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Abstract
We propose an algorithm for computing efficient approximate experimental designs that can be applied in the case of very
large grid-like design spaces. Such a design space typically corresponds to the set of all combinations of multiple genuinely
discrete factors or densely discretized continuous factors. The proposed algorithm alternates between two key steps: (1) the
construction of exploration sets composed of star-shaped components and separate, highly informative design points and (2)
the application of a conventional method for computing optimal approximate designs on medium-sized design spaces. For a
given design, the star-shaped components are constructed by selecting all points that differ in at most one coordinate from
some support point of the design. Because of the reliance on these star sets, we call our algorithm the galaxy exploration
method (GEX). We demonstrate that GEX significantly outperforms several state-of-the-art algorithms when applied to D-
optimal design problems for linear, generalized linear and nonlinear regression models with continuous and mixed factors.
Importantly, we provide a free R code that permits direct verification of the numerical results and allows researchers to easily
compute optimal or nearly optimal experimental designs for their own statistical models.

Keywords Optimal design · Multifactor experiments · Regression models · Generalized linear models · Algorithms

Mathematics Subject Classification 62K05 · 90C59

1 Introduction

The usual aim of the so-called “optimal” design of experi-
ments is to perform experimental trials in a way that enables
efficient estimation of the unknownparameters of an underly-
ing statistical model (see, e.g., Fedorov 1972; Pázman 1986;
Pukelsheim 2006; Atkinson et al. 2007; Goos and Jones
2011; Pronzato and Pázman 2013). The literature provides
optimal designs in analytical forms for many specific sit-
uations; for a given practical problem at hand, however,
analytical results are often unavailable. In such a case, it
is usually possible to compute an optimal or nearly optimal
design numerically (e.g., Chapter 4 in Fedorov 1972, Chap-
ter 5 in Pázman 1986, Chapter 12 in Atkinson et al. 2007,
and Chapter 9 in Pronzato and Pázman 2013).

In this paper, we propose a simple algorithm for solving
one of the most common optimal design problems: com-
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puting efficient approximate designs for experiments with
uncorrelated observations and several independent factors.
The proposed algorithm employs a specific strategy to adap-
tively explore the grid of factor-level combinations without
the need to enumerate all elements of the grid. The key idea
of this algorithm is to form exploration sets composed of star-
like subsets and other strategically selected points; therefore,
we refer to this algorithm as the “galaxy” explorationmethod
(GEX).

If the set of all combinations of factor levels is finite and
not too large, it is possible to use many available efficient
and provably convergent algorithms to compute an optimal
design (e.g., those of Fedorov 1972; Atwood 1973; Silvey
et al. 1978; Böhning 1986;Vandenberghe et al. 1998;Uciński
andPatan 2007;Yu2011; Sagnol 2011;Yang et al. 2013;Har-
man et al. 2020). However, in the case of multiple factors,
each with many levels, the number of factor-level combina-
tions is often much larger than the applicability limit of these
methods.

The main advantage of GEX is that it can be used to solve
problems with an extensive number of combinations of fac-
tor levels, e.g., 1015 (5 factors, each with 1000 levels), and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-021-10046-2&domain=pdf
http://orcid.org/0000-0002-4647-862X


70 Page 2 of 13 Statistics and Computing (2021) 31 :70

obtain an optimal design in several seconds. Note that fac-
tors with large, yet finite, numbers of levels often correspond
to practical requirements on the factor resolution. Even in
the theoretical case of fully continuous factors, GEX can be
applied; the factors can simply be densely discretized (to,
say, 3 decimal places). We will show that this straightfor-
ward approach usually outperforms intricate state-of-the-art
methods that can choose the factor levels anywhere in given
continuous intervals (e.g., those of Pronzato and Zhigljavsky
2014;Duarte et al. 2018; Lukemire et al. 2019;Xu et al. 2019;
García-Ródenas et al. 2020). As a byproduct, we demonstrate
that it is rarely necessary to discretize each factor to an enor-
mous number of levels to admit an approximate design that
is almost perfect compared to the optimum achievable with
fully continuous factors.

Let k be the number of experimental factors. Suppose that
for any trial, the factors can be independently chosen from
predefined finite sets X1, . . . ,Xk ⊂ R of permissible levels,
without mutual constraints. The design space X is then the
set of all combinations of the factor levels, formally, X =
X1 × · · · × Xk . Geometrically, X is a finite grid of “design
points” x = (x1, . . . , xk)T .

An approximate experimental design is any probability
measure ξ on X. For x ∈ X, the interpretation of ξ(x) is the
proportion of trials to be performed at x. The value ξ(x) is
often referred to as the “weight” of x. The set of all design
points x with nonzero weights is called the support of ξ and
is denoted by supp(ξ).

In practical experiments, an approximate design ξ must be
converted into an “exact” design of size N determined by the
available experimental resources.1 The exact design assigns
nonnegative integer numbers n1, . . . , ns of trials to properly
selected points x1, . . . , xs such that

∑s
i=1 ni = N . A stan-

dard strategy is to select the points x1, . . . , xs that form the
support of an optimal or nearly optimal approximate design
ξ and then compute the integer numbers of trials through
appropriate “rounding” of the numbers

Nξ(x1), . . . , Nξ(xs);

see, e.g., Pukelsheim and Rieder (1992). Alternatively, since
the support size s is usually small, it may be feasible to com-
pute the integers n1, . . . , ns by specialized procedures for
optimal exact designs (e.g., Chapter 12 of Atkinson et al.
2007) restricted to supp(ξ).

Computational strategies employing optimal approximate
designs lead to exact designs that are typically very efficient
(albeit not perfectly optimal) within the class of all exact

1 This holds if each trial consumes a constant amount of resources, inde-
pendent of anyother trials. The situation is fundamentallymore complex
under general restrictions onpermissible experimental designs; see, e.g.,
Harman et al. (2016), Sagnol and Harman (2015), and Filová and Har-
man (2020).

designs of size N on the full X, especially when N is large.
Importantly, the approximate design approach leads to an
optimization problem that is generally much simpler than
the problem of computing a perfectly optimal exact design
of a given size N .Moreover, the approximate optimal design,
once computed, can be rounded to an exact design of any size.
In addition, the optimal approximate design can be utilized to
provide informative lower bounds on the quality of candidate
exact designs.

In the rest of this paper, we will use the term “design”
specifically to refer to an approximate experimental design.

