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Abstract
We propose a novel discrete method of constructing Gaussian Random Fields based on a combination of modified spectral
representations, Fourier and Blob. The method is intended for Direct Numerical Simulations of the V-Langevin equations.
The latter are stereotypical descriptions of anomalous stochastic transport in various physical systems. From an Eulerian
perspective, our method is designed to exhibit improved convergence rates. From a Lagrangian perspective, our method
offers a pertinent description of particle trajectories in turbulent velocity fields: the exact Lagrangian invariant laws are
well reproduced. From a computational perspective, the computing time is reduced by a factor of two in comparison with
Fourier-like or Blob-like methods and an order of magnitude in comparison with FFT algorithms.

Keywords Gaussian random field · Stochastic · Direct simulation · V-Langevin

1 Introduction

Stochastic phenomena are ubiquitous in nature and labora-
tory, being present in various sciences: physics and chemistry
Kampen 2007, biology Bressloff 2014, finances Paul 2013,
social sciences Diekmann andMitter 2014, etc. In particular,
physical stochastic processes such as turbulent flows Monin
1971, anomalous transport in fusion plasmas Balescu 2007,
2005, flows through porous media Ganapathysubramanian
and Zabaras 2009, seismic motion Liu et al. 2019 are com-
plex phenomena that are modeled by nonlinear stochastic
(partial) differential equations Boivin et al. 1998. Most of
the theoretical studies Manfredi and Dendy 1996; Reuss and
Misguich 1996; Radivojević and Akhmatskaya 2020; Naulin
et al. 1999 are based on direct numerical simulations (DNSs)
(or Monte Carlo simulations). Unfortunately, the ensemble
statistics for the input processes as well as for the solutions
exhibit slow convergence rates, with fluctuations that decay,
usually, as M−1/2, where M is the dimension of the ensem-
ble (the number of realizations). Thus, the numerical effort
involved in a DNS is a matter of concern, even in the context
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of the computing power available nowadays Yang and Shen
2017.

The present paper belongs to this broad interdisciplinary
research area. More precisely, we discuss methods for con-
structing Gaussian random fields (GRFs) that could be of
interest in a wide spectrum of domains and provide insights
into the stochastic transport described by V-Langevin equa-
tions. The latter are the most general type of first-order
Langevin equations: ẋ(t) = v[x(t), t], with x(t) the trajec-
tory and v(x, t) a random ”velocity” field. It describes the
general problem of diffusion by continuous movements (the
extension of the Brownian motion to the space-correlated
stochastic velocity fields). This approach is widely used for
describing the turbulent transport or the stochastic advection
process in fluids Pozorski and Minier 1998; Haworth and
Pope 1986; Kraichnan 1976; Monin 1971, laboratory plas-
mas Naulin et al. 1999; Balescu et al. 1994; Tautz and Dosch
2013; Manfredi and Dendy 1996 or astrophysical plasmas
Zimbardo et al. 1995; Vlad et al. 2015.

The V-Langevin eqns., as well as many other stochastic
models, require input stochastic processesv(x, t) represented
by Gaussian random fields (GRFs) Abrahamsen 1997. Thus,
when performing a DNS we need to generate a large ensem-
ble of fields, which makes an important fraction of the
computing time. The topic of GRFs representations is old
and has been studied in a variety of fields of research such
as plasma turbulence Balescu 2007; Manfredi and Dendy
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1996; Tautz 2012; Boivin et al. 1998, spatial statistics Krish-
namachari andChellappa 1997;Won et al. 1996;Wong 1969;
Chan and Wood 1999; Bevilacqua and Gaetan 2015; Hig-
don 2002; Hoef et al. 2004, pattern recognition and machine
learning Ghahramani and Hinton 2000; Hofmann et al. 2008.

Consequently, a large amount of constructing techniques
are available Liu et al. 2019; Cuevas et al. 2020; Solin
and Särkkä 2020; Tautz and Dosch 2013. In the context of
DNSs of V-Langevin eqns. Balescu (2007); Manfredi and
Dendy (1996); Tautz (2012); Boivin et al. (1998), the most
employed are the spectralmethods of discrete Fourier decom-
position Liu et al. 2019 implemented using the fast Fourier
transform (FFT) algorithms. A complementary spectral rep-
resentation, familiar to other fields such as geo-statistics, is
the Moving-Average method Hoef et al. 2004; Ravalec et al.
2000. Unfortunately, using FFT-like algorithms, i.e., equidis-
tant grids, leads to a series of drawbacks: mathematically, the
resulting fields and their covariance functions are periodic, a
feature that is not usually required by the statistical model;
computationally, the convergence of the statistical properties
is slow; physically, invariants of motion may be altered due
to in-between grid points interpolation. The solution is to use
randomly distributed grids.

The aim of the present study is to derive analytically
and test numerically a few classes of approximations related
to the Fourier and Moving-Average (which we shall call
”Blob”) methods. In particular, we explore their abilities for
V-Langevin problems. Finally, we propose a novel, hybrid,
Fourier-Blobmethod able to improve the computational time
of DNSs of transport problems by an order of magnitude fac-
tor in comparison with standard FFT algorithms and a factor
of two in comparison with more refined Fourier-like or Blob-
like approaches.

The theoretical results are presented in Sect. 2. Starting
from general, integral, representations of a GRF, we derive
discrete approximations. They are modified by introducing
additional random elements, which are expected to improve
the convergence. Two particular types of representations are
chosen (Fourier- and Blob-like), which are shown to be
canonically conjugated.

