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Abstract

We present a Bayesian nonparametric Poisson factorization model for modeling dense network data with an unknown and
potentially growing number of overlapping communities. The construction is based on completely random measures and
allows the number of communities to either increase with the number of nodes at a specified logarithmic or polynomial rate,
or be bounded. We develop asymptotics for the number and size of the communities of the network and derive a Markov
chain Monte Carlo algorithm for targeting the exact posterior distribution for this model. The usefulness of the approach is

illustrated on various real networks.
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1 Introduction

Nonnegative matrix factorization (NMF) methods (Paatero
and Tapper 1994; Lee and Seung 2001) aim to find a latent
representation of a positive n X m matrix A as a sum of K
nonnegative factors. For integer-valued data, Poisson factor-
ization models (Dunson and Herring 2005) offer a flexible
probabilistic framework for nonnegative matrix factorization
and have found wide applicability in signal processing (Virta-
nen et al. 2008; Cemgil 2009) or recommender systems (Ma
et al. 2011; Gopalan et al. 2015). In this paper, we focus
on the application to network analysis, where m = n and
the n x n count matrix A, the adjacency matrix, represents
the number of directed or undirected interactions between
n individuals; the latent factors may be interpreted as latent
and potentially overlapping communities (Ball et al. 2011),
such as sport team members or other social activities circles.
We also consider binary data where the matrix represents the
existence or absence of a directed or undirected link between
individuals. The estimated latent factors can be used for the
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prediction of missing links/interactions, or for interpretation
of the uncovered latent community structure.

Poisson factorization approaches require the user to set the
number K of latent factors, which is typically assumed to be
independent of the sample size n. To address this problem,
Zhou et al. (2012), Gopalan et al. (2014) and Zhou (2015)
proposed Bayesian nonparametric approaches that allow the
number of latent factors to be estimated from the data, and to
grow unboundedly with the size n of the matrix. In particular,
Gopalan et al. (2014) and Zhou (2015) considered a Poisson
factorization model

+00
Ajj ~ Poisson <Zrkv,~kvjk> ,1<i,j<n (1)
k=1

where the positive weights (r¢)r>1 represent the importance
of community &, and v;; > O represents the level of affilia-
tion of individual i to community k. Gopalan et al. (2014) and
Zhou (2015), extending work from Titsias (2008), assume
that the weights (r;) are the jumps of a gamma process,
ensuring the sum in Eq. (1) is almost surely finite. Using
properties of Poisson random variables, the model (1) can be
equivalently represented as

“+0o0
Ajj = Z Zijk 2
k=1

Zijx ~ Poisson(rgvixvjr), k=1,2,... 3)
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for 1 < i, j < n. The latent count variables Z;;; may be
interpreted as the number of latent interactions between two
individuals i and j via community k, the overall number A;;
of interactions being the sum of those community interac-
tions. For example, two members of the same company who
also play sport together may meet five times at the company,
and twice at the sport center, resulting in seven interactions
overall. The overall number

+oo
Ki=) 1y, . 7,0 4
k=1

of communities k that generated at least one interaction
between the n individuals is termed the number of active com-
munities. For the gamma process Poisson factor model (Zhou
2015), the number of active communities K, grows logarith-
mically with the number n of individuals. The logarithmic
growth assumption may be too restrictive. For example, the
number of active communities may actually be unknown but
bounded above; alternatively, it may increase at a rate faster
or slower than logarithmic.

In this paper, we consider generalizations of the gamma
process Poisson factorization model, using completely ran-
dom measures (CRM) (Kingman 1967). CRMs offer a flex-
ible and tractable modeling framework (Lijoi and Priinster
2010). The proposed models fit in the class of multivariate
generalized Indian Buffet process priors recently developed
by James (2017) and are also related to compound completely
random measures (Griffin and Leisen 2017). We consider
that (r) are the points of Poisson point process with mean
measure p. Depending on the properties of this measure,
the number of active communities K, is either (i) bounded,
with a random upper bound, (ii) unbounded and grows sub-
polynomially (e.g., logn or loglogn) or (iii) unbounded
and grows as 12, for some o € (0, 1). For the imple-
mentation, we focus in particular on the generalized gamma
process (Brix 1999) where a single parameter flexibly con-
trols all three behaviors.

The article is organized as follows. In Sect. 2, we describe
the statistical model for count and binary matrices. The
asymptotic properties of the model are derived in Sect. 3.
In particular, we relate the asymptotic growth of the num-
ber of active features to the regular variation properties of
the measure p. In Sect. 4, we derive a Markov chain Monte
Carlo algorithm for posterior inference that does not require
any approximation to the original model. In Sect. 5, we con-
sider applications of our approach to overlapping community
detection and link detection in networks, considering real
network data with up to tens of thousands of nodes.
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2 Statistical model for count and binary data
2.1 General construction

We present here the model for directed count or binary obser-
vations, but the model can be straightforwardly adapted to
undirected interactions. Let (rx)x=1.2... be the points of a
Poisson point process with o-finite mean measure p on
(0, +00), and assume that vig, i = 1,...,n, kK > 1, are
independent and identically distributed from some probabil-
ity distribution ¥ on Ry = [0, 400). The variable v;; can
be interpreted as the level of affiliation of an individual i to
community k, and r¢ to the importance of that community.

For count data (A;;), where A;; denotes the number of
directed interactions from node i to node j, we consider the
Poisson factorization model

+00
Ajj | (rk, vik) ~ Poisson Zrkvikvjk , 1 <i,j<n.
k=1

&)

Denoting A;; = ZZ‘:{ riVik v ji the Poisson rate for A;;, the
n x n rate matrix A = (Aij)1<i, j<n admits the following
factorization as an infinite sum of rank-1 matrices

+00

T
AW — Z TkVLin,k V. k
k=1

where v,k = (Vik, ..., Unk)T. For the model to be well
specified, the sum in the right-hand side of Eq. (5) needs to
be almost surely finite. A necessary and sufficient condition
is

//(1 — ™) p(dr)F(dv) < 400 and

/ (I —e"""")p(dr)F(dvi) F(dvy) < +00. (6)

A sufficient set of conditions!, which we will assume to hold
in the rest of this article, is that p is a Lévy measure and F
has finite second moment, that is

+00
/ (1—e")p(dr) < +oo and (A1)
0

+00
/ V2 F(dv) < +oo. (A2)
0

! The sufficientness follows from the bound (34) given in Appendix.
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In this case, denoting §, the Dirac measure at vector v, the
community affiliations and weights for n nodes can be con-
veniently represented by a completely random measure

G = ZrkSUI:n,k (7)
k>1
on R’ with mean measure ,o(dr)F®n (dvy, ..., dv,) where

F®" denotes the nth product measure of F; see Kingman
(1967) and Lijoi and Priinster (2010) for background on
CRMs and their applications. If the Lévy measure is finite,
that is, if

400
/ p(dr) < +o0
0

then the number of points (rx), and therefore the number
of communities, is almost surely finite. Otherwise, when
f p(dr) = 400, the number of communities is infinite.

When we have binary observation (Y;;), we treat the count
matrix (A;;) as a latent variable, and consider that ¥;; =
L4,;>0 as in (Caron and Fox 2017; Zhou 2015), where 1 is
the indicator function. Integrating out (A;;), this leads to the
following model for binary observations

+00
Yij | (ri, vik) ~ Ber (1 — exp [Z rkUikUjk:|> ,

k=1
1<i,j<n. 3

2.2 Specific model

In the inference and experimental part, we use the following
choice for the p and F. The Lévy measure p is taken to be
that of a generalized gamma process (GGP, see Hougaard
(1986), Brix (1999), James (2002), Pitman (2003))

p(dr) = =0Ty )

,
I'(1 —oo)

where o9 € (—o0, 1), x > 0and T > 0. When g9 = 0, we
obtain a gamma process, and the model corresponds to that
of Zhou (2015). When op < 0, the Lévy measure is finite,
while when o > 0, the Lévy measure is infinite.

