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Abstract
We present a Bayesian nonparametric Poisson factorization model for modeling dense network data with an unknown and
potentially growing number of overlapping communities. The construction is based on completely random measures and
allows the number of communities to either increase with the number of nodes at a specified logarithmic or polynomial rate,
or be bounded. We develop asymptotics for the number and size of the communities of the network and derive a Markov
chain Monte Carlo algorithm for targeting the exact posterior distribution for this model. The usefulness of the approach is
illustrated on various real networks.

Keywords Poisson factorization · Generalized gamma process · Community detection

1 Introduction

Nonnegative matrix factorization (NMF) methods (Paatero
and Tapper 1994; Lee and Seung 2001) aim to find a latent
representation of a positive n × m matrix A as a sum of K
nonnegative factors. For integer-valued data, Poisson factor-
ization models (Dunson and Herring 2005) offer a flexible
probabilistic framework for nonnegative matrix factorization
and have foundwide applicability in signal processing (Virta-
nen et al. 2008; Cemgil 2009) or recommender systems (Ma
et al. 2011; Gopalan et al. 2015). In this paper, we focus
on the application to network analysis, where m = n and
the n × n count matrix A, the adjacency matrix, represents
the number of directed or undirected interactions between
n individuals; the latent factors may be interpreted as latent
and potentially overlapping communities (Ball et al. 2011),
such as sport team members or other social activities circles.
We also consider binary data where the matrix represents the
existence or absence of a directed or undirected link between
individuals. The estimated latent factors can be used for the
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prediction of missing links/interactions, or for interpretation
of the uncovered latent community structure.

Poisson factorization approaches require the user to set the
number K of latent factors, which is typically assumed to be
independent of the sample size n. To address this problem,
Zhou et al. (2012), Gopalan et al. (2014) and Zhou (2015)
proposed Bayesian nonparametric approaches that allow the
number of latent factors to be estimated from the data, and to
grow unboundedly with the size n of thematrix. In particular,
Gopalan et al. (2014) and Zhou (2015) considered a Poisson
factorization model

Ai j ∼ Poisson

(+∞∑
k=1

rkvikv jk

)
, 1 ≤ i, j ≤ n (1)

where the positive weights (rk)k≥1 represent the importance
of community k, and vik > 0 represents the level of affilia-
tion of individual i to community k. Gopalan et al. (2014) and
Zhou (2015), extending work from Titsias (2008), assume
that the weights (rk) are the jumps of a gamma process,
ensuring the sum in Eq. (1) is almost surely finite. Using
properties of Poisson random variables, the model (1) can be
equivalently represented as

Ai j =
+∞∑
k=1

Zi jk (2)

Zi jk ∼ Poisson(rkvikv jk), k = 1, 2, . . . (3)
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for 1 ≤ i, j ≤ n. The latent count variables Zi jk may be
interpreted as the number of latent interactions between two
individuals i and j via community k, the overall number Ai j

of interactions being the sum of those community interac-
tions. For example, two members of the same company who
also play sport together may meet five times at the company,
and twice at the sport center, resulting in seven interactions
overall. The overall number

Kn =
+∞∑
k=1

1∑
1≤i, j≤n Zi jk>0 (4)

of communities k that generated at least one interaction
between then individuals is termed the number ofactive com-
munities. For the gamma process Poisson factormodel (Zhou
2015), the number of active communities Kn grows logarith-
mically with the number n of individuals. The logarithmic
growth assumption may be too restrictive. For example, the
number of active communities may actually be unknown but
bounded above; alternatively, it may increase at a rate faster
or slower than logarithmic.

In this paper, we consider generalizations of the gamma
process Poisson factorization model, using completely ran-
dom measures (CRM) (Kingman 1967). CRMs offer a flex-
ible and tractable modeling framework (Lijoi and Prünster
2010). The proposed models fit in the class of multivariate
generalized Indian Buffet process priors recently developed
by James (2017) and are also related to compound completely
random measures (Griffin and Leisen 2017). We consider
that (rk) are the points of Poisson point process with mean
measure ρ. Depending on the properties of this measure,
the number of active communities Kn is either (i) bounded,
with a random upper bound, (ii) unbounded and grows sub-
polynomially (e.g., log n or log log n) or (iii) unbounded
and grows as n2σ , for some σ ∈ (0, 1). For the imple-
mentation, we focus in particular on the generalized gamma
process (Brix 1999) where a single parameter flexibly con-
trols all three behaviors.

The article is organized as follows. In Sect. 2, we describe
the statistical model for count and binary matrices. The
asymptotic properties of the model are derived in Sect. 3.
In particular, we relate the asymptotic growth of the num-
ber of active features to the regular variation properties of
the measure ρ. In Sect. 4, we derive a Markov chain Monte
Carlo algorithm for posterior inference that does not require
any approximation to the original model. In Sect. 5, we con-
sider applications of our approach to overlapping community
detection and link detection in networks, considering real
network data with up to tens of thousands of nodes.

2 Statistical model for count and binary data

2.1 General construction

Wepresent here themodel for directed count or binary obser-
vations, but the model can be straightforwardly adapted to
undirected interactions. Let (rk)k=1,2..., be the points of a
Poisson point process with σ -finite mean measure ρ on
(0,+∞), and assume that vik , i = 1, . . . , n, k ≥ 1, are
independent and identically distributed from some probabil-
ity distribution F on R+ = [0,+∞). The variable vik can
be interpreted as the level of affiliation of an individual i to
community k, and rk to the importance of that community.

For count data (Ai j ), where Ai j denotes the number of
directed interactions from node i to node j , we consider the
Poisson factorization model

Ai j | (rk, vik) ∼ Poisson

(+∞∑
k=1

rkvikv jk

)
, 1 ≤ i, j ≤ n.

(5)

Denoting Λi j = ∑+∞
k=1 rkvikv jk the Poisson rate for Ai j , the

n × n rate matrix Λ(n) = (Λi j )1≤i, j≤n admits the following
factorization as an infinite sum of rank-1 matrices

Λ(n) =
+∞∑
k=1

rkv1:n,kv
ᵀ
1:n,k

where v1:n,k = (v1k, . . . , vnk)
ᵀ. For the model to be well

specified, the sum in the right-hand side of Eq. (5) needs to
be almost surely finite. A necessary and sufficient condition
is∫∫

(1 − e−rv2)ρ(dr)F(dv) < +∞ and∫∫
(1 − e−rv1v2)ρ(dr)F(dv1)F(dv2) < +∞. (6)

A sufficient set of conditions1, which we will assume to hold
in the rest of this article, is that ρ is a Lévy measure and F
has finite second moment, that is

∫ +∞

0
(1 − e−r )ρ(dr) < +∞ and (A1)

∫ +∞

0
v2F(dv) < +∞. (A2)

1 The sufficientness follows from the bound (34) given in Appendix.

123



Statistics and Computing (2021) 31 :63 Page 3 of 24 63

In this case, denoting δv the Dirac measure at vector v, the
community affiliations and weights for n nodes can be con-
veniently represented by a completely random measure

G =
∑
k≥1

rkδv1:n,k (7)

on R
n+ with mean measure ρ(dr)F

⊗n
(dv1, . . . , dvn) where

F
⊗n

denotes the nth product measure of F ; see Kingman
(1967) and Lijoi and Prünster (2010) for background on
CRMs and their applications. If the Lévy measure is finite,
that is, if

∫ +∞

0
ρ(dr) < +∞

then the number of points (rk), and therefore the number
of communities, is almost surely finite. Otherwise, when∫

ρ(dr) = +∞, the number of communities is infinite.
Whenwe have binary observation (Yi j ), we treat the count

matrix (Ai j ) as a latent variable, and consider that Yi j =
1Ai j>0 as in (Caron and Fox 2017; Zhou 2015), where 1 is
the indicator function. Integrating out (Ai j ), this leads to the
following model for binary observations

Yi j | (rk, vik) ∼ Ber

(
1 − exp

[+∞∑
k=1

rkvikv jk

])
,

1 ≤ i, j ≤ n. (8)

2.2 Specific model

In the inference and experimental part, we use the following
choice for the ρ and F . The Lévy measure ρ is taken to be
that of a generalized gamma process (GGP, see Hougaard
(1986), Brix (1999), James (2002), Pitman (2003))

ρ(dr) = κ

Γ (1 − σ0)
r−1−σ e−τr dr (9)

where σ0 ∈ (−∞, 1), κ > 0 and τ > 0. When σ0 = 0, we
obtain a gamma process, and the model corresponds to that
of Zhou (2015). When σ0 < 0, the Lévy measure is finite,
while when σ0 ≥ 0, the Lévy measure is infinite.

Concerning the affiliations, we will assume that F is a
gamma distribution with parameters α > 0 and β > 0. That
is, the probability density function (pdf) f is given by

f (v) = βα

Γ (α)
vα−1e−βv

where Γ denotes the usual gamma function. The hyper-
parameters (κ, σ0, τ, α, β) and (κ ′ = κ/β2σ0 , σ0, τ

′ =

τβ2, α, 1) induce the same distribution for the latent factors
(Λi j ). In order to guarantee the identifiability of the hyper-
parameters, we therefore set β = 1.

