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Abstract
We consider the modeling of data generated by a latent continuous-time Markov jump process with a state space of finite but
unknown dimensions. Typically in such models, the number of states has to be pre-specified, and Bayesian inference for a
fixed number of states has not been studied until recently. In addition, although approaches to address the problem for discrete-
time models have been developed, no method has been successfully implemented for the continuous-time case. We focus on
reversible jump Markov chain Monte Carlo which allows the trans-dimensional move among different numbers of states in
order to perform Bayesian inference for the unknown number of states. Specifically, we propose an efficient split-combine
move which can facilitate the exploration of the parameter space, and demonstrate that it can be implemented effectively
at scale. Subsequently, we extend this algorithm to the context of model-based clustering, allowing numbers of states and
clusters both determined during the analysis. The model formulation, inference methodology, and associated algorithm are
illustrated by simulation studies. Finally, we apply this method to real data from a Canadian healthcare system in Quebec.

Keywords Bayesian model selection · Continuous-time processes · Hidden Markov models · Markov chain Monte Carlo ·
Reversible jump algorithms · Model-based clustering

1 Introduction

Continuous-time Markov processes on a finite state space
have been widely used as models for irregularly spaced lon-
gitudinal data as they correspond to plausible data generating
representations. In almost all cases, the process is observed
only at a number of discrete time points, rather than being
continuously observed. This problem that arises in a broad
collection of practical settings from public health surveil-
lance to molecular dynamics. For example, healthcare sys-
tems and electronic health records represent large volumes of
data that allow the calculation of longitudinal health trajec-
tories; however, such health records are recorded only when
patients interact with the health system. Likelihood-based
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inference for the infinitesimal generator of a continuous-
time Markov jump process has been detailed, for example,
in Jacobsen (1982). However, in settings such as those
identified above, inference for the infinitesimal generator
becomes more difficult. Bladt and Sørensen (2005) inves-
tigated likelihood-based inference for discretely observed
continuous-time Markov processes, while Tancredi (2019)
proposed approximate Bayesian methods to facilitate the
computation for such models.

In a related class of problems, the observed data are not
directly representative of the Markov process, or similarly
the process is observed with measurement error. In those
cases, a hidden Markov model (HMM) is more appropriate:
this model assumes that an unobserved stochastic process
governs the generating model for observations, and assump-
tions of the Markov property are imposed on the unobserved
sequence, with observations usually modeled as indepen-
dent conditional on the hidden Markov process. There is a
broad interest in the application of the continuous-timeHMM
(CTHMM) in recent years, such as in ecological studies
(Mews et al. 2020) and inmedical research (Lange et al. 2015;
Alaa and Van Der Schaar 2018; Lange et al. 2018), with a
predominant focus on frequentist approaches.More recently,
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Williams et al. (2020) and Luo et al. (2021) implemented a
fully Bayesian CTHMM using different missing data like-
lihood formulations for the underlying Markov chain. Even
when thesemodels have been proposed and implemented, the
number of states has had to be pre-specified. Determining the
number of hidden states is a challenge addressed in earlier
work (see for example Celeux and Durand 2008; Pohle et al.
2017). Luo et al. (2021) suggested using the BIC to select the
number of states via the expectation–maximization algorithm
before performing Bayesian inference with a fixed number
of states. Luo et al. (2021) extended Bayesian CTHMMs
for finite and Dirichlet mixture model-based clustering pro-
cedures to cluster individuals, which allows Markov chain
Monte Carlo (MCMC) to change the dimension of the num-
ber of clusters, but still relied on the assumption that the
number of states has to be pre-specified.

Bayesian model determination approaches have been a
longstanding focus of interest in Bayesian inference (see, for
example, Carlin and Chib 1995; Green 1995; Godsill 2001).
In particular, reversible jump MCMC (Green 1995) has pro-
vided a general solution by exploiting trans-dimensional
moves that exploit the dynamics of the Metropolis-Hastings
(MH) algorithm in a fixed dimension, allowing movement
across parameter spaces of different dimensions. Richard-
son and Green (1997) developed a reversible jump MCMC
approach to univariate Normal mixture models, and subse-
quently Robert et al. (2000) extended this work to discrete-
time hidden Markov models with Normal mixtures. In their
work, they specifically used two types of reversible jump
moves in MCMC to explore the parameter space, i.e., split–
combine and birth–deathmoves. Stephens (2000) introduced
an alternative MCMC approach, using a birth–death point
process to infer the number of components in the Normal
mixture model setting, and Cappé et al. (2003) demon-
strated the limit-case equivalence of the reversible jump and
continuous-timemethodologies for both mixture models and
discrete-time HMMs. In this paper, we focus on construct-
ing reversible jump MCMC for CTHMMs which allow the
number of hidden states to be inferred via the posterior dis-
tribution.

For a better understanding of dynamic changes of indi-
vidual trajectories, it would be helpful to cluster individuals
trajectories and to study the pattern in each group to explore
the variation in trajectories. Many of these methods may be
classified as model-based clustering procedures, where clus-
tering is achieved by consideration of parametric likelihood-
or density-based calculations, with the number of clusters
determined by information criteria, such asAIC or BIC (Das-
gupta and Raftery 1998; Fraley and Raftery 1998). Similarly,
however, in such calculations, the number of clusters has to
be fixed, and determining the number of clusters is a chal-
lenge addressed by many clustering algorithms. We address
this problem subsequently by extending our reversible jump

MCMC procedures to allow the number of clusters to be
inferred during the analysis.

The rest of the paper is organized as follows. In Sect.
2, we describe the CTHMM-GLM. Section 3 presents fully
Bayesian inference via reversible jump MCMC, specifically
a split-combinemove to update the number of states, and then
we update the parameters using fixed dimensional MCMC.
Section 4 extends the reversible jump MCMC approach to
model-based clustering, allowing numbers of states and clus-
ters to vary simultaneously. Simulation examples to examine
the performance of proposedMCMCare presented in Sect. 5.
Finally, we present the results for a chronic obstructive pul-
monary disease (COPD) cohort in Sect. 6, and discuss these
results in Sect. 7.

2 A continuous-time hiddenMarkovmodel

We presume that the data {O1, . . . , OT } recorded at obser-
vation time points {τ1, . . . , τT } arise as a consequence of a
latent continuous-timeMarkov chain (CTMC) {Xs, s ∈ R

+}
taking values on the finite integer set {1, 2, . . . , K }. Obser-
vations are indexed using an integer index (that is, Ot ), and
that the latent process is indexed using a continuous-valued
index (that is, Xτt ).