Concerning the affiliations, we will assume that F is a
gamma distribution with parameters « > 0 and 8 > 0. That
is, the probability density function (pdf) f is given by

_ﬁ a—1_—pv
f(v)—F(a)v e

where I' denotes the usual gamma function. The hyper-
parameters (k, 0o, 7, o, ) and (k' = k/B%*, oy, T =

782, a, 1) induce the same distribution for the latent factors
(A;j). In order to guarantee the identifiability of the hyper-
parameters, we therefore set g = 1.

2.3 Related work

Several network models building on latent factors have been
proposed in the last years and have proven to be very useful
tools (Hoff etal. 2002; Airoldi et al. 2008; Hoff 2009; Durante
and Dunson 2014). In general, these models differ from Pois-
son factor models since they use a different likelihood for the
connections. However, they share a similar approach: every
node i is embedded in ]R_If (where K is the number of latent
factors or communities), resulting in a latent representation
X; quantifying the affiliation of node i to each latent fac-
tor. Then, the probability of an edge (i, j) is function of the
similarity between X; and X ;.

The model introduced in this section can be seen from
different perspectives that nicely connect it to the existing
literature. First, the model can be seen as obtained from a
functional of a CRM. Recall the definition of the CRM G
in Eq. (7). Define the n x n matrix A as the following
functional of G

AW = / h@)G(du) =Y rivinav],, .
(0,+00)" k>1

where h(u) = uuT. Alternatively, this can be interpreted
in the framework of compound completely random mea-
sures (Griffin and Leisen 2017). For each 1 < i, < n,
denote G;j = Y ;- rkVik vk, Where {; are some commu-
nity locations in some domain ®, iid from some distribution
H , irrelevant here. Then, (G;j)1<;, j<n are compound CRMs
on ® and A;; = G;;(®). In the same vein, the model can
also be interpreted as an instance of the class of Generalized
Indian Buffet Processes introduced by James (2017), where
the Bernoulli likelihood (of the classical IBP) is replaced
by any likelihood as long as the observation can take the
value 0 with strictly positive probability. More precisely, if
we denote Z ,E") the n x n matrix with entries Z;jx, then the

matrix-valued process ) ;- Z,in)B;k is a draw from a gener-
alized multivariate Indian buffet process.

Finally, as mentioned in the introduction, the model admits
as a special case the Poisson factorization based on the
gamma process of Zhou (2015).

3 Asymptotic Properties

In this section, we study the asymptotic properties of the pro-
posed class of models, and in particular the growth rate of the
number of active communities as the sample size n grows,
and the asymptotic proportion of communities of a given size.

@ Springer
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For a given sequence (ri)k>1 and (vik)i>1.k>1, denote Af}')

and Zl(]",Z wheren > 1,1 <i, j <n,k > 1, respectively, the
number of directed interactions and the number of commu-
nity directed interactions distributed from Egs. (2) and (3).
We consider two different asymptotic settings

— Unconstrained setting. This setting is more general, and
we only assume that Ag) and Z l(j",z are marginally sam-
pled from Egs. (2) and (3).

— Constrained setting. Forany 1 <m <n,and 1 <i, j <
m, AE}” = Ag;"). In this setting, we suppose that the
connections between the already observed nodes remain
unchanged. It is equivalent to assuming that there is an
infinite but fixed graph and A represents the connec-
tions between the r first nodes of that graph.

All the results of this section, otherwise stated, hold for
the unconstrained setting. We indicate when a stronger result
holds in the constrained setting. All proofs are given in
Appendix A.

3.1 General model

Let d,g") be the degree of the community/feature k, corre-
sponding to the number of interactions amongst » individuals
due to community &, and defined as

(n) _ (n)
@’ = > 7.

I<i,j<n

(10)

A community is active if d,ﬁn) > 1. The number of active
communities is therefore defined as

+o0
K, = Zﬂd;”zl (11)
k=1

Denote K, ; the number of communities with degree j > 1

—+00
Ky ;= Z]ld,in)=j
k=1

Note that under the constrained setting, d,ﬁ") , K, and
Do j K¢ are all almost surely non-decreasing with the
sample size n, whereas this is not necessarily the case for
the unconstrained setting.

Proposition 1 Under Assumptions (Al ) and (A2), the number

of active communities K, is a Poisson random variable with
mean

@ Springer

Y(n) = / (1 — e i “i)z) |:ﬁ F(dvi):|
i=1

p(dr) < +oo0. (12)
The number K ; of communities with degree j is also Pois-
son distributed, with mean

n 2] n
Wi(n) = %frj (Z Ui) e (i v)? {l_[ F(dvi)i| o(dr).
I i=1 i=1

13)

Finally, for j > 1, Y K, , the number of communities
k>j
with degree at least j is also Poisson distributed with mean

> Yi(n).
k>j

In the rest of the section, we relate the asymptotic behavior
of quantities of interest to the properties of the mean measure
p. Let consider the tail Lévy intensity defined as

+00
Vx >0, p(x) = / p(dr).

X
We assume that p is a regularly varying function at 0, that is

o(x) <xx%2(/x)asx — 0 (A4)
where o € [0, 1) and £ is a slowly varying function verifying
lim;, 1 £(at)/€(¢t) = 1 for all @ > 0. Besides, we write
a(x) =< b(x) if lima(x)/b(x) = 1. Examples of slowly
varying functions include functions converging to a constant,
log® t for any ¢, loglogt, etc. Note that the CRM is finite
activity if and only if o0 = O and £(t) — C < +o0.

Now, let us consider the asymptotic behavior of the num-
ber of active communities K,.

Proposition 2 Ler K,, be the number of active communities.
Then for0 <o < 1,

E[K,] < I'(1 = 0)m’ n* £(n*) (14)
as n tends to infinity, where my = [ vF (dv). Additionally,
for0 <o <1,
K, < E[K,] a.s. (15)
If we further assume that the sequence (Kp)n>1 is almost
surely non-decreasing (as in the constrained setting), then
(15) holds for 0 = 0 and £(t) — oo as well. In the
finite activity case, that is 0 = 0 and £(t) — p(0) =

0+OO p(dr) < oo, we have

K, > Ky
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as n tends to infinity, where K « is a Poisson random variable
with mean p(0). The above convergence holds in distribution
for the unconstrained setting and almost surely for the con-
strained setting.

Proposition3 Let K, ; be the number of communities of
degree j. Then for0 <o < landany j > 1,

ol (j

Ky, = ;U)m%f’nz”ﬁ(nz) a.s. (16)
J! -

as n tends to infinity. Therefore,

Ky, ol'(j—o) (17

%
K, TI'(I—o)j!

as n tends to infinity. This corresponds to a power-law behav-
ior as

ol'(j—o) _ o
rad-o)j! "~

ja+1

for large j. If we further assume that for all k > 1,

(Z K,
jzk n>1

(17) holds also for o = 0 and £(t) — +00.

is non-decreasing (constrained setting), then

It has been observed empirically that in many networks,
the distribution of the sizes of the communities displays a
power-law behavior fs(s) ~ s~17% where fs is the dis-
tribution of community sizes and o > 0 [(see for example
(Stegehuis et al. 2016; Radicchi et al. 2004; Clauset et al.
2004; Arenas et al. 2004)]. As stated in Proposition 17,
this property cannot be captured in the framework of Zhou
(2015) for example where o = 0 is constant. These empir-
ical observations seem to indicate that models with flexible
o are needed.

Finally, let ¢™ (k, k') denote the cosine between the cor-
responding affiliation vectors

n
D i1 VikVik'

yV D v?k\/ 2 vizk’.

This coefficient gives a measure of the overlap between two
communities k and k’. By the law of large numbers, for any
k £k,

™k, k) =

(f vF(dv))?

™ (k, k)=
UL Tv2F(dv)

a.s. asn — +o00.