2.3 Related work

Several network models building on latent factors have been
proposed in the last years and have proven to be very useful
tools (Hoff et al. 2002;Airoldi et al. 2008;Hoff 2009;Durante
andDunson 2014). In general, thesemodels differ from Pois-
son factor models since they use a different likelihood for the
connections. However, they share a similar approach: every
node i is embedded in R

K+ (where K is the number of latent
factors or communities), resulting in a latent representation
Xi quantifying the affiliation of node i to each latent fac-
tor. Then, the probability of an edge (i, j) is function of the
similarity between Xi and X j .

The model introduced in this section can be seen from
different perspectives that nicely connect it to the existing
literature. First, the model can be seen as obtained from a
functional of a CRM. Recall the definition of the CRM G
in Eq. (7). Define the n × n matrix Λ(n) as the following
functional of G

Λ(n) =
∫

(0,+∞)n
h(u)G(du) =

∑
k≥1

rkv1:n,kv
ᵀ
1:n,k

where h(u) = uuᵀ. Alternatively, this can be interpreted
in the framework of compound completely random mea-
sures (Griffin and Leisen 2017). For each 1 ≤ i, j ≤ n,
denote Gi j = ∑

k≥1 rkvikv jkδζk where ζk are some commu-
nity locations in some domain Θ , iid from some distribution
H , irrelevant here. Then, (Gi j )1≤i, j≤n are compound CRMs
on Θ and Λi j = Gi j (Θ). In the same vein, the model can
also be interpreted as an instance of the class of Generalized
Indian Buffet Processes introduced by James (2017), where
the Bernoulli likelihood (of the classical IBP) is replaced
by any likelihood as long as the observation can take the
value 0 with strictly positive probability. More precisely, if
we denote Z (n)

k the n × n matrix with entries Zi jk , then the

matrix-valued process
∑

k≥1 Z
(n)
k δζk is a draw from a gener-

alized multivariate Indian buffet process.
Finally, asmentioned in the introduction, themodel admits

as a special case the Poisson factorization based on the
gamma process of Zhou (2015).

3 Asymptotic Properties

In this section, we study the asymptotic properties of the pro-
posed class of models, and in particular the growth rate of the
number of active communities as the sample size n grows,
and the asymptotic proportion of communities of a given size.
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For a given sequence (rk)k≥1 and (vik)i≥1,k≥1, denote A(n)
i j

and Z (n)
i jk where n ≥ 1, 1 ≤ i, j ≤ n, k ≥ 1, respectively, the

number of directed interactions and the number of commu-
nity directed interactions distributed from Eqs. (2) and (3).
We consider two different asymptotic settings

– Unconstrained setting. This setting is more general, and
we only assume that A(n)

i j and Z (n)
i jk are marginally sam-

pled from Eqs. (2) and (3).
– Constrained setting. For any 1 ≤ m ≤ n, and 1 ≤ i, j ≤

m, A(n)
i j = A(m)

i j . In this setting, we suppose that the
connections between the already observed nodes remain
unchanged. It is equivalent to assuming that there is an
infinite but fixed graph and A(n) represents the connec-
tions between the n first nodes of that graph.

All the results of this section, otherwise stated, hold for
the unconstrained setting. We indicate when a stronger result
holds in the constrained setting. All proofs are given in
Appendix A.

3.1 General model

Let d(n)
k be the degree of the community/feature k, corre-

sponding to the number of interactions amongst n individuals
due to community k, and defined as

d(n)
k =

∑
1≤i, j≤n

Z (n)
i jk . (10)

A community is active if d(n)
k ≥ 1. The number of active

communities is therefore defined as

Kn =
+∞∑
k=1

1
d(n)
k ≥1

(11)

Denote Kn, j the number of communities with degree j ≥ 1

Kn, j =
+∞∑
k=1

1
d(n)
k = j

Note that under the constrained setting, d(n)
k , Kn and∑


≥ j Kn,
 are all almost surely non-decreasing with the
sample size n, whereas this is not necessarily the case for
the unconstrained setting.

Proposition 1 UnderAssumptions (A1) and (A2), the number
of active communities Kn is a Poisson random variable with
mean

Ψ (n) =
∫ (

1 − e−r(
∑n

i=1 vi )
2
) [

n∏
i=1

F(dvi )

]

ρ(dr) < +∞. (12)

The number Kn, j of communities with degree j is also Pois-
son distributed, with mean

Ψ j (n) = 1

j !
∫

r j

(
n∑

i=1

vi

)2 j

e−r(
∑n

i=1 vi )
2

[
n∏

i=1

F(dvi )

]
ρ(dr).

(13)

Finally, for j ≥ 1,
∑
k≥ j

Kn,k , the number of communities

with degree at least j is also Poisson distributed with mean∑
k≥ j

Ψk(n).

In the rest of the section, we relate the asymptotic behavior
of quantities of interest to the properties of the meanmeasure
ρ. Let consider the tail Lévy intensity defined as

∀x > 0, ρ(x) =
∫ +∞

x
ρ(dr).

We assume that ρ is a regularly varying function at 0, that is

ρ(x) 	 x−σ 
(1/x) as x → 0 (A4)

where σ ∈ [0, 1) and 
 is a slowly varying function verifying
limt→+∞ 
(at)/
(t) = 1 for all a > 0. Besides, we write
a(x) 	 b(x) if lim a(x)/b(x) = 1. Examples of slowly
varying functions include functions converging to a constant,
loga t for any t , log log t , etc. Note that the CRM is finite
activity if and only if σ = 0 and 
(t) → C < +∞.

Now, let us consider the asymptotic behavior of the num-
ber of active communities Kn .

Proposition 2 Let Kn be the number of active communities.
Then for 0 ≤ σ < 1,

E[Kn] 	 Γ (1 − σ)m2σ
f n2σ 
(n2) (14)

as n tends to infinity, where m f = ∫
vF(dv). Additionally,

for 0 < σ < 1,

Kn 	 E[Kn] a.s. (15)

If we further assume that the sequence (Kn)n≥1 is almost
surely non-decreasing (as in the constrained setting), then
(15) holds for σ = 0 and 
(t) → +∞ as well. In the
finite activity case, that is σ = 0 and 
(t) → ρ(0) =∫ +∞
0 ρ(dr) < ∞, we have

Kn → K∞
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as n tends to infinity, where K∞ is a Poisson random variable
with mean ρ(0). The above convergence holds in distribution
for the unconstrained setting and almost surely for the con-
strained setting.

Proposition 3 Let Kn, j be the number of communities of
degree j . Then for 0 < σ < 1 and any j ≥ 1,

Kn, j 	 σΓ ( j − σ)

j ! m2σ
f n2σ 
(n2) a.s. (16)

as n tends to infinity. Therefore,

Kn, j

Kn
→ σΓ ( j − σ)

Γ (1 − σ) j ! a.s. (17)

as n tends to infinity. This corresponds to a power-law behav-
ior as

σΓ ( j − σ)

Γ (1 − σ) j ! 	 σ

jσ+1

for large j . If we further assume that for all k ≥ 1,(∑
j≥k

Kn, j

)
n≥1

is non-decreasing (constrained setting), then

(17) holds also for σ = 0 and 
(t) → +∞.

It has been observed empirically that in many networks,
the distribution of the sizes of the communities displays a
power-law behavior fS(s) ∼ s−1−σ where fS is the dis-
tribution of community sizes and σ > 0 [(see for example
(Stegehuis et al. 2016; Radicchi et al. 2004; Clauset et al.
2004; Arenas et al. 2004)]. As stated in Proposition 17,
this property cannot be captured in the framework of Zhou
(2015) for example where σ = 0 is constant. These empir-
ical observations seem to indicate that models with flexible
σ are needed.

Finally, let c(n)(k, k′) denote the cosine between the cor-
responding affiliation vectors

c(n)(k, k′) =
∑n

i=1 vikvik′√∑
i v

2
ik

√∑
i v

2
ik′

.

This coefficient gives a measure of the overlap between two
communities k and k′. By the law of large numbers, for any
k �= k′,

c(n)(k, k′)	 (
∫

vF(dv))2∫
v2F(dv)

a.s. as n → +∞.

3.2 Specific case of the GGP

In the case of the GGP, we have

ρ(x) = κτσ0Γ (−σ0, τ x)

Γ (1 − σ0)
	

⎧⎪⎨
⎪⎩

− κτσ0

σ0
if σ0 < 0

κ log(1/x) if σ0 = 0
κx−σ0

σ0Γ (1−σ0)
if σ0 > 0

as x tends to 0, where Γ (a, x) is the incomplete gamma
function. Note that ρ(x) is of the form x−σ 
(1/x) where
σ = max(0, σ0) and


(t) =

⎧⎪⎨
⎪⎩

− κτσ0

σ0
if σ0 < 0

κ log(t) if σ0 = 0
κ

σ0Γ (1−σ0)
if σ0 > 0

is a slowly varying function at infinity. The results of the
previous subsection therefore apply. For simplicity, we state
the results for the constrained setting.We have, almost surely
as n → +∞

Kn 	
⎧⎨
⎩

K∞ if σ0 < 0
2κ log(n) if σ0 = 0
κα2σ0n2σ0/σ0 if σ0 > 0

where K∞ ∼ Poisson(−κτσ0/σ0). Additionally, for σ ≥ 0,

Kn, j

Kn
→ σ0Γ ( j − σ0)

Γ (1 − σ0) j !
almost surely as n → +∞. Finally,

c(n)(k, k′) → α

α + 1
.