Section 3 contains a detailed study of the accuracy of these
discrete representations. Three variants of the Fourier and
Blob representation are considered. Their ability to repro-
duce the characteristics of the GRFs is numerically analyzed
at two levels. The basic level consists of a comparison of
the results on the standard Eulerian quantities (covariance
and distribution functions). The second level involves the
DNS of a special test-particle advection process: particle
stochastic motion in two-dimensional, incompressible, time-
independent velocity fields. This is a Hamiltonian process
with two Lagrangian invariants. One appears in each trajec-
tory (local invariant), and the other involves the distribution
of the Lagrangian velocity (statistical invariant). They pro-

vide strong benchmarks for the numerical simulation and,
implicitly, for the GRF generation method. The results on
the diffusion coefficients and on the distribution of the dis-
placements are also compared. Finally, this detailed analysis
permitted to find the hybrid Fourier-Blob method, which
appears as being roughly twice as fast as pure Fourier or Blob
generators in DNS studies of complex stochastic advection
processes. The conclusions are summarized in Sect. 4.

2 Theory

We consider a real GRF φ(x) on a d dimensional space φ :
R
d → R with zero average 〈φ(x)〉 = 0 and covariance

function E(x; y) = 〈φ(x)φ(y)〉, where 〈·〉 is the statistical
averaging operation. This field can be generally represented
through a set of parametric functions {F(x; s)} as:

φ(x) =
∫

dsF(x; s)ζ(s) (1)

E(x; y) =
∫

dsF(x; s)F(y; s) (2)

where ζ(s) is an uncorrelated random variable 〈ζ(s)ζ(s′)〉 =
δ(s− s′). It can be easily proven that Eqs. (1), (2) reproduce
the correct covariance function E(x; y), while its Gaussian
character is guaranteed by theCentral Limit Theorem.Before
discussing the nature of the parametric functions F(x; s), let
us address the matter of discreteness.

It is tempting to pass from the integral representation (1),
(2) to a finite and discrete form in two steps: truncate and
discretize the domain of integration. As we shall see, the
operator F(x; s) can be, usually, safely neglected outside
some finite domain in the s space so the truncation is justified.
But using a Riemann sum

∫
ds → ∑

s to approximate the
integrals in Eqs. (1), (2) might not be the best approach (in
the sense of errors, smoothness and convergence).

2.1 Discrete representations

Let us define in the R
d parametric space {s} an equidistant

grid of points {s0} with the interspacing L , such that each
point s0 is centered in the hypercubic domain D(s0) of vol-
ume Ld . Accordingly, the integral over parameters can be
broken as:

∫
ds ≡

∑
s0

∫
D(s0)

ds.
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Considering that F(x; s) are infinitely differentiable, one
can Taylor expand around a grid point s0

F(x; s) =
∑
n

(s − s0)n

n! ∇n
s0F(x; s0),

and the field (1) can be written

φ(x) =
∑
s0

(∑
n

α̂n

n! ∇n
s0

)
F(x; s0),

where the coefficients

α̂n =
∫
D(0)

dsζ(s)sn

are random with zero average and correlation 〈α̂nα̂m〉 ∝
L2d(L/2)n+m+1/(n + m + 1). In essence, we pass from
an integral (dense) representation (1) to a discrete one by
recasting the dense character in an infinite series of random
variables α̂n . In the limit L → 0, we can cut the series at the
first-order O(L2) and approximate:

φ(x) ≈
∑
s0

α0F(x; s0 + fi) (3)

where α0 is a Gaussian variable with Ld variance, while fi a
Cauchy distributed variablewith the scale parameter L/

√
12.

The representation (3) reproduces the correlation only in an
approximate manner (dependent on the magnitude of L).
Also, the density of points

ρ =
∑
s0

〈δ[x − (s0 + fi)]〉 (4)

is a periodic fluctuating profile around the average ρ = 1/Ld

with roughly ρ/4 amplitude.
We propose a representation of the GRF that has the struc-

ture of (3) and eliminates the above disadvantages:

φ(x) ≈ Ld/2
∑
j

ζ j F(x; s j ) (5)

where the random variables ζ j are uncorrelated 〈ζ jζi 〉 = δi, j
and the points s j are uniformly random distributed with the
average density ρ = 1/Ld . This form, Eq. (5), is motivated
by its simplicity, and it is able to reproduce the covariance
exactly (in contrast with the formula (3)).

In this section, we have shown that an exact, integral, rep-
resentation of a GRF (1), (2) can be approximated with a
discrete version (5) provided that the stochastic character
is absorbed as random parameters s j of the kernel function
F(x; s j ).

2.2 Gaussian convergence

The discrete form (5) reproduces the exact covariance func-
tion even in the limit L → ∞ (a single term in the sum).
The limit L → 0 (large ρ = 1/Ld ) is required in order
to achieve the multivariate Gaussian probability distribution
function P({ϕi }; {xi }) = 〈∏k

i=1 δ[ϕi − φ(xi )]〉. Our aim is
to maximize the convergence rate toward Gaussian character
of the series (5) at a fixed density. In other words, we look
for representations of φ(x) that are ”Gaussian enough” with
a minimal parametric density ρ.

We focus for simplicity further on the one-point PDF
P(ϕ; x) = 〈δ[ϕ − φ(x)]〉. The local rate of convergence
for a sum of independent variables is bounded by the Berry–
Esseen theoremKorolev and Shevtsova 2010 as r < Cσ3/σ2,
where the constant C ≈ 0.55 Shevtsova 2014. In our case:

σ 2
2 =

∑
j

〈|ζ j F(x; s j )|2〉

σ3 = max

( 〈|ζ j F(x; s j )|3〉
〈|ζ j F(x; s j )|2〉

)
.

