-
ized functions, it is often possible to lower the cost toO(Nd)

where d < K depends on the amount of factorization, and
taking this approach also amounts to a type of dimensionality
reduction (this time featuring nested integrals).

This paper has two goals. First, to provide a comprehen-
sive theoretical characterization of product-form estimators.
Second, to illustrate their use for non-product-form tar-
gets when combined with, or embedded within, other more
sophisticated Monte Carlo methodology. It is in these set-
tings, where product-form estimators are deployed to tackle
the aspects of the problem exhibiting product structure or
conditional independences, that we believe these estimators
find their greatest use. To avoid unnecessary technical dis-
tractions, and in the interest of accessibility, we achieve the
second goal using simple examples. While we anticipate that
the most useful such combinations or embeddings will not be
so simple, we believe that the underlying ideas and guiding
principles will be the same.
Relation to the literature In their basic form, product-form
estimators (2) are a subclass of generalized U-statistics [see
Lee (1990) or Korolyuk and Borovskich (1994) for compre-
hensive surveys]: multisample U-statistics with ‘kernels’ ϕ

that take as arguments a single sample per distribution for
several distributions (K > 1). Even though product-form
estimators are unnatural examples of U-statistics because
the original unisample U-statistics (Hoeffding 1948a) funda-
mentally involve symmetric kernels that take as arguments
multiple samples from a single distribution (K = 1), the
methods used to study either of these overlap significantly.
The arguments required in the basic product-form case are
simpler than those necessary for themost general case (multi-
ple samples from multiple distributions) and, by focusing on
the results that are of greatest interest from the Monte Carlo
perspective, we are able to present readily accessible, intu-
itive, and compact proofs for the theoretical properties of (2).
This said, whenever a result given here can be extracted from
the U-statistics literature, we provide explicit references.

While U-statistics have been extensively studied since
Hoeffding’s seminal work (Hoeffding 1948a) and are com-
monly employed in a variety of statistical tests [e.g., inde-
pendence tests (Hoeffding 1948b), two-sample tests (Gretton
et al. 2012), goodness-of-fit tests (Liu et al. 2016), and
more (Lee 1990; Kowalski and Tu 2007)] and learning
tasks [e.g., regression (Kowalski and Tu 2007), classifica-
tion (Clémençon et al. 2008), clustering (Clémençon 2011),
and more (Clémençon et al. 2008, 2016)] where they arise
as natural estimators, their use in Monte Carlo seems under-
explored. Exceptions include Owen (2009) which cleverly
applies unisample U-statistics to make the best possible use
of a collection of genuine (and hence expensive to obtain

and store) uniform random variables and Hall and Marron
(1987) that uses them to obtain improved estimates for the
integrated squared derivatives of a density.

Product-form estimators themselves can be found pep-
pered throughout the Monte Carlo literature, with one
exception (see below), always unnamed and specialized
to particular contexts. First off, in the simplest setting of
integrating fully factorized functions with respect to product-
form measures, it is of course well known that better
performance is obtained by separately approximating the
marginal integrals and taking their product (although, we
have yet to locate full variance expressions quantifying quite
how much better, even for this near-trivial case). Beyond the
fully factorized case, product-form estimators are found not
in isolation but combined with other Monte Carlo methodol-
ogy: Tran et al. (2013) embeds them within therein-defined
importance sampling2 (IS2) to efficiently infer parameters
of structured latent variable models, Schmon et al. (2020)
employs them within pseudo-marginal MCMC to estimate
intractable acceptance probabilities for similarmodels, Lind-
sten et al. (2017) andKuntz et al. (2021) study their usewithin
sequential Monte Carlo (SMC), and Aitchison (2019) builds
on them to obtain tensor Monte Carlo (TMC), an extension
of importance weighted variational autoencoders. The lat-
ter article is the aforementioned exception: its author defines
the estimators in general and refers to them as ‘TMC esti-
mators,’ but does not study them theoretically. To the best
of our knowledge, there has been no previous systematic
exploration of the estimators (2), their theoretical properties,
and uses, a gap we intend to fill here. Furthermore, while in
simple situations with fully, or almost-fully, factorized test
functions [e.g., those in Tran et al. (2013) or Schmon et al.
(2020)] it might be clear to most practitioners that employing
a product-form estimator is the right thing to do, it may not
be quite so immediately obvious how much of a difference
this can make and that, in rather precise ways (cf. Theo-
rems 2 and 4), judiciously using product-form estimators is
the best thing one can do within Monte Carlo when tack-
lingmodelswith known independence structure but unknown
conditional distributions (a common situation in practice).
We aim to underscore these points through our analysis and
examples.

Lastly, we remark that product-form estimators are rem-
iniscent of classical product cubature rules (Stroud 1971).
These are obtained by taking products of quadrature rules
and, consequently, require computing sums over NK points
much like for product-form estimators [except for fully, or
partially, factorized test functions ϕ where the cost can be
similarly lowered, e.g., p. 24 in Stroud (1971)]. In fact, the
high computational cost incurred by these rules for general
ϕ partly motivated the development of more modern numer-
ical integration techniques such as quasi-Monte Carlo (Dick
et al. 2013), spare grid methods (Gerstner and Griebel 1998,
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2003), and, of course, Monte Carlo itself. That said, we
believe that these rules can be used to great effect if one
is strategic in their application and the advent of the more
modern methods has created many opportunities for such
applications, something we intend to exemplify here using
their Monte Carlo analogues: product-form estimators.
Paper structure This paper is divided into two main parts
(Sects. 2 and 3), each corresponding to one of our two aims,
and a discussion of our results, future research directions,
and potential applications (Sect. 4).

Section 2 studies product-form estimators and their theo-
retical properties. In particular, we show that the estimators
are strongly consistent, unbiased, and asymptotically nor-
mal, and we give expressions for their finite sample and
asymptotic variances (Sect. 2.1).We argue that they are more
statistically efficient than their conventional counterparts in
the sense that they achieve lower variances given the same
number of samples (Sect. 2.2). Lastly, we consider their com-
putational cost (Sect. 2.3) and explore the circumstances in
which they prove most computationally efficient (Sect. 2.4).

Section 3 gives simple examples illustrating how one
may embed product-form estimators within standard Monte
Carlo methodology and extend their use beyond product-
form targets. In particular, we combine themwith importance
sampling and obtain estimators applicable to targets that are
absolutely continuous with respect to fully factorized distri-
butions (Sect. 3.1) and partially factorized ones (Sect. 3.2),
and we consider their use within pseudo-marginal MCMC
(Sect. 3.3). We then examine the numerical performance of
these extensions on a simple hierarchical model (Sect. 3.4).

This paper has six appendices (provided in the supple-
mentary material). The first five contain proofs: Appendix A
those for the basic properties of product-form estimators,
Appendix B that for their MVUE property, Appendix C
those for the basic properties of the ‘partially product-form’
estimators introduced in Sect. 3.2, Appendix D that for the
latter’s MVUE property, and Appendix E that for the statisti-
cal efficiency (vis-à-vis their non-product counterparts) of the
product-form pseudo-marginal MCMC estimators consid-
ered in Sect. 3.3. Appendix F contains an additional, simple
extension of product-form estimators (to targets that are mix-
tures of product-form distributions), omitted from the main
text in the interest of brevity.

2 Product-form estimators

Consider the basic Monte Carlo problem: given a probability
distributionμ on a measurable space (S,S) and a function ϕ

belonging to the space L2
μ of squareμ-integrable real-valued

functions on S, estimate the average

μ(ϕ) :=
∫

ϕ(x)μ(dx).

Throughout this section,we focus on the question ‘by exploit-
ing the product-form structure of a target μ, can we design
estimators of μ(ϕ) that are more efficient than the usual
ones?’. By product-form, we mean that μ is the product
of K > 1 distributions μ1, . . . , μK on measurable spaces
(S1,S1), . . . , (SK ,SK ) satisfying S = S1 × · · · × SK and
S = S1 × · · · × SK , where the latter denotes the product
sigma-algebra. Furthermore, if A is a non-empty subset of
[K ] := {1, . . . , K }, then we use μA := ∏

k∈A μk to denote
the product of theμks indexed by ks in A andμA(ϕ) to denote
the measurable function on

∏
k /∈A Sk obtained by integrating

the arguments of ϕ indexed by ks in A with respect to μA:

μA(ϕ)(xAc ) :=
∫

ϕ(xA, xAc )μA(dxA)

for all xAc in
∏

k∈Ac Sk , where Ac := [K ]\A denotes A’s
complement, under the assumption that these integrals are
well defined. If A is empty, we set μA(ϕ) := ϕ.

2.1 Theoretical characterization

Suppose that we have at our disposal N i.i.d. samples
X1, . . . , XN drawn from μ. We can view these samples as
N tuples

(X1
1, . . . , X

1
K ), . . . , (XN

1 , . . . , XN
K )

of i.i.d. samples X1
1, . . . , X

N
1 , . . . , X1

K , . . . , XN
K indepen-

dently drawn from μ1, . . . , μk , respectively. As we will see
in Sect. 2.2, the product-form estimator,

μN×(ϕ) := 1

NK

∑

n∈[N ]K
ϕ(Xn) (4)

where Xn with n = (n1, . . . , nK ) denotes the ‘permuted’
tuple (Xn1

1 , . . . , XnK
K ) (i.e., a tuple obtained as one of the

NK component-wise permutations of the original samples),
yields lower variance estimates for μ(ϕ) than the conven-
tional choice using the same samples,

μN (ϕ) := 1

N

N∑

n=1

ϕ(Xn), (5)

regardless of whether the test function ϕ possesses any sort
of product structure. The conventional estimator directly
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approximates the target with the samples’ empirical distri-
bution,

μ ≈ 1

N

N∑

n=1

δXn =: μN . (6)

The product-form estimator instead first approximates the
marginals μ1, . . . , μK of the target with the corresponding
component-wise empirical distributions,

μN
1 := 1

N

N∑

n=1

δXn
1
, . . . , μN

K := 1

N

N∑

n=1

δXn
K
,

and then takes the product of these to obtain an approximation
of μ,

μ ≈
K∏

k=1

(
1

N

N∑

n=1

δXn
k

)
= 1

NK

∑

n∈[N ]K
δXn =: μN× . (7)

The built-in product structure in μN× makes it a better suited
approximation to the product-form target μ than the non-
product-form μN . Before pursuing this further, we take a
moment to show that μN×(ϕ) is a well founded estimator for
μ(ϕ) and obtain expressions for its variance.