Conditional on the latent process, we assume the obser-
vations are drawn from an exponential family model with
density f

(
Ot |Xτt = k

)
. If there are time-varying explana-

tory variables Z ∈ R
D , a generalized linear model (GLM)

with link function g(.) and regression coefficients βk for state
k, is adopted. Define matrix B = (βd,k) for d = 1, . . . , D
and k = 1, . . . , K as the GLM coefficient matrix. Finally, let
St = (

St,1, . . . , St,K
)� be an indicator random vector with

St,k = 1 if Xτt = k and 0 otherwise.
In the assumed model the data generating mechanism is

specifiedvia (i) the latent statemodel Xs |Θ ∼ CTMC (π, Q),
where Q is the infinitesimal generator and π is the initial
distribution for the continuous-timeMarkov process, and (ii)
the observation model Oτt

∣∣Xτt = k ∼ GLM
(
βd,k

)
, d =

1, . . . , D. The model is parameterized by Θ = {Q, π,B};
recall that the structural constraint on Q is that its off-
diagonal elements {q j,k, j, k = 1, . . . , K , j �= k} are
positive, and that its rows sum to zero. In this paper, we
impose no other constraints, although to do so would be
straightforward: for example, we might wish to restrict cer-
tain q j,k to obey with linear constraints such as equality
to zero. In the model, the observations {O1, . . . , OT } are
assumedmutually conditionally independent given {Xs}; this
assumption is common, but can be easily relaxed. With the
Markov chain observed discretely at different time points,
one could compute the likelihood function for Q in Jackson
et al. (2003); Williams et al. (2020), however to facilitate
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the MCMC algorithm, we consider the complete but unob-
served trajectory of {Xs} as a collection of auxiliary variables
in a missing data formulation: the unobserved trajectory
comprises a collection of states and transition times that
completely describe the latent path over any finite inter-
val. The detailed derivation of the complete data likelihood,
L(Θ), is given in the Supplement. If there are N subjects,
let On,t (t = 1, . . . , Tn) be the t th observation for subject
n with the associated observation time τn,t , with the corre-
sponding hidden state Xn,τn,t , and On = {On,1, . . . , On,Tn }
and Xn = {Xn,τn,1 , . . . , Xn,τn,Tn

} represent the collection
of data for subject n. O = {On,t } and X = {Xn,τn,t } for
n = 1, . . . , N , t = 1, . . . , Tn represent the entire data for N
subjects.

Bayesian inference for this model with the number of
states K fixed has been fully studied by Luo et al. (2021),
where an MCMC scheme based on simulating the complete
latent path for each individual is developed; this MCMC
scheme relies upon the rejection sampling approach of
Hobolth and Stone (2009) to sample the latent paths in an
efficient fashion. Bayesian inference using the complete data
likelihood formulation is appealing as it produces posterior
samples of the full unobserved state sequences and latent
continuous-time process, which allows inference to be made
for individual-level trajectories across the entire observa-
tion window, and which is useful for computing posterior
distributions for pathwise aggregate features on individual
trajectories.

3 Reversible jumpMCMC for CTHMMs

First, we add the number of states K as an additional
parameter and extend the MCMC algorithm to allow for
inference to be made via the posterior distribution for K .
There are several different approaches that can be adopted
that we outline below and in the Supplement. First we study
split/combine moves for states/pairs of states similar in spirit
to the split/merge moves of Richardson and Green (1997);
Dellaportas and Papageorgiou (2006). The Supplement also
gives detailed descriptions and simulation examples for infer-
ence on K via a birth-death point process by Stephens (2000).

3.1 Markov chain Monte Carlo methodology

One iteration of the MCMC algorithm that incorporates the
required trans-dimensional move proceeds using the follow-
ing two types of move:

1. A split/combine move that considers splitting a hidden
state into two, or combining two hidden states into one.

2. With the number of states K fixed, update the model
parameters using standard MCMC moves:

– update latent state indicators
{
Sn,t

}
for n = 1, . . . , N ,

t = 1, . . . , Tn ;
– update the parameters associated with the observation
process B;

– update the initial distribution π ;
– update the infinitesimal generator Q.

The Supplement gives detailed procedures of updating the
model parameters with a fixed number of states, which was
extensively studied in Luo et al. (2021). Specifically, for split
and combine moves, we will implement the reversible jump
algorithm by Green (1995). Consider a proposal from the
current model state (K ,Θ) to a new state (K ′,Θ ′) using the
proposal density

q
(
K ′,Θ ′; K ,Θ

) = q1
(
K ′; K )

q2 (ΘK ′ ;ΘK )

that is, using independent proposals for the two components.
The acceptance probability for this form of proposal using
the MH procedure is given by

α
(
K ′,Θ ′; K ,Θ

)

= min

(

1,
q

(
K ,Θ; K ′,Θ ′) p

(
K ′,Θ ′ |o )

q (K ′,Θ ′; K ,Θ) p (K ,Θ |o )

)

= min

(

1,
q1

(
K ; K ′)q2 (ΘK ;ΘK ′) p

(
K ′,Θ ′

K ′ |o
)

q1 (K ′; K )q2 (ΘK ′ ;ΘK ) p (K ,ΘK |o )

)

where p (K ,ΘK |o ) is the posterior distribution of (K ,ΘK )

given the observed data o, which can, up to proportionality,
be decomposed into the marginal (or ‘incomplete data’) like-
lihood of the data L(o|ΘK , K ) times the prior distribution
for (K ,ΘK );

p (K ,ΘK |o ) ∝ L(o|ΘK , K )p0(ΘK |K )p0(K )

where p0(·) represents the prior distribution. Our algorithm
relies upon the ability to compute the marginal likelihood
efficiently for any ΘK ; however, this is a standard ‘forward’
calculation for CTHMMs.

3.2 Split and combinemoves

To construct efficient split and combine moves under the
reversible jump framework, we adopt the idea of centered
proposals by Brooks et al. (2003). The proposal is designed
to produce similar likelihood contributions for the current
and proposed parameters. The combine move is designed
to choose a state, k at random and select another state k′
such that

∑D
i=1

∣∣βk,i − β j,i
∣∣ is smallest for j �= k. The

reverse split move is to randomly select a cluster, k to split
into two clusters, say k and k′, and check if the condition,∑D

i=1

∣∣βk,i − βk′,i
∣∣ <

∑D
i=1

∣∣βk,i − β j,i
∣∣ for j �= k, k′. If

123



57 Page 4 of 15 Statistics and Computing (2021) 31 :57

this condition is not met, then the split move is rejected right
away.

3.2.1 Split move

We consider an update that changes K → K + 1, requir-
ing the generation of a new hidden state. For this move, we
set q1 (K ; K + 1) = q1 (K + 1; K ) for each K . Then the
acceptance probability reduces to

α (K + 1,ΘK+1; K ,ΘK )

= min

(
1,

q2 (ΘK ;ΘK+1) p (K + 1,ΘK+1 |o )

q2 (ΘK+1;ΘK ) p (K ,ΘK |o )

)
. (1)

Wedenote the ratio in thefinal term r (K + 1,ΘK+1; K ,ΘK |
o), that is

r (K + 1,ΘK+1; K ,ΘK |o) = p (K + 1,ΘK+1 |o )

p (K ,ΘK |o )
.