Therefore,σ0 governs the asymptotic behavior of the num-
ber of active communities. Kn is bounded with a random
upper bound (σ0 < 0), increases logarithmically (σ0 = 0)
or polynomially (σ0 > 0). In the polynomial case, σ0 also
controls the power-law exponent of the proportion of com-
munities of a given size. The parameter κ is an overall
linear scaling parameter. Finally, the parameter α governs
the amount of overlapping between two communities.

4 Simulation, posterior characterization and
inference

In this section, we describe themarginal distribution and con-
ditional characterization of the model. Building on these, we
derive an exact sampler for simulating from the model, and
a Markov chain Monte Carlo algorithm to approximate the
posterior distribution. Importantly, the sampler targets the
distribution of interest and does not require any truncation
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or approximation. For simplicity of exposition, we assume
that ρ and F are absolutely continuous with respect to the
Lebesgue measure, with ρ(dr) = ρ(r)dr and F(dx) =
f (x)dx .

4.1 Marginal distribution and simulation

For a fixed n, recall that Kn denotes the number of active
communities. Let ((̃r1, ṽ1:n,1), . . . , (̃rKn , ṽ1:n,Kn )) be the
subsequence of (rk, v1:n,k) such that community k is active,
meaning that

∑
1≤i, j≤n Zi jk ≥ 1, arranged in random order.

Let Z̃i jk be the number of community interactions corre-
sponding to the active community (̃rk, ṽ1:n,k). Note that

Ai j =
Kn∑
k=1

Z̃i jk . (18)

Let Z̃k = (Z̃i jk)1≤i, j≤n . Using Proposition 5.2 of James
(2017), we obtain the following lemma.

Lemma 1 (Marginal distribution) The joint distribution of
(Kn, (̃r1:Kn , ṽ1:n,1:Kn ), (Z̃k)k=1,...,Kn ) is given by

Kn ∼ Poisson(Ψ (n)) (19)

where Ψ (n) is defined in Eq.(12), and

p((̃r1:Kn , ṽ1:n,1:Kn )|Kn) =
Kn∏
k=1

p(̃rk, ṽ1:n,k |Kn)

where

p(̃rk, ṽ1:n,k |Kn) ∝ (1 − e−r̃k (
∑n

i=1 ṽik )
2
)ρ(̃rk)

n∏
i=1

f (̃vik).

(20)

Finally, for each k = 1, . . . , Kn,

Z̃k |(̃r1:Kn , ṽ1:n,1:Kn ) ∼ tPoisson(̃rk ṽ1:n,k ṽ
ᵀ
1:n,k) (21)

where tPoisson(Λ) denotes the distribution of a integer-
valued matrix with Poisson entries with mean values Λi j ,
conditionally on the sum of the entries being strictly posi-
tive. This has probability mass function

p(A) =
⎧⎨
⎩ (1 − e− ∑

i j Λi j )−1 ∏
1≤i, j≤n

Λ
Ai j
i j e−Λi j

Ai j ! if
∑

i j Ai j > 0

0 otherwise

The model has an infinite number of parameters, but
Lemma 1 allows us to derive an algorithm to exactly sam-
ple from it, by successively simulating Kn , (̃r1:Kn , ṽ1:n,1:Kn ),
(Z̃k)k=1,...,Kn and A using Eqs. (19), (20), (21) and (18).

Sampling from the conditional distribution (21) can be
done efficiently by first sampling the number of multi-
edges

∑
i, j Z̃i, j,k from a truncated Poisson with mean

r̃k(
∑

i ṽi,k)
2, then sampling iid the end nodes of the edges

proportionally to the affiliation vector. Simulating from the
conditional distribution (20) can be more challenging since
it requires sampling a n + 1-dimensional vector. However,
if we suppose that the affiliations are Gamma distributed,
the problem reduces to sampling (̃rk,

∑
i ṽi,k), which is a

two-dimensional vector, and independently sample the nor-
malized affiliations from a Dirichlet distribution. Indeed, if
the affiliations are Gamma distributed, we consider the fol-
lowing change of variable.

ς̃k =
n∑

i=1

ṽik, k = 1, . . . , Kn (22)

ϕ̃ik = ṽik

ς̃k
, k = 1, . . . , Kn; i = 1, . . . , n (23)

This gives the following algorithm for exact simulation from
the model.

1. Sample Kn from Eq. (19)
2. For k = 1, . . . , Kn

(a) Sample (ϕ̃1k, . . . , ϕ̃nk) ∼ Dirichlet(α, . . . , α)

(b) Sample ς̃k from

p(ς̃) ∝ ψ(ς̃2)Gamma(ς̃; nα, β) (24)

(c) Sample r̃k |ς̃k from

p(̃r | ς̃ ) ∝ (1 − e−r̃ ς̃2
)ρ(̃r) (25)

(d) Sample Z̃ (n)
k from Eq. (21)

3. For 1 ≤ i, j ≤ n, set Ai j = ∑Kn
k=1 Z̃i jk

where ψ(t) = ∫ +∞
0 (1 − e−wt )ρ(dw) is the Laplace

exponent, Dirichlet(α, . . . , α) denotes the standard Dirich-
let distribution and Gamma(x; a, b) denotes the probability
density function of a Gamma random variable with param-
eters a and b, evaluated at x . In the case of the GGP, the
Laplace exponent is

ψ(t) = κ

σ
((t + τ)σ − τσ ). (26)

One can sample from Eqs. (24) and (25) using rejection.
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4.2 Posterior characterization

Using Proposition 5.1 in (James 2017), one can characterize
the conditional distribution of the CRM G given the latent
community counts Z̃i jk .

Lemma 2 Conditionally on (Z̃ (n)
k )k=1,...,Kn , the CRM G has

the same distribution as

G ′ +
Kn∑
k=1

r̃kδṽ1:n,k

where G ′ is an inhomogeneous CRM onR
n+ with mean inten-

sity

e
−r(

n∑
i=1

vi )
2

ρ(r)
n∏

i=1

f (vi )

and (r̃k, ṽ1:n,k)k=1,...,Kn are independent of G ′ and iid with
density

p(r̃k, ṽ1:n,k |Z̃ (n)
k ) = e−r̃k (

∑
i ṽik )

2
r̃ d̃kk ρ(̃rk)

n∏
i=1

ṽ
m̃ik
ik f (̃vik)

(27)

where m̃ik = ∑
j Z̃i jk + Z̃ j ik and d̃k = ∑

i, j Z̃i jk . .

In the case where f is a gamma pdf, we can use the
same reparameterization as in the previous subsection with
(ς̃k, ϕ̃1:n,k) in place of ṽ1:n,k . This leads to the following con-
ditional distributions.

φ̃1:n,k |Z̃ (n)
k ∼ Dirichlet(α + m̃1k, . . . , α + m̃nk)

p(ς̃k |Z̃ (n)
k ) ∝ �(d̃k, ς̃

2)Gamma(ς̃; nα + 2d̃k, β)

p(̃rk |ς̃k, Z̃ (n)
k ) ∝ e−r̃k ς̃2

k r̃ d̃kk ρ(̃rk)

where �(m, t) = ∫ +∞
0 rme−r tρ(r)dr . In the GGP case, we

have

�(m, t) = κ
Γ (m − σ)

Γ (1 − σ)
(t + τ)σ−m

and

r̃k |ς̃k, Z̃ (n)
k ∼ Gamma(d̃k − σ, ς̃2

k + τ).

4.3 Slice sampler for posterior inference

Werecall that θ denote the set of hyperparameters of themean
measure ρ and pdf f . To simplify the presentation, here we
suppose that we observe the complete adjacency matrix A,
which means that we observe a directed and weighted graph

with no missing (hidden) edge. The objective is to obtain
samples distributed from the conditional distribution

p(Kn, (̃rk, ṽ1:n,k)k=1,...,Kn , θ | A).

In the Appendix, we show how to do inference when we only
observe a partial graph (with missing edges to predict) that
can be directed or undirected, weighted or binary. In order to
leverage the Poisson factorization construction, we augment
the model with the latent community counts Z̃k . Addition-
ally, to deal with the unknown number of active communities
Kn , we use auxiliary slice variables, similarly to other Gibbs
sampler for Bayesian nonparametric models (Walker 2007;
Kalli et al. 2011; Favaro andTeh 2013). For each directed pair
(i, j) such that Ai j ≥ 1 consider the scalar latent variable

si j |(̃rk, Z̃i jk)k=1,...,Kn ∼ Unif

(
0, min

{k|Z̃i jk≥1}
r̃k

)
(28)

and denote s = mini j si j . Note that by definition, r̃k ≥ s
for all k = 1, . . . , Kn . In the following, we will consider the
communities k, active or inactive, which r is higher than s.
We use the notation · to denote the corresponding variables.
More precisely, let

G =
∑
k

rkδv1:n,k1rk≥s :=
Kn∑
k=1

rkδv1:n,k

be the CRM corresponding to the set of active or inactive
communities with weight rk ≥ s, of (almost surely finite)
cardinality Kn ≥ Kn . Denote Zi jk ≥ 0 the associated com-
munity interactions, and Zk = (Zi jk). The data augmented
slice sampler draws samples asymptotically distributed from

p((Zk)k=1,...,Kn
,G, θ, s | A).

