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Abstract
The simultaneous clustering of documents and words, known as co-clustering, has proved to be more effective than one-sided
clustering in dealing with sparse high-dimensional datasets. By their nature, text data are also generally unbalanced and
directional. Recently, the von Mises–Fisher (vMF) mixture model was proposed to handle unbalanced data while harnessing
the directional nature of text. In this paper, we propose a general co-clustering framework based on a matrix formulation
of vMF model-based co-clustering. This formulation leads to a flexible framework for text co-clustering that can easily
incorporate both word–word semantic relationships and document–document similarities. By contrast with existing methods,
which generally use an additive incorporation of similarities, we propose a bi-directional multiplicative regularization that
better encapsulates the underlying text data structure. Extensive evaluations on various real-world text datasets demonstrate
the superior performance of our proposed approach over baseline and competitive methods, both in terms of clustering results
and co-cluster topic coherence.

Keywords Co-clustering · Regularization · Information retrieval · Text mining

1 Introduction

The simultaneous partitioning of features and objects into
consistent homogeneous blocks, referred as to co-clusters1,
is a successful extension of one-sided clustering that can
make large datasets easier to analyze (Hartigan 1972; Bock
1979; Govaert 1983; Vichi 2001; Van Mechelen et al. 2004;
Rocci and Vichi 2008; Govaert and Nadif 2008, 2013; Bock
2020). Starting froma datamatrix, a co-cluster can be defined
as a submatrix whose elements have a particular pattern in
common. The basic idea behind co-clustering is to identify
a structure that is shared by objects and features through
their permutations. A variety of co-clustering methods have
been applied in different areas, such as in bioinformatics

1 Given a datamatrixX = (xij), i ∈ I , j ∈ J , a co-cluster is a submatrix
defined by Ik × J�(Ik ⊆ I , J� ⊆ J ).
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(Madeira and Oliveira 2004; Cho and Dhillon 2008; Tanay
et al. 2005; Hanczar and Nadif 2012) to group genes and
experimental conditions, in collaborative filtering (Hofmann
and Puzicha 1999; Deodhar and Ghosh 2010) to group users
and items, and in text mining (Dhillon 2003; Ailem et al.
2017a; Govaert and Nadif 2018; Salah and Nadif 2019; Role
et al. 2019) to group words2 and documents. Through its
ability to relate rows and columns, co-clustering generally
gives better results than clustering along a single dimension.
Besides, co-clustering makes an implicit adaptive dimen-
sionality reduction that allows the use of efficient scalable
algorithms for high-dimensional sparse text data. This is cru-
cial in text mining, since the exponential growth of online
documents has created an urgent need for effective meth-
ods in handling and interpreting high-dimensional sparse
document-term matrices, i.e., matrices where documents are
represented in the space of terms, and vice versa.Most impor-
tantly, text co-clustering can identify the most discriminating
words that characterize topics in document classes.

2 The generally understood difference between words and terms is that
terms are words used in a particular specialized field. The words that we
are concerned with in co-clustering can in most cases also be qualified
as terms, and consequently, we use words and terms interchangeably in
this paper.
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Standard text-focused co-clustering approaches seek to
relate documents and words. They do not usually attempt
to incorporate side information such as semantic relation-
ships between words, or similarities in document content.
The clustering of documents relating to the same topicsmight
nevertheless benefit from additional information about word
similarities, since these documents can be expected to con-
tain semantically related terms. Conversely, word clustering
might usefully harness side information about (similarities
in) document content, given that it is the documents that pro-
vide the context for thewords. Side information on document
latent space and on word latent space could together improve
the co-clustering of document-text data.

2 Related work

Inspired by the recent success of neural word embed-
ding models, Ailem et al. (2017b) proposed performing
NMF (Non-negative Matrix Factorization) jointly on the
document-word and word-context matrices, with shared
word factors. Recently, an extension of NMTF-based (Non-
negative Matrix Tri-Factorization) co-clustering, namely
WC-NMTF (Word Co-Occurence regularized NMTF) (Salah
et al. 2018), a technique that takes account of semantic rela-
tionships between terms, has successfully been applied on
various text datasets. As well as being high-dimensional
and sparse, text data are also heavily unbalanced, and co-
clustering methods that focus on document-term matrices
need to take this into account. The DCC algorithm (Direc-
tional Co-clustering with a Conscience) (Salah and Nadif
2019) has been shown to be particularly suited to tackling
this issue. DCC uses the von Mises–Fisher (vMF) mixture
model and introduces a conscience mechanism (DeSieno
1988; Ahalt et al. 1990) to avoid empty or highly unbalanced
clusters (Banerjee and Ghosh 2004). It exploits the fact that
text data are naturally directional, which means that only the
directions of data vectors are relevant, and not their magni-
tude (Mardia and Jupp 2009). In contrast to WC-NMTF, DCC
does not use any regularization.