The quality of a design ξ is usually expressed as a function
of the normalized information matrix

M(ξ) =
∑

x∈X
ξ(x)f(x)fT (x), (1)

where f : X → R
m ,m ≥ 2, is known. To avoid uninteresting

pathological situations, wewill assume that f(x1), . . . , f(xm)

are linearly independent for some x1, . . . , xm ∈ X. An
information matrix of the form given in (1) is typical of mod-
els with independent, real-valued observations with nonzero
variance, where the stochastic distribution of each obser-
vation y depends on the design point x chosen for the
corresponding trial aswell as on the unknownm-dimensional
vector θ of model parameters.

For linear regression, that is, if E(y(x)) = hT (x)θ and
Var(y(x)) = σ 2/w(x), where h : X → R

m and w : X →
(0,∞) are known and σ 2 ∈ (0,∞) may be unknown, we
have

f(x) = √
w(x)h(x).

However, if E(y(x)) = η(x, θ), where η : X × R
m → R is

nonlinear in θ , the situation is generally much more difficult.
In this paper, we adopt the usual simplification, called the
approach of “local” optimality, which makes use of a “nom-
inal” parameter θ0 that is assumed to be close to the true
value (see, e.g., Chernoff 1953 or Chapter 17 in Atkinson
et al. 2007 and Chapter 5 in Pronzato and Pázman 2013). If,
for each x ∈ X, the observation y(x) is normally distributed
with a possibly unknown constant variance σ 2 and η(x, ·)
is differentiable in θ0, then the approach of local optimality
leads to

f(x) = f(x, θ0) = ∂η(x, θ)

∂θ

∣
∣
∣
∣
θ=θ0

and

M(ξ) = M(ξ, θ0) =
∑

x∈X
ξ(x)f(x, θ0)fT (x, θ0).
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Table 1 Selected GLM classes and the corresponding functions
w(x, θ0). The symbol f denotes the standard normal density, and F
denotes the standard normal cumulative distribution function

GLM class (distribution) Link g(η) Function w(x, θ0)

Logistic (Bernoulli) log η
1−η

eh
T (x)θ0

(1+eh
T (x)θ0 )2

Probit (Bernoulli) F−1(η)
f 2(hT (x)θ0)

F(hT (x)θ0)(1−F(hT (x)θ0))

Poisson (Poisson) log η eh
T (x)θ0

For a generalized linear model (GLM) for which the mean
value of the observations is η(x, θ) = g−1(hT (x)θ), where
g : R → R is a strictly monotonic and differentiable link
function and h : X → R

m is known, we have

f(x) = f(x, θ0) = √
w(x, θ0)h(x)

for some w : X × R
m → (0,∞). In Table 1, we provide

the form of w for several common classes of GLMs (for
more details on computing optimal designs in GLMs, see,
e.g., Khuri et al. 2006; Atkinson and Woods 2015). Since in
the approach of local optimality, the nominal parameter θ0
is treated as a constant, we henceforth write f(x) and M(ξ)

instead of f(x, θ0) andM(ξ, θ0), respectively, for both linear
and nonlinear models.

The size of an information matrix (and, implicitly, the
quality of the corresponding design) is measured in terms
of an optimality criterion Φ. For clarity, we will focus on
the most common criterion of D-optimality, but the method
proposed in this paper can be trivially adapted to a large class
of criteria (cf. Sect. 4). The D-optimal design problem is to
find a design ξ∗ that maximizes

Φ(M(ξ)) = {det(M(ξ))}1/m

over the set � of all designs. The D-optimal design mini-
mizes the volume of the confidence ellipsoid for the vector
of unknownparameters.2 The criterionΦ is concave, positive
homogeneous and Loewner isotonic on the set of all m × m
nonnegative definite matrices. Note also that the set� is con-
vex and compact, that is, the problem of D-optimal design
is convex3 and always has at least one optimal solution. The
information matrix of all D-optimal designs is nonsingular
and unique, although for somemodels, even some that appear
in practice, the D-optimal design itself is not unique.

The D-efficiency of a design ξ relative to a design ζ with
Φ(M(ζ )) > 0 is defined as eff(ξ |ζ ) = Φ(M(ξ))/Φ(M(ζ )).

2 For nonlinear models, this statement is valid asymptotically.
3 In the sense that the problem consists of maximizing a concave objec-
tive function over a convex set. Note, however, that if some of the factors
are continuous, then the D-optimal design problem, viewed as a prob-
lem of convex optimization, is infinite-dimensional.

The D-efficiency of a design ξ (per se) means the D-
efficiency of ξ relative to the D-optimal design ξ∗. The
D-efficiency of ξ with nonsingular M(ξ) satisfies (see, e.g.,
Pukelsheim 2006, Section 5.15)

eff(ξ |ξ∗) ≥ m

maxx∈X dξ (x)
, (2)

where dξ (x) = fT (x)M−1(ξ)f(x). The function dξ (·) is
called the “variance function” because it is proportional
to the variance of the least squares estimator of fT (·)θ in
the linear regression model. Equation (2) implies the so-
called equivalence theorem for D-optimality: A design ξ

is D-optimal if and only if maxx∈X dξ (x) = m; otherwise,
maxx∈X dξ (x) > m (see Kiefer 1959). Therefore, provided
that themaximumof dξ (·) overX can be reliably determined,
it is possible to construct a lower bound on the D-efficiency
of ξ or prove its optimality. However, ifX is large and multi-
dimensional, maximization can be challenging because dξ (·)
is typically nonlinear and multimodal, even for linear regres-
sion models.

In the rest of this paper, we will drop the prefix “D-”,
e.g., a D-optimal design will simply be called an “optimal
design”.

We are not aware of any method that specifically targets
optimal design problems on very large discrete grids. For the
case of factors that are discrete with an enormous number of
practically possible levels, the usual approach is to consider
the factors to be fully continuous. Therefore, methods that
operate on continuous spaces are natural competitors for the
method proposed in this paper, and we briefly discuss them
in the rest of this section.

If one or more factors are assumed to be continuous, the
simplest approach is to discretize those factors and turn the
problem into one that can be solved using discrete-space
methods. Naturally, discrete-space solvers then generally
cannot find a design that is perfectly optimal on the origi-
nal, continuous X. Nonetheless, our experience shows that
the loss in efficiency is usually negligible if a continuous
factor is discretized to, say, 1000 levels. Such discretization
can be handled with modern hardware and state-of-the-art
discrete-space methods for problems with only one or two
continuous factors or problems with one continuous factor
and a few binary factors.

There are also other situations with continuous factors in
which it is possible to directly apply the existing discrete-
space methods. For instance, for some models, there exist
theoretical results that limit the support of an optimal design
to a relatively small finite subset. As an example, for a fully
quadratic linear model on a cube, the search can be restricted
to the set of centers of the faces of the cube of all dimensions
(see Heiligers 1992).
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However, direct discretization may not be sufficient if
there are more than two continuous factors or if we require a
fine resolution of the levels. In such cases, choosing amethod
such as the one proposed in this paper can be of significant
benefit.