In order to reproduce the exact covariance function, σ2
is constrained to σ 2

2 = 1. Thus, one can maximize r under
the constrain σ2 = 1 and obtain through a simple functional
calculus that the ζ j variables must take randomly the ±1
values, i.e., their PDF is

p(ζ ) = 1

2
(δ[ζ + 1] + δ[ζ − 1]). (6)

In this section, we have shown that the fastest way for an
approximation of the type (5) to acquireGaussian character is
to define the coefficients ζ j as uniformly distributed stochas-
tic variables with discrete rather than continuous domain.

2.3 Canonically conjugated representations: Fourier
& Blob case

The functions F(x; s) (2) are not unique, but are defined up
to any unitary transformation U (x; s):

F ′(x; s) =
∫

ds1F(x; s1)U (s1; s) (7)

δ(s1 − s2) =
∫

dsU (s1; s)U (s2; s), (8)

where F ′(x; s) is solution of Eq. (2). We note that F(x; s)
can be interpreted either as an operator (the ”square root”
of the covariance operator E(x; y)) or as a set of parametric
functions which reproduces the covariance.

A particularly important unitary transformation is the
Fourier transform U (s1; s) = eis1s which links two sets of
canonically conjugated representations:
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F ′(x; s) =
∫

ds1F(x; s1)eis1s (9)

A particularly important representation is suggested by
the relation (2) as scaled eigenvectors of the covariance
operator F(x; s) = √

λ(s)ψs(x) where ψs(x) is an eigenvec-
tor and λ(s) its associated eigenvalue

∫
dyE(x; y)ψs(y) =

λ(s)ψs(x). This choice yields the Karhunen–Loeve repre-
sentation Hua and Liu 1998.

We consider the case of homogeneous GRFs, E(x; y) ≡
E(x− y). The natural eigenvectors for a translation invariant
operator are planewavesψk(x) = eikx while the correspond-
ing eigenvalues λ(k) = S(k)where S(k) is the spectrum, the
Fourier transform of the covariance.

Thus, using the Karhunen–Loeve decomposition and
searching for real-valued fields, we obtain a Fourier-like
parametric function FF . Choosing the transformation U (a;
k) = eiak, one gets from FF the ”Blob-function” FB :

ζ FF (x;k) ≡ √
S(k)sin(kx + π

4
ζ )

FB(x; a) =
∫

dk
√
S(k)e−ikxeika ≡ FB(x − a).

Introducing these functions in the approximative discrete
form derived (5), we obtain the canonically conjugated
Fourier and Blob representations

φF (x) ≈ Ld/2
k

Nc∑
j=1

√
S(k j )sin(k jx + π

4
ζ j ) (10)

φB(x) ≈ Ld/2
a

Nc∑
j=1

ζ j FB(x − a j ) (11)

which differ from the discrete Fourier decomposition
(FFT)or thediscreteMoving-Averagemethods (MA)Ravalec
et al. 2000 through the use of stochastic wave numbers k j ,
blob positions a j and discrete values for the stochastic phases
and blob amplitudes ζ j = ±1.

The series (5) becomesfinite if the functions F(x; s)have a
compact support in the parametric space s. Consequently, the
number of terms in the sum Nc is roughly the ratio between
the volume of the compact support and the chosen density of
parameters ρ.

For the Fourier representation (10), the compact support
is the domain in the reciprocal space {ki }where the spectrum
S(ki ) has non-negligible values. For the Blob representation
(11), the compact support is the domain in the real space
{ai } where the blob function FB(x − ai ) has non-negligible
values. Thus, these two methods require a similar number
of terms Nc in the sum in order to calculate a realization of
the field in a point x with a given accuracy. We note that the
usual discrete Fourier decomposition (with fixed grid points)

usually needs larger values of Nc, as demonstrated in the next
section.

In this section, we have shown that the Fourier (10) and
Blob (Moving-Average) (11) are complementary, canoni-
cally conjugated, representations. Thus, we expect them to
capture different physical features when applied to transport
problems such as V-Langevin equations.

2.4 Advantages of the Fourier and Blob
representations

The FFT approach is usually considered as one of the fastest
construction techniques for GRFs. It allows one to compute
the values of the field φ(x) on a physical, equidistant grid,
of dimension Ng using Ng equidistant wavenumbers, with a
numerical complexityO(Ng log Ng). Using the Fourier/Blob
methods (10), (11) with random {ki }/{ai } to compute the
values on the same grid requires a computational cost which
scales asO(Ng × Nc) where Nc is the number of parameters
considered in the compact support. In general, we expect
log Ng � Nc. Even in this context, the proposed methods
are particularly tempting because:

1. The randomness of the parameters improves the conver-
gence rates toward Gaussianity, such that Nc is required
to be only a few times larger than log Ng (especially in
low dimensional spaces d = 1, 2).

2. The randomness of the parameters improves the way the
parametric space is spanned, allowing for smooth con-
vergent covariance for any number of terms in the series.
FFT needs dense grids to achieve that.

3. The resulting fields are not spatially periodic.
4. The GRFs have a preserved structure of the equipotential

or contour lines (no interpolation needed for the field
values in-between grid points).

The disadvantages are that the random parameters must
be generated at every realization. The Blob method requires
a supplementary implementation of a nearest neighbor algo-
rithm. The Blob method might not have always analytical
Blob functions which may obstruct partially its applicability
as it would require numerical interpolation techniques.