First, we randomly select a state on which to perform the
split move. Without loss of generality, we consider the case
where state K is to be split into new states K and K + 1. We
propose the new (K+1)-dimensional infinitesimal generator
QK+1 using the following updates:

q ′
K , j = qK , j q ′

K+1, j = qK , j 1 ≤ j < K
q ′
i,K = wi qi,K q ′

i,K+1 = (1 − wi ) qi,K 1 ≤ i < K
wi ∼ Beta (2, 2) q ′

K ,K+1, q
′
K+1,K ∼ p0Q

(2)

with QK = {
qi, j

}
1≤i, j≤K from the original K -state model

and QK+1 = {q ′
i, j }1≤i, j≤K+1; here, p0Q (.) is the prior dis-

tribution for qi, j ,∀1 ≤ i �= j ≤ K , which is assumed
to be Gamma (a, b). In this way, the new stationary prob-
abilities s′ of the CTMC associated with QK+1 satisfying
s′QK+1 = 0 are s′

j = s j for 1 ≤ j < K , sK = s′
K + s′

K+1
where s is a vector of stationary probabilities associated with
QK (satisfying sQK = 0). The dynamical properties of the
CTMC are thus preserved. The observation process parame-
ters associated with new state K + 1 are generated as

β ′
1,K+1 ∼ N

(
β1,K , c2

)
, β ′

m,K+1 = βm,K , 2 ≤ m ≤ D

and the remaining elements of BK+1 set equal to the ele-
ments of BK . In addition, we generate a weight w ∼
Beta (2, 2) to split the initial probability for state K inπK =
(π1, . . . , πK )� into π ′

K = wπK and π ′
K+1 = (1 − w)πK

and the rest remains the same. In the acceptance probability
in (1), the ratio of the proposal density can be written as

q2 (ΘK ;ΘK+1)

q2 (ΘK+1;ΘK )
= q (QK ; QK+1)

q (QK+1; QK )
× q (BK ;BK+1)

q (BK+1;BK )

×q
(
πK ;πK+1

)

q
(
πK+1;πK

) .

Specifically,

q (QK ; QK+1)

q (QK+1; QK )
=

∏K−1
i=1 qi,K

p0Q(q ′
K ,K+1)p0Q(q ′

K+1,K )
∏K−1

i=1 p (wi )

where the numerator comes from the Jacobian of the trans-
formation that creates the proposed QK+1. Then

q (BK ;BK+1)

q (BK+1;BK )
= 1

p(β ′
1,K )

where p(β ′
1,K ) is the Normal density with mean β1,K and

variance c2.

q
(
πK ;πK+1

)

q
(
πK+1;πK

) = πK

p (w)

where the numerator comes from the Jacobian of the trans-
formation that generates π ′. Therefore the MH acceptance
probability with the prior distribution as p0 is

α (K + 1, ΘK+1; K , ΘK )

= min

(

1,
q (QK ; QK+1)

q (QK+1; QK )

q (BK ;BK+1)

q (BK+1;BK )

q
(
πK ; πK+1

)

q
(
πK+1; πK

)

r (K + 1, ΘK+1; K , ΘK |o))

= min

(

1,
dK+1 × ∏K−1

i=1 qi,K × πK

bK p0Q(q ′
K ,K+1)p0Q(q ′

K+1,K )
∏K−1

i=1 p(wi )p(β ′
1,K )p (w)

r (K + 1, ΘK+1; K , ΘK |o))
(3)

where bK is the probability of choosing the split move and
dK+1 = 1 − bK is the probability of choosing the combine
move.

3.2.2 Combine move

For the update from K + 1 to K states, we consider the
following move.Without loss of generality, we consider how
to combine states K and K + 1 into a single new state K .
For the current configuration QK+1, we propose the move to
QK as

qK , j = s′
K

s′
K + s′

K+1
q ′
K , j + s′

K+1

s′
K + s′

K+1
q ′
K+1, j 1 ≤ j < K

qi,K = q ′
i,K + q ′

i,K+1 1 ≤ i < K
.

The remaining qi j , where i �= j , are obtained by copying
QK+1 and discarding q ′

K ,K+1 and q
′
K+1,K , with the diagonal

terms of QK calculated by qii = −∑
j �=i qi j for 1 ≤ i ≤
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K . It can be verified that the stationary probabilities, s =
(s1, . . . , sK )� associated with QK , are s j = s′

j for 1 ≤ j <

K and sK = s′
K + s′

K+1. For the parameters in observation
process, we propose

βm,K = s′
K

s′
K + s′

K+1
β ′
m,K + s′

K+1

s′
K + s′

K+1
β ′
m,K+1 1≤m≤D.

The remaining elements of βm, j for j < K are taken
to be the same as the current parameter configuration
BK+1. Finally, we propose the initially distribution πK+1 =(
π ′
1, . . . , π

′
K , π ′

K+1

)
simply moves to πK = (π1, . . . , πK )

whereπK = π ′
K +π ′

K+1 andπ j = π ′
j for j < K . Therefore,

the proposal ratio is computed as follows:

q
(
πK+1;πK

)

q
(
πK ;πK+1

) = p (w)

πK
.

This is the reverse move corresponding to the split move
described above, and essentiallyw = π ′

K /πK and p(.) is the
density of Beta(2, 2). For the infinitesimal generator, the
reverse move for qi,K for 1 ≤ i < K is the same with the
split move. The reverse move for qK , j , 1 ≤ j < K , can be
viewed as

q ′
K , j = u1

u0
qK , j q ′

K+1, j = 1 − u1
1 − u0

qK , j

where u0 = s′
K /(s′

K + s′
K+1) and u1 is a weight parameter.

If we choose u0 = u1, then q ′
K , j = qK , j and q ′

K+1, j =
qK , j . This reverses what was proposed for the split move.
Therefore,

q (QK+1; QK )

q (QK ; QK+1)
= p0Q(q ′

K ,K+1)p0Q(q ′
K+1,K )p (wi )

∏K−1
i=1 qi,K

.