For computing optimal designs when all or some of the
factors are continuous, there are many methods that do not
employ a fixed discretization of X. To present a brief survey
thereof, we choose to split them into two categories.

1.1 Methods that use standard continuous-space
algorithms

Theproblemof optimal designwith continuous factors canbe
directly solved bymeans of common nonlinear programming
methods; for example, the Nelder–Mead algorithm is used
in Chaloner and Larntz (1989), a quasi-Newton method is
applied in Atkinson et al. (2007) (see Section 13.4), semi-
infinite programming is used in Duarte and Wong (2014),
and multiple nonlinear programming methods are applied in
García-Ródenas et al. (2020). Some papers utilize nonlinear
programming methods in a specific way or for a particular
class ofmodels; see, for instance,Gribik andKortanek (1977)
and Papp (2012).

In addition to classical nonlinear programming meth-
ods, various metaheuristics have been recently proposed to
compute optimal designs with continuous factors; see, e.g.,
Wong et al. (2015) for particle swarm optimization, Xu
et al. (2019) or Stokes et al. (2020) for differential evolu-
tion, Lukemire et al. (2019) for quantum-behaved particle
swarm optimization, and Zhang et al. (2020) for competi-
tive swarm optimization. A thorough empirical evaluation
of the performance of nonlinear programming methods and
metaheuristics, including genetic algorithms, is given by
García-Ródenas et al. (2020).

A typical feature of nonlinear programming methods and
metaheuristics is that a fixed-size support of the design is
mergedwith a vector ofweights to forma single feasible solu-
tion to the optimization problem at hand. This transforms an
infinite-dimensional convex problem into a finite one, which
is, however, not convex in the coordinates of the support
points. Then, these algorithms simultaneously adjust the sup-
port and the corresponding weights. A major advantage is
that this approach can be used with almost any criterion; it is
necessary only to implement the evaluation of the criterion
as a subroutine. A disadvantage is that these methods either
require a search for an appropriate support size or are ren-
dered less efficient by using a relatively large support size as
provided by the Carathéodory theorem (see, e.g., Theorem
2.2.3 in Fedorov 1972). In addition, because the problem
is nonconvex, convergence to a good design is usually not
guaranteed, and even when convergence is reached, it can be
slow. One reason for the slow speed is that with the direct

application of nonlinear programming and metaheuristics,
the convexity of the problem in the design weights is not
exploited.

1.2 Methods that use a discrete-space solver on
“adaptive grids”

An alternative idea is to use a discrete-space method applied
to a finite set, which is sequentially updated in the continu-
ous space to (hopefully) approach the support of the optimal
design. We call this strategy “adaptive support”. The gen-
eral idea of an adaptive search for the optimal support has
been present in the literature from the beginning; for instance,
the classical Fedorov-Wynn algorithm is based on iterative
improvements to the support of the design, although for each
new support, the design weights are adjusted only by means
of a simple transformation (Fedorov 1972, Chapter 4). The
general possibility of using adaptive supports has also been
mentioned in Wu (1978a) and Wu (1978b). More recently,
a randomized adaptive support approach has been suggested
by Dror and Steinberg (2006).4 Furthermore, Stufken and
Yang (2012) (Section 6) have proposed “...a multi-stage grid
search that starts with a coarse grid that is made increas-
ingly finer in later stages”. Adaptation of the support is also
central to the computational methods of Yang et al. (2013)
and Pronzato and Zhigljavsky (2014). These methods apply
classical convex optimization to find optimal weights on a
fixed discrete set, and in each step, they enrich the support
set with the global maximum of the variance function. Most
recently, Duarte et al. (2018) have employed semidefinite
programming and an adaptive replacement of the support
with a specific set of local maximizers of the variance func-
tion.

Our proposed algorithm, GEX, is more closely related to
the class of continuous-space methods reviewed in Sect. 1.2
than to those discussed in Sect. 1.1.

2 The algorithm

In GEX, we apply a discrete-space optimal design algorithm
to suitably chosen exploration sets Xexp. In the course of the
computation, the exploration sets are sequentially updated
with the aim of approaching the support of the true optimal
design for the model at hand. An outline of GEX is presented
as Algorithm 1 below. The input to the algorithm includes
the problem itself in the form of a subroutine that, for each
permissible x ∈ X, computes the vector f(x). The values
effopt < 1, effgrp ≤ 1, Nloc ∈ {0, 1, . . .} and effstop < 1 are

4 Dror and Steinberg (2006) consider support adaptation for optimal
exact designs, but the idea can also be applied to optimal approximate
designs, which are central to this paper.
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parameters chosen by the user; their meaning is explained
later in this section.

Algorithm 1: GEX (outline)
input: X, f , effopt , effgrp , Nloc, effstop

1 Xexp ← INI (X)
2 ξnew ← OPT (Xexp , f , effopt , effgrp)
3 repeat

3a ξold ← ξnew
3b Xexp ← EXP (X, f , ξold , Nloc)
3c ξnew ← OPT (Xexp , f , effopt , effgrp)

until φ(ξold )/φ(ξnew) > effstop
4 return ξnew

In Steps 1 and 2, we select an initial finite exploration
set Xexp ⊆ X and use a discrete-space method to calculate
an efficient design ξnew on Xexp. In Step 3, we alternately
construct a finite exploration set Xexp based on the current
design and compute a new efficient design on Xexp. The
algorithm stops once the last optimization on Xexp does not
lead to a significant improvement. Note that this form of the
stopping rule implies that the number of loops in Step 3 is
bounded.

Although the general scheme of GEX is simple, judicious
specification of the basic steps can make a crucial difference
in the overall performance. In the following subsections, we
detail our choices regarding the procedures INI, OPT and
EXP.

2.1 INI

In Step 1 of Algorithm 1, we construct an initial exploration
set Xexp ⊆ X. In our specification, Xexp is constructed as
the union of two sets, Xgrid and Xrnd . The set Xgrid is a
grid formed by the combinations of the extreme levels of all
factors and the median levels of all nonbinary factors. The
set Xrnd is a random selection of points in X. The size of
Xgrid is at most 3k , which is reasonably small for as many as
k � 13 factors, and for many models used in practice, Xgrid

constructed in the proposed way contains highly informative
points. For our numerical study, we chose the size ofXrnd to
be 1000; a sensitivity analysis suggests that the performance
of the algorithm is similar for a wide range of sizes of Xrnd .