3.2 Specific case of the GGP

In the case of the GGP, we have

k7% :
—E— f 0
_ kT (—0p, TX) 0 1 7%=
p(x)=———— = =< {klog(l/x) ifog=0
F(l - UO) Kx % f O
ol (-ap 100>

as x tends to 0, where I'(a, x) is the incomplete gamma
function. Note that p(x) is of the form x~°¢(1/x) where
o = max(0, og) and

kT

- ifog <0
£(t) = { klog(t) ifop =0
—UOF(’E_UO) ifog >0

is a slowly varying function at infinity. The results of the
previous subsection therefore apply. For simplicity, we state
the results for the constrained setting. We have, almost surely
asn — +0o

Koo ifog <0
K, < 1 2k log(n) ifog =0
ka?®0n% g if og > 0

where Ko, ~ Poisson(—« 7% /o). Additionally, for o > 0,

Knj _ 00l(j = 00)
K, I'(1—09)j!

almost surely as n — +oo. Finally,

Mk, Ky —

a+1

Therefore, o governs the asymptotic behavior of the num-
ber of active communities. K,, is bounded with a random
upper bound (op < 0), increases logarithmically (o9 = 0)
or polynomially (o9 > 0). In the polynomial case, o also
controls the power-law exponent of the proportion of com-
munities of a given size. The parameter « is an overall
linear scaling parameter. Finally, the parameter « governs
the amount of overlapping between two communities.

4 Simulation, posterior characterization and
inference

In this section, we describe the marginal distribution and con-
ditional characterization of the model. Building on these, we
derive an exact sampler for simulating from the model, and
a Markov chain Monte Carlo algorithm to approximate the
posterior distribution. Importantly, the sampler targets the
distribution of interest and does not require any truncation

@ Springer
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or approximation. For simplicity of exposition, we assume
that p and F are absolutely continuous with respect to the
Lebesgue measure, with p(dr) = p(r)dr and F(dx) =
f(x)dx.

4.1 Marginal distribution and simulation

For a fixed n, recall that K,, denotes the number of active
communities. Let (71, Vi:n,1)s ..., (Fk,.Vi:n.k,)) be the
subsequence of (rg, vi.,.x) such that community & is active,
meaning that 3, ; ;, Zijx > 1, arranged in random order.
Let Z' ik be the number of community interactions corre-
sponding to the active community (7, ¥1., ). Note that

Kx
Aij =Y Zij. (18)
k=1

Let Zk = (Z’jk)lsi,jsm Using Proposition 5.2 of James
(2017), we obtain the following lemma.

Lemma 1 (Marginal distribution) The joint distribution of
(Kn, Pk, Vin,1:K,) s (Zi)k=1,....k,,) is given by

K, ~ Poisson(¥ (n)) (19)

where W (n) is defined in Eq.(12), and

Ky
p((Fi:k,» Vi 1:k,) | Kn) = 1_[ P, Vin k| Kn)
k=1

where

n
~ o~ -7 nooxy2 ~
P @, Vi ik Kn) oc (1 — e H &= W00 o ) T £ @)
i=1
(20)

Finally, foreachk =1, ..., K,,

Zr| (71, > Vin 1:K,) ~ tPOISSON (P V10 D, ) 21
where tPoisson(A) denotes the distribution of a integer-
valued matrix with Poisson entries with mean values Ajj,
conditionally on the sum of the entries being strictly posi-
tive. This has probability mass function

Aii A
A./.”e Aij

=3 Ajjy— i .
pay = A= DD T i 30 Ay > 0
0 otherwise

The model has an infinite number of parameters, but
Lemma 1 allows us to derive an algorithm to exactly sam-
ple from it, by successively simulating K,,, (71:x,, , V1:n.1:x,, )
(Z)k=1.... x, and A using Egs. (19), (20), (21) and (18).

@ Springer

Sampling from the conditional distribution (21) can be
done efficiently by first sampling the number of multi-
edges Zi,j Z’,j,k from a truncated Poisson with mean
7x(X"; Ui x)?, then sampling iid the end nodes of the edges
proportionally to the affiliation vector. Simulating from the
conditional distribution (20) can be more challenging since
it requires sampling a n + 1-dimensional vector. However,
if we suppose that the affiliations are Gamma distributed,
the problem reduces to sampling (7%, Y ; v; k), which is a
two-dimensional vector, and independently sample the nor-
malized affiliations from a Dirichlet distribution. Indeed, if
the affiliations are Gamma distributed, we consider the fol-
lowing change of variable.

n

Go=) Uk k=1...K, (22)
i=1

Pr=t, k=l Kpi=1...n (23)
Sk

This gives the following algorithm for exact simulation from
the model.

1. Sample K,, from Eq. (19)
2. Fork=1,..., K,

(a) Sample (@i, ..., Pnk) ~ Dirichlet(a, ..., a)

(b) Sample ¢ from

p(2) o ¥ (%) Gamma(Z; na, B) (24)
(¢) Sample 7% |Gk from
PFEID) o (1= e )p(F) (25)

(d) Sample Z,E") from Eq. (21)

3. For1l < i,j<n, setAij = Zf:nl Zijk

where () = O+°°(1 — e "Hp(dw) is the Laplace
exponent, Dirichlet(c, .. ., @) denotes the standard Dirich-
let distribution and Gamma(x; a, b) denotes the probability
density function of a Gamma random variable with param-
eters a and b, evaluated at x. In the case of the GGP, the
Laplace exponent is

Y1) = g((t +1)° — 1) (26)

One can sample from Egs. (24) and (25) using rejection.
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4.2 Posterior characterization

Using Proposition 5.1 in (James 2017), one can characterize
the conditional distribution of the CRM G given the latent
community counts Z; jk.

.....

the same distribution as

Kn

G+ Z Fk‘sﬁl:n,k
k=1

where G’ is an inhomogeneous CRM on R!. with mean inten-

sity

(R
e = pm [

i=1

and (i, V1:n. k)k=1,... k, are independent of G’ and iid with
density

n
-~ ~ LS T o~y o~ i ~
P Drn k| Z{") = e W 5 o G T 0 @)
i=1
@7)

where m;; = Zj 2,']'1( + Zjik and gk = Zi,j Zijk~ .

In the case where f is a gamma pdf, we can use the
same reparameterization as in the previous subsection with
(Gk» P1:n.k) in place of V7. x. This leads to the following con-
ditional distributions.

$1n x| Z" ~ Dirichlet(a + i . . .. & + i)
P(Ekli,in)) o x(dy, S2) Gamma(Z; na + 2d, B)
~ = -~ 4 -
P (il Sk Z,g”)) o e Kk p (k)

where x(m, t) = O+°° r™e™" p(r)dr. In the GGP case, we
have

I'(m— o)

T —0) t+7)°"

#(m,t) =«

and

~ ) 5 ~2

k|G Zy " ~ Gamma(dy — o, 6 + 7).

4.3 Slice sampler for posterior inference

We recall that 6 denote the set of hyperparameters of the mean
measure p and pdf f. To simplify the presentation, here we

suppose that we observe the complete adjacency matrix A,
which means that we observe a directed and weighted graph

with no missing (hidden) edge. The objective is to obtain
samples distributed from the conditional distribution

P(Kn, (ks Vi kk=1,... K, 0 | A).

In the Appendix, we show how to do inference when we only
observe a partial graph (with missing edges to predict) that
can be directed or undirected, weighted or binary. In order to
leverage the Poisson factorization construction, we augment
the model with the latent community counts Zx. Addition-
ally, to deal with the unknown number of active communities
K, we use auxiliary slice variables, similarly to other Gibbs
sampler for Bayesian nonparametric models (Walker 2007,
Kallietal. 2011; Favaro and Teh 2013). For each directed pair
(i, j) such that A;; > 1 consider the scalar latent variable

5ij1Grs ZijOk=1....k, ~ Unif [0, min 7 (28)
(k| Zijr=1}

and denote s = min;; s;;. Note that by definition, Tk > S
forallk =1, ..., K,. In the following, we will consider the
communities k, active or inactive, which r is higher than s.
We use the notation = to denote the corresponding variables.
More precisely, let

K
G = Zrkgvlzn,k]lrsz = kaavl:n,k
k k=1

be the CRM corresponding to the set of active or inactive
communities with weight r, > s, of (almost surely finite)
cardinality K, > K,. Denote Z- jk = 0 the associated com-
munity interactions, and Zy = (Z jk)- The data augmented
slice sampler draws samples asymptotically distributed from

,,,,,

The main steps of the algorithm are as follows.