The main steps of the algorithm are as follows.

1. For each directed pair (i, j) such that Ai j ≥ 1, Update
(Zi jk)k=1,...,Kn

given the rest of the variables,
2. Update the hyperparameters θ given the rest of the vari-

ables,
3. Update (G, s) given the rest of the variables.

The details of each step are given in Appendix B. Each iter-
ation of the Gibbs sampler has a time complexity scaling in
KnS where S is the number of nonzero entries of the matrix.
Therefore, the algorithm takes advantage of the sparsity of
the networks.Additionally, each entry of the sparse graph can
be dealt with independently, making the algorithm straight-
forwardly parallelizable.
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Fig. 1 Trace plots of a the number of active communities Kn and b σ , on a synthetic example

5 Experiments

We implement the algorithm described in the previous
section with the GGP-Gamma scores model. We assign
Gamma priors on the hyperparameters κ, τ, α with parame-
ters (0.1, 0.1). We fix β = 1. We allow up to a linear growth
of the number of communities, corresponding to σ < 0.5,
for small datasets and use a Gamma prior with parameter
(0.1, 0.1) on 1−2σ . For larger datasets, we restrictσ < 0.25,
meaning that the number of communities cannot grow at a
faster rate than

√
n. This is obtained by using a Gamma prior

with parameter (0.1, 0.1) on 1 − 4σ .
The model allows overlapping communities but, for visu-

alization purposes for example, it is useful to obtain an
associated partition of the nodes. For each iteration, one can
cluster the nodes by assigning each node to the community
where it is most active. That is, at iteration t of the MCMC
algorithm, define for i = 1, . . . , n

c(t)
i = argmaxk{

√
r (t)
k v

(t)
ik } (29)

the cluster membership of node i . We then compute an
approximate Bayesian point estimate ĉ = (̂c1, . . . , ĉn) of
the partition of the nodes, using Binder’s loss function (Lau
and Green 2007).

5.1 Synthetic datasets

Data generated from theGGP-gammamodel.Wefirst run the
algorithm on a synthetic dataset simulated from our model,
to check that the algorithm can recover the true parame-
ters. We sample a directed and unweighted graph from the
GGP-gamma model with size n = 800 and σ = 0.2, κ =

1, τ = 0.15, α = 0.05, β = 0.2. The number of edges of the
obtained graph is 20198, and the true number of active com-
munities is 42. We run three chains in parallel with 500, 000
iterations, with 250, 000 iterations for burn-in. We show in
Fig. 1 trace plots of the number of active communities Kn

and parameter σ showing the MCMC algorithm can recover
these parameters.

Data generated fromaPoisson factormodelwith a fixed num-
ber of communities. Following Miller and Harrison (2013),
we know that the Dirichlet process is inconsistent for esti-
mating the number of clusters if the number of clusters is
fixed and does not increase with n. Similarly, we conjecture
that when σ = 0 is fixed, corresponding to the setting of
Zhou (2015), the model will fail recovering the right number
of communities, whereas if σ is free, we can expect it to con-
centrate on negative values. The model should then recover
the correct number of communities if the data is generated
from a Poisson factor model. A proper posterior consistency
analysis is beyond the scope of this article. However, we
design a simple numerical experiment to support this conjec-
ture. We take K = 5 true communities, the affiliations vi,k
are iid Gamma(0.1, 1) and the five communities importance
(r1, . . . , r5) are iid Gamma(2, 0.2). Networks of increasing
sizes n = 500, 1000, 1500, 3000 are then generated from the
Poisson factor model (3).

We estimate the number of active communities Kn under
the model with σ = 0 and with σ unknown. In Table 1,
we report the posterior mean and variance of the recovered
number of communities. We can see that the gamma process
model (σ = 0) does not seem to concentrate around the
right value. On the contrary, when σ is free, we see that the
posterior of Kn seems to concentrate around K = 5. For
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Table 1 Concentration of the posterior of Kn when increasing n on synthetic dataset with a number of communities K = 5 fixed (independent of
n)

Statistic n = 500 n = 1000 n = 1500 n = 3000

σ = 0 6.55 (±1.36) 6.11 (±1.16) 6.17 (±1.26) 6.59 (±1.20)

σ free 6.14 (±1.18) 5.40 (±0.85) 5.21 (±0.57) 5.12 (±0.43)

P(σ < 0) 0.69 0.93 0.97 0.99

We report the mean and the standard deviation (between parenthesis) of the posterior of Kn for two models: first line σ = 0 is constant, recovering
the Dirichlet model second line σ is free and inferred from the data, in the third line we report the posterior probability of σ < 0 when σ is
considered unknown

n = 500, the posterior on σ ranges from negative to positive
values, which explains the higher variance. However, from
n = 1000 onward, the posterior ofσ concentrates on negative
values, which translates in a significant decrease of variance
for the posterior of Kn .

Data generated from the Stochastic Block Model (SBM).
From our experimentation, it seems that Poisson factoriza-
tion models do not capture well the generating process of
the SBM. Both when σ = 0 and σ free, the model creates
many very small communities. However, the model is able
to recover with high precision the true communities once we
cluster the nodes using (29).

We generate a synthetic dataset from a SBMwith n = 600
with three communities of size 200 each. The probability
of an edge between nodes of a same community is pin =
0.1; the probability of an edge between nodes from different
communities is pout = 0.01. The resulting dataset is hence
undirected and unweighted with 7239 edges.

The GGP-Gamma model does not capture well the SBM
generating process and the posterior mean of the number of
communities is Kn = 38.6,withσ positive.Weobtain 3main
communities and the rest are very small (composed of a few
edges each). As explained previously, we cluster the nodes
by assigning each one of them to the community to which
it has the highest scaled affiliation. We then get an average
of 8.35 communities, 3 of which are on average composed
of 195.5 nodes each. We plot the distribution of the sizes of
the small communities in Figure 2. In Table 2, we report the
contingency table of the posterior clusters.

We also use the model with σ = 0 on this dataset and find
very similar results. After clustering the nodes, we find that
the average number of communities is 7.66, which slightly
less than previously, but the small communities are slightly
larger on average, giving at the end an average size for each
large cluster of 195.5, which is exactly the same. We do not
report here the contingency matrix as it is very similar to the
one we obtain with σ free.

Fig. 2 Posterior density of the sizes of the small communities for the
dataset generated from a Stochastic Block Model

Table 2 Contingency table of the posterior communities in per cent of
the true communities size

Estimated communities

Ĉ1 Ĉ2 Ĉ3 Others

C1 97.67 0.09 0.09 2.15

C2 0.01 97.94 0.0 1.95

C3 0.14 0.0 97.43 2.43

5.2 Political blogs

The polblogs network (Adamic and Glance 2005) is the
network of the American political blogosphere in February
2005. It is a directed unweightedgraph,where there is an edge
(i, j) if blog i cites blog j . It is composed of 1490 nodes and
19025 edges. For each node, some ground truth information
about its political affiliation (republican/democrat) is known.

We will use this dataset in order to illustrate the role
of the parameter α in the model. As indicated in Sect. 3,
this parameter tunes the amount of overlapping between the
communities. A smaller value enforces less overlap between
communities. We run three chains with 500, 000 iterations.
The posterior samples of σ for three different values of α
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Fig. 3 (Left) Estimated communities and (right) posterior on σ for the polblogs dataset with (top row) α = 0.8, (middle row) α = 0.4 and (bottom
row) α = 0.2
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Table 3 Proportion of the
interactions of the features in
each block for different values
of overlapping

α = 0.8 α = 0.4 α = 0.2

1 2 1 2 3 1 2 3 4

Dem/Dem 91.5 0.7 93.2 1.1 0.8 95 84 1.5 0.1

Dem/Rep 8.0 9.5 6.5 13 5.1 5 14.5 15.5 4.8

Rep/Rep 0.5 89.8 0.3 85.9 94.1 0 1.5 83 95.1

Fig. 4 Posterior of Kn and σ for the Wiki-topcats dataset

Fig. 5 Reordered adjacency matrix of the Wikipedia topcats dataset

are in also shown in Fig. 3. Nodes are reordered according
to their estimated membership ĉ (through (29)), and Fig. 3
shows the densities of connection between and within clus-
ters for three different values of α. Depending on the amount
of overlapping, we obtain two (α = 0.8), three (α = 0.4)

or four (α = 0.2) communities. In order to interpret those
communities, we calculate in Table 3 for each community the
proportion of interactions between democrat blogs, between
a democrat and a republican blog, and between two republi-
can blogs. For α = 0.8, there are two estimated communities
which can clearly be identified as democrat (community #1)
and republican (community 2). For α = 0.4, we have three
communities. One is mostly associated with democrat blogs
(#1), while the other two correspond to a split of the repub-
lican blogs into right (#2) and center-right (#3) groups. For
α = 0.2, we obtain a further split of the democrat blogs into
left (#1) and center-left (#2) groups. Increasing the value of
α therefore leads to a finer and finer partition of the nodes.