2.2 OPT

In Steps 2 and 3c of Algorithm 1, we apply a discrete-space
algorithm that computes a design ξnew on Xexp with an effi-
ciency of at least effopt (among all designs on Xexp) and
then prunes the support of ξnew by means of a grouping pro-
cedure parametrized by the value of effgrp. In more detail,

the assignment process ξnew ← OPT (Xexp, f , effopt , effgrp)
consists of the steps shown below.

begin OPT (Xexp , f , effopt , effgrp)
ξnew ← REX (Xexp , f , effopt )
ξnew ← GRP (ξnew , f , effgrp)

end

As the underlying discrete-space optimization procedure,
we choose the REX algorithm of Harman et al. (2020). It
has several advantages compared to other methods: REX is
not only fast and applicable to relatively large problems, but
crucially, the resulting designs do not have a tendency to
contain many design points with small “residual” weights.
The parameter effopt is the lower bound on the efficiency that
is used to stop the computation. In our numerical studies, we
chose effopt = 1 − 10−6.

In Step 2 of Algorithm 1, the initial design for REX is
based on the modified Kumar-Yildirim method as described
in Harman and Rosa (2020), which is rapid and always pro-
vides a design with a nonsingular information matrix. If this
relatively advanced initialization method were to be replaced
by the uniform random selection ofm distinct points, the effi-
ciency of the resulting design (and the speed of computation)
would not be much affected. However, the Kumar-Yildirim
method guarantees nonsingularity of the information matrix
of the initial design, which is an important aspect of the algo-
rithm.5 In contrast to Step 2, in Step 3c, the REX algorithm
is initialized with ξold .

Each REX computation is followed by a specific form of
grouping of nearby support points. For continuous spaces,
a grouping method has previously been recommended by
Fedorov (1972), page 109. In our case, the factors are
discrete, but the levels can be very close to each other; conse-
quently, grouping nearby support points generally improves
the performance. We have identified that for all studied mod-
els, it is sufficient to use a nearest-distance approach to
decrease the support size of the constructed design on a dis-
crete space.

More precisely, let ξ0 be the design obtained via the orig-
inal discrete-space procedure, such as REX. Let x1, . . . , xs
be the support points of ξ0.6 The procedure GRP determines
the pair (xk, xl), k < l, consisting of the two nearest sup-
port points and assigns the pooled weight ξ0(xk) + ξ0(xl)
to the point xk if ξ0(xk) ≥ ξ0(xl) or to the point xl if

5 Inmanymodelswith a finite number of factor levels, there is a nonzero
probability that a a design with a randomly selected m-point support
will have a singular information matrix, even if the model itself admits
a design with a nonsingular information matrix.
6 Note that using REX as the engine provides designs with relatively
small support sizes, almost always smaller than m2.

123



70 Page 6 of 13 Statistics and Computing (2021) 31 :70

ξ0(xk) < ξ0(xl), which results in a design ξ1. If the efficiency
of ξ1 is at least effgrp relative to the design originally returned
by REX, then the pooling operation is accepted, and the pro-
cess is repeated. In our study, we chose effgrp = 1 − 10−6.
We remark that removing GRP (e.g., by setting effgrp = 1)
results in marginally more efficient designs, but it makes the
computation slower.More importantly, not usingGRP results
in designs that are populated by a large number of points with
small weights.

2.3 EXP

In the key Step 3b, we construct a new exploration set Xexp

based on a set of local maxima of the variance function as
well as a long-range variation of the support of the current
design. In detail, Xexp ← EXP (X, f , ξold , Nloc) consists of
the steps summarized below.

begin EXP (X, f , ξold , Nloc)
Xloc ← LOC (X, f , ξold , Nloc)
Xstar ← STAR (X, ξold )
Xexp ← Xloc ∪ Xstar

end

The procedure LOC returns the results of randomly ini-
tialized hill climbing maximizations of the current variance
function dξold(·) overX. The number ofmaximizations start-
ing from random points in X is given by the parameter Nloc;
for our numerical study, we chose Nloc = 50. Decreasing
Nloc slightly worsens the final design but also makes the
computation faster. Removing the Xloc part of Xexp alto-
gether oftenmakes the computationmuch faster, but for some
models, it systematically leads to suboptimal designs.

As in all local search methods, the efficiency depends on
the system of neighborhoods considered for each feasible
solution x ∈ X.

We use a “star-set” neighborhood S(x), which consists
of all points lying in a “star” centered at x: S(x) is the set
of points in X that differ from x in at most one coordinate.
Formally,

S(x) = {
x̃ ∈ X | There exists an i ∈ {1, . . . , k} such that

x̃i ∈ Xi and x̃ j = x j for all j �= i
}
.

We search the neighborhood of the current point x, move
to the point in S(x) with the highest value of the variance
function, and repeat this process as long as there is an increase
in the variance function. Neighborhoods of the form ofS(x)
seem to be suitable for optimal design problems on multidi-
mensional grids, as they allow us to explore such grids quite
thoroughly yet do not grow exponentially in size with respect

Fig. 1 Xstar for a design with 3 support points, whereX is a discretized
square [−1, 1]2. The support points are denoted by black circles, and
the gray dots form the star sets

to the dimensionality k of the design space. Moreover, the
neighborhoodsS(x) have the added advantage that they are
fast to computationally enumerate.

The crucial procedure for the construction of the explo-
ration sets is STAR, which is specifically chosen to suit
the grid-like structure of the design space studied in this
paper. The best solution requires a balanced compromise
between exploration and exploitation. Our experience leads
us to choose star sets again (hence the name “galaxy explo-
ration”). For a given ξold , the set Xstar is the union of all
star-set neighborhoods centered at the support points of ξold .
Formally,

Xstar =
⋃

x∈supp(ξold )

S(x);

such a star set is illustrated in Fig. 1. Note that the REX
algorithm produces efficient designs with “sparse” supports,
which means that the size of Xstar does not grow greatly
during the GEX computation.

2.4 Summary

Algorithm 2 shows the final formulation of GEX, with all
steps described in detail.