Theorem 1 If ϕ is μ-integrable, then μN×(ϕ) in (4) is unbi-
ased:

E

[
μN×(ϕ)

]
= μ(ϕ) ∀N > 0.

If, furthermore,ϕ belongs to L2
μ, thenμAc (ϕ) belongs to L2

μA

for all subsets A of [K ]. The estimator’s variance is given by

Var(μN×(ϕ))

=
∑

∅
=A⊆[K ]

1

N |A|
∑

B⊆A

(−1)|A|−|B|σ 2
A,B(μAc (ϕ)), (8)

for every N > 0, where |A| and |B| denote the cardinalities
of A and B and

σ 2
A,B(ψ) := μB([μA\B(ψ) − μA(ψ)]2) (9)

for all ψ in L2
μA

and B ⊆ A ⊆ [K ]. Furthermore, μN×(ϕ) is
strongly consistent and asymptotically normal:

lim
N→∞ μN×(ϕ) = μ(ϕ) almost surely, (10)

N 1/2[μN×(ϕ) − μ(ϕ)] ⇒ N (0, σ 2×(ϕ)) as N → ∞, (11)

where σ 2×(ϕ) := ∑K
k=1 σ 2

k (ϕ) with

σ 2
k (ϕ) := μk([μ{k}c (ϕ) − μ(ϕ)]2) ∀k ∈ [K ]

and ⇒ denotes convergence in distribution.

Asmentioned in Sect. 1, product-form estimators are spe-
cial cases of multisample U-statistics and Theorem 1 can be
pieced together from various results in the U-statistics liter-
ature. For example, within Korolyuk and Borovskich (1994)
one can find the unbiasedness (p. 35), variance expressions
(p. 38), consistency (which also holds for μ-integrable ϕ;
Theorem 3.2.1), and asymptotic normality (Theorem 4.5.1).
To keep the paper self-containedwe include a simple proof of
Theorem 1, specially adapted for product-form estimators, in
AppendixA. It has two key ingredients, the first being the fol-
lowing decomposition expressing the ‘global approximation
error’ μN× −μ as a sum of products of ‘marginal approxima-
tion errors’ μN

1 − μ1, . . . , μ
N
K − μK :

μN× − μ =
K∏

k=1

μN
k − μ =

K∏

k=1

[(μN
k − μk) + μk] − μ

=
∑

∅
=A⊆[K ]

(
∏

k∈A

[μN
k − μk]

)
× μAc , (12)

The other is the following expression for the L2 norm of a
generic product of marginal errors [see p. 152 in Korolyuk
and Borovskich (1994) for its multisample U-statistics ana-
logue]. It tells us that the product of l of these errors has
O(N−l/2) norm, as onewould expect given that the errors are
independent and that classical theory [e.g., p. 168 in Chopin
and Papaspiliopoulos (2020)] tells us that the norm of each
is O(N−1/2).

Lemma 1 If A is a non-empty subset of [K ], ψ belongs to
L2

μA
, and σ 2

A,B(ψ) is as in (9), then

E

⎡

⎣
[(

∏

k∈A

[μN
k − μk]

)
(ψ)

]2
⎤

⎦

= 1

N |A|
∑

B⊆A

(−1)|A|−|B|σ 2
A,B(ψ) ∀N > 0.

Proof This lemma follows from the equation

(
∏

k∈A

[μN
k − μk]

)
(ψ)

=
∑

B⊆A

(−1)|A|−|B|μN
B (μA\B(ψ))

= μN
A

⎛

⎝
∑

B⊆A

(−1)|A|−|B|μA\B(ψ)

⎞

⎠ =: μN
A (ψA) (13)

which, together with (12), is known as Hoeffding’s canon-
ical decomposition in the U-statistics literature [e.g., p. 38
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in Korolyuk and Borovskich (1994)] and ANOVA-like else-
where (Efron and Stein 1981). Similar decomposition are
commonplace in the quasi-Monte Carlo literature, e.g.,
Appendix A in Owen (2013). See Appendix A for the details.

�

2.2 Statistical efficiency

The product-form estimator μN×(ϕ) in (4) yields the best
unbiased estimates of μ(ϕ) that can be achieved using only
the knowledge that μ is product-form and N i.i.d. samples
drawn from μ.

Theorem 2 For any givenmeasurable real-valued functionϕ

on (S,S),μN×(ϕ) is anMVUE forμ(ϕ): if f is a measurable
real-valued function on (SN ,SN ) such that

E

[
f (X1, . . . , XN )

]
= μ(ϕ)

whenever X1, . . . , XN are i.i.d. with law μ, for all product-
form μ on (S,S) satisfying μ(|ϕ|) < ∞, then

Var ( f (X1, . . . , XN )) ≥ Var (μN×(ϕ)).

Proof See Appendix B. �
While it is well known that unisample U-statistics are

MVUEs [e.g., see Clémençon et al. (2016)], we have been
unable to locate an explicit proof that covers the general
multisample case and, in particular, that of product-form esti-
mators. Instead, we adapt the argument given in Chapter 1 of
Lee (1990) (whose origins trace back to Halmos (1946)) for
unisample U-statistics and prove Theorem 2 in Appendix B

Theorem 2 implies that product-form estimators achieve
lower variances than their conventional counterparts:

Corollary 1 If ϕ belongs to L2
μ and σ 2(ϕ) := μ([ϕ−μ(ϕ)]2)

denotes μN (ϕ)’s asymptotic variance,

Var (μN×(ϕ)) ≤ σ 2(ϕ)

N
= Var (μN (ϕ)) ∀N > 0,

σ 2×(ϕ) ≤ σ 2(ϕ).

Proof See Appendix B. �
In other words, product-form estimators are more statis-

tically efficient than their standard counterparts: using the
same number of independent samples drawn from the target,
μN×(ϕ) achieves a lower variance than μN (ϕ). The reason
behind this variance reduction was outlined in Sect. 1: the
product-form estimator uses the empirical distribution of the
collection (Xn)n∈[N ]K of permuted tuples as an approxima-
tion toμ. Becauseμ is product-form, each of these permuted
tuples is asmuch a sample drawn fromμ as any of the original

unpermuted tuples (Xn)Nn=1. Hence, product-form estimators
transform N samples drawn from μ into NK samples and,
consequently, lower the variance. However, the permuted
tuples are not independent and we get a diminishing returns
effect: the more permutations wemake, the greater the corre-
lations among them, and the less ‘new information’ each new
permutation affords us. For this reason, the estimator variance
remainsO(N−1), cf. (8), instead ofO(N−K ) as would be the
case for the standard estimator using NK independent sam-
ples.Aswe discuss in Sect. 4, there is also a pragmaticmiddle
ground here: use N < M < NK permutations instead of all
NK possible ones. In particular, by choosing these M per-
mutations to be as uncorrelated as possible (e.g., so that they
have few overlapping entries), it might be feasible to retain
most of the variance reductionwhile avoiding the fullO(NK )

cost (cf. Kong and Zheng (2021) and references therein for
similar feats in the U-statistics literature).

Given that the variances of both estimators are (asymptot-
ically) proportional to each other, we are now faced with the
question ‘how large might the proportionality constant be?’.
If the test function is linear or constant, e.g., S1 = · · · =
SK = R and

ϕ(x) =
K∑

k=1

xk, (14)

then the two estimators trivially coincide, no variance reduc-
tion is achieved, and the constant is one. However, these are
the cases in which the standard estimator performs well [e.g.,
for (14),μN (ϕ)’s variance breaks down into a sum of K uni-
variate integrals and, consequently, grows slowly with the
dimension K ]. However, if the test function includes depen-
dencies between the components, then the proportionality
constant can be arbitrarily large and the variance reduction
unbounded as the following example illustrates.

Example 1 If K = 2, μ1 = μ2 = N (0, 1), and ϕ(x) :=
1{min(x1,x2)≥α}(x), then

μ(ϕ) = μ(ϕ2) = [1 − �(α)]2 ,

μ1(ϕ)(x2) = 1{x2≥α}[1 − �(α)],

where� denotes the CDF of a standard normal, and similarly
for μ2(ϕ)(x1). In addition,

μ1(μ2(ϕ)2) = μ2(μ1(ϕ)2) = [1 − �(α)]3 .

It then follows that

σ 2(ϕ)

σ 2×(ϕ)
= 2 − �(α)

2 [1 − �(α)]
→ ∞ as α → ∞.

It is not difficult to glean some intuition as to why the
product-form estimator yields far more accurate estimates
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than its standard counterpart for large α. In these cases,
unpermuted tuples with both components greater than α are
extremely rare (they occur with probability [1 − �(α)]2)
and, until one arises, the standard estimator is stuck at zero
(a relative error of 100%). On the other hand, for the product-
form estimator to return a nonzero estimate, we only require
unpermuted tuples with a single component greater than α,
which are generated much more frequently (with probability
1 − �(α)).

Of particular interest is the case of high-dimensional tar-
gets (i.e., large K ) for which obtaining accurate estimates of
μ(ϕ) proves challenging. Even though the exact manner in
which the variance reduction achieved by the product-form
estimator scales with dimension of course depends on the
precise target and test function, it is straightforward to gain
some insight by revisiting our starting example.