In terms of B, since we mimicked the proposal for qK , j ,
therefore the reverse move is β ′

m,K = βm,K and β ′
m,K+1 =

βm,K for 1 ≤ m ≤ D. Then theproposal ratioq (BK+1;BK ) /

q (BK ;BK+1) equals 1, and the MH acceptance probability
for the combinemove,α (K ,ΘK ; K + 1,ΘK+1), is themin-
imum of 1 and

bK p0Q(q ′
K ,K+1)p0Q(q ′

K+1,K )
∏K−1

i=1 p (wi ) p (w)

dK+1
∏K−1

i=1 qi,KπK
×

r (K ,ΘK ; K + 1,ΘK+1|o) . (4)

4 Model-based clustering for CTHMMs

So far, we have constructed fully Bayesian inference for a
CTHMM via reversible jump MCMC, allowing the num-
ber of states to vary during the analysis. We now extend this

methodology to cluster trajectories based on a CTHMMwith
an unknown number of states. Specifically, we will employ
model-based clustering procedures to cluster individuals
based on the componentmodel parameters that determine the
mixture form. The basic formulation of the model envisages
that the population is composed of distinct sub-populations
each with a distinct stochastic property. For a CTHMM,
this corresponds to each group having a potentially different
component of parameter Θ = (π, Q,B) and the number of
states, K . Luo et al. (2021) develop model-based clustering
for CTHMMs under finite and infinite mixture models, with
a fixed number of states. We incorporate this finite mixture
model structure into the proposed reversible jump MCMC,
allowing both the number of states and the number of clusters
to be inferred during the analysis. There is a crucial distinc-
tion between the number of components M in the mixture
model and the number of clusters M∗ in the data which is
defined as the number of components used to generate the
observed data, or the number of “filled”mixture components.
In the algorithm described below, we focus on specifying
a prior on the number of components M , which implicitly
places a prior on M∗ (Miller and Harrison 2018); however,
in our simulation and real examples, the proposed split move
merely generates any empty component. For a comprehen-
sive investigation ofM andM∗ in different trans-dimensional
algorithms, see Frühwirth-Schnatter et al. (2020).

Let M be the number of components andCn be the cluster
membership indicator for individual n. For n = 1, 2, . . . , N ,
it is presumed to be a member of a component labelled
1, 2, . . . , M , where �m = P (Cn = m) is the prior proba-
bility that individual n is assigned to component m, subject
to

∑M
m=1 �M = 1. The following hierarchy leads to model-

based clustering procedures for the CTHMM:

M ∼ p0 (M) , a mass function on {1, 2, 3, . . .}
�1, . . . , �M |M ∼ Dirichlet (δ, . . . , δ)

P (Cn = m |�1, . . . , �M , M ) = �m ,m = 1, . . . , M; n = 1. . . . N

Km ∼ p0 (K ) , a mass function on {1, 2, 3, . . .}
Xn

∣∣Θ,Cn, KCn ∼ CTMC
(
π(Cn), Q(Cn)

)

On
∣∣Xn,Θ,Cn, KCn ∼ Exponential Family

(
B(Cn)

)

with δ = 1, making the weight distribution uniform. Then
the complete-data likelihood for subject n is

L (Cn,On,Xn,Θ)

=
M∏

m=1

[
�mL

(
On,Xn

∣∣
∣Cn = m,Θ(m), Km

)]1(Cn=m)

where 1 (Cn = m) is the indicator function. A subject is
assigned to component m with a fixed number of states, Km ,
according the posterior probability
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P (Cn = m |On,Xn,Θ )

= �mL
(
On,Xn

∣∣Cn = m,Θ(m)
)

∑M
l=1 �lL

(
On,Xn

∣∣Cn = l,Θ(l)
) . (5)

In reality, the model parameter, Θ , and the values of the
latent states, Xn , are not known, and must be inferred from
the observed data.

4.1 Reversible-jumpMCMC for clustering with an
unknown number of states

In Luo et al. (2021), a reversible-jump algorithm based on
the marginalized model in (6) was used to update M , and
we will incorporate this move into our algorithm in Sect.
3 to construct a clustering mechanism which allows the
number of clusters and the number of states determined
together during the analysis. We first apply the reversible-
jump MCMC algorithm in Sect. 3 to update the number of
states in each component. We then update the number of
components according to a split-combine move, while the
combinemoveonly involves componentswith the samenum-
ber of states. We summarize one iteration of this clustering
mechanism as follows:

1. Update the number of states for each component using
the algorithm in Sect. 3.2; If the move is accepted, update
the model parameter in the corresponding component.

2. Update the number of components by splitting a compo-
nent or combining components with the same number of
states; If a component with Km states is chosen in the
split move, then the move is to consider splitting the com-
ponent into two both with Km states; If two components
with the same number of states, Km , are selected in the
combine move, then the move is to combine two compo-
nents into one component with Km states. Again, we use
the idea of centering proposals for the split move, where
we fix Q and π to be the same in the two components, and
add some randomness to the intercept inB in the proposed
new component. Amore detailed explanation is discussed
in Sect. 4.2.

3. Given parameters in each component, update the com-
ponent membership for each individual according to the
posterior probability (5).

4. With the number of components M fixed, each with fixed
states Km wherem = 1, . . . , M , update themodel param-
eters using standard MCMC moves in each component,
which the detail is given in the Supplement.

For any empty component fromStep 3, we generatemodel
parameters fromprior distributions. For the split and combine
moves in (b), we carry out them on the marginalized model
as in Luo et al. (2021), where component labels and latent

processes are marginalized out from the calculation, and use
the likelihood

L(o|Θ, M) =
N∏

n=1

{
M∑

m=1

�mL(on|Θ(m), Km)

}

. (6)

Similar with updating the number of states, we update M by
considering a proposal from the current state (M,Θ) to a new
state (M ′,Θ ′)using theproposal densityq

(
M ′,Θ ′; M,Θ

) =
q1

(
M ′; M)

q2
(
Θ ′;Θ

)
, that is, using independent proposals

for the two components. The acceptance probability for this
proposal is given by

α
(
M ′,Θ ′; M,Θ

)

= min

(

1,
q1

(
M; M ′)q2

(
Θ;Θ ′) p

(
M ′,Θ ′ |o )

q1 (M ′; M)q2 (Θ ′;Θ) p (M,Θ |o )

)

where p (M,Θ |o ) is the posterior distribution of (M,Θ)

given the observed data o, which can, up to proportional-
ity, be decomposed into the marginal likelihood of the data
L(o|Θ, M) times the prior distribution for (M,Θ),with prior
distribution as p0;

p (M,Θ |o ) ∝ L(o|Θ, M)p0(Θ|M)p0(M).

We will discuss trans-dimensional moves for updating the
number of components in more detail below.

4.2 Split/combinemove for updating the number of
clusters

The combine move is designed to choose a component, m
say, at random and select another component i such that
‖Bi − Bm‖2 is smallest for i �= m. The reverse split move
is to randomly select a component, m to split into two
components, say m and m∗, and check if the condition,
‖Bm∗ − Bm‖2 <

∥
∥B j − Bm

∥
∥
2 for j �= m. If this condition

is not met, then the split move is rejected.