Similar to the methods of Sect. 1.2, in particular Pronzato
and Zhigljavsky (2014) or Duarte et al. (2018), our method
applies a discrete-space solver to a subset of X and adap-
tively modifies this subset. However, unlike the method of
Pronzato andZhigljavsky (2014) andmany others, GEXdoes
not attempt to calculate the global maximum of the variance
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Algorithm 2: GEX (detailed)
input: X, f , effopt , effgrp , Nloc, effstop

1 Xexp ← INI (X)
2 begin OPT

ξnew ← REX (Xexp , f , effopt )
ξnew ← GRP (ξnew , f , effgrp)

end
3 repeat

3a ξold ← ξnew
3b begin EXP

Xloc ← LOC (X, f , ξold , Nloc)
Xstar ← STAR (X, ξold )
Xexp ← Xloc ∪ Xstar

end
3c begin OPT

ξnew ← REX (Xexp , f , effopt )
ξnew ← GRP (ξnew , f , effgrp)

end
until φ(ξold )/φ(ξnew) > effstop

4 return ξnew

function but instead utilizes a set of local maximizers. The
general idea of using a set of local maximizers is similar to
that of Duarte et al. (2018), but in GEX, we accomplish it in
a significantly different way. Importantly, we include the star
sets around the support points of the current ξ , meaning that
the exploration set is much larger than merely a set of local
maximizers of the variance function, which enables GEX to
better explore the design space. Note also that the Xstar part
of the exploration set is similar to the set implicitly utilized
in the coordinate-exchange method for exact designs (see
Meyer and Nachtsheim 1995), where in each iteration, one
coordinate of one design point is updated via a line search.
Nonetheless, we compute approximate, not exact, designs
and, crucially, do not consider the coordinates of the points
one at a time; rather, all single-coordinate changes to all
points are considered simultaneously as a batch (with a set
of local maximizers of the variance function), to which an
efficient internal discrete-space solver is applied.

In summary, GEX is practically and numerically simple
to apply in the sense that it requires no theoretical analysis
of the model at hand and no special numerical solvers or
libraries, except for the standard procedures of linear algebra.
The algorithm has only a few tunable parameters, which are
directly interpretable and can be set to fixed default values
that perform very well for a wide class of models (as we will
demonstrate in Sect. 3).

In each iteration, GEX finds a design that is at least as
good as the previous one, and is guaranteed to stop in a finite
number of iterations.Nevertheless,GEXdoes not necessarily
converge to the theoretical optimum, even if we let the termi-
nating parameter effstop approach 1; it is possible to construct
artificial problems for which it produces considerably subop-
timal designs with high probability. Moreover, for extremely
large design spaces X, it is difficult to verify that the design

provided by GEX is optimal or, more generally, that it has an
efficiency above a certain threshold. However, this difficulty
is not specific to the proposed method; it is rather a feature
of the optimization problem that we are attempting to solve.
Obtaining a perfectly reliable lower bound on the efficiency
of a design would require either computationally process-
ing all vectors f(x), x ∈ X (cf. inequality (2)), or utilizing
mathematical properties specific to the model, which might
demand an exceedingly large amount of effort and/or expert
knowledge.

Finally, we note that GEX automatically determines the
support size of the resulting design. This property is benefi-
cial in the sense that the application of GEX does not require
a search for a proper support size. However, this also means
that we do not have control over the support size.7 If we
require efficient designs with a strict upper bound on the
support size, nonlinear programming techniques or heuris-
tics (cf. Sect. 1.1) may be a better choice than GEX.

2.5 Notes

In some cases, the information matrix of the D-optimal
design is ill-conditioned. If this occurs, we can use the well-
known fact that regular reparametrization, i.e., replacing the
vectors f(x) with f̃(x) = Rf(x), where R is nonsingular,
does not alter the D-optimal design. If R is chosen to be
close to the inverse of the square root of the optimal infor-
mation matrix, such reparametrization may greatly improve
the condition number of the matrices used in GEX. In par-
ticular, we applied this approach to enhance the numerical
stability of the computation of optimal designs for Model
10 described in Sect. 3. We chose R = M−1/2, where M is
the information matrix of the design computed for the initial
Xexp via the modified Kumar-Yildirim method.

During the execution of the algorithm, points that cannot
support optimal designs can be removed by using the results
of Harman and Pronzato (2007) in order to decrease the size
of the problem and potentially speed up the computations.
However, in our experience, the removal of redundant points
does not provide a significant increase in the speed of GEX.
This is likely due to the nature of the discrete-space engine
REX, which tends to work with designs with small supports
and, as such, does not benefit much from the elimination of
unpromising parts of the design space.

7 Nevertheless, the support sizes determined byGEX for the benchmark
models studied in Sect. 3 are reasonably small; see the column labeled
sGEX in Table 4.
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Fig. 2 The time profiles of the efficiencies of the designs ξnew com-
puted by REX in Steps 2 and 3c of GEX. For each problem (see the
numbers above the panels), we executed 3 independent runs of GEX;
each run is represented by a separate piecewise-linear curve. The effi-

ciencies are expressed on a logarithmic scale, with efficiencies of 0, 0.9,
0.99, 0.999, ..., 1− 10−9, and > 1− 10−9 corresponding to the values
0, 1, 2, 3, ..., 9, and 10, respectively, on the vertical axis

3 A numerical study

For a numerical study, we selected 5 prominently published
recent papers that focus on presenting algorithms for com-
puting D-optimal designs on continuous or mixed design
spaces, namely,

– Pronzato and Zhigljavsky (2014) (adaptive grids com-
bined with projected gradients and vertex exchange
optimization),

– Duarte et al. (2018) (a different approach to adaptive grids
combined with semidefinite programming),

– Lukemire et al. (2019) (quantum-behaved particle swarm
optimization),

– Xu et al. (2019) (differential evolution), and
– García-Ródenas et al. (2020) (multiple nonlinear pro-
gramming and metaheuristic methods).

From each paper, we chose two test problems, as sum-
marized in Table 3. The chosen problems include a linear
regression model, two nonlinear models with homoscedastic
normal errors, a Poisson model, a probit model, and several
logistic regression models. The number of factors, k, varies

from 2 to 10, and the number of parametric dimensions, m,
varies from 4 to 16. We used these test problems to illustrate
the behavior of GEX and numerically compare its perfor-
mance with that of the competing methods.

Figure 2 shows the typical behavior of GEX on the prob-
lems in Table 3. We see that the designs ξnew generated in
themain loop of GEXmonotonically improve and ultimately
converge to the optimum.8 The variability of the computation
time is moderate.9 The usual number of discrete-space opti-
mizations before the stopping rule is satisfied is 3 to 6. We
observe that the efficiency growth generally does not decline
with increasing computation time.Moreover, with increasing
problemdifficulty, the number of discrete-space optimization
runs required to achieve the optimal design does not tend to
grow.