1. For each directed pair (i, j) such that A;; > 1, Update
(Z- k) k=1...K, given the rest of the variables,

2. Update the hyperparameters 0 given the rest of the vari-
ables,

3. Update (G, s) given the rest of the variables.

The details of each step are given in Appendix B. Each iter-
ation of the Gibbs sampler has a time complexity scaling in
K, S where S is the number of nonzero entries of the matrix.
Therefore, the algorithm takes advantage of the sparsity of
the networks. Additionally, each entry of the sparse graph can
be dealt with independently, making the algorithm straight-
forwardly parallelizable.

@ Springer
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5 Experiments

We implement the algorithm described in the previous
section with the GGP-Gamma scores model. We assign
Gamma priors on the hyperparameters «, T, « with parame-
ters (0.1, 0.1). We fix 8 = 1. We allow up to a linear growth
of the number of communities, corresponding to o < 0.5,
for small datasets and use a Gamma prior with parameter
(0.1,0.1) on 1 —20. For larger datasets, we restricto < 0.25,
meaning that the number of communities cannot grow at a
faster rate than /n. This is obtained by using a Gamma prior
with parameter (0.1, 0.1) on 1 — 40o.

The model allows overlapping communities but, for visu-
alization purposes for example, it is useful to obtain an
associated partition of the nodes. For each iteration, one can
cluster the nodes by assigning each node to the community
where it is most active. That is, at iteration ¢ of the MCMC
algorithm, define fori = 1,...,n

cl.(l) = argmax; { r,?) vi(,? (29)
the cluster membership of node i. We then compute an
approximate Bayesian point estimate ¢ = (cy, ..., Cy) of
the partition of the nodes, using Binder’s loss function (Lau
and Green 2007).

5.1 Synthetic datasets

Data generated from the GGP-gamma model. We first run the
algorithm on a synthetic dataset simulated from our model,
to check that the algorithm can recover the true parame-
ters. We sample a directed and unweighted graph from the
GGP-gamma model with size n = 800 and 0 = 0.2,k =

@ Springer

1,7 =0.15, ¢ = 0.05, B = 0.2. The number of edges of the
obtained graph is 20198, and the true number of active com-
munities is 42. We run three chains in parallel with 500, 000
iterations, with 250, 000 iterations for burn-in. We show in
Fig. 1 trace plots of the number of active communities K,
and parameter o showing the MCMC algorithm can recover
these parameters.

Data generated from a Poisson factor model with a fixed num-
ber of communities. Following Miller and Harrison (2013),
we know that the Dirichlet process is inconsistent for esti-
mating the number of clusters if the number of clusters is
fixed and does not increase with n. Similarly, we conjecture
that when o = 0 is fixed, corresponding to the setting of
Zhou (2015), the model will fail recovering the right number
of communities, whereas if o is free, we can expect it to con-
centrate on negative values. The model should then recover
the correct number of communities if the data is generated
from a Poisson factor model. A proper posterior consistency
analysis is beyond the scope of this article. However, we
design a simple numerical experiment to support this conjec-
ture. We take K = 5 true communities, the affiliations v;
are iid Gamma(0.1, 1) and the five communities importance
(r1,...,rs) are iid Gamma(2, 0.2). Networks of increasing
sizes n = 500, 1000, 1500, 3000 are then generated from the
Poisson factor model (3).

We estimate the number of active communities K,, under
the model with 0 = 0 and with o unknown. In Table 1,
we report the posterior mean and variance of the recovered
number of communities. We can see that the gamma process
model (c = 0) does not seem to concentrate around the
right value. On the contrary, when o is free, we see that the
posterior of K, seems to concentrate around K = 5. For
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Table 1 Concentration of the posterior of K, when increasing n on synthetic dataset with a number of communities K = 5 fixed (independent of

n)

Statistic n =500 n = 1000 n = 1500 n = 3000
=0 6.55 (£1.36) 6.11 (£1.16) 6.17 (£1.26) 6.59 (£1.20)
o free 6.14 (£1.18) 5.40 (£0.85) 5.21 (£0.57) 5.12 (£0.43)
P(oc < 0) 0.69 0.93 0.97 0.99

We report the mean and the standard deviation (between parenthesis) of the posterior of K, for two models: first line o = 0 is constant, recovering
the Dirichlet model second line o is free and inferred from the data, in the third line we report the posterior probability of 0 < O when o is

considered unknown

n = 500, the posterior on o ranges from negative to positive
values, which explains the higher variance. However, from
n = 1000 onward, the posterior of ¢ concentrates on negative
values, which translates in a significant decrease of variance
for the posterior of K.

Data generated from the Stochastic Block Model (SBM).
From our experimentation, it seems that Poisson factoriza-
tion models do not capture well the generating process of
the SBM. Both when o = 0 and o free, the model creates
many very small communities. However, the model is able
to recover with high precision the true communities once we
cluster the nodes using (29).

We generate a synthetic dataset from a SBM withn = 600
with three communities of size 200 each. The probability
of an edge between nodes of a same community is p;, =
0.1; the probability of an edge between nodes from different
communities is p,,; = 0.01. The resulting dataset is hence
undirected and unweighted with 7239 edges.

The GGP-Gamma model does not capture well the SBM
generating process and the posterior mean of the number of
communities is K, = 38.6, with o positive. We obtain 3 main
communities and the rest are very small (composed of a few
edges each). As explained previously, we cluster the nodes
by assigning each one of them to the community to which
it has the highest scaled affiliation. We then get an average
of 8.35 communities, 3 of which are on average composed
of 195.5 nodes each. We plot the distribution of the sizes of
the small communities in Figure 2. In Table 2, we report the
contingency table of the posterior clusters.

We also use the model with o = 0 on this dataset and find
very similar results. After clustering the nodes, we find that
the average number of communities is 7.66, which slightly
less than previously, but the small communities are slightly
larger on average, giving at the end an average size for each
large cluster of 195.5, which is exactly the same. We do not
report here the contingency matrix as it is very similar to the
one we obtain with o free.

0.5 1

Density

2 4 6 8 10 12
Small communities sizes

Fig. 2 Posterior density of the sizes of the small communities for the
dataset generated from a Stochastic Block Model

Table 2 Contingency table of the posterior communities in per cent of
the true communities size

Estimated communities

61 62 63 Others
C 97.67 0.09 0.09 2.15
Cy 0.01 97.94 0.0 1.95
C3 0.14 0.0 97.43 2.43

5.2 Political blogs

The polblogs network (Adamic and Glance 2005) is the
network of the American political blogosphere in February
2005.Itis a directed unweighted graph, where there is an edge
(i, j) if blog i cites blog j. It is composed of 1490 nodes and
19025 edges. For each node, some ground truth information
about its political affiliation (republican/democrat) is known.