4.2.1 Split move

We consider an update that changes the number of compo-
nent from M → M + 1. Without loss of generality, we
aim to split the M th component with CTMC parameters
ΘM = {πM , QM ,BM } into two components, requiring the
need to generate KM new hidden states, with corresponding
parameters, i.e., Θ ′ = {π ′, Q′,B′} and Θ ′′ = {π ′′, Q′′,B′′}.
To implement the idea of centering proposals, we use a deter-
ministic proposal for Q and π , and let Q′ = Q′′ = QM and
π

′ = π
′′ = πM . For observation parameter B, we can use

the similar proposal:
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β
′
1,k = βM,1,k β

′′
1,k ∼ N

(
βM,1,k, c

2
)

k = 1, . . . , KM

β
′
j,k = β

′′
j,k = βM, j,k, j = 2, . . . , D.

For mixture weights� , letw ∼ Beta(2, 2) and define� ′ =
w�M and� ′′ = (1−w)�M . If we define the posterior ratio
as

rc
(
M + 1, (Θ

′
,Θ

′′
,� ′,� ′′); M, (ΘM ,�M )|o

)

=
p

(
M + 1, (Θ

′
,Θ

′′
,� ′,� ′′) |o

)

p (M, (ΘM ,�M ) |o )
.

Then, the acceptance probability for this proposal is

min
(
1,

q
(
QM ; Q ′

, Q
′′)

q
(
Q ′

, Q ′′ ; QM
)
q

(
BM ;B′

,B
′′)

q
(
B′

,B′′ ;BM
)
q

(
πM ;π

′
, π

′′)

q
(
π

′
, π

′′ ;πM
)

q
(
�M ;� ′,� ′′)

q (� ′,� ′′;�M )
×

rc
(
M + 1, (Θ

′
,Θ

′′
,� ′,� ′′); M, (ΘM ,�M )|o

) )

= min

(

1,
dM+1�M

bM p� (w)pβ(β
′′
1,k)

×

rc
(
M + 1, (Θ

′
,Θ

′′
,� ′,� ′′); M, (ΘM ,�M )|o

))
(7)

where bM is the probability of choosing the split move and
dM+1 = 1 − bM is the probability of choosing the combine
move, and pβ(·) is the Normal density with mean β1,K and
variance c2 and p� (·) is the Beta(2, 2) density.

4.2.2 Combine move

For the combinemove, we need choose two componentswith
the same number of states and update from M + 1 → M
components. Again, without loss of generality, we consider
combine the (M + 1)th and M th components into one com-
ponent, both components with KM = KM+1 states, with the
proposed parameters,Θ ′ = {π ′, Q′,B′}.Wefirst find the sta-
tionary probabilities, sM and sM+1, associated with QM and
QM+1. To combine QM and QM+1 into Q

′
, the operation is

as follows:

q
′
i,k = sM,i

sM,i + sM+1,i
× qM,i,k + sM+1,i

sM,i + sM+1,i

×qM+1,i,k, i �= k = 1, . . . , KM

and qM,k,k = −∑
i �=k qM,i,k for k = 1, . . . , KM . For the

observation process parameter B,

β
′
i,k = sM,i

sM,i + sM+1,i
× βM,i,k + sM+1,i

sM,i + sM+1,i

×βM+1,i,k, i, k = 1, . . . , KM .

For the initial distribution π ,

π
′
k = sM,i

sM,i + sM+1,i
× πM,k + sM+1,i

sM,i + sM+1,i

×πM+1,k, k = 1, . . . , KM

and rescale the sum to 1. For mixture weights� , the move is
essentially to add up the probability of the two correspond-
ing components, i.e., � ′ = �M + �M+1. The acceptance
probability from M + 1 to M components is

min

(
1,

bM p� (w)

dM+1� ′ rc
(
M,Θ ′; M + 1,ΘM ,ΘM+1|o

))
.

(8)

5 Simulation

In this section we demonstrate the performance of the pro-
posed reversible jump and birth-death (In the Supplement)
MCMC approaches for the CTHMM.

5.1 Identifying the number of states

In the first example, we demonstrate the performance of
MCMC to estimate the number of states, and to discover
how performance degrades when the problem becomes more
challenging.We consider a four-statemodel with coefficients

Q =

⎛

⎜
⎜
⎝

−3.00 2.00 1.00 0.00
1.00 −1.80 0.75 0.05
0.15 0.55 −1.05 0.35
0.00 0.25 0.40 −0.65

⎞

⎟
⎟
⎠

and with time-varying covariates Z1 ∼ N (−1, 1) , Z2 ∼
Binomial (1, 0.6), with

B =
⎛

⎝
−1.28 −0.55 −1.05 0.99
−0.88 1.15 1.36 1.73
0.70 0.68 −1.12 −1.20

⎞

⎠ .

The initial distribution, π , is set to be (0.35, 0.25, 0.2, 0.2).
We first construct the continuous time Markov process from
the generator Q for subject i , a continuous-time realization
of the latent sequence {Xs, 0 ≤ s ≤ 15}, and uniformly at
random extract T observation time points between 0 and
15, where T ∼ Uni f orm(20, 60), with the first observa-
tion made at time 0. The observations are generated from a
Normal or Poisson distribution, with total 1000 subjects. The
prior distributions for the elements in Q andπ are specified as
independentGamma(1, 2) and Dirichlet(1, . . . , 1). A non-
informative prior is imposed for B. We use a zero-truncated
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Table 1 Example 5.1: Posterior distribution of the number of hidden
states. The true number of states is four

# of
hidden
states

Normal σ = 1 Normal σ = 1.5 Normal σ = 2 Poisson

1 0.0001 0.0001 0.0001 0.0001

2 0.0005 0.0001 0.0001 0.0002

3 0.0002 0.0002 0.0002 0.0001

4 0.4906 0.3270 0.2534 0.6993

5 0.3845 0.3927 0.3624 0.2506

6 0.1175 0.2237 0.2786 0.0482

7 0.0067 0.0521 0.0928 0.0017

8 0.0000 0.0040 0.0126 0.0000

9 0.0000 0.0003 0.0000 0.0000

Poisson(3.5) distribution as the prior for the number of
states, and initiate the model with one hidden state.

The posterior distribution of number of hidden states for
different cases are shown in Table 1 with total 20,000 itera-
tions. Trace plots are displayed in the Supplement. In general,
the proposed split and combined moves demonstrate desired
performance with the trace plots showing that our reversible
jumpMCMC algorithm has extensively explored the param-
eter space. In terms of the number of states, the posterior
modes for Normal with σ = 1 and Poisson cases are both
four with 49.06% and 69.93% respectively, indicating that
the proposed MCMC algorithm can identify the number of
states where the data are simulated from. However, when we
increase σ to 1.5 and 2 in Normal case, the posterior modes
for the two cases are five with 39.27% and 36.24% respec-
tively, and the percentage of four-state iterations decreased
compared to the other two cases. In those cases, the distribu-
tions of the number of hidden states are also more diverse,
and the MCMC sampler is more likely to explore the higher
dimensional parameter space, resulting in fewer iterations of
the four-state model.