Some additional general observations from the computa-
tional study of GEX can be summarized as follows:

8 By the optimum, we mean the best design that we are aware of, either
from our numerical studies or from the literature.
9 The coefficient of variation of the computation times is less than 0.3
for all studied problems.
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Table 2 The design produced by GEX for Model 6. The first column
gives the index i of the identified support point, the columns labeled
xi1 to xi5 list the values of the factors, and ξ(xi ) is the weight of the
corresponding support point xi

i xi1 xi2 xi3 xi4 xi5 ξ(xi )

1 −2.000 −2 −2 −2.000 −2 0.093630

2 −2.000 2 2 −2.000 −2 0.092334

3 2.000 −2 −2 2.000 −2 0.062242

4 2.000 2 −2 2.000 −2 0.075893

5 2.000 2 2 2.000 −2 0.065934

6 −2.000 −2 2 −2.000 2 0.076828

7 −2.000 2 −2 2.000 2 0.089598

8 −0.930 2 −2 −2.000 −2 0.080512

9 −1.739 −2 −2 2.000 2 0.060395

10 −2.000 −2 −2 −1.340 2 0.024540

11 −0.528 2 −2 2.000 2 0.004427

12 −1.636 2 2 2.000 2 0.054245

13 2.000 −2 2 1.838 −2 0.055518

14 1.793 −2 2 2.000 2 0.083511

15 −2.000 2 2 −1.483 2 0.034830

16 1.391 −2 2 −2.000 −2 0.045563

– Depending on the test problem from Table 3, the runs
of the subroutine REX consume between 10 and 60
percent, and the runs of the subroutine LOC consume
between 15 and 85 percent of the overall computation
time. Other subroutines take negligible amounts of time.
Consequently, the speed of GEX ismostly determined by
the speed of the underlying discrete-space optimization
and the procedure that computes the sets of local optima
of the variance functions.

– The results of GEX are highly robust with respect to the
choice of the initial exploration set. Even if Xexp con-
structed by the subroutine INI only consists of 1000
random points of X (that is, if Xgrid is not used), there
is only a small variation in the resulting designs. In par-
ticular, for each model from Table 3, the fully random
initial exploration set leads, with a large probability, to
the same size of the support and the same value of the
criterion (within 6 significant digits); cf. Table 4.

We provide R (R Development Core Team 2020) codes
that are completely free to use and require minimal technical
expertise to be applied to any D-optimal design problem on
a cuboid grid; see www.iam.fmph.uniba.sk/ospm/Harman/
design/.

For illustration, in Table 2, we present the detailed design
for Model 6 as computed by GEX. All other designs can
be obtained within a few seconds by running the provided
R script. Note that due to the nature of GEX, the resulting
designs are “tidy”, i.e., there is no need to remove design

points with very small weights or round the positions of the
support points to a reasonable number of decimal places.

In optimal experimental design, the numerical compar-
ison of competing computational methods is a challenging
task. The reason is that there are no generally adopted bench-
mark suites and no guidelines for reporting the results of such
comparisons. Often, the source code is not available or is
fine-tuned to the few problems studied in the source paper.
Moreover, the quality of the resulting designs depends on
the computation time in a method-specific way and can be
strongly influenced by the choice of hardware, programming
language and implementation details; a seemingly minor
change can lead to a several-fold speed-up or slow-down.
Despite these methodological difficulties, however, at least a
brief comparison is necessary because there are a plethora of
heuristic or theoretical ideas applicable to the computation of
optimal designs, and failing to realize that a proposedmethod
is much worse than existing alternatives can be detrimental
to readers.

In Table 4, we provide the computation times, support
sizes and criterion values for the optimal or nearly optimal
designs as reported in the corresponding papers10 and as pro-
vided by an R implementation of GEX. We used Microsoft
R Open 3.5.3 and a 64-bit Windows 10 system with an Intel
Core i7-9750H processor operating at 2.60 GHz.

The authors of the competing methods used either MAT-
LAB or C++, both of which almost always permit a faster
implementation of a given algorithm than R does. Except
for Pronzato and Zhigljavsky (2014), the cited authors used
standard modern hardware.

The benchmark results for Models 2 and 3 were obtained
by running the algorithm of Pronzato and Zhigljavsky (2014)
11 times using our hardware and the MATLAB code kindly
provided by the authors. For these two models, the authors
also provide analytically calculated optimal designs based
on the results of Schwabe (2012); thus, it can be shown
that the designs obtained by GEX for these models have effi-
ciencies of at least 99.999% relative to the provably optimal
designs. For Models 1 and 4, the CPU times and benchmark
design were taken from Table 9 in Duarte et al. (2018). The
results for Models 5 and 9 from Lukemire et al. (2019) were
obtained by running the compiled instance of the program
written in C++ provided by the authors, with the number
of iterations set to 2000 and the required number of support
points predetermined byGEX.We ran each instance 11 times
and recorded the computation times and criterion values for
the resulting designs. The benchmark designs for Models 8
and 10 can be found in Tables 5 and 11 of Xu et al. (2019) and
the computation times are based on personal communication
with the lead author ofXu et al. (2019). Finally, the results for

10 In selected cases, we used our own hardware to recompute the
designs; see the following text.

123

www.iam.fmph.uniba.sk/ospm/Harman/design/
www.iam.fmph.uniba.sk/ospm/Harman/design/


70 Page 10 of 13 Statistics and Computing (2021) 31 :70

Ta
bl
e
3

D
es
cr
ip
tio

ns
of

th
e
be
nc
hm

ar
k
m
od
el
s,
th
e
no
m
in
al
pa
ra
m
et
er

θ 0
us
ed

an
d
th
e
de
si
gn

sp
ac
e
X

#
M
od
el

θ 0
D
es
ig
n
sp
ac
e
X

k
m

1
y(
x)

∼
N

(η
,
σ
2
),

η
=

1
1+

eh
T

(x
)θ
,

(−
2,

0.
5,
0.
5,
0.
1)

T
[0,

5] 0
.0
01

×
[0,

1] 0
.0
01

2
4

h
T
(x

)
=

(1
,
x 1

,
x 2

,
x 1
x 2

)

2
y(
x)

∼
N

(η
,
σ
2
),

(1
,
1,
2,

0.
7,
0.
2)

T
[0,

2] 0
.0
01

×
[0,

10
] 0.0

01
2

5

η
=

θ 1
+

θ 2
e−

θ 3
x 1

+
θ 4

θ 4
−θ

5
(e

−θ
5
x 2

−
e−

θ 4
x 2

)

3
y(
x)

∼
N

(η
,
σ
2
),

η
=

h
T
(x

)θ
,

do
es

no
ta
ff
ec
tt
he

de
si
gn

[−
1,
1]2 0.

00
1

2
7

h
T
(x

)
=

(1
,
x 1

,
x 2

,
x2 1

,
x2 2

,
x3 1

,
x3 2

)

4
y(
x)

∼
P
oi
s(

η
),

η
=

eh
T
(x

)θ
,

(0
.5

,
−0

.2
,
0.
5,

−0
.2

,
−0

.1
,

[−
1,
1]3 0.