Example 2 Suppose that

S1 = · · · = SK , S1 = · · · = SK , μ1 = · · · = μK = ρ,

ϕ =
K∏

k=1

ϕk, ϕ1 = · · · = ϕK = ψ,

for some univariate distribution ρ and test function ψ satis-
fying ρ(ψ) 
= 0. In this case,

σ 2(ϕ) = μ(ϕ2) − μ(ϕ)2 = ρ(ψ2)K − ρ(ψ)2K ,

σ 2×(ϕ) = Kρ([ρ(ψ)K−1[ψ − ρ(ψ)]]2)
= Kρ(ψ)2(K−1)ρ([ψ − ρ(ψ)]2)
= CV 2Kρ(ψ)2K , (15)

where CV := √
ρ([ψ − ρ(ψ)]2)/ |ρ(ψ)| denotes the coef-

ficient of variation of ψ w.r.t. ρ. Hence,

σ 2(ϕ)

σ 2×(ϕ)
= (ρ(ψ2)/ρ(ψ)2)K − 1

CV 2K

= (1 + CV 2)K − 1

CV 2K
= 1

K

K−1∑

k=0

(
K

k + 1

)
CV 2k,

(16)

andwe see that the reduction in variance grows exponentially
with the dimension K .

At first glance, (15) might appear to imply that the number
of samples required forμN×(ϕ) to yield a reasonable estimate
of μ(ϕ) grows exponentially with K if |ρ(ψ)| > 1. How-
ever, what we deem a ‘reasonable estimate’ should take into
account themagnitude of the averageμ(ϕ)weare estimating.
In particular, it is natural to ask for the standard deviation of
our estimates to be ε |μ(ϕ)| for some prescribed relative tol-
erance ε > 0. In this case, we find that the number of samples

required by the product-form estimator is approximately

σ 2×(ϕ)/(ε2μ(ϕ)2) = CV 2K ε−2.

In the case of the conventional estimator μN (ϕ), the number
required to achieve the same accuracy is instead

σ 2(ϕ)/(ε2μ(ϕ)2) = ε−2((1 + CV 2)K − 1).

That is, the number of samples necessary to obtain a reason-
able estimate grows linearly with dimension for μN×(ϕ) and
exponentially for μN (ϕ).

Notice that the univariate coefficient of variation CV fea-
tures heavily in Example 2’s analysis: the greater it is, the
greater the variance reduction, and the difference gets ampli-
fied exponentially with the dimension K . This observation
might be explained as follows: if μ is highly peaked (so that
the coefficient is close to zero), then the unpermuted tuples
are clumped together around the peak (Fig. 1a), permuting
their entries only yields further tuples around the peak (Fig.
1b), and the empirical average changes little. If, on the other
hand,μ is spread out (so that the coefficient is large), then the
unpermuted pairs are scattered across the space (Fig. 1c), per-
muting their entries reveals unexplored regions of the space
(Fig. 1d), and the estimates improve. Of course, how spread
out the target ismust bemeasured in terms of the test function
and we end up with the coefficient of variation in (16).

2.3 Computational efficiency

As shown in the previous section, product-form estimators
are always at least as statistically efficient as their conven-
tional counterparts: the variances of the former are bounded
above by those of the latter. These gains in statistical effi-
ciency come at a computational cost: even though both
conventional and product-form estimators share the same
O(N ) memory needs, the latter requires evaluating the test
function NK times, while the former requires only N evalu-
ations. For this reason, the question of whether product-form
estimators are more computationally efficient than their con-
ventional counterparts (i.e., achieve smaller errors given the
same computational budget) is not as straightforward. In
short, sometimes but not always.

One way to answer the computational efficiency question
is to compare the cost incurred by each estimator in order to
achieve a desired given variance σ 2. To do so, we approx-
imate the variance of μN×(ϕ) with its asymptotic variance
divided by the sample number (as justified by Theorem 1).
The number of samples required for the variance to equal
σ 2 is N := σ 2(ϕ)/σ 2 for the conventional estimator and
(approximately) N× := σ 2×(ϕ)/σ 2 for the product-form
one. The costs of evaluating the former with N samples
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Fig. 1 Ensembles of
unpermuted (a, c) and permuted
(b, d) pairs for a peaked target
(a, b) and heavy tailed one (c,
d). a 10 pairs (dots)
independently drawn from a
two-dimensional isotropic
Gaussian (contours) with mean
zero and variance 0.1. b The
100 pairs (dots) obtained by
permuting the pairs in a. c 20
pairs (dots) independently draw
from the product of two
student-t distributions (contours)
with 1.5 degrees of freedom. d
The 400 permuted pairs (dots)
obtained by permuting the pairs
in c

(a) (b)

(c) (d)

and the latter with N× samples are NCϕ + NCX + N and
NK× Cϕ + N×CX + NK× , respectively, where Cϕ and CX are
the costs, relative to that of a single elementary arithmetic
operation, of evaluating ϕ and generating a sample from μ,
respectively, and the rightmost N and NK× terms account for
the cost of computing the corresponding sample average once
all evaluations of ϕ are carried out. It follows that μN×(ϕ)

is (asymptotically) at least as computationally efficient as
μN (ϕ) if and only if the ratio of their respective costs is no
smaller than one or, after some re-arranging,

σ 2(ϕ)

σ 2×(ϕ)
≥ (σ 2×(ϕ)/σ 2)K−1Cr + 1

Cr + 1
, (17)

where Cr := (Cϕ + 1)/CX denotes the relative cost of
evaluating the test function and drawing samples. Our first
observation here is that above is always satisfied in the limit
Cr → 0 because σ 2(ϕ) ≥ σ 2×(ϕ) (Corollary 1). This cor-
responds the case where the cost of acquiring the samples
dwarfs the overhead of evaluating the sample average (for
instance, if the samples are obtained from long simulations
or real-life experiments). If so, we do really want to make
the most of the samples we have and product-form estima-
tors enable us to do so. Conversely, if samples are cheap to
generate and the test function is expensive to evaluate (i.e.,
Cr → ∞), then we are better off using the basic estimator.

To investigate the case where the costs of generating sam-
ples and evaluating the test function are comparable (Cr ≈
1), note that the variance approximation Var (μN×× (ϕ)) ≈
σ 2×(ϕ)/N× and, consequently, (17) are valid only if σ 2×(ϕ) >

σ 2. Otherwise, N× = 1 and the product-form estimator
simply equals ϕ(X1) with variance σ 2(ϕ). In the high-
dimensional (i.e., large K ) casewhich is of particular interest,
(17) then (approximately) reduces to

σ 2(ϕ)

σ 2×(ϕ)
≥ 1

2

(
σ 2×(ϕ)

σ 2

)K−1

. (18)

To gain insight into whether it is reasonable to expect the
above to hold, we revisit Example 2.

Example 3 Setting once again our desired standard deviation
to be proportional to the magnitude of the target average (i.e.,
σ = ε |μ(ϕ)| = ε|ρ(ψ)|K ) and calling on (15, 16), we re-
write (18) as

(1 + CV 2)K − 1

CV 2K
≥ (CV 2K ε−2)K−1

2

⇔ (1 + CV 2)K − 1

CV 2K ≥ ε2

2

(
K

ε2

)K

.

The expression shows that, in this full O(NK ) cost case,
μN (ϕ) outperforms μN×(ϕ) in computational terms for large

123



Statistics and Computing (2022) 32 :12 Page 9 of 22 12

dimensions K (and, even more so, for small relative toler-
ances ε).

In summary, unless the cost of generating samples is sig-
nificantly larger than that of evaluating ϕ, we expect the basic
estimator to outperform the product-form one. Simply put,
independent samples are more valuable for estimation than
correlated permutations thereof. Hence, if independent sam-
ples are cheap to generate, then we are better off drawing
further independent samples rather than permuting the ones
we already have.

That is, unless we can find a way to evaluate the product-
form estimator that does not require summing over all NK

permutations. Indeed, the above analysis is out of place for
Example 3 because, in this case, we can express the product-
form estimator as the product

μN×(ϕ) =
K∏

k=1

(
1

N

N∑

n=1

ψ(Xn
k )

)
=

K∏

k=1

μN
k (ψ) (19)

of the univariate sample averages μN
1 (ψ), . . . , μN

K (ψ) and
evaluate each of these separately at a total O(K N ) cost.
Given that the number of samples required for μN×(ϕ) to
yield a reasonable estimate scales linearly with dimension
(Example 2), it follows that the cost incurred by comput-
ing such an estimate scales quadratically with dimension.
In the case of μN (ϕ), the number of samples required, and
hence the cost, scales exponentially with dimension; making
the product-form estimator the clear choice for this simple
case. This type of trick significantly expands the usefulness
of product-form estimators, as we see in the following sec-
tion.

2.4 Efficient computation

Recall our starting example from Sect. 1. In that case, the
product-formestimator trivially breaks down into the product
of K sample averages (2) and, consequently, we can evaluate
it in O(K N ) operations. We can exploit this trick whenever
the test function possesses product-like structure: if ϕ is a
sum

ϕ =
J∑

j=1

ϕ j of products ϕ j :=
K∏

k=1

ϕ
j
k (20)

of univariate functions (ϕ
j
k : Sk → R) j∈[J ],k∈[K ], the

product-form estimator decomposes into a sum of products
(SOP) of univariate averages,

μN×(ϕ) =
J∑

j=1

K∏

k=1

μN
k (ϕ

j
k ),

where

μN
k (ϕ

j
k ) := 1

N

N∑

n=1

ϕ
j
k (X

n
k ) ∀ j ∈ [J ], k ∈ [K ],

andwe are able to evaluateμN×(ϕ) inO(K N ) operations. (Of
course, ‘univariate’ need notmean that the function is defined
on R and we can be strategic in our choice of component
spaces S1, . . . , SK ; e.g., if ϕ(x1, x2, x3) = ϕ1(x1, x2)ϕ2(x3)
for some functions ϕ1 : R

2 → R and ϕ2 : R → R, we
could pick K := 2, S1 := R

2, and S2 := R.) In these
cases, the use of product-form estimators amounts to nothing
more than a dimensionality-reduction technique: we exploit
the independence of the target to express our K -dimensional
integral in terms of an SOP of one-dimensional integrals,

μ(ϕ) =
J∑

j=1

K∏

k=1

μk(ϕ
j
k ) =: f ({μk(ϕ

j
k )} j∈[J ],k∈[K ]),

estimate each of these separately,

μk(ϕ
j
k ) ≈ μN

k (ϕ
j
k ) ∀ j ∈ [J ], k ∈ [K ],

and replace the one-dimensional integrals in the SOP with
their estimates to obtain an estimate for the K -dimensional
integral:

μ(ϕ) ≈ f ({μN
k (ϕ

j
k )} j∈[J ],k∈[K ]) = μN×(ϕ).