We will use this dataset in order to illustrate the role
of the parameter « in the model. As indicated in Sect. 3,
this parameter tunes the amount of overlapping between the
communities. A smaller value enforces less overlap between
communities. We run three chains with 500, 000 iterations.
The posterior samples of o for three different values of «

@ Springer
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Fig.3 (Left) Estimated communities and (right) posterior on o for the polblogs dataset with (top row) o = 0.8, (middle row) « = 0.4 and (bottom
row) o = 0.2
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Table 3 Proportion of the

. . . a=0.8 a=04 a=02
interactions of the features in
each block for different values 1 2 1 2 3 1 2 3 4
of overlapping
Dem/Dem 91.5 0.7 93.2 1.1 0.8 95 84 1.5 0.1
Dem/Rep 8.0 9.5 6.5 13 5.1 5 14.5 15.5 4.8
Rep/Rep 0.5 89.8 0.3 85.9 94.1 0 1.5 83 95.1
600
800
500
600
a 400
c o
g g
g g
& 400 o300
200
200
100
0, |
40 45 50 55 60 R — ; g 0.0

Active communities

(a) Histogram of number of communities

Fig.4 Posterior of K, and o for the Wiki-topcats dataset

3000

2500

2000 .. .

nodes

1500

10001

500

[ 500 1000 1500 2000 2500 3000
nodes

Fig.5 Reordered adjacency matrix of the Wikipedia topcats dataset

are in also shown in Fig. 3. Nodes are reordered according
to their estimated membership ¢ (through (29)), and Fig. 3
shows the densities of connection between and within clus-
ters for three different values of «. Depending on the amount
of overlapping, we obtain two (¢ = 0.8), three (¢« = 0.4)

Sigma

(b) Histogram of o

or four (@ = 0.2) communities. In order to interpret those
communities, we calculate in Table 3 for each community the
proportion of interactions between democrat blogs, between
a democrat and a republican blog, and between two republi-
can blogs. For @ = 0.8, there are two estimated communities
which can clearly be identified as democrat (community #1)
and republican (community 2). For « = 0.4, we have three
communities. One is mostly associated with democrat blogs
(#1), while the other two correspond to a split of the repub-
lican blogs into right (#2) and center-right (#3) groups. For
o = 0.2, we obtain a further split of the democrat blogs into
left (#1) and center-left (#2) groups. Increasing the value of
« therefore leads to a finer and finer partition of the nodes.

5.3 Wikipedia topcast

The network is a partial web graph of Wikipedia hyperlinks
collected in September 2011 (Klymko et al. 2014). It is a
directed unweighted graph where an edge (i, j) corresponds
to a citation from a page i to page j. We restrict it to the first
3000 nodes, and the associated 5687 edges. We run three
MCMC chains for 200, 000 iterations. Trace plots of the
number of active communities and parameter o are given
in Fig. 4. Figure 5 shows the adjacency matrix reordered by
communities, as explained in the previous section. In order to
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check that the learnt communities/features are meaningful,
we report in Figures the proportions of webpages associated
with a given category within a given community/feature (note
that a webpage can be associated with multiple categories
hence the proportion do not sum to 1).

Note that, while the approach is able to estimate the latent
block structure, this dataset has the particularity of having
star nodes, a feature that is not captured by our model.

5.4 Deezer

The dataset was collected from the music streaming service
Deezer in November 2017 (Rozemberczki et al. 2018). It
represents the friendship network of a subset of Deezer users
from Romania. It is an undirected unweighted graph where
nodes represent the users and edges are the mutual friend-
ships. There are 41773 nodes and 125826 edges. We run three
chains with 100000 iterations each. Posterior histograms of
the number of active communities and ¢ are given in Fig. 8.
The algorithms find around 45 communities/features for this
dataset. The reordered adjacency matrix and block densities
based on the point estimate of the partition are given in Fig. 9.

Now we can reorder the nodes using approximate MAP
clustering as previously. We obtain the following adjacency
matrix

For each individual in the network, a list of musical genres
liked by that person are available. There are in total 84 distinct
genres. We represent in Fig. 10 the proportion of individuals
who liked a subset of the 84 genres for three different com-
munities where the interpretation in terms of genres is quite
clear. The overall proportion of individuals liking a given
genre is shown at the bottom of Fig. 10. If the bar is red, this
indicates that the proportion is 10% higher in the community
than in the population. If the bar is blue, this means the pro-
portion is 10% lower. Community 11 can be interpreted as
R&B, Community 8 as Dance, and Community 3 as Rock
music. For some of the communities, not reported here, the
interpretation in terms of the liked genres is less clear, and
may be due to other covariates.

6 Discussion

The model presented in this paper assumed the same param-
eter B for each node. We can also consider a degree corrected
version of the model, similarly to Zhou (2015), where each
node is assigned a different parameter §; > 0 and then
defining Z;jx ~ Poisson(%). It is unclear however if
a MCMC sampler targeting thé exact posterior distribution
could be implemented, and one may need to resort to some

truncation approximation as in Zhou (2015).

@ Springer

The count matrix (A;;) is infinitely exchangeable; hence,
the model presented in this article lead to asymptotically
dense graphs. That s, Zlii’jfn Ajj < n? as n tends to infin-
ity. In order to obtain sparse graphs, we could consider two
different strategies. The first solution consists in dropping the
infinite exchangeability property and take i(") — 400 with
n, then the number of edges will behave as (n/8 )2 (we can
for instance take ﬂi(") = /n for any node i to obtain a linear
growth of the number of edges). The model would still be
finitely exchangeable for any fixed n, but not projective any-
more. The second solution would be to consider the different
notion of infinite exchangeability developed in (Caron and
Fox 2017) and consider (f;); as a realization of a Poisson
point process.

Finally, we presented a model for count (and binary) data.
The results build on the additive contributions of the com-
munities, which is why we chose the Poisson distribution
on the entries of the adjacency matrix (A;;). We can gener-
alize to non-count data using other probability distributions
which are closed under convolution. For example, one could
consider A;; ~ Gamma(} revikvjk, 1) for A;; € Ry or
A,’j ~ N(Zk TkVikVjk, 1) for Aij e R.
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tation, distribution and reproduction in any medium or format, as
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unless indicated otherwise in a credit line to the material. If material
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intended use is not permitted by statutory regulation or exceeds the
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A Proofs
A.1 Technical Lemmas

Lemma 3 ( Gnedin et al. (2007), Propositions 17 and 19) Let
p be a Lévy measure, let p(x) = fxoo p(r)dr be the tail Levy
intensity and ¥ (t) = f(l —e ") p(dr) its Laplace exponent.
Then, the two following conditions are equivalent:

200 2 01 /x)x0 (30)
v T2 P — o)yt e) (31)

with £ a slowly varying function and 0 < o < 1.
Besides, if we let yq(t) = ;—d! [rie~" p(dr)
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1. ifo > 0, then (30) implies that yrq(t) =g %t" Lemma4 (Pollard 2015, Exercise 15) Let X be a Poisson
2(1) random variable with parameter A . For anyt > 0

2. ifo =0, then (30) implies that V4 (t) = o(£(t))

2
P(X — A| > Af) < 2 X050, 32)
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Lemma5 Let (X,)u>1 be a sequence of Poisson random
variables with mean (ftn)n>1. If logn = o(un) then X, =<
Wn almost surely as n tends to infinity.

Proof Let 0 < € < 1/2. Using Lemma 4, we have

;XT 62 n
P(—"—I‘Ze>§2e_ T
Mn

E2H—n

— 2pn 4logn

(33)

. . iy
Using the assumption, we have that — Togn — — o There-

fore, the RHS of (33) is summable. The almost sure result
follows from Borel-Cantelli lemma. O

Lemma6é Forany x,y > 0, we have the following bound

1 —e™ <max(1,y)(1 —e™) (34)
Proof The bound is trivial when y < 1. Consider the case
y > 1. For all x, the function y — ™" is convex hence
fr(y) = -1l isa monotonically non-decreasing function

y
of y therefore

—xy _
fz_____________]; Ezi Eg__jj —1
y
fory > 1. O
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Fig. 10 Features compared to genres for Deezer’s dataset
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A.2 Proofs of Section 3

Proof of Proposition 1 The result for K,, is proved in James
(2014) in the general context of GIBP. We provide here the
details of the proof for K,,, which can be straightforwardly
adapted to K, ;.