5.3 Wikipedia topcast

The network is a partial web graph of Wikipedia hyperlinks
collected in September 2011 (Klymko et al. 2014). It is a
directed unweighted graph where an edge (i, j) corresponds
to a citation from a page i to page j . We restrict it to the first
3000 nodes, and the associated 5687 edges. We run three
MCMC chains for 200, 000 iterations. Trace plots of the
number of active communities and parameter σ are given
in Fig. 4. Figure 5 shows the adjacency matrix reordered by
communities, as explained in the previous section. In order to
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check that the learnt communities/features are meaningful,
we report in Figures the proportions of webpages associated
with a given categorywithin a given community/feature (note
that a webpage can be associated with multiple categories
hence the proportion do not sum to 1).

Note that, while the approach is able to estimate the latent
block structure, this dataset has the particularity of having
star nodes, a feature that is not captured by our model.

5.4 Deezer

The dataset was collected from the music streaming service
Deezer in November 2017 (Rozemberczki et al. 2018). It
represents the friendship network of a subset of Deezer users
from Romania. It is an undirected unweighted graph where
nodes represent the users and edges are the mutual friend-
ships. There are 41773 nodes and 125826 edges.We run three
chains with 100000 iterations each. Posterior histograms of
the number of active communities and σ are given in Fig. 8.
The algorithms find around 45 communities/features for this
dataset. The reordered adjacency matrix and block densities
based on the point estimate of the partition are given in Fig. 9.

Now we can reorder the nodes using approximate MAP
clustering as previously. We obtain the following adjacency
matrix

For each individual in the network, a list of musical genres
liked by that person are available. There are in total 84 distinct
genres. We represent in Fig. 10 the proportion of individuals
who liked a subset of the 84 genres for three different com-
munities where the interpretation in terms of genres is quite
clear. The overall proportion of individuals liking a given
genre is shown at the bottom of Fig. 10. If the bar is red, this
indicates that the proportion is 10% higher in the community
than in the population. If the bar is blue, this means the pro-
portion is 10% lower. Community 11 can be interpreted as
R&B, Community 8 as Dance, and Community 3 as Rock
music. For some of the communities, not reported here, the
interpretation in terms of the liked genres is less clear, and
may be due to other covariates.

6 Discussion

The model presented in this paper assumed the same param-
eter β for each node.We can also consider a degree corrected
version of the model, similarly to Zhou (2015), where each
node is assigned a different parameter βi > 0 and then
defining Zi jk ∼ Poisson(

rkvikv jk
βiβ j

). It is unclear however if
a MCMC sampler targeting the exact posterior distribution
could be implemented, and one may need to resort to some
truncation approximation as in Zhou (2015).

The count matrix (Ai j ) is infinitely exchangeable; hence,
the model presented in this article lead to asymptotically
dense graphs. That is,

∑
1≤i, j≤n Ai j 	 n2 as n tends to infin-

ity. In order to obtain sparse graphs, we could consider two
different strategies. The first solution consists in dropping the
infinite exchangeability property and take β

(n)
i → +∞ with

n, then the number of edges will behave as (n/β(n))2 (we can
for instance take β

(n)
i = √

n for any node i to obtain a linear
growth of the number of edges). The model would still be
finitely exchangeable for any fixed n, but not projective any-
more. The second solution would be to consider the different
notion of infinite exchangeability developed in (Caron and
Fox 2017) and consider (βi )i as a realization of a Poisson
point process.

Finally, we presented a model for count (and binary) data.
The results build on the additive contributions of the com-
munities, which is why we chose the Poisson distribution
on the entries of the adjacency matrix (Ai j ). We can gener-
alize to non-count data using other probability distributions
which are closed under convolution. For example, one could
consider Ai j ∼ Gamma(

∑
k rkvikv jk, 1) for Ai j ∈ R+ or

Ai j ∼ N (
∑

k rkvikv jk, 1) for Ai j ∈ R.
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source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Proofs

A.1 Technical Lemmas

Lemma 3 ( Gnedin et al. (2007), Propositions 17 and 19) Let
ρ be a Lévy measure, let ρ(x) = ∫ ∞

x ρ(r)dr be the tail Levy
intensity andψ(t) = ∫

(1−e−r t )ρ(dr) its Laplace exponent.
Then, the two following conditions are equivalent:

ρ(x)
x→0+	 
(1/x)x−σ (30)

ψ(t)
x→+∞	 Γ (1 − σ)tσ 
(t) (31)

with 
 a slowly varying function and 0 ≤ σ < 1.
Besides, if we let ψd(t) = td

d!
∫
rde−r tρ(dr)
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Fig. 6 Features compared to
categories for the Wikipedia
dataset

1. if σ > 0, then (30) implies that ψd(t)
t→+∞	 σΓ (d−σ)

d! tσ


(t)
2. if σ = 0, then (30) implies that ψd(t) = o(
(t))

Lemma 4 (Pollard 2015, Exercise 15) Let X be a Poisson
random variable with parameter λ . For any t > 0

P(|X − λ| ≥ λt) ≤ 2e− λt2
2(1+t) . (32)
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Fig. 7 Features compared to categories for the Wikipedia dataset
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Fig. 8 Posterior of Kn and σ on Deezer’s dataset

Fig. 9 Reordered adjacency matrix and block densities for Deezer’s dataset

Lemma 5 Let (Xn)n≥1 be a sequence of Poisson random
variables with mean (μn)n≥1. If log n = o(μn) then Xn 	
μn almost surely as n tends to infinity.

Proof Let 0 < ε < 1/2. Using Lemma 4, we have

P

(∣∣∣∣ Xn

μn
− 1

∣∣∣∣ ≥ ε

)
≤ 2e− ε2μn

4

= 2n− ε2μn
4 log n (33)

Using the assumption, we have that − ε2μn
4 log n → −∞. There-

fore, the RHS of (33) is summable. The almost sure result
follows from Borel–Cantelli lemma. ��

Lemma 6 For any x, y ≥ 0, we have the following bound

1 − e−xy ≤ max(1, y)(1 − e−x ) (34)

Proof The bound is trivial when y ≤ 1. Consider the case
y > 1. For all x , the function y → e−xy is convex hence
fx (y) = e−xy−1

y is a monotonically non-decreasing function
of y therefore

e−xy − 1

y
≥ e−x − 1

for y ≥ 1. ��
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Fig. 10 Features compared to genres for Deezer’s dataset

123



Statistics and Computing (2021) 31 :63 Page 17 of 24 63

A.2 Proofs of Section 3

Proof of Proposition 1 The result for Kn is proved in James
(2014) in the general context of GIBP. We provide here the
details of the proof for Kn , which can be straightforwardly
adapted to Kn, j .

First, let us remark that the bound (34) together with
assumptions (A1) and (A2) imply Ψ (n) < ∞. For s < 0,

E[esKn ] = E[
∞∏
k=1

E[e
s1 ∑

1≤i, j≤n
Zi jk≥1

|G] ]

= E[
∞∏
k=1

[ es + (1 − es)e
−rk (

n∑
i=1

vik )
2

]

= E[ e
∑

k log[es+(1−es )e
−rk (

n∑
i=1

vik )2

] ]

Then, since

log[es + (1 − es)e
−rk (

n∑
i=1

vik)
2

]

= log[e
−rk (

n∑
i=1

vik)
2

+ es(1 − e
−rk (

n∑
i=1

vik)
2

)]

≤ log[1 + es(1 − e
−rk (

n∑
i=1

vik)
2

)]

≤ 1 − e
−rk (

n∑
i=1

vik)
2

and the last part is integrable, we can use Campbell’s theo-
rem (Kingman 1993) to get:

E[esKn ] = exp[
∫

(elog[es+(1−es )e
−r(

n∑
i=1

vi )
2

] − 1)

n∏
i=1

F(dvi ) ρ(dr) ]

= exp[ (es − 1)Ψ (n) ]

Wecanprove similarly that Kn,d is a Poisson randomvariable
with mean Ψd(n) and that

∑
d≥D

Kn,d is Poisson distributed

with mean
∑
d≥D

Ψd(n). The assumption Ψd(n) < ∞ is also

sufficient in this case to apply Campbell’s theorem.

Proof of Proposition 2 From Proposition 1, we get that

E(Kn) =
∫

(1 − e
−r(

n∑
i=1

vi )
2

)

n∏
i=1

F(dvi ) ρ(dr) = Ψ (n)

(35)

Let (Vi )i∈N be i.i.d random variables with distribution F . By
assumption, 0 < E[Vi ] = μ < +∞ and Var [Vi ] = τ 2 <

+∞. Let ε > 0. Let A(r) be defined for r > 0 by

A(r) = E[1 − e
−r(

n∑
i=1

Vi )2 ]

Since v �→ 1− e−rv is concave, using successively Jensen’s
inequality and the independence of (Vi ), we obtain

A(r) ≤ 1 − e
−rE[(

n∑
i=1

Vi )2]

≤ 1 − e−r(n2μ2+nτ 2)

≤ 1 − e−(1+ε)rn2μ2

where the last inequality holds for any ε > 0 when n > τ 2

εμ2 .