00
1

3
10

h
T
(x

)
=

(1
,
xT

,
x2 1

,
x2 2

,
x2 3

,
x 1
x 2

,
x 1
x 3

,
x 2
x 3

)
0.
2,

−0
.1

,
0.
2,

−0
.1

,
0.
2)

T

5
y(
x)

∼
B
in

(1
,
η
),

η
=

eh
T

(x
)θ

1+
eh

T
(x

)θ
,

(−
1,
2,

0.
5,

−1
,
−0

.2
5,
0.
13

)T
{−

1,
1}4

×
[5,

35
] 0.0

01
5

6

h
T
(x

)
=

(1
,
xT

)

6
y(
x)

∼
B
in

(1
,
η
),

η
=

F
(h

T
(x

)θ
),

(0
.5

,
0.
7,
0.
18

,
−0

.2
,
−0

.5
8,
0.
51

)T
[−

2,
2]5 0.

00
1

5
6

h
T
(x

)
=

(1
,
xT

)

7
y(
x)

∼
B
in

(1
,
η
),

η
=

eh
T

(x
)θ

1+
eh

T
(x

)θ
,

(0
.5

,
0.
7,
0.
18

,
−0

.2
,
−0

.5
8,
0.
51

)T
[−

2,
2]5 0.

00
1

5
6

h
T
(x

)
=

(1
,
xT

)

8
y(
x)

∼
B
in

(1
,
η
),

η
=

eh
T

(x
)θ

1+
eh

T
(x

)θ
,

(−
0.
49
26

,
−0

.6
28

,
−0

.3
28
3,
0.
43
78

,
[−

3,
3]7 0.

00
1

7
8

h
T
(x

)
=

(1
,
xT

)
0.
52
83

,
−0

.6
12

,
−0

.6
83
7,

−0
.2
06
1)

T

9
y(
x)

∼
B
in

(1
,
η
),

η
=

eh
T

(x
)θ

1+
eh

T
(x

)θ
,

(3
,
0.
5,
0.
75

,
1.
25

,
0.
8,
0.
5,
0.
8,

{−
1,
1}4

×
[50

,
90

] 0.0
1
×

[30
,
55

] 0.0
1

10
11

h
T
(x

)
=

(1
,
xT

)
−0

.4
,
−1

.0
,
2.
65

,
0.
65

)T
×[

0,
10

] 0.0
1
×

[18
,
48

] 0.0
1

×[
0.
12
5,
0.
42
5] 0

.0
01

×
[5,

15
] 0.0

1

10
y(
x)

∼
B
in

(1
,
η
),

η
=

eh
T

(x
)θ

1+
eh

T
(x

)θ
,

(3
,
0.
5,
0.
75

,
1.
25

,
0.
8,
0.
5,
0.
8,

{−
1,
1}4

×
[50

,
90

] 0.0
1
×

[30
,
55

] 0.0
1

10
16

h
T
(x

)
=

(1
,
xT

,
x 1
x 9

,
x 2
x 5

,
x 3
x 4

,
x 6
x 7

,
x 8
x 1

0
)

−0
.4

,
−1

.0
,
2.
65

,
0.
65

,
0.
01

,
×[

0,
10

] 0.0
1
×

[18
,
48

] 0.0
1

−0
.0
2,

0.
03

,
−0

.0
4,
0.
05

)T
×[

0.
12
5,
0.
42
5] 0

.0
01

×
[5,

15
] 0.0

1

T
he

le
ve
ls
of

di
sc
re
tiz

at
io
n
of

th
e
co
nt
in
uo

us
in
te
rv
al
s
ar
e
in
di
ca
te
d
by

su
bs
cr
ip
ts
.F

or
in
st
an
ce
,[−

1,
1]2 0.

00
1
de
no

te
s
tw
o
fa
ct
or
s
ra
ng

in
g
fr
om

-1
to

1,
ea
ch

of
th
em

di
sc
re
tiz

ed
w
ith

a
st
ep

si
ze

of
0.
00
1.

T
he

co
lu
m
ns

la
be
le
d
k
an
d
m

gi
ve

th
e
nu
m
be
r
of

fa
ct
or
s
an
d
th
e
nu
m
be
r
of

pa
ra
m
et
er
s,
re
sp
ec
tiv

el
y.
T
he

sy
m
bo
l
F
in

th
e
de
fin

iti
on

of
M
od
el

6
de
no
te
s
th
e
st
an
da
rd

no
rm

al
cu
m
ul
at
iv
e

di
st
ri
bu
tio

n
fu
nc
tio

n

123



Statistics and Computing (2021) 31 :70 Page 11 of 13 70

Ta
bl
e
4

C
om

pa
ri
so
n
of

G
E
X
w
ith

th
e
co
m
pe
tin

g
m
et
ho
ds

on
th
e
be
nc
hm

ar
k
m
od
el
s
in

Ta
bl
e
3

#
t G

E
X
(s
ec
)

Φ
∗ G
E
X

s G
E
X

So
ur
ce

C
O
M

t C
O
M

(s
ec
)

Φ
∗ C
O
M

s C
O
M

ef
f C

O
M

2
2.
20

–3
.6
7

0.
11
75
78

9
Pr
on
za
to

an
d
Z
hi
gl
ja
vs
ky

(2
01
4)

3.
68
–3
.9
2

0.
11
75
78
–0
.1
17
57
8

9
1.
00
00

3
0.
96

–1
.5
1

0.
22
15
67

16
Pr
on
za
to

an
d
Z
hi
gl
ja
vs
ky

(2
01
4)

3.
05
–3
.3
3

0.
22
15
67
–0
.2
21
56
7

16
1.
00
00

1
0.
22

–0
.4
5

0.
03
38
93
5

4
D
ua
rt
e
et
al
.(
20
18
)

12
.0
0

0.
03
38
90
4

4
0.
99
99

4
1.
74

–2
.2
5

0.
87
05
42

19
D
ua
rt
e
et
al
.(
20
18
)

39
.8
1

0.
85
30
86

15
0.
97
99

5
2.
84

–5
.1
9

0.
35
19
96

15
L
uk
em

ir
e
et
al
.(
20
19
)

61
.0
5–
63
.7
6

0.
34
82
10
–0
.3
50
21
7

15
0.
98
92
-0
.9
94
9

9
2.
05

–3
.0
6

0.
03
81
94
8

13
L
uk
em

ir
e
et
al
.(
20
19
)