By so exploiting the structure in μ and ϕ, the product-
form estimator achieves a lower variance than the standard
estimator (Corollary 1). Moreover, evaluating each univari-
ate sample average μN

k (ϕ
j
k ) requires only O(N ) operations

and, consequently the computational complexity of μN×(ϕ)

is O(K N ). The running time can be further reduced by cal-
culating the univariate sample averages in parallel.

Similar considerations apply if the test function ϕ is a
product of low-dimensional functions (and sums thereof)
instead of univariate ones, e.g., ϕ(x) = ∏I

i=1 ϕi ((xk)k∈Ai )

for a collection of factors ϕ1, . . . , ϕI with arguments indexed
by subsets A1, . . . , AI of [K ]. As with the SOP case, one
should aim to swap as many summation and product signs in

μN×(ϕ) = 1

NK

N∑

n1=1

· · ·
N∑

nK=1

I∏

i=1

ϕi ((X
nk
k )k∈Ai )

as the factors permit. Exactly how best to do this is obvious
for simple situations such as that in Example 5 in Sect. 3.1.
For more complicated ones, we advice using the ‘variable
elimination’ algorithm [cf. Chapter 9 in Koller and Fried-
man (2009)] commonly employed for inference in discrete
graphical models. The complexity of the resulting procedure
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essentially depends on the order in which one attempts the
swapping (however, it is easy to find bounds thereon; for
instance, it is bounded below by both the maximum cardi-
nality of A1, . . . , AI and half the length of the longest cycle
in ϕ’s factor graph). While finding the ordering with lowest
complexity for general partially factorized ϕ itself proves to
be a problem whose worst-case complexity is exponential in
K , good suboptimal orderings can often be foundusing cheap
heuristics [cf. Sect. 9.4.3 in Koller and Friedman (2009)].

For general ϕ lacking any sort of product structure, we are
sometimes able to extend the linear-cost approach by approx-
imatingϕ with SOPs (e.g., using truncated Taylor expansions
for analytic ϕ). The idea is that if ϕ ≈ f for some SOP f ,
then

μ(ϕ) ≈ μ( f ), Var (μN×(ϕ)) ≈ Var (μN×( f )),

and we can use μN×( f ) ≈ μ( f ) as a linear-cost estimator for
μ(ϕ) without significantly affecting the variance reduction.
This, of course, comes at the expense of introducing a bias
in our estimates, albeit one that can often be made arbitrarily
small by using more and more refined approximations [these
biases may in principle be removed usingmultilevel random-
ization, see McLeish (2011) or Rhee and Glynn (2015)]. The
choice of approximation quality itself proves to be a bal-
ancing act as more refined approximations typically incur
higher evaluation costs. If these costs are high enough, then
any potential computational gains afforded by the reduction
in variance are lost. In summary, this SOP approximation
approach is most beneficial for test functions (a) that are
effectively approximated by SOP functions (so that the bias
is low), (b) whose SOP approximations are relatively cheap
to evaluate (so that the cost is low), and (c) that have a high-
dimensional product-form component to them (so that the
variance reduction is large, cf. Sect. 2.2). In these cases, the
gains in performance can be substantial as illustrated by the
following toy example.

Example 4 Let μ1, . . . , μK be uniform distributions on the
interval [0, a] of length a > 1 and consider the function
ϕ(x) := ex1...xK . The integral can be expressed in terms of
the generalized hypergeometric function pFq ,

μ(ϕ) =
∞∑

j=0

μ1(x
j
1 ) . . . μK (x j

K )

j ! =
∞∑

j=0

1

j !
[

a j

( j + 1)

]K

= K FK (1, . . . , 1; 2, . . . , 2; aK ),

and grows super-exponentially with the dimension K (see
Fig. 2a). Because

ϕ(x) = ex1...xK ≈
J∑

j=0

[x1 . . . xK ] j
j !

= 1 +
J∑

j=1

x j
1 . . . x j

K

j ! =: ϕJ (x)

for large enough truncation cutoffs J , we have that

μN×(ϕ) ≈ μN×(ϕJ ) = 1 +
J∑

j=1

μN
1 (x j

1 ) . . . μN
K (x j

K )

j ! .

Using μN×(ϕJ ) instead of μN×(ϕ) as an estimator for μ(ϕ),
we lower the computational cost from O(NK ) to O(K N ).
In exchange, we introduce a bias:

E

[
μN×(ϕJ )

]
− μ(ϕ) = μ(ϕJ ) − μ(ϕ) = μ(ϕJ − ϕ)

= μ

⎛

⎝
∞∑

j=J+1

x j
1 . . . x j

K

j !

⎞

⎠

=
∞∑

j=J+1

μ1(x
j
1 ) . . . μK (x j

K )

j !

=
∞∑

j=J+1

1

j !
[

a j

j + 1

]K

.

As
∑∞

j=J+1
a jK

j ! = o(aJK /J !), the bias decays super-
exponentially with the cutoff J , at least for sufficiently large
J . In practice, we found it to be significant for J s smaller
than 0.8aK and negligible for J s larger than 1.2aK (Fig.
2b). In particular, the cutoff J necessary for μN×(ϕJ ) to
yield estimates with small bias grows exponentially with the
dimension K .

Similar manipulations to those above reveal that

σ 2(ϕ) = K FK

(
1, . . . , 1; 2, . . . , 2; 2aK

)

− K FK (1, . . . , 1; 2, . . . , 2; aK )2

σ 2×(ϕJ ) = K
J∑

i=0

J∑

j=0

1

i ! j !
i j

i + j + 1

(
ai+ j

(i + 1)( j + 1)

)K

and we find that the variance reduction achieved by μN×(ϕJ )

far outpaces the growth in K of the cutoff (and, thus, the
computational cost of μN×(ϕJ )) necessary to achieve a small
bias (Fig. 2c). Indeed, the asymptotic-standard-deviation-
to-mean ratio, σ(ϕ)/μ(ϕ), rapidly diverges with K in the
case of the standard estimator (Fig. 2d, solid). In that of
the biased product-form estimator, the ratio, σ×(ϕJ )/μ(ϕ),
also diverges with K but at a much slower rate (Fig. 2d,
dashed). For this reason, the number of samples necessary for
obtain a, say, 1% accuracy estimate of μ(ϕ) using μN×(ϕJ )

remains manageable for a substantially larger range of as
and K s than in the case of μN (ϕ), even after factoring in the
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(a) (b) (c)

(d) (e) (f)

Fig. 2 a–d Plots generated for three values of a: a = 1.4 (blue),
a = 1.45 (magenta), and a = 1.5 (yellow). a Target average μ(ϕ)

as a function of dimension K . b Bias of product-form estimator (nor-
malized by target average) as a function of K with truncation cut-offs
J = �0.8aK �+2 (solid) and J = �1.2aK �+2 (dashed). We added the
+2 to avoid trivial cutoffs for low values of aK . c Ratio of asymptotic
variances σ 2(ϕ)/σ 2×(ϕJ ) (solid) with J = �1.2aK � + 2 (dashed) as
a function of K . d Asymptotic standard deviation (normalized by tar-
get average) for conventional (solid) and biased product-form (dashed,
with J = �1.2aK � + 2) estimators as a function of K . e Kernel den-
sity estimator with plug-in bandwidth (Wand and Jones 1994) (blue)
obtained with a = 1.5, K = 10, J = 70, and 100 repeats of μN×(ϕJ )

each involving N = 106 samples is a good match to the corresponding

sampling distribution (magenta) predicted by the CLT in Theorem 1.
Comparing with the target average (yellow), we find a mean absolute
error across repeats of 6.73×105 ≈ μ(ϕ)/100. fAs in e but forμN (ϕ).
This time, the predicted sampling distribution is extremely wide (with a
standard deviation of 6.7×1014) and a poor match to the kernel density
estimator (almost a Dirac delta close to zero). The mean absolute error
is 6.67 × 107 ≈ μ(ϕ). The estimator’s failure stems from the extreme
rarity of samples Xn achieving very large values of ϕ(Xn) (i.e., those
with components that are all close to a). Because the components are
independent, they are extremely unlikely to simultaneously be close to
a and the aforementioned samples are not observed for realistic ensem-
ble sizes N . The product-form estimator avoids this issue by averaging
over each component separately. (colour figure online)

extra cost required to evaluate μN×(ϕJ ) for J ’s large enough
that the bias is insignificant. For instance, with an interval
length of 1.5 and ten dimensions, a cutoff of seventy, one
million samples, and less than one minute of computation
time suffices for μN×(ϕJ ) to produce a 1% accuracy estimate
of μ(ϕ) ≈ 6.68× 107 (Fig. 2e). Using the same one million
samples and the standard estimator, we obtain very poor esti-
mates (Fig. 2f). Indeed, μN (ϕ)’s asymptotic variance equals
4.45×1029 and, so, wewould need approximately 1018 sam-
ples for it to yield 1% accuracy estimates, something far
beyond current computational capabilities.

3 Extensions to non-product-form targets

While interesting product-form distributions can be found
throughout the applied probability literature—ranging from
the stationary distributions of Jackson queues (Jackson 1957;
Kelly 1979) and complex-balanced stochastic reaction net-
works (Anderson et al. 2010; Cappelletti and Wiuf 2016)
to the mean-field approximations used in variational infer-
ence (Ranganath et al. 2014; Blei et al. 2017)—most target
distributions encountered in practice are not product-form. In
this section, we demonstrate how to combine product-form
estimators with other Monte Carlo methodology and expand
their utility beyond the product-form case.