Therefore, for ε > 0 and n > τ 2

εμ2

Ψ (n) ≤
∫

(1 − e−(1+ε)rn2μ2
)ρ(dr).

Besides, since v �→ 1 − e−rv is increasing, by Markov’s
inequality we have for any ε > 0

A(r) = E

⎡
⎣1 − e

−rn2( 1n
n∑

i=1
Vi )2

⎤
⎦

≥ P

(
1

n

n∑
i=1

Vi ≥ μ

(1 + ε)

)(
1 − e

− n2μ2

(1+ε)2
r

)

Hence,

P

(
1

n

n∑
i=1

Vi ≥ μ

(1 + ε)

)
ψ

(
n2μ2

(1 + ε)2

)

≤ Ψ (n) ≤ ψ
(
(1 + ε)n2μ2

)

where ψ(t) = ∫
(1 − e−r t )ρ(dr) is the Laplace exponent.

Furthermore, by the law of large numbers,

P

(
1

n

n∑
i=1

Vi ≥ μ

(1 + ε)

)
→ 1.

Therefore, under Assumption (A4), Lemma 3 implies

E(Kn) 	 Γ (1 − σ)μ2σn2σ 
(n2)

as n tends to infinity.
In the finite-activity case, that is σ = 0 and 
(t) →

ρ(0) < ∞, we have E(Kn) → ρ(0) hence Kn tends in
distribution to Poisson(ρ(0)).

Now, for σ > 0, the almost sure result (15) follows from
Lemma 5 and the fact that for every slowly varying function

0 and every ε > 0
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lim
x→∞ 
0(x)x

−ε = 0.

Finally, assume that (Kn)n≥1 is non-decreasing. We only
need to prove the asymptotic behavior for σ = 0. In that
setting,Ψ (n) 	 
(n2). Using the assumption that

∫
ρ(dr) =

∞, we therefore have limn→∞ Ψ (n) = ∞. Let n ≥ 1,

Ψ (n + 1) − Ψ (n)

=
∫

E

⎡
⎣e

−r(
n∑

i=1
Vi )2 − e

−r(
n+1∑
i=1

Vi )2
⎤
⎦ ρ(r)dr

Since Vi ≥ 0 a.s, it comes that (Ψ (n))n is non-decreasing.
Now extend the sequence (Ψ (n))n to a non-decreasing and
continuous function Ψ on R+ (by linear interpolation for
instance). Let t > 1, then

1 ≤ Ψ (t + 1)

Ψ (t)
≤ Ψ (3�t�)

Ψ (�t�) 	 
(9�t�2)

(�t�2) → 1

Hence lim Ψ (t+1)
Ψ (t) = 1

Now, for every integer m ≥ Ψ (0), choose tm such that
Ψ (tm) = m. We have that (tm) is non-decreasing and
diverges. Since Ψ is increasing, it comes

Ψ (tm+1 − 1) ≤ Ψ (�tm+1� − 1) ≤ Ψ (tm+1) = m + 1

Hence, Ψ (�tm+1� − 1) 	 m. Then, using Lemma 5, we get
that

K�tm+1�−1 	 Ψ (�tm+1� − 1) 	 m a.s.

Finally, let n ≥ Ψ (0), let mn = min{m | n ∈ {�tm�, . . . ,
�tm+1� − 1}},

K�tmn �
Ψ (�tmn+1� − 1)

≤ Kn

Ψ (n)
≤ K�tmn+1�−1

Ψ (�tmn�)

Since tmn → ∞, both bounds converge to 1 almost surely,
which gives the result. ��
Proof of Proposition 3 As for Proposition 2, we only need to
show that for d ≥ 1,

Ψd(n) 	 σΓ (d − σ)

d! n2σ μ2σ 
(n2)

Therefore, the proof is very similar to the one of Propo-
sition 2. However, there are some technicalities we need
to address since here v �→ vd

d! e
−rv is neither convex

nor decreasing. Like previously, we will lower bound and
upper bound Ψd(n) by two quantities that are equivalent to
σΓ (d−σ)

d! n2σ μ2σ 
(n2).

Let us first introduce some notations. Let (Vi )i∈N i.i.d

variables with distribution F . Let Sn =
n∑

i=1
Vi and ϕd(r , v)

defined as

ϕd(r , v) = rdvd

d! e−rv.

Now, define Ad(r , n) for r > 0 by

Ad(r , n) = E[ϕd(r , S
2
n )]

Suppose that 0 < σ < 1, let ε > 0, recalling that EVi = μ,
define Bε = [ nμ

ε+1 , (1 + ε)nμ]. Let us notice that the law of
large numbers gives us that P(Sn ∈ Bε) → 1.

1. Lower bound: We have that

E[1Sn∈Bε ϕd(r , S
2
n )] ≤ Ad(r , n)

Besides, for all v ∈ Bε and all r > 0

φd(r , v) ≥ rdμ2dn2d

(1 + ε)2dd!e
−rn2(1+ε)2μ2

hence

P(Sn ∈ Bε)
rdμ2dn2d

(1 + ε)2dd!e
−rn2(1+ε)2μ2

≤ E[1Sn∈Bε ϕd(r , S
2
n )].

Therefore, using Lemma 3 and since P(Sn ∈ Bε) → 1,
we have for n large enough

σΓ (d − σ)

d!(1 + ε)4d+1−2σ n
2σ μ2σ 
(n2) ≤

∫
Ad(r , n)ρ(dr).

2. Upper bound: We have that

Ad(r , n) = E[1Sn∈Bε ϕd(r , S
2
n )] + E[1Sn /∈Bε ϕd(r , S

2
n )]

Like previously, since

E[1Sn∈Bε ϕd(r , nSn)]
≤ P(Sn ∈ Bε)

rd(1 + ε)2dμ2dn2d

d! e
−r n2μ2

(1+ε)2

We find that for n large enough,

∫
Ad(r , n)ρ(dr)

≤ σΓ (d − σ)(1 + ε)4d+1−2σ

d! n2σ μ2σ 
(n2)

+
∫

E[1Sn /∈Bε ϕd(r , S
2
n )]ρ(dr)
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Therefore, we only need to prove that

∫
E[1Sn /∈Bε ϕd(r , S

2
n )]ρ(r)dr = o(n2σ 
(n2)).

In order to do so, we split the integral with respect to
r in two parts, an integral over (0, 1

n2
) and an integral

over ( 1
n2

,∞) and show that both are o(n2σ 
(n2)). Since
ϕd(r , v) ≤ 1,

∫ ∞

1/n2
E[1Sn /∈Bε ϕd(r , S

2
n )]ρ(dr)

≤ P(Sn /∈ Bε)

∫ ∞

1/n2
ρ(dr)

= P(Sn /∈ Bε) ρ(1/n2)

= o(n2σ 
(n2))

where the last line follows from the law of large numbers
and Assumption (A4). Besides,

∫ 1/n2

0
E[1Sn /∈Bε ϕd(r , S

2
n )]ρ(dr)

=
∫ 1/n2

0
E[1Sn /∈Bε

r S2n
d

ϕd−1(r , S
2
n )]ρ(dr)

≤
∫ 1/n2

0
E[1Sn /∈Bεr S

2
n ]ρ(dr)

= E[1Sn /∈Bε

S2n
n2

]
∫ 1/n2

0
rn2ρ(dr)

≤ E[1Sn /∈Bε

S2n
n2

] e
∫ 1/n2

0
rn2e−rn2ρ(dr)

≤ 8E[1Sn /∈Bε

S2n
n2

] σΓ (d − σ)

d! n2σ 
(n2)

where the last inequality holds for n large enough by
Assumption (A4) and Lemma 3. Now, we have that

S2n
n2

<
1

n

n∑
i=1

V 2
i

Since (V 2
i )i are i.i.d random variables in L1, we know

that ( 1n

n∑
i=1

V 2
i )n≥1 is uniformly integrable. Therefore,

(1Sn /∈Bε

S2n
n2

)n≥1 is uniformly integrable. Besides, using
the law of large numbers, the sequence converges
almost surely, and hence in probability, to 0. Therefore,

limn E[1Sn /∈Bε

S2n
n2

] = 0, which concludes the proof.
For σ = 0, the previous computations for the upper
bound give that almost surely, Ψd(n) = o(
(n2)) =
o(Ψ (n)). Now let D > 1,

E

∑
d≥D

Kn,d = Ψ (n) −
D−1∑
d=1

Ψd(n) 	 
(n2)

And since x �→ ∑
d≥D

ϕd(1, x) is non-decreasing,

(E
∑
d≥D

Kn,d)n is non-decreasing, therefore, similarly to

the proof for σ = 0 for (Kn)n , we find that

∑
d≥D

Kn,d 	 E

∑
d≥D

Kn,d 	 
(n2) a.s

Therefore, we finally find that

Kn,D

Kn
=

∑
d≥D

Kn,d − ∑
d≥D+1

Kn,d

Kn
→ 0 a.s

��

B Gibbs sampler

As mentioned in the main text, the observed graph can be
directed or undirected, binary or count, and can have missing
entries we would like to predict. Denote by B the observed
graph. Here, we describe the steps of a Gibbs algorithm with
stationary distribution

p(Kn, (̃rk, ṽ1:n,k)k=1,...,Kn , θ | B).