5.2 Replications and prior sensitivity analysis:
identifying the number of states

Subsequently, we run 100 replications on the same data set
with the same parameter configuration and prior settings as
Sect. 5.1 of 500 subjects for Normal case with σ = 1. In
each replication, we run 50,000 iterations in total. Figure
1 displays the posterior distribution of the number of states
over 100 replications after 10,000, 20,000, 30,000 and 50,000
iterations. In the figure, the proposed RJMCMC algorithm
generates consistent results across almost all replications,
where the majority of them has the posterior mode four after
50,000 iterations. As the number of iterations increases, the
variation of the posterior distribution becomes smaller. After

50,000 iterations, 99 out of 100 replications has the posterior
mode four, which demonstrates the stability of the split and
combine moves.

In addition, the prior distribution for K can potentially
affect the posterior distribution of K . Therefore, we run a
range of prior distributions for K with the same parame-
ter configuration as Sect. 5.1 of 1000 subjects for Normal
case with σ = 1, and the results are shown in Fig. 2 based
on 20,000 MCMC samples. All cases except Uniform(0,10)
have the posterior mode of the number of states at four. The
uniform prior yields highly varied posterior distribution, with
37.20%, 37.64% and 21.91% in four, five and six states.
While zero-truncated Poisson(3.5) has the smallest variance,
the posterior distribution concentrates at four and it puts only
little mass on large values of K . The zero-truncated Negative
Binomial(2,0.75) has the second smallest variance, and we
observe the similar result with zero-truncated Poisson. Geo-
metric(0.2) has the largest variance among all the priors, and
the posterior distribution is highly varied, ranging from 1 to
10 states. The posterior mass between four and five is small,
with probability 0.407 and 0.386 respectively.

5.3 Identifying the number of states: intercept only

In this example, the data are generated with the intercept
only in the GLM model. The purpose of this example is to
show how the performance differs from previous examples,
especially on the values of σ in the Normal case. The simula-
tion is configured with three latent states and the associated
population generator and the coefficient matrix

Q =
⎛

⎝
−1.0 0.6 0.4
0.7 −1.2 0.5
0.3 0.6 −0.9

⎞

⎠

with associated coefficient matrices

– Gaussian case: B = (−4, 0, 5),
– Poisson case: B = (log(1.5), log(4), log(5))

The initial distribution π for the continuous-time Markov
process is set to be (0.5, 0.4, 0.1). As in the first exam-
ple, we construct the continuous-time Markov process from
the generator Q, a continuous-time realization of the latent
state process {Xs, 0 ≤ s ≤ 15}, and randomly extract obser-
vation time points from the Uni f orm (20, 60) between
0 and 15, with the first observation at time 0 in order
to estimate the initial probability π . We generate data
for 1000 subjects in each case. The prior distributions
for the elements in Q and π are specified as indepen-
dent Gamma(1, 2) and Dirichlet(1, . . . , 1). The priors are
imposed for themeanofNormal case asN (0, 1) and for Pois-
son case as Gamma(10, 10). Again, we use a zero-truncated
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Fig. 1 Posterior distribution of the number of states for Normal case σ = 1 with 100 replications for the same dataset
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Fig. 2 Posterior distribution of the number of states with different
prior specifications. TrPois(3.5) represents the zero-truncated Pois-
son(3.5). Geom(0.2) represents geometric distribution with success
probability 0.2. TrNegBin(2,0.75) represents zero-truncated Negative
Binomial(2,0.75), and Unif(1,10) represents the discrete uniform dis-
tribution

Poisson(3.5) distribution for as the prior for the number of
states, and we initiate the model with one hidden state.

The results are shown in Table 2 with the trace plots of
the number of plots in the Supplement. The results presented

here are based on 20,000MCMC samples. As there are fewer
parameters in the example, posterior modes for all cases
are three, and all cases have over 90% of iterations on the
three-state model. Unlike previous cases, the algorithm is
less likely to explore higher dimensions compared to mod-
els with covariates. We notice that the model constantly visit
the four-state model then quickly merged back to three-state
model, and this prevents the MCMC sampler to move to a
higher dimension. In general, the proposed algorithm shows
a good mixing performance in this example.

5.4 Identifying the numbers of clusters and states

In this example, we perform a simulation study to examine
the performance of the RJMCMC algorithm for clustering
trajectories with varying states. We generate the data from
a four-cluster CTHMM, with each cluster having different
latent states and specifications

Q1 =
⎛

⎝
−2.5 2.0 0.5
0.5 −1.5 1.0
0.1 0.9 −1

⎞

⎠ Q2 =
(−1.20 1.20

0.25 −0.25

)

123



57 Page 10 of 15 Statistics and Computing (2021) 31 :57

Table 2 Example 5.3: Posterior
distribution of the number of
states (Intercept Only). The true
number of states is three

# of hidden states Normal σ = 1 Normal σ = 1.5 Normal σ = 2 Poisson

1 0.0001 0.0001 0.0001 0.0001

2 0.0001 0.0002 0.0002 0.0001

3 0.9823 0.9671 0.9533 0.9765

4 0.0174 0.0328 0.0465 0.0228

5 0.0003 0.0000 0.0000 0.0005

Table 3 Example 5.4: Posterior
distribution of the number of
cluster with varying states. The
true number of clusters is four

# of cluster Normal σ = 1 Normal σ = 1.5 Normal σ = 2 Poisson

1 0.0001 0.0002 0.0001 0.0001

2 0.0001 0.0003 0.0004 0.0001

3 0.0092 0.0072 0.0029 0.0151

4 0.8706 0.4085 0.3390 0.8713

5 0.1130 0.4354 0.2640 0.1130

6 0.0070 0.1016 0.1930 0.0004

≥ 7 0.0000 0.0468 0.2006 0.0000

Q3 =
⎛

⎝
−0.50 0.49 0.01
0.25 −0.30 0.05
0.01 0.10 −0.11

⎞

⎠

Q4 =

⎛

⎜⎜
⎝

−3.00 2.00 1.00 0.00
1.00 −1.80 0.75 0.05
0.15 0.55 −1.05 0.35
0.00 0.25 0.40 −0.65

⎞

⎟⎟
⎠

with associated coefficient matrices

– Gaussian case:B1 = (−3, 0, 2),B2 = (−3.5, 3.5),B3 =
(−3.8, 1, 4), B4 = (−2,−1.2, 0.7, 1.8).

– Poisson case: B1 = (log(1.5), log(4), log(5)), B2 =
(log(2), log(6)), B3 = (log(1.3), log(4.2), log(7.5)),
B4 = (log(0.15), log(0.5), log(2), log(6.2)).