We consider three simple extensions: one to targets that
are absolutely continuous with respect to fully factorized
distributions (Sect. 3.1), resulting in a product-form vari-
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ant of importance sampling [e.g., see Chapter 8 in Chopin
and Papaspiliopoulos (2020)]; another to targets that are
absolutely continuouswith respect to partially factorized dis-
tributions (Sect. 3.2), resulting in a product-form version of
importance sampling squared (Tran et al. 2013); and a final
one to targets with intractable densities arising from latent
variable models (Sect. 3.3), resulting in a product-form vari-
ant of pseudo-marginal MCMC (Schmon et al. 2020). In all
cases, we show theoretically that the product-form variants
achieve smaller variances than their standard counterparts.
We then investigate their performance numerically by apply-
ing them to a simple hierarchical model (Sect. 3.4).

A further extension, this time to targets that are mixtures
of product-form distributions, can be found in Appendix F.
Because many distributions may be approximated with these
mixtures, this extension potentially opens the door to tackling
still more complicated targets (at the expense of introducing
some bias).

3.1 Importance sampling

Suppose that we are given an unnormalized (but finite)
unsigned target measure γ that is absolutely continuous with
respect to the product-form distribution μ in Sect. 2, and let
w := dγ /dμ be the corresponding Radon–Nikodym deriva-
tive. Instead of the usual important sampling (IS) estimator,
γ N (ϕ) := μN (wϕ) with μN as in (6), for γ (ϕ), we con-
sider its product-form variant, γ N× (ϕ) := μN×(wϕ) with μN×
as in (7). The results of Sect. 2 immediately give us the fol-
lowing.

Corollary 2 If ϕ is γ -integrable, then γ N× (ϕ) is an unbiased
estimator for γ (ϕ). If, furthermore, wϕ lies in L2

μ , then

γ N× (ϕ) is strongly consistent, asymptotically normal, and its
finite sample and asymptotic variances are bounded above
by those of γ N (ϕ):

Var (γ N× (ϕ)) = Var (μN×(wϕ))

≤ Var (μN (wϕ))

= Var (γ N (ϕ)) ∀N > 0,

σ 2
γ,×(ϕ) = σ 2×(wϕ) ≤ σ 2(wϕ) = σ 2

γ (ϕ),

where Var (μN×(wϕ)) and σ 2×(wϕ) are as in Theorem 1.

Proof Replace ϕ with wϕ in Theorem 1 and Corollary 1. �
Corollary 2 tells us that γ N× (ϕ) is more statistically effi-

cient than the conventional IS estimator γ N (ϕ) regardless of
whether the target γ is product-form or not. In a nutshell,μN×
is a better approximation to the proposalμ thanμN and, con-
sequently,γ N× (dx) = w(x)μN×(dx) is a better approximation
to γ (dx) = w(x)μ(dx) than γ N (dx) = w(x)μN (dx).
Indeed, by constructing all NK permutations of the tuples

X1, . . . , XN , we explore other areas of the state space. This
can be particularly useful when the proposal and target are
mismatched as it can amplify the number of tuples land-
ing in the target’s high probability regions (i.e., achieving
high weights w) and, consequently, substantially improve
the quality of the finite sample approximation (Fig. 3).

Similarly, the self-normalized version πN× (ϕ) :=
γ N× (ϕ)/γ N× (S) of the product-form IS estimator γ N× (ϕ) is a
consistent and asymptotically normal estimator for averages
π(ϕ) with respect to the normalized target π := γ /γ (S). As
in the case of the standard self-normalized importance sam-
pling (SNIS) estimator πN (ϕ) := γ N (ϕ)/γ N (S), the ratio
in πN× (ϕ)’s definition introduces an O(N−1) bias and stops
us from obtaining analytical expression for the finite sample
variance (that the bias isO(N−1) follows from an argument
similar to that given for standard SNIS in p. 35 of Liu (2001)
and requires making assumptions on the higher moments of
ϕ(X1)). Otherwise, πN× (ϕ)’s theoretical properties are anal-
ogous to those of the product-form estimator μN×(ϕ) and its
importance sampling extension γ N× (ϕ):

Corollary 3 If wϕ lies in L2
μ, then πN× (ϕ) is strongly consis-

tent, asymptotically normal, and its asymptotic variance is
bounded above by that of πN (ϕ):

σ 2
π,×(ϕ) = σ 2×(γ (S)−1w[ϕ − π(ϕ)])

≤ σ 2(γ (S)−1w[ϕ − π(ϕ)]) = σ 2
π (ϕ),

where σ 2×(γ (S)−1w[ϕ − π(ϕ)]) is as in Theorem 1.

Proof Given Theorem 1 and Corollary 1, the arguments here
follow closely those for standard SNIS. In particular, because
πN× (ϕ) = γ N× (ϕ)/γ N× (S) = μN×(wϕ)/μN×(w) and μ(w) =
γ (S),

πN× (ϕ) − π(ϕ) = μN×(wϕ)

μN×(w)
− π(ϕ)

= μ(w)

μN×(w)
μN×

(
w[ϕ − π(ϕ)]

γ (S)

)

= μ(w)

μN×(w)
μN×(wπ [ϕ − π(ϕ)]).

Given thatμN×(w) tends toμ(w) almost surely (and, hence, in
probability) as N approaches infinity (Theorem 1), the strong
consistency and asymptotic normality of πN× (ϕ) then follow
from those of μN×(γ (S)−1w[ϕ − π(ϕ)]) (Theorem 1) and
Slutsky’s theorem. The asymptotic variance bound follows
from that in Corollary 1. �

This type of approach is best suited for targets π possess-
ing at least some product structure. The structure manifest
itself in partially factorized weight functions w and substan-
tially lowers the evaluation costs of γ N× (ϕ) and πN× (ϕ) for

123



Statistics and Computing (2022) 32 :12 Page 13 of 22 12

(a) (b)

Fig. 3 Product-form approximations improve state space exploration.
The target, a uniform distribution on [0, 4]2 (dashed square), and the
proposal, the product of two student-t distributions with 1.5 degrees of
freedom (contours), are mismatched. Consequently, only 5 of 20 pairs
independently drawn from the proposal land within the target’s support
(a) and the corresponding weighted sample approximation (a, inset, dot

diameter proportional to sample weight) is poor. By permuting these
pairs, we improve the coverage of the state space (b), increase the num-
ber of pairs lying within the target’s support, and obtain a much better
weighted sample approximation (b, inset, dot diameter proportional to
sample weight)

simple test functions ϕ, as the following example illustrates.

Example 5 (A simple hierarchical model) Consider the fol-
lowing basic hierarchical model:

Yk ∼ N (Xk, 1) Xk ∼ N (0, θ), ∀k ∈ [K ]. (21)

It has a single unknown parameter, the variance θ of the latent
variables X1, . . . , XK , which we infer using a Bayesian
approach. That is, we choose a prior p(dθ) on θ and draw
inferences from the corresponding posterior,

π(dθ, dx) := p(dθ, dx |y)

∝ p(dθ)

K∏

k=1

N (yk; xk, 1)N (dxk; 0, θ) =: γ (dθ, dx),

(22)

where y = (y1, . . . , yK ) denotes the vector of observations.
For most priors, no analytic expressions for the normalizing
constant can be found and we are forced to proceed numeri-
cally. One option is to choose the proposal

μ(dθ, dx) := p(dθ)

K∏

k=1

N (dxk; 0, 1), (23)

in which case

wI S(θ, x) := dγ

dμ
(θ, x) =

K∏

k=1

N (yk; xk, 1)N (xk; 0, θ)

N (xk; 0, 1) .

(Were we to be using standard IS instead of product-form
variant, the proposal

μ(dθ, dx) := p(dθ)

K∏

k=1

N (dxk; 0, θ) (24)

would be the natural choice, a point we return to after the
example.) Hence, to estimate the normalizing constant or
any integral w.r.t. to a univariate marginal of the poste-
rior, we need to draw samples from μ and evaluate the
product-form estimatorμN×(ϕ) for a test function of the form
ϕ(θ, x) = f (θ)

∏K
k=1 gk(θ, xk), the cost of which totals

O(K N 2) operations because

μN×(ϕ) = 1

NK+1

N∑

m=1

f (θm)

K∏

k=1

N∑

nk=1

gk(θ
m, xnkk ).

We return to this in Sect. 3.4, where we will make use of
the following expression for the (unnormalized) posteriors’s
θ -marginal available due to the Gaussianity in (21):

γ (dθ) = p(dθ)

K∏

k=1

N (yk; 0, θ + 1). (25)

Clearly, the above expression opens the door to simpler and
more effective methods for computing integrals with respect
to this marginal than estimators targeting the full posterior.
However, the estimators we discuss can be applied analo-
gously to the many commonplace hierarchical models [e.g.,
see Gelman and Hill (2006), Gelman (2006), Koller and
Friedman (2009), Hoffman et al. (2013), Blei et al. (2003),
and the many references therein] for which such expressions
are not available.
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When applying IS, or extensions thereof like SMC, one
should choose the proposal to be as close as possible to the
target [e.g., see Agapiou et al. (2017)]. In this regard, the
product-form IS approach is not entirely satisfactory for the
above example: by definition, the proposal must be fully fac-
torized while the target, π in (22), is only partially so (the
latent variables are independent only when conditioned on
the parameter variable). As we show in the next section, it
is straightforward to adapt this product-form IS approach to
match such partially factorized targets.

3.2 Partially factorized targets and proposals

Consider a target or proposal μ over a product space ( ×
S, T ×S)with the same partial product structure as the target
in Example 5:

μ(dθ, dx) = (μ0 ⊗ M)(dθ, dx)

:= μ0(dθ)

K∏

k=1

Mk(θ, dxk), (26)

where, for each k in [K], .... θ �→ Mk(θ, dxk) denotes
a Markov kernel mapping from (, T ) to (Sk,Sk). Sup-
pose that we are given M i.i.d. samples θ1, . . . , θM drawn
from μ0 and, for each of these, N (conditionally) i.i.d.
samples Xm,1, . . . , Xm,N drawn from the product kernel
M(θ, dx) := ∏K

k=1Mk(θ, dxk) evaluated at θm . Given a
test function ϕ on  × S, consider the following ‘partially
product-form’ estimator for μ(ϕ):

μ
M,N
× (ϕ) := 1

M

M∑

m=1

⎛

⎝ 1

NK

∑

n∈[N ]K
ϕ(θm, Xm,n)

⎞

⎠

= 1

MNK

M∑

m=1

∑

n∈[N ]K
ϕ(θm, Xm,n) (27)

for all M, N > 0. It is well founded (for simplicity, we
only consider the estimator’s asymptotics as M → ∞ with
N fixed, but other limits can be studied by combining the
approaches in Appendices A and C.