3 Accuracy study and DNS tests

The Fourier (10) and Blob (11) representations are tested in
the case of a 2D homogeneous GRF with the covariance

E(x, y) ≡ 〈
φ(x′)φ(x′ + x)

〉 = exp

(
− x2

2λ2x
− y2

2λ2y

)
, (12)
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which yields the associated Blob functions

FB(x, y) =
√

2

πλxλy
exp

(
− x2

λ2x
− y2

λ2y

)
. (13)

The correlation lengths are chosen λx = 0.3, λy = 0.4. The
Fourier’s compact support is a rectangle in which |ki |λi ≤ 5
which ensures that 99.91% of the spectrum is reproduced.
The Blob’s compact support is a rectangle in which |ai |/λi ≤
4 which ensure that 99.99% of the covariance is reproduced.

More precisely, we investigate numerically the effects of
the additional stochastic elements introduced in the repre-
sentations (10) and (11) and the ability of the simple discrete
distribution (6) to improve the convergence rate. For that, we
shall use, further, six methods of computing the GRF, which
are described in Table 1. The notation for each type of rep-
resentation consists of three characters: the first letter for the
method (Fourier or Blob), the second for how the parame-
ters are distributed (Fixed or Random) and the third for the
distribution of the random phases ζ (Continuous or Discrete
distributions).

3.1 Reproducing the covariance

We construct an ensemble of M = 103 realizations of
the GRF φ(x) with the covariance (12) on a rectangular
domain [−π, π ] × [−π, π ] using all six methods. A small
number of parametric points Nc = 122 in the compact
support was chosen for each method. The fluctuations of
the resulting covariance around the exact profile δE(x) =
〈φ(0)φ(x)〉 − E(x) can be seen in Fig. 1. All methods offer
similar amplitudes except the FFC method, which, due to
its fixed equidistant grid in the k space has an unphysical
periodicity.

The rate of convergence for the error of the covariance
function |δE | = ∫ |E(x) − Eapprox (x)|dx can be seen in Fig.
2 (Nc = 122) as function ofM , the ensemble dimension. One
can see that |δE | decays with the increase of M at approxi-
mately the same rate for five of the above methods and that
the FFC (standard FFT) has a much weaker convergence at
small values of Nc. These five methods are able to repro-
duce the covariance even at small values of the number of
elements in the sums in Eqs. (10), (11). On the contrary, the
FFC method (standard FFT) offers a poor representation of
the covariance function on grids with low densities of points,
in comparison with the other proposed methods. Increasing
Nc, the decay rate of the error increases for the FFC method,
but values similar to the other representation are attained at
very large Nc (of the order ∼ 1002). Essentially, the fail is
due to the weak stochastic character of FFC (fixed grid for
thewave numbers).We note that the corresponding fixed grid

Blob method (the BFC) gives much better results in spite of
the same weak stochastic character.

Thus, reasonable values of the error of the convolution are
obtained with the FFC method at much larger values of M
and/or Nc. The computational time that scales as M × Nc is
much longer for the FFC than for the other five methods (by
at least one order of magnitude).

3.2 Reproducing the Gaussian character

We have generated large ensembles (M = 107) of GRFs
with all methods using even fewer points Nc = 52. In order
to test theGaussianity of the resulting fields, we have focused
mainly on the one-point PDF of the field φ(0). We note that
much larger values of M are necessary in order to reduce the
statistical fluctuations in the computed PDFs. The results are
presented in Fig. 3. One can see that the FFC has low quality
for the potential distribution, as for the covariance function
(Fig. 1). The corresponding Blob representation (with fixed
grid, BFC) is even worse for P(φ) (see Fig. 3). It is obvious
that the use of random grids instead of fixed ones is a much
better choice also in the matter of Gaussianity. Moreover, as
it has been stated in Sect. 2.2, using discrete distributions
ζ j = ±1, instead of distributions with continuous support,
offers significant improvements in the profile P(φ): FRD and
BRD are better than FRC and BRC.

Table 2 quantifies these results computing the first even
moments for the PDF of φ(0). The global error defined
as |δP| = ∫ |Pgauss(φ) − Pmethod(φ)|dφ and the 4-point
correlation function E(4) = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 with
x1 = (0, 0), x2 = (λx , λy), x3 = (λx/2,−λy/3), x4 =
(−λx/3, λy/2) are also shown. One can see that fixed grids
lead to sub-Gaussian distributions while random grids to
over-Gaussian ones (longer tails).

Thus, we have shown that the best choices for the repre-
sentation of homogeneous GRFs are based on random grids
with ζ = ±1, i.e., on FRD (10) or BRD (11) methods. Fur-
ther, by Blob representation we shall refer to BRD while by
Fourier to FRD methods in the remaining part of this paper.
Note that the Fourier is slightly better than the Blob method.

3.3 DNS of stochastic transport

We have proven until now that the Fourier (10) and Blob
(11) representations offer the best convergence rates from the
perspective of their Eulerian properties. Now, we perform
additional tests regarding their Lagrangian abilities in the
context of a DNS of a V-Langevin equation. The following
model has been chosen:

dx(t)
dt

= v(x(t)) = êz × ∇φ(x(t)) + Vd êy, (14)
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Table 1 The numerical
representations tested in this
Section

FFC FRC FRD BFC BRC BRD

Method Fourier Fourier Fourier Blob Blob Blob

Parameters Fixed Random Random Fixed Random Random

ζ [0, 8) [0, 8) ±1 Gaussian Gaussian ±1

Fig. 1 The error δE(x) of the covariances averaged over ensembles of M = 1000 realizations with the FFC (a), FRD (b), FRC (c), BFC (d), BRD
(e), BRC (f) methods
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Fig. 2 Evolution of covariance error with the dimension of the ensem-
ble for the FFC (red square), FRD (green circle), FRC (magenta
up-triangle), BFC (blue down-triangle), BRD (orange diamond), BRC
(brown star) methods. (Color figure online)