First, let us remark that the bound (34) together with
assumptions (A1) and (A2) imply ¥ (n) < oo. Fors < 0,

s1 Z Ziir>1
I<ij=n =

E[e*K] = E[ ]_[ E[e
k=1

|G1]

ad (3 v
=E([[le¢+a-ere =]

k=1
*rk(i vi)?
_ > loglet+(1—e')e  i=l ]
= E[ ek g ]

Then, since

*rk(i vik)?
logle’ + (1 —¢')e =1 ]

—rk(i vik)? —rk(i vik)?
=logle i=! +ef(l—e =l )]
—Vk(i vik)?
<log[l+e'(l—e = )]
—rk(i vik)?
<l—e =

and the last part is integrable, we can use Campbell’s theo-
rem (Kingman 1993) to get:

n
—r(Y vp)?

E[eA‘K,,] — exp[ /\(elog[ef-f-(l—gs)e i=1 1 1)

[]F@vi) pr)]
i=1
=expl (¢ = D¥ () ]

We can prove similarly that K, 4 is a Poisson random variable

with mean ¥, (n) and that > K, 4 is Poisson distributed
d>D
with mean Y W;(n). The assumption ¥, (n) < oo is also
d>D
sufficient in this case to apply Campbell’s theorem.

Proof of Proposition 2 From Proposition 1, we get that

(S
E(Ky) = /(1 —e =l )l_[ F(dv;) p(dr) = ¥ (n)
i=1

(35)

Let (V;);en be i.i.d random variables with distribution F. By
assumption, 0 < E[V;] = u < +oo and Var[V;] = 1% <

4o00. Let € > 0. Let A(r) be defined for r > 0 by

(5 VP
AG)=FE[l—e =1 ]

Since v — 1 — e~ is concave, using successively Jensen’s
inequality and the independence of (V;), we obtain

—rRI(Y Vi)
A(ry<l-—e i=l

2,2 2
51—6 r(n“u +nt”)

_ 22
<l—e¢ (14+€)rn“p

where the last inequality holds for any € > 0 whenn > %

2
Therefore, fore > QO and n > ;7

w(n) < /(1 Y )

Besides, since v = 1 — e "V

inequality we have for any € > 0

is increasing, by Markov’s

n
—rn?(; Y Vi)?

Ar)y=E|1—-e i=1
n n2 2
> P lZVi> s 1_e_<1+/:>2r
- n = “(+e)
Hence,

I, n n?u?
P(ng’ = (1+e))w<(1+e)2)
<w@m < lﬁ((1+6)n2u2)

where ¥ (t) = f(l — e ") p(dr) is the Laplace exponent.
Furthermore, by the law of large numbers,

| — : "
P(ZZV’ = (1+e))_>l

i=1

Therefore, under Assumption (A4), Lemma 3 implies
E(K,) = I'(1 — o)’ n e(n?)

as n tends to infinity.

In the finite-activity case, that is ¢ = 0 and £(t) —
0(0) < oo, we have E(K,;) — p(0) hence K, tends in
distribution to Poisson(p(0)).

Now, for o > 0, the almost sure result (15) follows from
Lemma 5 and the fact that for every slowly varying function
£y and every € > 0
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lim £p(x)x~ € =0.
X—>00

Finally, assume that (K, ),>1 is non-decreasing. We only
need to prove the asymptotic behavior for o = 0. In that
setting, ¥ (n) =< 2(n?). Using the assumption thatf p(dr) =
00, we therefore have lim,,_, oo ¥ (n) = 00. Letn > 1,

Un+1)—¥n)

ST SR S A
=/IE e =l —e =l p(r)dr

Since V; > 0 a.s, it comes that (¥ (n)), is non-decreasing.
Now extend the sequence (¥ (n)), to a non-decreasing and
continuous function ¥ on R, (by linear interpolation for
instance). Let r > 1, then

wa+1) _ w@EL) ol
1< < = —
v T el e

o Y+
Hence lim v =

Now, for every integer m > ¥ (0), choose t,, such that
U(t,) = m. We have that (#,) is non-decreasing and
diverges. Since V¥ is increasing, it comes

V(mr1— D) =¥t =D <P (Upyp) =m+1

Hence, ¥ ([ t;+1] — 1) < m. Then, using Lemma 5, we get
that

KLTm-HJ*l =Y(ltmt1l — 1) xm a.s.

Finally, let n > W (0), let m;, = min{m | n € {|t,],...,
Ltmt1] — 1},

K\_tmnj < Kl‘l < KLtmn+1J_1
Y(ltmy+1] =D~ W) = ¥(ltm,])

Since t,,, — o0, both bounds converge to 1 almost surely,
which gives the result. O

Proof of Proposition 3 As for Proposition 2, we only need to
show that ford > 1,

rd-
g (d' 0)n20M20£(n2)

Yy (n) <
Therefore, the proof is very similar to the one of Propo-
sition 2. However, there are sorr}{e technicalities we need
to address since here v +> %e‘r U is neither convex
nor decreasing. Like previously, we will lower bound and

upper bound ¥, (n) by two quantities that are equivalent to
O-F(dd!_a) nZ(TMZOE(nZ).

@ Springer

Let us first introduce some notations. Let (V;);en 1.1.d
n
variables with distribution F. Let S, = >_ V; and ¢4(r, v)
i=1
defined as
rdyd

—rv
d!

@a(r,v) = e

Now, define A;4(r, n) for r > 0 by
Aq(r,n) = Elpa(r, S2)]

Suppose that 0 < o < 1, let € > 0, recalling that EV; = p,

define B, = [%, (1 4+ e)nu]. Let us notice that the law of

large numbers gives us that P(S,, € B¢) — 1.
1. Lower bound: We have that
ElLs,e5,9a(r. S < Aq(r,n)

Besides, forall v € B, and all r > 0

d, 2d,2d
Ga(r.v) > — 2 pmrnt(iteru?
T (14 e)d)
hence
d, 2d,2d
P(S, € Be)we—rnz(l—&-e)zuz
(1 +e)Xd!

< E[ls,ep,¢a(r, SHI.

Therefore, using Lemma 3 and since P(S, € B;) — 1,
we have for n large enough

ol'(d— o)

anaﬂzaanz) =< /Ad(r,n)p(dr).

2. Upper bound: We have that
Aa(r,n) = Ells,cp.pa(r, SH1+ Ells,¢p.0a(r, ;)]
Like previously, since

E[ls,ep.9a(r,nSp)]
2.2

rd(l + G)ZdMZdI’lZd e uz
e (1+€)
d!

= P(Sy € Be)

We find that for n large enough,

/ Ag(r, m)p(dr)

- ol'd—o)(1+ 6)4d+1—20
- d!

+ f E[Ls, 5, ¢a(r. S p(dr)

n20’ MQGE (n2)
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Therefore, we only need to prove that

f E[Ls,¢5, ¢a(r, SH1o(r)dr = o(n** £(n?)).

In order to do so, we split the integral with respect to
r in two parts, an integral over (0, n—lz) and an integral

over (nlz, 00) and show that both are o(nz"ﬂ(nz)). Since
@a(r,v) <1,

o0
/ E(ls, ¢, ¢a(r, SH1o(dr)
1/n?