Theorem 3 If ϕ is μ-integrable with μ as in (26), then
μ
M,N
× (ϕ) in (27) is unbiased and strongly consistent: for

all N > 0,

E

[
μ
M,N
× (ϕ)

]
= μ(ϕ) ∀M > 0,

lim
M→∞ μ

M,N
× (ϕ) = μ(ϕ) almost surely.

If, furthermore, ϕ belongs to L2
μ, then M[K ]\A(ϕ) belongs

to L2
μ0⊗MA

for all subsets A of [K ], whereMA(θ, dxA) :=

∏
k∈A Mk(θ, dxk), and the estimator is asymptotically nor-

mal: for all N > 0, and as M → ∞,

M1/2[μM,N
× (ϕ) − μ(ϕ)] ⇒ N (0, σ 2×,N (ϕ)), (28)

where ⇒ denotes convergence in distribution and

σ 2×,N (ϕ) := μ0([Mϕ − μ(ϕ)]2)

+
∑

∅
=A⊆[K ]

∑

B⊆A

(−1)|A|−|B|μ0(MB[M[K ]\Bϕ − Mϕ]2)
N |A| .

For any N , M > 0, the estimator’s variance is given by
Var (μM,N

× (ϕ)) = σ 2×,N (ϕ)/M.

Proof See Appendix C. �
The partially product-form estimator (27) is more statis-

tically efficient than its standard counterpart.

Corollary 4 For any ϕ belonging to L2
μ and N > 0,

Var (μM,N
× (ϕ)) ≤ Var (μM,N (ϕ)) ∀M > 0,

σ 2×,N (ϕ) ≤ σ 2
N (ϕ),

where μM,N (ϕ) := 1
MN

∑M
m=1

∑N
n=1 ϕ(θn, Xm,n) and

σ 2
N (ϕ) denotes its asymptotic (in M) variance.

Proof See Appendix C. �
In fact, modulo a small caveat (cf. Remark 1 below),

μ
M,N
× (ϕ) yields the best unbiased estimates of μ(ϕ) achiev-

able using only the knowledge that μ is partially factorized
and M i.i.d. samples drawn fromμ0⊗MN : a perhaps unsur-
prising fact given that it is the composition of two minimum
variance unbiased estimators (Theorem 2).

Theorem 4 Suppose that T contains all singleton sets (i.e.,
{θ} for all θ in ). For any given measurable real-valued
function ϕ on  × S, μM,N

× (ϕ) is a minimum variance unbi-
ased estimator for μ(ϕ): if f is a measurable real-valued
function on ( × SN )M such that

E

[
f ((θm, Xm,1, . . . , Xm,N )Mm=1)

]
= μ(ϕ)

whenever (θm, Xm,1, . . . , Xm,N )Mm=1 is an i.i.d. sequence
drawn from μ0 ⊗ MN , for all partially factorized μ =
μ0 ⊗ M on  × S satisfying μ(|ϕ|) < ∞ and

μ0({θ}) = 0 ∀θ ∈ , (29)

then

Var ( f ((θm, Xm,1, . . . , Xm,N )Mm=1)) ≥ Var (μM,N
× (ϕ)).
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Proof See Appendix D. �
Remark 1 (The importance of (29)) Consider the extreme
scenario that μ0 is a Dirac delta at some θ∗, so that θ1 =
· · · = θM = θ∗ with probability one and

μ
M,N
× (ϕ) = 1

M

M∑

m=1

1

NK

∑

n∈[N ]K
ϕ(θ∗, Xm,n) a.s.

In this case, we are clearly better off (at least in terms esti-
mator variance) stacking all of our X samples into one big
ensemble and replacing the partially product-form estimator
with the (fully) product-form estimator,

μMN× (ϕ) = 1

(MN )K

∑

l∈[MN ]K
ϕ(θ∗, X̃ l ),

where (X̃ l)l∈[MN ] denotes (Xm,n)m∈[M],n∈[N ] in vectorized
form (indeed Theorem 2 implies that μMN× (ϕ) is a minimum
variance unbiased estimator in this situation). More gener-
ally, note that, because

μ2
0({θ1 = θ2}) =

∫
1{θ1=θ2}μ2

0(dθ1, dθ2)

=
∫ (∫

1{θ1=θ2}μ0(dθ1)

)
μ0(dθ2)

=
∫

μ0({θ})μ0(dθ),

μ0 not possessing atoms, i.e., (29), is equivalent toμ2
0({θ1 =

θ2}) = 0. It is then straightforward to argue that (29) is
equivalent to the impossibility of several θm coinciding or,
in other words, to

μM
0 ({θ i 
= θ j ∀i 
= j}) = 1. (30)

Were this not to be the case, the estimator in (27) would not
possess the MVUE property. To recover it, we would need to
amend the estimator as follows: ‘if several θms take the same
value, first stack their corresponding Xm,1, . . . , Xm,N sam-
ples, and then apply a product-form estimator to the stacked
samples.’ However, to not overly complicate this section’s
exposition and Theorem 4’s proof, we restrict ourselves to
distributions satisfying (29).

We are now in a position to revisit Example 5 and better
adapt the proposal to the target. This leads to a special case
of an algorithm known as ‘importance sampling squared’ or
‘IS2’, cf. Tran et al. (2013).

Example 6 (A simple hierarchical model, revisited) Consider
again themodel inExample 5.Recall that our previous choice

of proposal did not quite capture the conditional indepen-
dence structure in the targetπ : the formerwas fully factorized
while the latter is only partially so. It seems more natural to
instead use the proposal in (24) which is also easy to sample
from but both mirrors π ’s independence structure and leads
to further cancellations in the weight function (in particular,
it no longer depends on θ ):

wI S2(x) :=
K∏

k=1

N (yk; xk, 1) = dγ

dμ
(θ, x).

It follows that, to estimate the normalizing constant or any
integral w.r.t. to a univariate marginal of the posterior, we
need to draw samples from μ0 ⊗ MN and evaluate the par-
tially product-form estimator μ

M,N
× (ϕ) for a test function of

the form ϕ(θ, x) = f (θ)
∏K

k=1 gk(xk). Because

μ
M,N
× (ϕ) = 1

MNK

M∑

m=1

f (θm)

K∏

k=1

N∑

nk=1

gk(X
m,nk
k ),

the total cost then reduces to O(KMN ). We also return to
this is Sect. 3.4.

3.3 Grouped independenceMetropolis–Hastings

As a further example of how one may embed product-form
estimators within more sophisticated Monte Carlo method-
ology and exploit the independence structure present in
the problem, we revisit Beaumont’s Grouped Independence
Metropolis–Hastings [GIMH (Beaumont 2003)], a simple
and well known pseudo-marginal MCMC sampler (Andrieu
and Roberts 2009). Like many of these samplers, it is
intended to tackle targetswhose densities cannot be evaluated
pointwise but are marginals of higher-dimensional distri-
butions whose densities can be evaluated pointwise. Our
inability to evaluate the target’s density precludes us from
directly applying the Metropolis–Hastings algorithm (MH,
e.g., see Chapter XIII in Asmussen and Glynn (2007)) as we
cannot compute the necessary acceptance probabilities. For
instance, in the case of a target π(dθ) on a space (, T ) and
anMH proposal Q(θ, d θ̃ )with respective densities π(θ) and
Q(θ, θ̃ ), we would need to evaluate

1 ∧ π(θ̃)Q(θ, θ̃ )

π(θ)Q(θ̃ , θ)

where θ denotes the chain’s current state and θ̃ ∼ Q(θ, ·)
the proposed move. GIMH instead replaces the intractable
π(θ) and π(θ̃) in the above with importance sampling
estimates thereof: ifπ(θ, x) denotes the density of the higher-
dimensional distribution π(dθ, dx) whose θ -marginal is
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π(dθ), andw(θ, x) := π(θ, x)/M(θ, x) for a givenMarkov
kernel M(θ, dx) with densityM(θ, x),

πN (θ) = 1

N

N∑

n=1

w(θ, Xn),

πN (θ̃) = 1

N

N∑

n=1

w(θ̃, X̃n), (31)

where X1, . . . , XN and X̃1, . . . , X̃ N are i.i.d. samples drawn
from M(θ, ·) and M(θ̃ , ·), respectively Key in Beau-
mont’s approach is that the samples are recycled from
one iteration to another: if Z1, . . . , ZN and Z̃1, . . . Z̃ N

denote the i.i.d. samples used in the previous iteration, then
(X1, . . . , XN ) := (Z1, . . . , ZN ) if the previous move was
rejected and (X1, . . . , XM ) := (Z̃1, . . . , Z̃ N ) if it was
accepted.

As explained in Andrieu and Roberts (2009) [see also
Andrieu andVihola (2015)], the algorithm’s correctness does
not require the density estimates to be generated by (31),
only for them to be unbiased. In particular, if the estimates
are unbiased, GIMHmay be interpreted as an MH algorithm
on an expanded state space with an extension of π(dθ) as
its invariant distribution. Consequently, provided that the
density estimator is suitably well behaved, GIMH returns
consistent and asymptotically normal estimates of the target
under conditions comparable to those for standard MH algo-
rithms [e.g., the GIMH chain is uniformly ergodic whenever
the associated ‘marginal’ chain is and the estimator is uni-
formly bounded (Andrieu and Roberts 2009); see Andrieu
and Vihola (2015) for further refinements]. Consequently, if
the kernel is product-form (i.e., M(θ, dx) is product-form
for each θ ), we may replace the estimators in (31) with their
product-form counterparts:

πN× (θ) = 1

NK

∑

n∈[N ]K
w(θ, Xn),

πN× (θ̃) = 1

NK

∑

n∈[N ]K
w(θ̃, X̃n), (32)

where K denotes the dimensionality of the x-variables (the
unbiasedness follows from Xn and X̃n having respective laws
M(θ, dx) and M(θ̃ , dx̃) for any n in [N ]K ). Thanks to the
results in Andrieu and Vihola (2016), it is straightforward to
show that this choice leads to lower estimator variances, at
least asymptotically.