Fig. 3 PDFs of φ(0) obtained with the FFC (red square), FRD (green
circle), FRC (magenta up-triangle), BFC (blue down triangle), BRD
(orange diamond), BRC (brown star) methods using Nc = 52 and a
statistical ensemble of M = 107 realizations. (Color figure online)

where φ(x) is a GRF and Vdêy is an average velocity. This
stochastic equation describes the dynamics of test particles
under electrostatic turbulence in magnetically confined plas-
mas Hauff and Jenko 2006; Vlad et al. 1998; Vlad and
Spineanu 2019, the random walk of the magnetic field lines
in astrophysics Lazarian and Yuen 2018; Vlad 2018; Snodin
et al. 2013 or for tracer transport in incompressible turbu-
lent fluids Haworth and Pope 1986; Kraichnan 1976. The
stochastic potential is considered frozen, i.e., the covariance
is time independent. The covariance function is (12) with
λx = 1, λy = 2.

Wehave chosen this transportmodel because the ensemble
of solutions exhibits two invariants: a ”local” one character-
istic to each trajectory and a global one, characteristic to the
entire ensemble. Both are a consequence of the null diver-
gence ∇ · v(x) = 0 property and of the homogeneity of the
stochastic field.

The equation of motion (14) is of Hamiltonian type, with
φt (x) = φ(x) + Vdx the Hamiltonian function. The latter is
invariant in each realization of the potential φ(x), since the
trajectories obtained fromEq. (14) evolveon the contour lines
of φt (x). The structure of the total potential strongly depends
on the average velocity Vd . At Vd = 0, all the contour lines
of the potential (except one) are closed and their sizes have
unlimited values (in an infinite plane). All trajectories are
trapped on the contour lines; they are periodic functions of
time with unlimited periods. In the presence of Vd , the con-
figuration of the contour lines consists of open lines that wind
between islands of close lines. As Vd increases the size of
the islands decreases, and, at Vd larger than the amplitude of
the stochastic velocity, they disappear. The trapping affects
only a part of the trajectories, while the others are free (along
Vd ).

The second invariant is statistical and involves the
Lagrangian velocity v(x(t)). According to Lumley’s The-
orem Monin 1971, the statistics of the Lagrangian velocity
is identical with the statistics of the Eulerian velocity, at any
time

PL [v(x(t))] = PE [v(x)],

where PL = 〈δ[v − v(x(t))]〉 is the Lagrangian probability
and PE = 〈δ[v − v(x)]〉 is the Eulerian probability. The
latter is a space-independent Gaussian function

PE (v) = exp

(
− v2x

2Vxx
− (vy − Vd)2

2Vyy

)
,

where Vii = 〈vi (0)vi (0)〉 = −∂ j jE(x)|x→0 = 1/λ2j .
The existence of the constraints related to these invariants

makes the transport process very complicated, but it also
provides strong benchmarks for the numerical simulations.

Regarding the numerical implementation, a second-order
Runge–Kutta numerical integration scheme has been used
for a time interval of [0, tmax ] = [0, 40] with a fixed time
step dt = 0.04. An ensemble ofM = 3×104 trajectories has
been resolved. We have implemented the Fourier (FRD) and
Blob (BRD) representations with Nc = 62, 122. Two cases
have been considered: Vd = 0 and Vd = 0.4. A Fourier
simulation with Nc waves is denoted by FNc while a Blob
one by BNc where Nc = 36 or 144.

We underline that M, the dimension of the ensemble and
(especially) Nc, the number of random parameters in the
series (10), (11), are small compared to the usual values
Manfredi and Dendy 1996 in DNS. Thus, the DNS can be
performed on personal computers, where the typical running
times are rather small, of the order of tC PU ∼ 102s.

First, we have checked that the numerical integration and
the use of the generators (10), (11) of the GRF do not affect
the Hamiltonian character of the trajectories. We plot in Fig.
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Table 2 Numerical values of
the first odd moments of the
PDF P(ϕ; 0) for all six methods
considered using Nc = 52

FFC FRC FRD BFC BRC BRD exact

< φ2 > 1.046 1.002 0.999 1.264 1.001 1.001 1

< φ4 > 2.504 3.424 3.223 3.257 3.976 3.543 3

< φ6 > 8.447 21.32 18.38 11.04 30.83 23.37 15

< φ8 > 35.13 199.82 145.48 44.19 372.89 235.67 105

|δP| 0.167 0.061 0.026 0.309 0.136 0.066 0

E(4) 0.744 1.041 0.948 0.694 0.906 0.850 0.789

Fig. 4 In red and blue (full line), two closed trajectory simulated for
≈ 10 times their periods. In black (dashed line) a free trajectory. All
trajectories are obtained for different realizations of the same ensemble
in the presence of an effective Vd = 0.4

4 three typical trajectories, which illustrate the existence of
free and trapped (with different sizes) trajectories obtained
from Eq. (14). All are well tied to the contour lines of the
potential (even the small one that performs ≈ 10 periods).
Apart from small oscillations δφ(t)/φ̄ ∼ 10−4, the poten-
tial is perfectly conserved along the represented trajectories.
Thus, the combined errors from the approximation of the
field and from the numerical integration remain small.