25
7.
89
–3
21
.3
8

0.
03
78
39
9–
0.
03
81
87
2

13
0.
99
07
-0
.9
99
8

8
15
.0
4
–2
8.
63

1.
07
28
7

26
X
u
et
al
.(
20
19
)

≤
60
0

1.
06
96
2

33
0.
99
70

10
4.
96

–6
.8
9

0.
01
15
14
5

19
X
u
et
al
.(
20
19
)

≤
60

0.
01
14
32
9

18
0.
99
29

6
7.
53

–1
2.
95

1.
26
60
9

16
G
ar
cí
a-
R
ód
en
as

et
al
.(
20
20
)

34
.3
6–
22
5.
24

1.
05
26
3–
1.
23
45
7

≤
25

0.
83
14
–0
.9
75
1

7
1.
86

–2
.8
8

0.
53
93
59

15
G
ar
cí
a-
R
ód
en
as

et
al
.(
20
20
)

9.
82
–8
3.
23

0.
46
51
16
–0
.5
26
31
6

≤
25

0.
86
23
–0
.9
75
8

T
he

fir
st
co
lu
m
n
gi
ve
s
th
e
m
od
el
nu
m
be
r,
th
e
co
lu
m
n
la
be
le
d
t G

E
X
gi
ve
s
th
e
m
in
im

um
an
d
m
ax
im

um
co
m
pu
ta
tio

n
tim

es
ou
to

f
11

ru
ns

of
G
E
X
,Φ

∗ G
E
X
is
th
e
ob

ta
in
ed

cr
ite

ri
on

va
lu
e,
an
d
s G

E
X

is
th
e
su
pp
or
ts
iz
e
of

th
e
ob
ta
in
ed

de
si
gn

(f
or

ea
ch

m
od
el
,t
he

de
si
gn
s
re
su
lti
ng

fr
om

al
l1

1
ru
ns

ha
d
th
e
sa
m
e
cr
ite
ri
on

va
lu
e
as

w
el
la
s
th
e
sa
m
e
su
pp
or
ts
iz
e)
.T

he
co
lu
m
ns

la
be
le
d
t C

O
M
,Φ

∗ C
O
M

an
d
s C

O
M

pr
es
en
tt
he

co
m
pu
ta
tio

n
tim

es
,c
ri
te
ri
on

va
lu
es

an
d
th
e
su
pp
or
ts
iz
es
,r
es
pe
ct
iv
el
y,
of

th
e
de
si
gn
s
co
m
pu
te
d
vi
a
th
e
co
m
pe
tin

g
m
et
ho
ds

(s
pe
ci
fie
d
in

th
e
co
lu
m
n
tit
le
d
“S

ou
rc
e
C
O
M
”)
.

T
he

co
lu
m
n
la
be
le
d
ef
f C

O
M
lis
ts
th
e
ef
fic

ie
nc
ie
s
Φ

∗ C
O
M

/
Φ

∗ G
E
X
of

th
e
de
si
gn
s
co
m
pu
te
d
by

th
e
co
m
pe
tin

g
m
et
ho
ds

re
la
tiv

e
to

th
e
de
si
gn
s
co
m
pu
te
d
by

G
E
X
.M

or
e
de
ta
ile
d
de
sc
ri
pt
io
ns

ar
e
gi
ve
n

in
th
e
te
xt

Models 6 and 7 are available in Table 11 of García-Ródenas
et al. (2020); note that the listed results encompass the time
and efficiency performance of 5 different algorithms.

From Table 4, it is clear that GEX produces designs with
higher efficiency than the competing methods in a shorter
computation time, sometimes by several orders ofmagnitude.
The only close competitor is the algorithm fromPronzato and
Zhigljavsky (2014). In fact, the designs for Models 2 and 3
obtained by this algorithm are slightly better than the designs
for the same models obtained by GEX, although the differ-
ence is not within 6 significant digits of the criterion values
displayed in Table 4. However, the practical applicability of
the algorithm from Pronzato and Zhigljavsky (2014) is lim-
ited to models with small numbers of factors; if the number
of factors is greater than 2, the computation becomes exceed-
ingly slow. Moreover, in contrast to GEX, the application of
this algorithmmay require theoretical analysis specific to the
problem.

Nevertheless, we stress that all compared algorithms have
their own advantages; for instance, they may be more appro-
priate for computing efficient designs for very generalmodels
or special optimality criteria.

4 Final comments

We have proposed a conceptually simple approach and its
concrete and efficient specification, which we call the galaxy
exploration method (GEX). The proposed algorithm can be
used for computing D-optimal or nearly D-optimal approx-
imate experimental designs on large grids and, by means of
dense discretization, on continuousmultidimensional cuboid
spaces.

With a suitable transformation or embedding, GEX can
also be applied to compute efficient designs on noncuboid
design spaces. For instance, suppose that the experimental
design space is the unit disk D in a plane. Then, we have
the following two options for facilitating the application of
GEX:

1. Use the radial and angular coordinates of the design
points as independent factors. More formally, transform
D into a cuboid design space X = [0, 1] × [0, 2π ] by
means of the polar transformation.

2. Embed D into the larger design space X = [−1, 1] ×
[−1, 1] and extend the set f(x), x ∈ D, with artificial
f(x) = 0 for all x ∈ X \ D.

While feasible, assessing the actual performance of GEX
under such transformations and embeddings, or adapting the
principle of GEX itself to noncuboid design spaces, will
require further research.

123



70 Page 12 of 13 Statistics and Computing (2021) 31 :70

Although we have focused on D-optimality in this paper,
GEX can be directly adapted to any other criterion for which
there exist a simple analogue of the variance function and
an appropriate discrete-space solver. This is the case for the
popular c-, A-, and I -optimality criteria (see, e.g., Harman
and Jurík 2008; Harman et al. 2020) as well as for other
criteria.

In this paper, we have used the approach of local optimal-
ity to compute efficient designs for nonlinear models. Note
that locally optimal designs not only are useful by them-
selves but also are crucial for several methods of constructing
robust experimental designs; as examples, let us mention
so-called maximin efficient designs (see, e.g., Müller and
Pázman 1995; Dette et al. 2006) and the clustering method-
ology developed by Dror and Steinberg (2006). For other
approaches to experimental design of nonlinear models, such
as the pseudo-Bayesian and minimax approaches, the poten-
tial for utilizing GEX will require further research. In the
meantime, we refer the reader to alternative algorithms, such
as those proposed by Chen et al. (2015), Masoudi et al.
(2017), Lukemire et al. (2019), and Masoudi et al. (2019).

The performance of GEX can be undoubtedly improved
even further, for instance, through modification of the explo-
ration sets, clever adaptive changes to the levels of each
factor, or parallelization of the computation. These are also
interesting topics for further research.
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