<P(S, ¢ Bg)/oo p(dr)
1/n2

=P(S, ¢ Be) p(1/n?)
= o(n*7 ¢(n?))

where the last line follows from the law of large numbers
and Assumption (A4). Besides,

1/n?
/0 E[Ls, 45, ¢4(r, S2)1p(dr)
1/n? rS2
- /0 BllLs,¢5, " ga1(7, Sp(d)
1/n?
< / E[Ls, ¢5,rS21p(dr)
0

52 1/n? )
=1E[1ls,1¢36n—§]/0 rn”p(dr)

s2 1/n? X
<EBllsgn 5le [ e ot
0
S2 ol'(d—

n CT) 20 2
< SE[lls,,eéBE;] 0 n=%€(n”)
where the last inequality holds for n large enough by

Assumption (A4) and Lemma 3. Now, we have that
2 I s
no_ v

Since (V[z),- are i.i.d random variables in £, we know

n
that (% > Vl.z),,z 1 is uniformly integrable. Therefore,

i=1

2
(Is,¢ Bei_;)"i 1 is uniformly integrable. Besides, using
the law of large numbers, the sequence converges
almost surely, and hence in probability, to 0. Therefore,

2

lim, E[1g, ¢, j—g] = 0, which concludes the proof.
For o = 0, the previous computations for the upper
bound give that almost surely, ¥ ;(n) = o(t(n?)) =
o(W((n)).Nowlet D > 1,

D—1
E Z Kna=W¥n) — Z W, (n) = £(n?)

d>D d=1

And since x +— Y ¢g(1,x) is non-decreasing,
d>D
(E > Ky.4)n is non-decreasing, therefore, similarly to
d>D
the proof for o = 0 for (K}),, we find that

Z Kna=<E Z Kna = E(nz) a.s

d>D d=D

Therefore, we finally find that

Z Kn,d - Z Kn,d
Kyp d=D d>D+1
= — 0 a.s
K, K,
O
B Gibbs sampler

As mentioned in the main text, the observed graph can be
directed or undirected, binary or count, and can have missing
entries we would like to predict. Denote by B the observed
graph. Here, we describe the steps of a Gibbs algorithm with
stationary distribution

p(Kn, (e, V1i:n )k=1,...K,» 0 | B).

Notice that observing the full matrix B = A corresponds
to a weighted and directed graph with no missing entry. Let
7 denote the set of all possible edges. In the directed case,
T ={G,j) |1 <i,j < n} and on the undirected case
T ={G,j)|1 <i < j < n}. Wesay that (i, j) is not
observed if we do not know the value of A; ;. Remark that
(i, j) can be observed and still A; ; = 0. Denote O the set of
all observed entries and O¢ = 7 ~. O, the set on unobserved
entry. For all unobserved entry (i, j) € O°, set B; ; = —1

Additionally, to deal with the unknown number of active
communities K, we use auxiliary slice variables s;_ ; for all
(i, j) € Z, details are given in the following paragraphs.
Denote s the smallest non-zero slice variable s; ; for (i, j) €
Z. By definition of the slice variables, 7, > s for all k =
1,..., K,. Let

el
=

Tk8vy, 4

G = Zrk&fl:n,k]lrkzs =
k 1

~
Il

be the CRM corresponding to the set of active or inactive
communities with weight r; > s, of (almost surely finite)
cardinality K, > K,. Denote Z; ik = 0 the associated com-
munity interactions, and Z; = (Z; k)-
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B.1 Directed graph

Foreach observed pair (i, j) € O, we define the slice variable
as

5ij| e Zijidk=1....x, ~ Unif [0, min 7 (36)
{k|Zijr=1}

if A;j > 0 and s;; = 0 otherwise. For each non-observed

entry (i, j) € O°, wedefines; ; by B8)if (k| Z;jx > 1} #0

and

5ij |G, Zijik=1.....x, ~ Unif(0, 1) (37)
otherwise.

B.1.1 Gibbs sampler step 1 for weighted graph on observed
entries

Updating (Z{)k:l,_",Kn |(s, 5), 6, B on observed entries
indexes

We sample (Z)l=1 ..... z, associated with all atoms of G
and keep only the non-empty communities. For every (i, j) €
O such that A; ; > 0. define the random variable m;; =
ming 0Z;=1) 77. Then, writing the joint distribution it comes
that independently for every such (7, j),

P((Zij1)—...x,1(5.G), 0, Bij)

1 — _
o l—[ m—l_j]lsi_,<m,-_,- Mult((Z;j)i: Bij, (Pij)i)

i,j

where Mult is the multinomial distribution and p;;; =
Vil V]

?)l

T jit
t=1 _
let us suppose that the atoms of G are in decreasing order.
Remark that the indexing of Z is different from the one of Z,
the second corresponds to the one of the truncated random
measure. For each observed edge (i, j) independently, we

can proceed in 4 phases for this step.

. Let pjji = rjvyvj. To simplify the notations,

1. Sample m;; from the locations of G such that P(m; =

L 5. Lol B
(X pii) =Y pijn)
=1 =1

rL) X L

2. Forl > L, Setfl’jl =0
3. Sample Z;;;, ~ tBin(B;;, -
12 Pijt

=1
truncated binomial distribution

]]-S,'j <rr-

), where tBin is the zero

4. Sample (7,‘j1,...,Z,’jL_1) ~ Mult(B,-j — Z,'jL,
ULy 1)
leijr
1=

@ Springer

B.1.2 Gibbs sampler step 1 for unweighted graph on
observed entries

In this setting, we observe a binary matrix B;; = 1 Aij>0-
Then, the first step of the Gibbs sampler is modified and
becomes:

Updating (Zi)k=1
indexes

For each observed edge (i, j) € O independently do

k,1(s, G), 0, B on observed entries

.....

1. Sample m;; from the locations of G such that

L—1
> Pijk

L
> piji
k=1 _ pk=1

]P)(mij =rL) X ]lsi/-<rL

rL

Suppose m;j =rp,

2. Forl > L, setz-jl =0

3. Sample Zi jL ~ tPoisson(p;;L), where tPoisson is the
zero truncated Poisson distribution

4. Forl < L, sample Z;j; ~ Poiss(p;ji)

B.1.3 Gibbs sampler step 1 on unobserved entries

For each unobserved entry (i, j) € O¢, knowing s;;, we
define Lo = max{k | rp > s;;}.

1. Draw 14,;=0, which is a Bernoulli with parameter

1

pP= L L—1
Lo X Pijk kZl Pijk

14+ ) &—2=
L=1

2. If A; j # 0, then use subsection B.1.2. Otherwise, set all
counts of that entry to zero

B.2 Undirected graph

In the undirected graph, we suppose that for i # j, Bjj =
Ajj+Aj; and B;; = A;;. Besides, in this setting we actually
do not need to sample Z;j; for all (i, j, k) but only Z;;; +

Z ix. For each observed pair (i, j) € O, we define the slice
variable as

~ Unif (O, min 7k) (38)

k1 Zije+Z ji=1)

if Bjj > 0 and s;; = 0 otherwise. For each non-observed
entry (i, j) € O°, wedefine s;; by 38)if {k | Z;jx + Zjix >
1} # @ and
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5ijl s Ziji + Zjitk=1.....x, ~ Unif (0, 1) (39)
otherwise. Then, step 2 and step 3 remain unchanged. For

step 1, simply replace p;jx by 2p;j fori # j.
B.3 Proofs for the Gibbs sampler step 1
B.3.1 Weighted graph

Here, will give the posterior distribution of the count matrices
and show that

> Zik=1....x,1(s, G), 0, B

dlbl

= Wk, Zii= 1,..K,15,G,0, B

In order to do so, we derive the RHS posterior distribution.
Let us first notice that given G, sampling the nonzero counts
and corresponding locations is equivalent to sampling (Zy)
for k € N. As stated previously, we can treat each edge (i, j)
independently. Therefore, we sample the sequence (Z;;)k.
Here, we suppose that the communities come with decreasing
activity order. Let the random variable L = max{k | Z;;; >
0} (supposing that the (r;), are decreasing). And let p;jx =
TkVikVjk

P(Zijls, G, 0, Aij)

X P((Ziji)k|G, 0, Aij) x P(sij|(Zijik, G, 0, Aij)
L

Ai" 7 1
J: ijk
Ly, Zyjmay T — H Pijk lesiqu
I—[ Zl]k‘ k=1
k=1
Z Dijk A
(sz/k) (1 = (F—)")
Z Pijk
X 1.
rL \'l./<rL
1 Ajj!
X 1<Ziip<Aj;
VEETY ZiiL A — Zij)!
L-1
Z Pijk
leL )Zl/L(k 1 )Aij_ZijL
Z Pijk Z Pijk
=] k=1
L-1
> Pijk
1 _ (kfl )Aij
> Pijk
k=1
11 1]L) l—[ Pz/k Zijk
x1 b Zz‘jk=Aij—Zi/L ( )
H Ziji! += Z Pijk
k=1 k=1

This shows how we can sample in three steps these variables.
Let us remark that the second part corresponds to the distri-
bution of a zero truncated binomial and that the third part

corresponds to the distribution of a multinomial. We also
notice that only the elements of G are actually needed.