The initial distributions for three clusters areπ1 = (0.5, 0.4,
0.1), π2 = (0.6, 0.4), π3 = (0.45, 0.45, 0.1) and π4 =
(0.35, 0.25, 0.2, 0.2). We initiate the model with one cluster
with one hidden state. Data are generated by construct-
ing the continuous-time Markov chain from the generator
Qi for cluster i = 1, 2, 3, 4, a continuous-time realization
{Xs, 0 ≤ s ≤ 15}, and uniformly extract T − 1 time points
between 0 and 15, where T ∼ Uni f orm (20, 60). Data are
generated with 400, 500, 450 and 550 subjects for each clus-
ter respectively. We use the same prior distributions with
Sect. 5.1 for the model parameters.

The results presented are based on 10,000 MCMC sam-
ples, which is shown in Table 3. Trace plots for the number
of clusters for different cases are shown in the Supplement.
For the number of clusters, all cases, expect Normal σ = 1.5,
have posterior mode four which is the true number of clus-
ters where the data are generated from. For Normal cases,

we observe a monotonic decreasing trend for posterior prob-
abilities of four clusters as σ increases. The results for the
Poisson case are similar to Normal σ = 1. Conditional on
four-cluster iterations, trace plots of the number of states
display in the Supplement, with missing parts representing
non-four-cluster iterations. The posterior modes of the num-
ber of states conditional on four-clustermodels are consistent
with where the data are generated from. For Normal σ = 1
and Poisson cases, trace plots of the number of states are
similar to the one-cluster example. For Normal σ = 1.5, 2,
we do not observe, in these two cases, mixing as well as
previous examples and there are also fewer four-cluster iter-
ations. When σ = 1.5, the posterior modes of the number
of states conditional on the four-cluster model are still the
consistent with the true data configuration; however, when
σ = 2, it is not easy to identify the number of states in each
cluster. Compared to previous cases, this is a more difficult
problem because of the complexity and the flexibility of the
proposed algorithm. For example, when updating the num-
ber of clusters, it is less likely to have a successful combine
move until two similar clusters have the same number of
states. In our example, we set the probability of the combine
move for updating the number of clusters as 0.7 to account
for issue. Overall, this algorithm performed well in selecting
the number of clusters and states in well-separated scenarios.

6 Real data analysis: health surveillance of
COPD patients

Our real example relates to healthcare surveillance for the
chronic condition, COPD, in greater Montreal area, Canada.
In 1998, a 25% random sample was drawn from the registry
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of the Régie de l’assurance maladie du Québec (RAMQ, the
Québec provincial health authority) with a residential postal
code in the census metropolitan area ofMontreal. At the start
of every following year, 25% of those who were born in, or
moved to, Montreal within the previous year were sampled
to maintain a representative cohort. Follow-up ended when
people died or changed their residential address to outside of
Montreal. This administrative database includes outpatient
diagnoses and procedures submitted through RAMQ billing
claims, and procedures and diagnoses from inpatient claims.

Using established case-definitions based on diagnostic
codes (Lix et al. 2018), COPD patients were enrolled with an
incident event occurring after a minimum of two years at risk
with no events. Patients were followed from January 1998,
starting from the time of their first diagnosis, until December
2014. Physicians only observed these patients duringmedical
visits, which occurred when patients chose to interact with
the healthcare system, and at which information, including
the number of prescribedmedications, is collected. However,
as this information was only available for patients with drug
insurance, we restrict the cohort to patients over 65 years old
with COPD, as prescription data are available for all of these
patients. It is widely believed that the progression of COPD
canbewell-modeled as a progression through a small number
of discrete states which approximate severity (GOLDExecu-
tive Committee 2017). We are interested in identifying those
states and modeling transition between these discrete states,
which reflects the performance of the healthcare system over
time.

In our analysis, the outcome observations are the num-
ber of prescribed medications at the time when patients
visited the physician: these are modeled using a Poisson
model. In addition, the types of healthcare utilization at each
visit were also recorded: hospitalization (HOSP), specialist
visit (SPEC), general practitioner visit (GP) and emergency
department visit (ER). 4,597 COPD patients are included in
this analysis, and these patients are all with drug plans and
with at least five years follow-up.

6.1 Identifying the number of states

First, we carry out our analysis to identify the number of
states. The analysis is initiated as a one-state model, The
prior distributions for the elements in Q and π are specified
as independent Gamma(1, 2) and Dirichlet(1, . . . , 1). We
use a zero-truncated Poisson(3) distribution for as the prior
for the number of states.

6.1.1 With covariates

We implement the model including the types of healthcare
utilization as covariates in the observation model. A non-

informative prior is imposed forB. We perform the proposed
trans-dimensional MCMC algorithm with 20,000 iterations.

Table 4 shows the posterior distribution of the number of
states. The trace plot (Fig. 3) confirm that the algorithm has
fully explored the parameter space. Although the mode of
the posterior distribution of the number of states is five, it
also spends over 40% of iterations in the four-state model.
Table 5 contains the exponential of the B coefficients condi-
tion on the five-state model. On average, from State 1 to 5 the
number of drugs taken increases; however, within each state,
the numbers of drugs across the different healthcare utiliza-
tions are approximately the same. Therefore, it is plausible
to consider fitting the intercept-only model without the time-
varying covariate, which we will proceed in the next section.

6.1.2 Without covariates

We perform the reversible jump trans-dimensional MCMC
algorithm for 20,000 iterations without the time-varying
covariate, with a Gamma(10, 10) distribution placed on the
mean number of drugs. Table 4 shows the posterior distribu-
tion of the number of states. The trace plot (Fig. 3) confirm
that the algorithm has extensively explored the parameter
space. Unlike the model with the time-varying covariate, the
MCMC algorithm employs most of the time exploring the
less complex models, i.e., three-state and four-state model.
The posterior mode of the number of hidden states is four.
Table 6 contains the expected number of drugs prescribed
for patients in each state, with associated 95% credible inter-
vals. As for the model with covariates included, on average,
the number of drugs taken increases from State 1 to 4; how-
ever, the mean number of drugs prescribed for each state
is smaller than the previous five-state model with the time-
varying covariate.

6.2 Identifying numbers of clusters and states

Next, we implement the clustering algorithm to group trajec-
tories with distinct stochastic properties. From the previous
one-cluster model, we did not observe much distinction
across different healthcare utilizations on the number of
drugs. Therefore, we decide to cluster patient trajectories
using the intercept-only model.