Second, we test the global invariants by computing the
PDF of Lagrangian velocities PL [v(x(t))] as well as its first
moments 〈v j

i (t)〉, j = 1, 4. Figure 5 shows the components
of this distribution of the Lagrangian velocity at the moment
t = 20, compared with the exact, Gaussian profiles. The
results are close to the theoretical distributions, even for the
cases Nc = 36. The statistical fluctuations can be analyzed
more clearly in Fig. 6 where the moments 〈v j

i (t)〉 are shown.
On average, the Lagrangian invariance is well reproduced
by both methods, the fluctuations being a consequence of a
finite ensemble (M = 3×104).The deviations of the average
values (for example 〈v̄4y〉 ≈ 3.3 instead of the exact value 3
for B36 method) are a consequence of a finite Nc. As seen
in Fig. 6, the increase of Nc approaches the averages to the
theoretical values and reduces the statistical fluctuations. The
results are satisfactory even at the small values taken here.

The stochastic velocity field prescribed by theV-Langevin
Eq. (14) is Gaussian, time-invariant and has null divergence.
Yet, the resulting distribution of P(x(t)) = 〈δ[x − x(t)]〉 is
not a Gaussian function. Instead, at finite times, it is a peaked
functionwhich exhibits long tails Vlad and Spineanu 2017 as
it can be seen Fig. 7 for P[x(t)]. The physical reason is that
the trajectory trappingor eddying, producedby the invariance
of the Lagrangian potential, ties particle paths on its contour
lines. In the presence of an average velocity Vd , part of the
contour lines open-up leading to free particles which move
along the êy) direction, while the rest remain closed being
only ”elongated.” These aspects can be seen in Fig. 7 on
the P[y(t)] profile which exhibits two local maxima: one
at y = 0 for the trapped particles and one slightly above
y = Vdt for the free particles.

There are no clear theoretical results on P(x(t)) that
could be used as benchmark of the present DNS. Instead, we
compare the results of the four runs discussed here. The prob-
ability of the displacements x(t) and y(t) is shown in Fig 7. It
can be observed that F144 and B144 provide almost identical
profiles. The low-resolution simulations B36 and F36 devi-
ate in a complementarymanner from the F144/B144 results.
The distributions obtained with B36 have larger values of the
peaks around y = 0 as well as a slightly more pronounced
short-range character, pointing towards an overestimation of
the trapping. The converse is true for F36 simulation.

The time-dependent diffusion coefficients 2Dii (t) =
d

〈
x2i (t)

〉
/dt are presented in Fig. 8 for Vd = 0 (upper panels)

and Vd = 0.4 (lower panels). The decay of Dii at large time
is the consequence of trajectory trapping. At Vd = 0, the
transport is subdiffusive with mean square average displace-
ments that have time increase slower than linear. The average
velocity Vd strongly modifies the transport. It is superdiffu-
sive along Vd and subdiffusive along x axis, but with decay
in a finite time. This is the effect of the change of the con-
figuration of the contour lines of the total potential produced
by Vd .

One can see that all simulations yield practically the same
result at t < 1 and that significant differences appear at t > 1,
especially between the calculations at Nc = 36 and those
at Nc = 144. Figure 8 also shows that the F36 method
underestimates the trapping of particles (it yields a slower
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Fig. 5 Large time t = 20 distribution of velocities. The exact, Gaussian shapes are in dashed lines

Fig. 6 Time dependence of average Lagrangian velocity moments
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Fig. 7 Projected trajectory distributions P(x(t)), P(y(t))

decay of Dii at large times t > 2 − 3). The converse is
true for the B36 method which overestimates the trapping
by smaller values of Dii at large times. All methods give a
dependence of the diffusion coefficients asD ∝ tγ . For F36
γ ≈ −0.15 while for B36 γ ≈ −0.4. At larger values of
Nc, F144 and B144, we can observe how the results and the
slope γ converge towards a common profile with γ ≈ −0.3,
in accordance with well-known results Isichenko 1992.

3.4 The hybrid representations

The results fromFig. 8with no bias Vd = 0 suggest that there
are some intrinsic pathologies within the Fourier and Blob
representations. The first seems to produce very long (quasi-
free) trajectories, while the latter very small, closed and less
complex trajectories. The explanation is related to the spe-
cific form of the parametric functions of each representation.
Using waves (Fourier) with a small number of terms is more
likely to produce long equipotential lines (which are, in fact,
trajectories). A single plane wave is unable to produce a
closed field line. In contrast, even a single Blob function will
generate an inherently closed trajectory. A small number of
Blob functions is unlikely to produce long equipotential lines.

Also, Table 2 suggests that the Blob method reproduces
better than the Fourier method the higher-order correlations
(E(4)). The overestimation of these correlations corresponds
to smoother fields, which means less complex fields. But
a less complex field has less complex equifieldlines and,
consequently, less complex Lagrangian solutions. The over-
estimation of the correlation in the Fourier representation is
natural: the waves are omnipresent, thus, any two points are
”correlated” through the wave. Only the statistical averaging
of the phases can decouple them.

These shortcomings do not affect the Lagrangian distri-
bution of velocities or the average velocity of the ensemble,
as seen in Figs. 5, 6. Their effect is visible in the diffusion
coefficients, which show amuch stronger dependence on Nc.

These structural properties of the Blob and Fourier meth-
ods can be exploited to yield improved results for the

diffusion coefficients without increasing Nc. We propose a
hybrid representation of the GRF that combines the Fourier
and Blob methods:

φFB(x) = η1φF (x) + η2φB(x). (15)

with η21 + η22 = 1. We show that the systematic errors of the
two methods compensate in this Fourier–Blob (FB) repre-
sentation. The results obtained for η1 = η2 = 1/

√
2 using

the Fourier–Blob approach (15) with Nc = 36 are shown
in Fig. 9 for the diffusion coefficient Dyy(t). The resulting
profile is very close to the profiles obtained with F144 and
B144 simulations at any time.