B.3.2 Unweighted Graph
We proceed similarly for the unweighted graph

P((Ziji)kls, G, 6, Bij = 1)
o« P((Ziji)k|G. 6, Bij = 1)
xP(sij|(Zijik. G, 0, Bij = 1)

Ziik L
L % > Pijk 1
l]k _pl ik k=1
O(ﬂZI/L?éol—[ ik % ek= X _1Sij<rL
_ ljk rr
Z Dijk Z Dijk
ek:l — ek:l ]l
& Sij<r,
rL ij L
ZijL
1 Pijr  _,..
x1z,, 20———— I=_epiiL
Y 1 —e Pil Z;jp!
l/k
l[k —Diik
X]IZU(L-H) =0 l_[ k'e ij
_ l]

B.3.3 Prediction

Here, we show how to update the missing entries we try
to predict. Let us recall that for a predicted count, if it is
positive, we define the slice variable as previously. However,
if the count is equal to zero, then the slice variable is simply
uniform over [0, 1]. Now let Ly = max{k | rx > s;;}

P((Ziji)kls, G, 0)
< PU(Ziji)k|G, 0) x P(sij|(Ziji)k, G, 0)

Lo
L ljk
Z Pijk 1—0[ pl]k

= e Piik
lek'

& ]lZij(LOH),--.
k=1

1
X (]lAij#OEILS,‘j <rr + ]lA,'/‘=O)

Now let

Lo t/k

Zpljk Lo pl]k
~eS [T 25
=0 Zix!
k=1 Y

f(Zijik) =1 e Pk

Zij(Lo+1)s-

1
X (]lA,'j;éOZ]lsij<rL + ]lAij=0)

Using B.3.2, it comes that

L
Lo > Dijk

> Pijk & ek=l
E(f((Zij)k) | Aij #0) = =tk Z ¢

L=1

L—1
> Pijk

— ek=1

rr
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Besides,
E(f((Zij) | Aij =0) = f(0) =1

Therefore, here we proceed in two steps, first we sample
the binomial 1 4, =0 with parameter

1

p= Lo i Lil
L Pijk Pijk
=1 L
Then, conditioning on the event A;; # 0, we use B.3.2 to

proceed.
B.4 Proof for the Gibbs step 2

Here, we show how we can update the parameters § =
(k, 0, T, «, B) using a Metropolis—Hastings update. First, let
us derive the posterior distribution of the hyperparameters.

K
We write G = G'+ ) 7.8;, where G is the non-observed
c=1
part. And we note G’ the restriction of G’ to the locations
which intensity is larger than min s.

p©l(s,G), 7, Z)

K
o« p(0 1) Fedi,.s, G Z)

c=1

K
X p(e ’ chaﬁcasaaa 2)
c=1
K K
o< p(0.) Febi. Z) p(5. G0, Feby. Z)
c=1 c=1

Now let us derive consider the first part

K K K
p(0.> Febi. Z) o p(0) p(O_Fedi 10) p(Z] Y Feli)

c=1 c=1 c=1

_ k. [FO©
rd—o)JoO
P O+oo +o00

¢'(mins, n) = o
(t+¢2) mins Tdrf"“»ﬂ(g)dg’

Now let us consider the second part

K
p(s.G 6. 7ebs. Z)
c=1
K —
o ps| Y Febi,, Z) (G160, $)
c=1
o p(G'16, 5)

o o=/ (mins,n) 1_[ .ot (1) fap (V)
k

where (r,i) and (v,’() are, respectively, the intensities and loca-
tions of G’
Let

T

7(0) = e YO T g (ry, ),
t=1

where we are taking the product over the 7' atoms and jumps
of G and

W' (s, n) = / e T wndv) p(rydr.
r>s,v i=1

The posterior satisfies p(0|(s, G)) o« p(8)m (). With our
particular choice of distribution of the CRM, the multivariate
integrals are reduced to one dimensional integrals, which
makes the algorithm tractable. Indeed, we find that

¥ (n) + ¥/ (mins, n)

Kk [T 2 o
=*/ (T +¢97%1

— 2 1
s Jo F(l—a)r( o, (T + ¢“)mins) + 1]

kt®
fmx,ﬂ(g)ds'_i

o
K [Foo 2\o kt? :
o @+ fua,p(s)ds — S, ifo >00ro <0

¥ (n) = . .
{Kj0+°° log(t + §2)fna,ﬁ(§)d§ —klogr, ifo =0

and

(t 4+ ¢ ' (-0, (t + ¢%) min $) fra,p(s)dg, ifo >0o0ro <0

ifo =0

K
o pO)p()_ by, 10)

c=1

K
o p@)e™ " [ ] .o (o) fup (Be)

c=1
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We use the following priors:

1 —20 ~ Gamma(as, bs)
K ~ Gamma(a,, by)
T ~ Gamma(a;, by)

o ~ Gamma(ay, by)



Statistics and Computing (2021) 31:63

Page230f24 63

B ~ Gammal(ag, bg)
And proposals

1 — 260 ~ Lognormal(log(1 — 20), X5)
K|k ~ Lognormal(logk, X))
T|t ~ Lognormal(logt, X;)
ala ~ Lognormal(logo, Xy)
BIB ~ Lognormal(log B, Xg)

We find that

p(@)q(016)
og————
p(©)q(010)

1-20 ~
:aglogl_za + 2bs (6 — o)

Faelog & — be(@ — k)
K
7 5
+arlog — — b (T — 7)
T

taglog L — by(@ - a)
o

+ag logg —bg(B — B)

And
log m(0)
7(0)
= ¥ (n) + ¥, (mins, n) — ¥;(n) — lI/é’(mins, n)
+T10gE - TlogL_&) —nTlogL&)
K ra—o) I'(a)

—(6 —o0) Zlogrt —(T—-1) Zrt
t t
+@—a)) logv,i—(B—B)Y v
t,i t,i
+nT(@log B — alog B)
B.5 Sampling from the inhomogeneous CRM

In this section, we show how we can sample from the inho-
mogeneous CRM G’ with measure:

(3w

Wdr,dvy=e = pero ) [[ | fapidvldr

i=1

Let us recall that f, g is the gamma pdf and p, ., the
GGP intensity. From Section 4, we know that if we make
the following change of variables (vy,...,v,) — (¢ =

Do Vi, VI =V1/S, ..., Vv =0, /s), We get

M/(dr, dg,dv) = €_r§2/0/<,z,a (r) fna,ﬂ
(¢)d¢ dr Dir(dvy, ...,dv,;; &)

Hence, we can sample independently (r, ¢) and v. From one

hand, (vq, ..., v,) is sampled from a Dirichlet distribution

with parameter @ = (c, . .., «). On the other hand, the total

sum ¢ and the intensity r are sampled from

u(r,g) = e_rgsz,r,o(r) fna,ﬂ(g)

_ K —r(g2+r) e
- F(l—o‘)e r fna,ﬂ(g)

Now, to reduce the problem to sampling from a homogeneous
CRM, let us consider the change of variable (r, ¢) — (¥ =
rlt + gz], s) which determinant is 7 + 5_2. We find finally
that

W, ¢) = e T (ST 1) fuap()

K
-0
Besides, since ¥ > rt V(i, j), we only need to sample the
points such that 7 > 7 mins. Therefore, since t > 0, we
sample a finite number of atoms. Then, we only keep the
points such as r > mins. Finally, let us notice that in our
setting, even with o < 0

/ (2 + 1) frap(c)ds = %wm +1°
[

Therefore, we first sample the jumps from the levy measure

_ o¥(n)+kt® _-__,_
p(r) = ) e'r ! J]l?Zrmins

rd-o)

using adaptive thinning (Favaro and Teh 2013). Then, we
sample ¢ with pdf « (¢ + 1) Jna,p(s) using rejection
sampling.
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