Corollary 5 Let (θm,N )∞m=1 and (θ
m,N
× )∞m=1 denote theGIMH

chains generated using (31) and (32), respectively, and the

same proposal Q(θ, dθ). If ϕ belongs to L2
π , then

lim
M→∞Var

(
1√
M

M∑

m=1

ϕ(θ
m,N
× )

)

≤ lim
M→∞Var

(
1√
M

M∑

m=1

ϕ(θm,N )

)
∀N > 0.

Proof See Appendix E. �
Given the argument used in the proof, the results of

Andrieu and Vihola (2016), Theorem 10 in particular, imply
much more than the variance bound in the corollary’s state-
ment. For instance, if the target is not concentrated on points,
then the spectral gap of (θ

m,N
× )∞m=1 is bounded below by that

of (θm,N )∞m=1. We finish the section by returning to our run-
ning example.

Example 7 (A simple hierarchical model, re-revisited) Here,
we follow Sect. 5.1 in Schmon et al. (2020). Consider once
again the model in Example 5 and suppose we are interested
only in the posterior’s θ -marginal π(dθ). Choosing

M(θ, dx) :=
K∏

k=1

N (dxk; 0, θ),

the weight function factorizes,

wGIMH (θ, x) = π(θ, x)

M(θ, x)
= p(θ)

K∏

k=1

N (yk; xk, 1);

resulting in an evaluation cost of O(K N ) for (31, 32) and,
regardless of which density estimates we use, a total cost of
O(KMN ) where M denotes the number of steps we run the
chain for. We return to this in the following section.

3.4 Numerical comparison

Here, we apply the estimators discussed throughout
Sects. 3.1–3.3 to the simple hierarchical model introduced in
Example 5 andwe examine their performance. To benchmark
the latter, we choose the prior to be conditionally conjugate to
themodel’s likelihood: p(dθ) is the Inv-Gamma(α/2, αβ/2)
distribution, in which case

Xk |yk, θ ∼ N
(

yk
θ−1 + 1

,
1

θ−1 + 1

)
∀k ∈ [K ],

θ |y, X ∼ Inv-Gamma

(
α + K

2
,
αβ + ∑K

k=1 X
2
k

2

)
;

and we can alternatively approximate the posterior,
π(dθ, dx) in (22), using a Gibbs’ sampler. Note that the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 Empirical cumulative density functions forπ(dθ)obtainedusing
the eight approximations discussed in the text (black solid lines). As
guides, we also plot a high-quality approximation πREF (dθ) using (25)
and quadrature, and the pointwise absolute difference between πREF

and the eight approximations (grey lines). InsetsWasserstein-1 distance
(W1) betweenπREF and the panel’s approximation (area under the grey
line, e.g., see p. 64 in Shorack and Wellner (2009)) and corresponding
Kolmogorov–Smirnov statistic (KS, maximum of the grey line)

above expressions are unnecessary for the evaluation of
the estimators in Sects. 3.1–3.3. To compare with standard
methodology that also does not requires such expressions, we
also approximate the posterior usingRandomWalkMetropo-
lis (RWM) with the proposal variance tuned so that the mean
acceptance probability (approximately) equals 25%. To keep
the comparison honest, we run these two chains for N 2 steps
and set M = N for the estimators in Sects. 3.2 and 3.3 ; in
which case all estimators incur a similar O(K N 2) cost. We
further fix K := 100, α := 1, β := 1, and N := 100 and
generate artificial observations y1, . . . , y100 by running (21)
with θ := 1.

Figure 4 shows approximations to the posteriors’s θ -
marginal π(dθ) obtained using a Gibbs sampler, RWM, IS
(Sect. 3.1), IS2 (Sect. 3.2), GIMH (Sect. 3.3), and the last
three’s product-form variants (PFIS, PFIS2, and PFGIMH,
respectively). In the cases of Gibbs, RWM, GIMH, and
PFGIMH, we used a 20% burn-in period and approxi-
mated the marginal with the empirical distribution of the
θ -components of the states visited by the chain. For GIMH
and PFGIMH, we also used a random walk proposal with
its variance tuned so that the mean acceptance probability
hovered around 25%. For IS, PFIS, IS2, and PFIS2, we used
the proposals specified in Examples 5 and 6 and computed
the approximations using

πN2

I S (dθ) :=
∑N2

n=1 wI S(θ
n, Xn)δθn

∑N2

n=1 wI S(θn, Xn)
,

πN
PF I S(dθ) :=

∑N
n=1

(∑
n∈[N ]K wI S(θ

n, Xn)
)
δθn

∑N
n=1

∑
n∈[N ]K wI S(θn, Xn)

,

π
N ,N
I S2

(dθ) :=
∑N

m=1

(∑N
n=1 wI S2(X

m,n)
)

δθm

∑N
m=1

∑N
n=1 wI S2(Xm,n)

,

π
N ,N
PF I S2

(dθ) :=
∑N

m=1

(∑
n∈[N ]K wI S2(X

m,n)
)
δθm

∑N
m=1

∑
n∈[N ]K wI S2(Xm,n)

.

(Note that for IS, we are using N 2 samples instead of N so
that its cost is also O(K N 2).)

Our first observation is that the approximations produced
by IS, IS2, and GIMH are very poor. The first two exhibit
severeweight degeneracy (in either case, a single particle had
over 50% of the probability mass and three had over 90%),
something unsurprising given the target’s moderately high
dimension of 101.2 The third possesses a pronounced spuri-
ous peak close to zero (with over 70% of the mass) caused
by large numbers of rejections in that vicinity. Replacing the

2 One may wonder whether in the case of IS, the degeneracy could
instead be due to our use of the proposal (23) rather than the more
natural choice (24). It is not: the average W1 distance and KS statistic
(see Fig. 4’s caption for definitions) across 100 replicates of the π(dθ)’s
approximation obtained using (24) and IS (with N 2 samples) were 32.7
and 82.3%, respectively. In other words, a modest improvement over
IS with proposal (23) (compare with Table 1), but not one sufficient to
break the degeneracy: 83 approximations (out of 100) had at least 50%
of their mass concentrated in 2 particles (out of 10, 000) and all but 7
had over 80% of their mass concentrated in 10 particles.
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Table 1 Average-across repeats W1 error and KS statistic for the approximations of π(dθ), and average absolute errors for the corresponding mean
and standard deviation estimates, obtained using each of the eight methods

Gibbs (%) PFIS2 (%) PFIS (%) PFGIMH (%) RWM (%) IS2 (%) IS (%) GIMH (%)

W1 0.73 4.41 5.33 7.95 9.99 32.7 36.0 39.9

KS 1.93 17.9 19.2 24.9 23.3 82.3 79.9 71.8

Mean error 1.08 4.51 7.84 8.00 16.2 53.6 60.4 70.6

Standard deviation error 1.51 8.07 9.01 17.1 21.0 64.4 64.0 26.4

Table 2 Total absolute error for the mean and standard deviation esti-
mates of π(dx)’s univariate marginals

Gibbs PFIS2 PFIS RWM IS2 IS

Mean 56 169 511 1209 3295 5727

Standard deviation 40 124 332 663 2874 3340

Note that no results are given for GIMH and PFGIMH since these
algorithms directly target the θ-marginal π(dθ)

i.i.d. estimators embedded within these algorithms with their
product-form counterparts removes both the weight degener-
acy and the spurious peak; PFIS, PFIS2, and PFGIMH return
much improved approximations. The best approximation is
the one returned by the Gibbs sampler: an expected outcome
given that the sampler’s use of the conditional distributions
makes it the estimator most ‘tailored’ or ‘well adapted’ to
the target. However, these distributions are not available
for most models (precluding application of these samplers
to such models) and even just taking the, usually obvious,
independence structure into account can make a substan-
tial difference: the quality of the approximations returned
by PFIS and PFIS2 exceeds the quality of that returned by
the common, or even default, choice of RWM. Note that this
is the case even though the proposal variance in RWM was
tuned, while that in the other two was simply set to 1 (a rea-
sonable choice given that θ = 1was used to generate the data,
but likely not the optimal one). In fact, for this simple model,
it is easy to sensibly incorporate observations into the PFIS
and PFIS2 proposals [e.g., use p(dθ)

∏K
k=1N (dxk; yk, 1)

for PFIS and p(dθ)
∏K

k=1N (dxk; ykθ [1+θ ]−1, θ [1+θ ]−1)

for PFIS2] and potentially improve their performance.
To benchmark the approaches more thoroughly, we gen-

erated R := 100 replicates of the eight full posterior
approximations and computed various errormetrics (Tables 1
and 2). For the θ -component, we used the high-quality
reference approximation πREF described in Fig. 4’s cap-
tion to obtain the average (across repeats) W1 distance and
KS statistic (as described in the caption), and the average
absolute error of the posterior mean and standard devia-
tion estimates normalized by the true mean or standard
deviation (i.e., M−1

θ R−1 ∑R
r=1

∣∣Mr
θ − Mθ

∣∣ for the poste-
rior mean estimates, where Mθ denotes the true mean

and Mr
θ the r th estimate thereof, and similarly for the

standard deviation estimates). For the x-components, we
instead usedhigh-accuracy estimates for the component-wise
means and standard deviations (obtained by running a Gibbs
sampler for N 4 = 108 steps) to compute the correspond-
ing total absolute errors across replicates and components
(
∑K

k=1
∑R

r=1

∣∣Mr
k − Mk

∣∣, where Mk denotes the true mean
for the kth x-component and Mr

k the r th estimate thereof,
and similarly for the standard deviation estimates).