We present results based on 10000MCMC iterations after
initialization from one-cluster model with one hidden state.
The mode of the posterior distribution of the number of clus-
ters is three (5358 out of 10000 iterations). Table 7 and
Fig. 4 present the posterior distribution and trace plots of
the number of clusters and numbers of states conditional on
three-cluster iterations. The posterior modes for numbers of
states are four, two and two for Cluster 1, 2, 3 respectively.
For a summary output, cluster membership is assigned to
the subject according to its posterior mode conditional on
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Table 4 Application: Posterior distribution of the number of states corresponding to models with and without healthcare utilizations as a covariate
in Sects. 6.1.1 and 6.1.2, respectively

# of states 1 2 3 4 5 6 7 8

With Covariates 0.0001 0.0002 0.0002 0.4212 0.4526 0.0796 0.0415 0.0045

Without Covariates 0.0001 0.0005 0.3863 0.4808 0.1261 0.0064 0.0000 0.0000

The bold value represent the posterior mode of the number of states
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Fig. 3 Application: Trace plot for the number of states over 20000 iterations to identify the number of states. The left panel is the observation
model with the types of healthcare utilization as covariates, while the right panel is the model without covariates

Table 5 Application:
Exponential of B coefficients
(Parameters in the GLM for
each state)

Variables State 1 State 2 State 3 State 4 State 5

Intercept 2.05 3.53 4.55 6.03 7.52

(95% CI) (1.80,2.34) (3.00,4.02) (3.74,5.32) (5.35,6.87) (7.02,8.14)

ED 1.03 1.00 0.99 0.98 0.97

(95% CI) (1.00,1.06) (0.98,1.02) (0.97,1.00) (0.97,0.99) (0.95,0.99)

HOSP 1.00 1.00 0.99 0.98 0.96

(95% CI) (0.95,1.05) (0.95,1.02) (0.95,1.01) (0.97,1.00) (0.92,0.99)

SPEC 1.02 0.98 0.96 0.97 0.93

(95% CI) (0.98,1.06) (0.96,1.01) (0.94,0.98) (0.95,0.98) (0.89,0.96)

three-cluster iterations. Table 8 shows the posterior mean of
number of drugs for the three-cluster model along with the
number of patients in each cluster. Cluster 1 has the great-
est number of patients and a posterior mode of four states,
which is consistent with results of the one-cluster model in
Sect. 6.1. The separation between Cluster 2 and 3 is mainly
coming from the parameters in the underlying Markov pro-
cess, as the q12 and q21 in Cluster 3 are ten times greater than
those in Cluster 2. This suggests that transitions between
State 1 and 2 are more frequent in Cluster 3. Also, Cluster 3
on average has the least number of drugs prescribed, indicat-

ing that patients in this cluster are possibly on the early stage
of COPD.

7 Discussion

We have developed a reversible jump MCMC algorithm
for the CTHMM-GLM with an unknown number of states
and clusters, which is implemented under a fully Bayesian
framework. This model can deal with challenges typically
encountered in latent multi-state modeling, in particular,

Table 6 Application: Expected
number of drugs for the
intercept-only model over the
time spent in each state

State 1 State 2 State 3 State 4

Expected # of Drug Prescribed 3.19 4.00 4.75 5.90

(95% CI) (2.89,3.31) (3.29,4.58) (4.53,5.84) (5.85,6.05)
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Table 7 Application: Posterior distribution of the number of cluster
and numbers of states conditional on three-cluster iterations

Number of clusters Number of states
Cluster 1 Cluster 2 Cluster 3

1 0.0058 0.0000 0.0000 0.0000

2 0.3678 0.0000 0.7413 0.6480

3 0.5358 0.0418 0.2447 0.1566

4 0.0820 0.9580 0.0140 0.1627

5 0.0072 0.0002 0.0000 0.0269

6 0.0014 0.0000 0.0000 0.0058

Bold value represents the posterior modes of the numbers of clusters
and states

irregular visits that vary from individual to individual. Our
approach uses a split/combine move to explore the trans-
dimensional parameter space, which extended the fixed
dimensional MCMC proposed by Luo et al. (2021). Simula-
tion studies demonstrated that the proposedMCMCapproach
could identify the number of states and the number of clus-
ters from the true data generating mechanism. We were able
to implement the developed methods for a real data set from
Quebec, Canada, comprisingmore than four thousandCOPD
patients tracked over twenty years. Our work demonstrated
that with a careful construction of the trans-dimensional pro-

posal, our reversible jump MCMC algorithm can achieve
desired performance in term of identifying the number of
states and the number of clusters simultaneously.

Focusing on the number of states and the number of clus-
ters, a standard prior specification is adopted exchangeable
in form with respect to the state/cluster labels. In the MCMC
algorithm, it is possible that the algorithm would potentially
suffer from the label-switching problem, which has been
addressed by Jasra et al. (2005). In this paper, we primar-
ily considered finite mixture formulations to facilitate the
trans-dimensional move between different numbers of states
and clusters using the reversible jump MCMC algorithm.
Bayesian nonparametric procedures, specifically procedures
using Dirichlet process models, have become popular tools
to explore the trans-dimensional parameter space, where the
models are limiting versions of exchangeable finite mixture
models. Dirichlet process models are now widely used in
density estimation and clustering, with implementation via
MCMC sampling approaches (Neal 2000). In our proposed
model, the state space has to be discrete; more generally,
there may be health conditions that necessitate the use of a
continuous latent process. Bayesian formulations for diffu-
sion or jump processes have been studied in the context of
financial data, although such formulations are not common
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Fig. 4 Application: trace plots for the number of clusters and of the number of states on three-cluster iterations
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Table 8 Application: Expected
number of drugs for the
three-cluster Poisson model

State 1 State 2 State 3 State 4

Cluster 1 # of Drug Prescribed 2.04 3.38 4.79 6.43

N = 4439 (95% CI) (1.93,2.26) (3.04,3.77) (4.42,5.28) (6.12,6.79)

Cluster 2 # of Drug Prescribed 3.72 6.62

N = 135 (95% CI) (3.13,4.48) (4.19,7.74)

Cluster 3 # of Drug Prescribed 3.15 5.61

N = 23 (95% CI) (2.48,5.47) (4.09,7.66)

in the analysis of health data, allowing the latent continuous
state distribution to have an interpretation as an index or a
score. For example, one could use the features included in
comorbidity indices to measure multimorbidity in terms of
the ability to predict future mortality and health services use.
Further studies are needed to address this issue to facilitate
the generation of hypotheses about the performance of the
healthcare system inmanaging patients with chronic disease.
In addition, our real data analysis focuses on the univariate
outcome model; however, the latent process may depend on
multiple outcomes. For example, in medical applications,
patients over the age of 65 are at high risk of death directly
as a result of their disease. Also, patients with multimor-
bidity have a spectrum of measurements for their physical
conditions which joint affects the general health statuses.
As discussed in Luo et al. (2021), a specific case is that
an additional time-to-event outcome becomes available, e.g.,
death. We can specifically use a joint modeling framework,
which models the joint behavior of a sequence of longitudi-
nal measurements and an associated sequence of event times
simultaneously. Another approach, which is more general, is
to use separate regressions to model the relevant outcomes
but correlated random effects are included among them to
account for the intercorrelation. These considerations will
be the focus for future research.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-021-10032-
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