Notice that observing the full matrix B = A corresponds
to a weighted and directed graph with no missing entry. Let
I denote the set of all possible edges. In the directed case,
I = {(i, j) | 1 ≤ i, j ≤ n} and on the undirected case
I = {(i, j) | 1 ≤ i ≤ j ≤ n}. We say that (i, j) is not
observed if we do not know the value of Ai, j . Remark that
(i, j) can be observed and still Ai, j = 0. DenoteO the set of
all observed entries andOc = I �O, the set on unobserved
entry. For all unobserved entry (i, j) ∈ Oc, set Bi, j = −1

Additionally, to deal with the unknown number of active
communities Kn , we use auxiliary slice variables si, j for all
(i, j) ∈ I, details are given in the following paragraphs.
Denote s the smallest non-zero slice variable si, j for (i, j) ∈
I. By definition of the slice variables, r̃k ≥ s for all k =
1, . . . , Kn . Let

G =
∑
k

rkδv1:n,k1rk≥s :=
Kn∑
k=1

rkδv1:n,k

be the CRM corresponding to the set of active or inactive
communities with weight rk ≥ s, of (almost surely finite)
cardinality Kn ≥ Kn . Denote Zi jk ≥ 0 the associated com-
munity interactions, and Zk = (Zi jk).
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B.1 Directed graph

For eachobservedpair (i, j) ∈ O,wedefine the slice variable
as

si j |(̃rk, Z̃i jk)k=1,...,Kn ∼ Unif

(
0, min

{k|Z̃i jk≥1}
r̃k

)
(36)

if Ai j > 0 and si j = 0 otherwise. For each non-observed
entry (i, j) ∈ Oc, we define si, j by (38) if { k | Z̃i jk ≥ 1} �= ∅
and

si j |(̃rk, Z̃i jk)k=1,...,Kn ∼ Unif(0, 1) (37)

otherwise.

B.1.1 Gibbs sampler step 1 for weighted graph on observed
entries

Updating (Z̃k)k=1,...,Kn |(s,G), θ, B on observed entries
indexes

We sample (Zl)l=1,...,Kn
associated with all atoms of G

and keep only the non-empty communities. For every (i, j) ∈
O such that Ai, j > 0. define the random variable mi j =
min{l|Z̃i jl≥1} r̃l . Then, writing the joint distribution it comes
that independently for every such (i, j),

P((Zi jl)l=1,...,Kn
|(s,G+), θ, Bi j )

∝
∏
i, j

1

mi j
1si j<mi j Mult((Zi jl)l; Bi j , (pi jl)l)

where Mult is the multinomial distribution and pi jl =
rlvilv jl

Kn∑
t=1

rtvi tv j t

. Let pi jl = rlvilv jl . To simplify the notations,

let us suppose that the atoms of G are in decreasing order.
Remark that the indexing of Z̃ is different from the one of Z ,
the second corresponds to the one of the truncated random
measure. For each observed edge (i, j) independently, we
can proceed in 4 phases for this step.

1. Sample mi j from the locations of G such that P(mi j =

rL) ∝
(
L∑

l=1
pi jl )

Bi j −(
L−1∑
l=1

pi jl )
Bi j

rL
1si j<rL .

2. For l > L , set Zi jl = 0
3. Sample Zi j L ∼ tBin(Bi j ,

pi j L
L∑

l=1
pi jl

), where tBin is the zero

truncated binomial distribution
4. Sample (Zi j1, . . . , Zi j L−1) ∼ Mult(Bi j − Zi j L ,

(
pi jl

L−1∑
t=1

pi j t

)l≤L−1)

B.1.2 Gibbs sampler step 1 for unweighted graph on
observed entries

In this setting, we observe a binary matrix Bi j = 1Ai j>0.
Then, the first step of the Gibbs sampler is modified and
becomes:

Updating (Z̃k)k=1,...,Kn |(s,G), θ, B on observed entries
indexes

For each observed edge (i, j) ∈ O independently do

1. Sample mi j from the locations of G such that

P(mi j = rL) ∝ e

L∑
k=1

pi jl − e

L−1∑
k=1

pi jk

rL
1si j<rL

Suppose mi j = rL
2. For l > L , set Zi jl = 0
3. Sample Zi j L ∼ tPoisson(pi j L), where tPoisson is the

zero truncated Poisson distribution
4. For l < L , sample Zi jl ∼ Poiss(pi jl)

B.1.3 Gibbs sampler step 1 on unobserved entries

For each unobserved entry (i, j) ∈ Oc, knowing si j , we
define L0 = max{k | rk > si j }.

1. Draw 1Ai j=0, which is a Bernoulli with parameter

p = 1

1 +
L0∑
L=1

e

L∑
k=1

pi jk−e

L−1∑
k=1

pi jk

rL

2. If Ai, j �= 0, then use subsection B.1.2. Otherwise, set all
counts of that entry to zero

B.2 Undirected graph

In the undirected graph, we suppose that for i �= j , Bi j =
Ai j + A ji and Bii = Aii . Besides, in this setting we actually
do not need to sample Z̃i jk for all (i, j, k) but only Z̃i jk +
Z̃ j ik . For each observed pair (i, j) ∈ O, we define the slice
variable as

si j |(̃rk, Z̃i jk + Z̃ j ik)k=1,...,Kn

∼ Unif

(
0, min

{k|Z̃i jk+Z̃ j ik≥1}
r̃k

)
(38)

if Bi j > 0 and si j = 0 otherwise. For each non-observed
entry (i, j) ∈ Oc, we define si j by (38) if { k | Z̃i jk + Z̃ j ik ≥
1} �= ∅ and
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si j |(̃rk, Z̃i jk + Z̃ j ik)k=1,...,Kn ∼ Unif(0, 1) (39)

otherwise. Then, step 2 and step 3 remain unchanged. For
step 1, simply replace pi jk by 2pi jk for i �= j .

B.3 Proofs for the Gibbs sampler step 1

B.3.1 Weighted graph

Here,will give the posterior distribution of the countmatrices
and show that

(̃vk, Z̃k)k=1,...,Kn |(s,G), θ, B
dist= (̃vk, Z̃k)k=1,...,Kn |s,G, θ, B

In order to do so, we derive the RHS posterior distribution.
Let us first notice that given G, sampling the nonzero counts
and corresponding locations is equivalent to sampling (Zk)k
for k ∈ N. As stated previously, we can treat each edge (i, j)
independently. Therefore, we sample the sequence (Zi jk)k .
Here,we suppose that the communities comewith decreasing
activity order. Let the random variable L = max{k | Zi jk >

0} (supposing that the (rk)k are decreasing). And let pi jk =
rkvikv jk

P((Zi jk)k |s,G, θ, Ai j )

∝ P((Zi jk)k |G, θ, Ai j ) × P(si j |(Zi jk)k,G, θ, Ai j )

∝ 1∑
k Zi jk=Ai j

Ai j !
L∏

k=1
Zi jk !

L∏
k=1

p
Zi jk
i jk × 1

rL
1si j<rL

∝
(

L∑
k=1

pi jk)Ai j (1 − (

L−1∑
k=1

pi jk

L∑
k=1

pi jk

)Ai j )

rL
1si j<rL

×11≤Zi j L≤Ai j

Ai j !
Zi j L !(Ai j − Zi j L)!

×
(

pi j L
L∑

k=1
pi jk

)Zi j L (

L−1∑
k=1

pi jk

L∑
k=1

pi jk

)Ai j−Zi j L

1 − (

L−1∑
k=1

pi jk

L∑
k=1

pi jk

)Ai j

×1∑L−1
k=1 Zi jk=Ai j−Zi j L

(Ai j − Zi j L)!
L−1∏
k=1

Zi jk !

L−1∏
k=1

(
pi jk

L−1∑
k=1

pi jk

)Zi jk

This shows howwe can sample in three steps these variables.
Let us remark that the second part corresponds to the distri-
bution of a zero truncated binomial and that the third part

corresponds to the distribution of a multinomial. We also
notice that only the elements of G are actually needed.