Once again, the product-form estimators far outperformed
their i.i.d. counterparts. Moreover, they perform just as well
or better than RWM. PFIS2’s estimates are particularly accu-
rate: a fact that does not surprise us given that its proposal
has the same partially factorized structure as the target, in this
sense making it the best adjusted estimator to the problem.
That is, best except for the Gibbs sampler which exploits
the conditional distributions (encoding more information
than this structure). We conclude with an interesting detail:
PFIS2 and PFIS perform similarly when approximating the
θ -marginal (cf. Table 1), but PFIS2 outperforms PFIS when
approximating the latent variable marginals (cf. Table 2).
This is perhaps not too surprising because, in the case of the
θ -marginal approximation, both PFIS2 and PFIS employ the
same number N of θ -samples, while, in that of kth latent
variable, PFIS2 uses N 2 xk-samples and PFIS uses only N
such samples.

4 Discussion

The main message of this paper is that when using Monte
Carlo estimators to tackle problems possessing some sort of
product structure, one should endeavor to exploit this struc-
ture and improve the estimators’ performance. The resulting
product-form estimators are not a panacea for the curse of
dimensionality in Monte Carlo, but they are a useful and
sometimes overlooked tool in the practitioner’s arsenal and
make certain problems solvable when they otherwise would
not be. More specifically, whenever the target, or proposal,
we are drawing samples from is product-form, these esti-
mators achieve a smaller variance than their conventional
counterparts. In our experience (e.g., Examples 2 and 4),
the gap in variance grows exponentially with dimension
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whenever the integrand does not decompose into a sum of
low-dimensional functions like in the trivial case (14). For
the reasons given in Sect. 2.2, we expect the variance reduc-
tion to be further accentuated by targets that are ‘spread out’
rather than peaked.

The gains in statistical efficiency come at a computational
price: in the absence of exploitable structure in the test func-
tion, product-form estimators incur an O(NK ) cost limiting
their applicability targets of dimension K ≤ 10, while con-
ventional estimators only carry an O(N ) cost (although in
practice the cost of obtaining reasonable estimates using the
latter often scales poorly with K , with the effect hidden in the
proportionality constant, e.g., Examples 2 and 4). Hence, for
general test functions, product-form estimators are of most
use when the variance reduction is particular pronounced
or when samples are expensive to acquire (both estimators
require drawing the same number N of samples) or store [as,
for example, when one employs physical random numbers
and requires reproducibility Owen (2009)]. In the latter case,
product-form estimators enable us to extract the most possi-
ble from the samples we have gathered so far: by permuting
the samples’ components, the estimators artificially generate
further samples. Of course, the more permutations we make,
the more correlated our sample ensemble becomes and we
get a diminishing returns effect that results in an O(N−1/2)

rate of convergence instead of theO(N−K/2) rate we would
achieve using NK independent samples. There is a middle
ground here that remains unexplored: using N < M < NK

permutations instead of all NK possible, so lowering the cost
to O(M) at the expense of some of the variance reduction
[see Lin et al. (2005) or Lindsten et al. (2017) for similar
ideas in the Monte Carlo literature]. In particular, by choos-
ing the M permutations so that the correlations among them
are minimized (e.g., the M permutations with least overlap
among their components), it might be possible to substan-
tially reduce the cost without sacrificing too much of the
variance reduction. Indeed, by setting the number M of per-
mutations to be such that M evaluations of the test function
incurs a cost comparable to that of generating the N unper-
muted tuples, one can ensure that the overall cost of the
resulting estimator never greatly exceeds that of the con-
ventional estimator. This type of approach has been studied
in the sparse grid literature (Gerstner and Griebel 1998) and
is closely related to the theory of incomplete U-statistics (cf.
Chapter 4.3 in Lee (1990)), an area in which there are ongo-
ing efforts directed at designinggood reduced-cost estimators
[e.g., see Kong and Zheng (2021)].

There are, however, settings in which product-form esti-
mators should be applied without hesitation: if the integrand
is a sum of products (SOP) of univariate functions, the
cost comes down to O(N ) without affecting the variance
reduction (Sect. 2.4). For instance, when estimating ELBO
gradients to optimizemean-field approximations (Ranganath

et al. 2014) of posteriors ev with SOP potentials v. More
generally, if the test function is a sum of partially factorized
functions, the estimators’ evaluation costs can often be sub-
stantially reduced (see also Sect. 2.4) so that the variance
reduction far outweighs the more mild increases in cost. For
instance, as we sawwith the applications of importance sam-
pling and its product-form variant in Sect. 3.4.

For integrands lacking this sort of structure, and at the
expense of introducing some bias, these types of cost reduc-
tions can sometimes be retained if one is able to find a good
SOP approximation to the integrand (Example 4). How to
construct these approximations for generic functions (or for
function classes of interest in given applications) is an open
question upon whose resolution the success of this type of
approach hinges. In reality, combining product-form esti-
mators with SOP approximations amounts to nothing more
than an approximate dimensionality reduction technique:
we approximate a high-dimensional integral with a linear
combination of products of low-dimension integrals, esti-
mate each of the latter separately, and plug the estimates
back into the linear combination to obtain an estimate of the
original integral. It is certainly not without precedents: for
instance, Rahman and Xu (2004), Ma and Zabaras (2009),
Gershman et al. (2012), and Braun and McAuliffe (2010)
all propose, in rather different contexts, similar approxima-
tions except that the low-dimensional integrals are computed
using closed-form expressions or quadrature (for a very well
known example, see the deltamethod formoments inOehlert
(1992)). In practice, the best option will likely involve a
mix of these: use closed-form expressions where available,
quadraturewhere possible, andMonteCarlo (orQuasiMonte
Carlo) for everything else.

About the computational resources required to evaluate
product-formestimators, and the allocation thereof,we ought
to mention one interesting variant of the estimators that we
omitted from the main text to keep the exposition simple.
Throughoutwe assumed that the same number of samples are
drawn from each marginal μ1, . . . , μK of the product-form
target or proposal μ. This need not be the case: straightfor-
ward extensions of our arguments show that the estimator

μ
N1,...,NK× (ϕ) := 1

∏K
k=1 Nk

N1∑

n1=1

· · ·
NK∑

nK=1

ϕ(Xn1
1 , . . . , XnK

K )

behaves much as (4) does, even if a different number of sam-
ples Nk are used per marginal μk . This variant potentially
allows us to concentrate our computational budget on ‘the
most important dimensions,’ an idea that has found signifi-
cant success in other areas of numerical integration [e.g., see
Gerstner and Griebel (1998, 2003) or Owen (1998)]. In our
case, this could be done using the pertinent generalizations
of the variance expressions in Theorem 1, which are identi-
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cal except that N |A| therein must be replaced by
∏

k∈A Nk

(these can be obtained by retracing the steps in the theorem’s
proof). In particular, one could estimate the terms in these
expressions and adjust the sample sizes so that the estima-
tor variance is minimized, potentially in an iterative manner
leading to an adaptive scheme.

Combining product-form estimators with other Monte
Carlo methodology expands their utility beyond product-
form targets. We illustrated this in Sect. 3 by describing
the three simplest and most readily accessible combinations
we could think of: their merger with importance sampling
applicable to targets that are absolutely continuous with
respect to fully factorized distributions (Sect. 3.1), that with
importance sampling squared applicable to targets that are
absolutely continuous with respect to partially factorized
distributions (Sect. 3.2, see also Tran et al. (2013)), and
that with pseudo-marginal MCMC applicable to targets with
intractable densities (Sect. 3.3, see alsoSchmonet al. (2020)).
In all of these cases, we demonstrated theoretically that the
resulting estimators are more statistically efficient than their
standard counterparts (Corollaries 2–5). Many other exten-
sions are possible. For instance, one can embed product-form
estimators within randomweight particle filters (Rousset and
Doucet 2006; Fearnhead et al. 2008, 2010)—and, more gen-
erally, algorithms reliant on unbiased estimation—much the
same way we did for IS2 and GIMH in Sects. 3.2–3.3. For an
example of a slightly different vein, seeAppendixFwherewe
consider ‘mixture-of-product-form’ estimators applicable to
targets which aremixtures of product-form distributions and,
by combining these with importance sampling, we obtain a
product-form version of (stratified) mixture importance sam-
pling estimators (Oh and Berger 1993; Hesterberg 1995)
that is particularly appropriate for multimodal targets. For
further examples, see the divide-and-conquer SMC algo-
rithm (Lindsten et al. 2017; Kuntz et al. 2021) obtained by
combining product-form estimators with SMC and Tensor
Monte Carlo (Aitchison 2019) obtained by merging the esti-
mators with variational autoencoders.

When choosing among the resulting (and at times bewil-
dering) constellation of estimators, we recommend following
one simple principle: pick estimators that somehow ‘resem-
ble’ or ‘mirror’ the target. Good examples of this are well
parametrized Gibbs samplers which generate new samples
using the target’s exact conditional distributions and, con-
sequently, often outperform other Monte Carlo algorithms
(e.g., Sect. 3.4).While formany targets these conditional dis-
tributions cannot be obtained (nor are good parametrizations
known), their (conditional) independence structure is usually
obvious [e.g., see Gelman and Hill (2006), Gelman (2006),
Koller and Friedman (2009), Hoffman et al. (2013), Blei et al.
(2003), and themany references therein] and can bemirrored
using product-form estimators within one’s methodology of
choice. Indeed, in the case of the simple hierarchical model

(Example 5), it was the PFIS2 estimator utilizing samples
with exactly the same independence structure as the model’s
that performed best (besides the Gibbs sampler). Of course,
this model’s independence structure was particularly simple,
and so were the resulting estimators. However, we believe
that broadly the same considerations apply to models with
more complex structures and that product-form estimators
can be adapted to such structures by following analogous
steps.

To summarize, we believe that product-form estimators
are of greatest use not on their own, but embedded within
more complicated Monte Carlo routines to tackle the aspects
of the problem exhibiting product structure. There remains
much work to be done in this direction.
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