We note, without any graphic representation, that the
hybrid method corrects also the displacement distributions
P[x(t)], P[y(t)]. This behavior is to be expected since the
diffusion coefficients are directly connected to the distri-
butions. Technically, it can be understood that the hybrid
representation averages between overestimation and under-
estimation of trapping brought by the Blob, respectively,
Fourier representation.

We summarize the hierarchical speed-ups brought by the
representations discussed in the present paper. Working with
a small Nc ∼ 10d , and fixed grids (FFC) is the representa-
tion which performs the worst with regard to computational
time (Fig. 1). Blob method with fixed grid (BFC) works also
poorly from the perspective of Gaussianity (Fig. 3). Using
random grid elements (FRC or BRC) leads to an increase in
the convergence rates (Fig. 3, Table 2), thus to an order of
magnitude increase in the speed-up of these methods. Using,
as proven, discrete values of the phases ζ (FRD, BRD) adds a
small refinement in the Gaussian character of the fields (Fig.
3, Table 2), consequently a small increase in speed-up. The
Lagrangian perspective shows that we can use for DNSs of
V-Langevin equations the hybrid approach which averages
between the flaws of Fourier and Blob methods to cut the
numerical effort in half. Thus, the hybrid method is roughly
twice as fast than (FRC,FRD,BRC,BRD) methods which are
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Fig. 8 Diffusion coefficients Di i (t) obtained with the methods B36 (red), F36 (blue), B144 (green), F144 (brown). (Color figure online)

roughly one order of magnitude faster than the (FFC,BFC)
standard representations.

3.5 Long range and time-dependent GRFs

Although the Gaussian covariance (12) is relevant for a large
class of physical systems, we must recognize that it has a
particularity: it is a short-ranged function. Consequently, the
associated random fields do not exhibit simultaneously mul-
tiple scale structures. Thus, one might argue that this is the
reasonwhy the Fourier–Blob hybridmethod behaves sowell.

In order to investigate further the applicability of our pro-
posal, we choose a different case of covariance which is both
long-range and time dependent:

E(x, t) ≡ 〈
φ(x′, t ′)φ(x′ + x, t ′ + t)

〉

=
(
1 + |x|2

)−3/2
exp

(
− t2

4τ 2c

)
. (16)

The potential is a three-dimensional stochastic field (two
space dimensions and time), so that this case also exempli-
fies the behavior of the GRFs generators at higher dimension
(the transport in a more complex system with 4D GRF gen-
erators was recently studied using the results presented here
Vlad et al. 2020). For this case, we can compute analytically
both the associated spectrum and the Blob function:

S(k, ω) = τc

2π3/2 e
−|k|−ω2τ 2c (17)

FB(x, t) =
√
8π3/2

τc

(
1 + 4|x|2

)−3/2
exp

(
− t2

2τ 2c

)
(18)

The V-Langevin Eq. (14) require the computation of field
derivatives ∂iφ(x, t); consequently, we need a good repre-
sentation not only of the field itself, but of the derivatives
too. In terms of Fourier-like representations, this implies that
the weighted spectrum S(k, ω)|k|2 (the spectrum of deriva-
tives) must be well captured. But, to do that, in the case of an
exponential space spectrum exp (−|k|) we need to enlarge
the compact support in the reciprocal space. In practice, we
use |ki | ≤ 10 to recover 99.9%, respectively, 98.9% from
the amplitude of field fluctuations 〈φ(0, 0)2〉, respectively,
derivative fluctuations 〈[∂xφ(0, 0)]2〉. It is interesting that,
in order to recover the same quantities within Blob represen-
tation, one does not need an enlarged compact support. The
latter is rather defined by the regions in space for which the
values of the function itself can be neglected. In practice, we
choose |a j | ≤ 2.5 which introduces errors of ∼ 1%.

Thus, we expect that Fourier-like methods will require a
larger number of elements Nc in the long-ranged case than
they did in the Gaussian case. We test this idea in Fig. 10
where we have plotted the distribution of one-point values of
the fields P[φ(0)] obtained with all types of representations
at Nc = 53. The typical accuracy behavior found in Fig. 3
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Fig. 9 The diffusion coefficient Dyy obtained with the Fourier-Blob
representation (15) with Nc = 36 (for both Fourier and Blob terms)
compared to the results presented in Fig. 8

Fig. 10 PDFs of φ(0) obtained with the FFC (red square), FRD (green
circle), FRC (magenta up-triangle), BFC (blue down triangle), BRD
(orange diamond), BRC (brown star) methods at Nc = 53 and a statis-
tical ensemble of M = 107 realizations. (Color figure online)

is reproduced also in this long-range, time-dependent case.
In particular, one can see how the FRD (green circle) and
BRD (orange diamond) are the closest profiles to the Gaus-
sian distribution (exact, black circles) in agreement with the
theoretical expectations. Moreover, in contrast with Fig. 3,
here, the FRD and BRD representations offer similar accu-
racy levels.

Note that in this 3D case, with long-range space correla-
tion, using Nc ∼ 53 deviates further from Gaussianity than
it did in the short-ranged case. This can be seen qualita-
tively comparing Figs. 3, 4, 5, 6, 7, 8, 9, 10 and Tables 2–3.
Therefore, we expect that pertinent descriptions of ensemble
statistics should be obtained with at least Nc ∼ 103. Con-
sidering that generic ensembles used in DNS should contain
M ∼ 105 trajectories and an usual number of times steps
required is Nt ∼ 103, one can see how the number of oper-
ations involved in a single DNS can be a matter of concern.
Consequently, increasing by a factor of two the computa-
tional speed becomes important.