B.3.2 Unweighted Graph

We proceed similarly for the unweighted graph

P((Zi jk)k |s,G, θ, Bi j = 1)

∝ P((Zi jk)k |G, θ, Bi j = 1)

×P(si j |(Zi jk)k,G, θ, Bi j = 1)

∝ 1Zi j L �=0

L∏
k=1

p
Zi jk
i jk

Zi jk ! e
−pi jk × e

L∑
k=1

pi jk × 1

rL
1si j<rL

∝ e

L∑
k=1

pi jk − e

L−1∑
k=1

pi jk

rL
1si j<rL

×1Zi j L �=0
1

1 − e−pi j L

p
Zi j L
i jk

Zi j L !e
−pi j L

×1Zi j(L+1),...=0

L−1∏
k=1

p
Zi jk
i jk

Zi jk ! e
−pi jk

B.3.3 Prediction

Here, we show how to update the missing entries we try
to predict. Let us recall that for a predicted count, if it is
positive, we define the slice variable as previously. However,
if the count is equal to zero, then the slice variable is simply
uniform over [0, 1]. Now let L0 = max{k | rk > si j }

P((Zi jk)k |s,G, θ)

∝ P((Zi jk)k |G, θ) × P(si j |(Zi jk)k,G, θ)

∝ 1Zi j(L0+1),...=0 e

L0∑
k=1

pi jk
L0∏
k=1

p
Zi jk
i jk

Zi jk ! e
−pi jk

×(1Ai j �=0
1

rL
1si j<rL + 1Ai j=0)

Now let

f ((Zi jk)k) = 1Zi j(L0+1),...=0 e

L0∑
k=1

pi jk
L0∏
k=1

p
Zi jk
i jk

Zi jk ! e
−pi jk

×(1Ai j �=0
1

rL
1si j<rL + 1Ai j=0)

Using B.3.2, it comes that

E( f ((Zi jk)k) | Ai j �= 0) = e

L0∑
k=1

pi jk
L0∑
L=1

e

L∑
k=1

pi jk − e

L−1∑
k=1

pi jk

rL
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Besides,

E( f ((Zi jk)k) | Ai j = 0) = f (0) = 1

Therefore, here we proceed in two steps, first we sample
the binomial 1Ai j=0 with parameter

p = 1

1 + e

L0∑
k=1

pi jk L0∑
L=1

e

L∑
k=1

pi jk−e

L−1∑
k=1

pi jk

rL

Then, conditioning on the event Ai j �= 0, we use B.3.2 to
proceed.

B.4 Proof for the Gibbs step 2

Here, we show how we can update the parameters θ =
(κ, σ, τ, α, β) using a Metropolis–Hastings update. First, let
us derive the posterior distribution of the hyperparameters.

WewriteG = G ′+
K∑

c=1
r̃cδṽc whereG

′ is the non-observed

part. And we note G ′ the restriction of G ′ to the locations
which intensity is larger than min s.

p(θ |(s,G), ṽ, Z̃)

∝ p( θ |
K∑

c=1

r̃cδṽc , s,G
′, Z̃)

∝ p( θ ,

K∑
c=1

r̃cδṽc , s,G
′, Z̃)

∝ p( θ ,

K∑
c=1

r̃cδṽc , Z̃) p( s,G ′| θ ,

K∑
c=1

r̃cδṽc , Z̃)

Now let us derive consider the first part

p( θ ,

K∑
c=1

r̃cδṽc , Z̃) ∝ p(θ) p(
K∑

c=1

r̃cδṽc |θ) p(Z̃ |
K∑

c=1

r̃cδṽc)

∝ p(θ)p(
K∑
c=1

r̃cδṽc |θ)

∝ p(θ)e−Ψ (n)
K∏
c=1

ρκ,σ,τ (r̃c) fα,β(ṽc)

Now let us consider the second part

p( s,G ′ | θ ,

K∑
c=1

r̃cδṽc , Z̃)

∝ p(s|
K∑

c=1

r̃cδṽc , Z̃) p(G ′|θ, s)

∝ p(G ′|θ, s)

∝ e−Ψ ′(min s,n)
∏
k

ρκ,σ,τ (r
′
k) fα,β(v′

k)

where (r ′
k) and (v′

k) are, respectively, the intensities and loca-
tions of G ′

Let

π(θ) = e−Ψ (n)−Ψ ′(min s,n)
T∏
t=1

μθ(rt , vt ),

where we are taking the product over the T atoms and jumps
of G and

Ψ ′(s, n) =
∫
r>s,v

e−r |v|2
n∏

i=1

( f (vi )dvi ) ρ(r)dr .

The posterior satisfies p(θ |(s,G)) ∝ p(θ)π(θ). With our
particular choice of distribution of the CRM, the multivariate
integrals are reduced to one dimensional integrals, which
makes the algorithm tractable. Indeed, we find that

Ψ (n) + Ψ ′(min s, n)

= κ

σ

∫ +∞
0

(τ + ς2)σ [ σ

Γ (1 − σ)
Γ (−σ, (τ + ς2)min s) + 1]

fnα,β (ς)dς − κτσ

σ

Ψ (n) =
{

κ
σ

∫ +∞
0 (τ + ς2)σ fnα,β (ς)dς − κτσ

σ , if σ > 0 or σ < 0

κ
∫ +∞
0 log(τ + ς2) fnα,β (ς)dς − κ log τ, if σ = 0

and

Ψ ′(min s, n) =
{

κ
Γ (1−σ)

∫ +∞
0 (τ + ς2)σ Γ (−σ, (τ + ς2)min s) fnα,β(ς)dς, if σ > 0 or σ < 0

κ
∫ +∞
0

∫ +∞
(τ+ς2)min s

e−r

r dr fnα,β(ς)dς, if σ = 0

We use the following priors:

1 − 2σ ∼ Gamma(aσ , bσ )

κ ∼ Gamma(aκ , bκ )

τ ∼ Gamma(aτ , bτ )

α ∼ Gamma(aα, bα)
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β ∼ Gamma(aβ, bβ)

And proposals

1 − 2σ̃ |σ ∼ Lognormal(log(1 − 2σ),Σσ )

κ̃|κ ∼ Lognormal(log κ,Σκ)

τ̃ |τ ∼ Lognormal(log τ,Στ )

α̃|α ∼ Lognormal(logα,Σα)

β̃|β ∼ Lognormal(logβ,Σβ)

We find that

log
p(θ̃)q(θ |θ̃ )

p(θ)q(θ̃ |θ)

= aσ log
1 − 2σ̃

1 − 2σ
+ 2bσ (σ̃ − σ)

+aκ log
κ̃

κ
− bκ(κ̃ − κ)

+aτ log
τ̃

τ
− bτ (τ̃ − τ)

+aα log
α̃

α
− bα(α̃ − α)

+aβ log
β̃

β
− bβ(β̃ − β)

And

log
π(θ̃)

π(θ)

= Ψθ(n) + Ψ ′
θ (min s, n) − Ψθ̃ (n) − Ψ ′

θ̃
(min s, n)

+T log
κ̃

κ
− T log

Γ (1 − σ̃ )

Γ (1 − σ)
− nT log

Γ (α̃)

Γ (α)

−(σ̃ − σ)
∑
t

log rt − (τ̃ − τ)
∑
t

rt

+(α̃ − α)
∑
t,i

log vt,i − (β̃ − β)
∑
t,i

vt,i

+nT (α̃ log β̃ − α logβ)

B.5 Sampling from the inhomogeneous CRM

In this section, we show how we can sample from the inho-
mogeneous CRM G ′ with measure:

μ′(dr , dv) = e
−r(

n∑
i=1

vi )
2

ρκ,τ,σ (r) [
n∏

i=1

fα,β(vi )dvi ] dr

Let us recall that fα,β is the gamma pdf and ρκ,τ,σ the
GGP intensity. From Section 4, we know that if we make
the following change of variables (v1, . . . , vn) �→ (ς =

∑
i vi , ν1 = v1/s, . . . , νn = vn/s), we get

μ′(dr , dς, dν) = e−rς2
ρκ,τ,σ (r) fnα,β

(ς)dς dr Dir(dν1, . . . , dνn;ααα)

Hence, we can sample independently (r , ς) and ν. From one
hand, (ν1, . . . , νn) is sampled from a Dirichlet distribution
with parameter ααα = (α, . . . , α). On the other hand, the total
sum ς and the intensity r are sampled from

μ(r , ς) = e−rς2
ρκ,τ,σ (r) fnα,β(ς)

= κ

Γ (1 − σ)
e−r(ς2+τ)r−1−σ fnα,β(ς)

Now, to reduce the problem to sampling froma homogeneous
CRM, let us consider the change of variable (r , ς) �→ (r =
r [τ + ς2], s) which determinant is τ + ς2. We find finally
that

μ(r , ς) = κ

Γ (1 − σ)
e−r r−1−σ (ς2 + τ)σ fnα,β(ς)

Besides, since r ≥ rτ ∀(i, j), we only need to sample the
points such that r ≥ τ min s. Therefore, since τ > 0, we
sample a finite number of atoms. Then, we only keep the
points such as r > min s. Finally, let us notice that in our
setting, even with σ ≤ 0

∫
ς

(ς2 + τ)σ fnα,β(ς)dς = σ

κ
Ψ (n) + τσ

Therefore, we first sample the jumps from the levy measure

ρ(r) = σΨ (n) + κτσ

Γ (1 − σ)
e−r r−1−σ1r≥τ min s

using adaptive thinning (Favaro and Teh 2013). Then, we
sample ς with pdf ∝ (ς2 + τ)σ fnα,β(ς) using rejection
sampling.
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