We proceed further to test the FRD, BRD and the hybrid
method for DNSs of V-Langevin Eq. (14). We use τc = 1
and Vd = 0. From a physical point of view, the time depen-
dence of the fields φ(x(t), t) breaks the local Lagrangian
conservation of the potential. The trajectories are no longer
closed, even in the absence of Vd , being rather a series
of jumps between quasi-trapped states. Consequently, we
expect that time variation will be equivalent with a decor-
relation mechanism which will lead to a finite asymptotic
diffusion coefficient. In contrast, the frozen-turbulence case
(Sect. 3.3, Fig. 8) leads to time decaying diffusions which,
asymptotically, become zero.

We perform two types of simulations: with Nc = 63 and
with Nc = 143. The hybrid method is implemented using
Nc = 93 ≈ 143/4 and all DNSs simulate M = 3 × 104

trajectories. In accordance with Lumley’s theorem Monin
and Yaglom 2013; Gleeson 2002, the distribution of veloc-
ities remains a global invariant even in the time-dependent
case. To test this, we plot in Fig. 11 the average Lagrangian
velocity and the Lagrangian velocity dispersion and observe
how, aside fromstatistical fluctuation, these quantities remain
invariant in time.

Figure 12 shows the runningdiffusion coefficients obtained
with F63, B63, F143, B143 and the hybrid method with
Nc = 93. As suggested by the Eulerian results (Fig. 10 and
Table 3), the long-range character requires a larger numbers
of elements Nc to be well represented. This is obvious in
Fig. 12 where Dxx (t) obtained with Nc = 63 does not even
reach a saturation point. Thus, we have been forced to use
Nc = 143 which seems to be large enough in order for the
results to converge toward an asymptotically constant dif-
fusion. The hybrid method is able to reproduce that profile
with roughly half the number of elements required by either
Fourier or Blob methods.

All methods require a larger Nc and M for accurate DNSs
results in the long-range and time-dependent case of field
presented in this section. This can also be seen from the sta-
tistical fluctuationswhich are present in the diffusion profiles.
Yet, we conclude that the hybrid method’s ability to improve
the computing time with a rough factor of two is a strong
feature valid for more complicated transport problems with
higher dimensions and long-range correlations.

4 Summary and conclusions

The general integral representation of the GRFs (1), (2)
contains a parametric function F(x; s) and an uncorrelated
randomvariable ζ(s).Wehave derived fromEqs. (1), (2) a set
of discrete representations.They are ofBlob andFourier type,
according to the parametric function that is a space structure
FB

(
x − a j

)
in thefirst case and awave amplitude structure in

the second case FF
(
x;k j

) = √
S(k j )sin(k jx). Additional
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Table 3 Numerical values of
the first odd moments of the
PDF P(ϕ; 0) for all six methods
considered using Nc = 53

FFC FRC FRD BFC BRC BRD exact

< φ2 > 1.446 1.001 0.999 1.369 1.001 1.001 1

< φ4 > 4.004 3.542 3.576 18.141 4.732 3.565 3

< φ6 > 15.842 23.96 24.86 111.04 49.83 24.232 15

< φ8 > 78.133 254.82 267.83 1344.19 913.32 262.01 105

|δP| 0.352 0.073 0.076 0.433 0.185 0.078 0

Fig. 11 Time dependence of average Lagrangian velocity moments

stochastic elements were introduced in both types of repre-
sentations by considering the points a j and thewave numbers
k j as stochastic parameters with uniform distributions. The
random variable ζ was takenwith discrete (ζ = ±1) support.

Six representations of the GRF, defined in Table 1, were
analyzed to prove that our proposal Fourier (FRD) and Blob
(BRD) provide a better convergence of the Eulerian proper-
ties than other standard representations. We have shown that
reasonable errors in the covariance and in the PDF of the
potential are obtained at much smaller values of Nc and M
than in the usual Fourier representation (FFC). This leads to
the decrease in the computing times by at least one order of
magnitude compared to the usual FFC method.

The convergence of the Lagrangian properties of these
two methods was further analyzed in the frame of the DNS
of a special type of stochastic transport described by a V-
Langevin equation in two-dimensional, time-independent
velocity fields with zero divergence. The invariance of the
Lagrangian potential in each realization and the statistical
invariance of the Lagrangian velocity provide benchmarks
for the validation of the numerical results. We have shown
that simulations with both Fourier and Blob methods sat-
isfy these constraints with good precision for Nc � 100 and
M � 104. Themain difference between these representations
appears in their ability to describe the effects of trajectory
trapping or eddying on the contour lines of the potential.

The Fourier (FRD) results underestimate, while the Blob
(BRD) method overestimates the effects of trapping on the
diffusion coefficients. These systematic errors were strongly

Fig. 12 The diffusion coefficient Dyy obtained with the Fourier–Blob
representation (15) with Nc = 93 (for both Fourier and Blob terms)
compared to the results obtained with B63, F63, B143, F143

reduced by a hybrid representation which combines linearly
the Fourier and Blob series in a single Fourier–Blob method.

In conclusions, we have strongly improved the repre-
sentation of the GRFs by introducing additional random
elements. We have shown that the hybrid Fourier–Blob
method (15) provides a fast tool that can be used in the numer-
ical studies of complex stochastic advection processes. To
summarize, the hybrid method is roughly twice as fast than
(FRC,FRD,BRC,BRD)methodswhich are roughly one order
of magnitude faster than the (FFC,BFC) standard representa-
tions. This opens the possibility of performing such studied
on personal computers. For the cases analyzed here, typical
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running times are of the order of 102s for the 2D case (Sect.
3.4) and 103s for the 3D case (Sect. 3.5).
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