In this work, we harness the directional property of
text data and describe a Regularized Bi-Directional Co-
clustering (RBDCo) algorithm for document-term data. The
bi-directional aspect of our approach resides in the use of
side information for the two dimensions of the document-
term matrix. The primary contribution of this work is a
general framework based on a matrix formulation of vMF-
based co-clustering. A significant outcome of this novel
formulation is a very rich, flexible framework for text
co-clustering that allows an easy multiplicative regulariza-
tion on both the word–word semantic relationships and the
document–document content similarities. In contrast to exist-
ing methods, which generally rely on additive incorporation

of similarities,we propose abi-directional multiplicative reg-
ularization that better encapsulates the underlying text data
structure. Another contribution of this work is an original
method for evaluating the coherence of word clusters. Exper-
imental results on various real-life datasets provide clear
empirical evidence of the effectiveness of our co-clustering
framework.

The rest of the paper is organized as follows: After review-
ing the vonMises–Fisher-based clustering method in Sect. 3,
we introduce a matrix view of a derived co-clustering algo-
rithm, namely Directional Co-Clustering with a Conscience
(DCC), in Sect. 4. We then show in Sect. 5 how a gener-
alized regularization framework can be built from the von
Mises–Fishermodelwhile taking into account the directional
property of text data, and this section also looks at how our
generalized framework is linked to a variety of other co-
clustering approaches. Section 6 is devoted to comparative
numerical experiments that demonstrate the effectiveness of
our generalized regularization framework. We conclude and
suggest future paths in Sect. 7.

2.1 Notation

Let X = (xij) be a data matrix of size n × d, xij ∈ R.
The ith row of this matrix is represented by a vector xi =
(xi1, . . . , xid)�, where� denotes the transpose. The partition
of the set of rows into g clusters can be represented by a
classification matrix Z of elements zik in {0, 1} satisfying
∑g

k=1 zik = 1. We denote by z.k = ∑
i zik the cardinality of

the kth row cluster. The notation z = (z1, . . . , zn)�, where
zi ∈ {1, . . . , g} corresponds to the cluster label of i , will be
also used. Similarly, the notations W = (wjk), wjk ∈ {0, 1}
satisfying

∑g
k=1 wik = 1, w = (w1, . . . , wd), where w j ∈

{1, . . . , g} represents the cluster label of j represented by
the vector x j , and w.k = ∑

j wjk the cardinality of the kth
column cluster, will be used to represent the partition of the
set of columns.

3 Directional co-clustering

Mixture models have undoubtedly made a very useful contri-
bution to clustering in that they offer considerable flexibility
(McLachlan and Peel 2004). A mixture of von Mises–Fisher
(vMF) distributions can be a wise choice (Banerjee et al.
2005; Salah and Nadif 2017b) when dealing with directional
data distributed on a unit hypersphere S. In fact, this model
is one of the most appropriate models for clustering high-
dimensional sparse data such as the document-term matrices
encountered in text mining. In this kind of application, it
has been empirically demonstrated that vMF-based clus-
tering methods perform better than a number of existing
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Fig. 1 Graphicalmodel. The parametersμzi and κzi are themean direc-
tion and concentration parameter of vMF distribution f (xi |μw

zi
, κzi ) =

cd (κ) exp[κzi (μ
w
zi
)�xi ], respectively. The normalization term takes the

following form cd (κ) = κ
d
2 −1(2π)

d
2 I d

2 −1(κ), where Ir (κ) represents
the modified Bessel function of the first kind and order r . For more
details on the vMF distribution, the reader can refer to Mardia and Jupp
(2009)

approaches, see, e.g., (Zhong and Ghosh 2005; Gopal and
Yang 2014).

In Salah and Nadif (2017a, 2019), the authors proposed a
vMF mixture model for co-clustering. The graphical model
is depicted in Fig. 1, and its probability density function is
given by

f (xi |Θ) =
g∑

k=1

πk fk(xi |μw
zi
, κzi ),

where Θ = {π = (π1, . . . , πg), μw = (μw
1 , . . . ,μw

g ),
κ1, . . . , κg}. Note that μw depends on w, i.e., w j = k if
the jth column belongs to kth cluster, that is “associated”
with the kth row cluster.
Note that with this model the d-dimensional centroids
μw

k = (μk1, . . . , μk1, . . . , μkg, . . . , μkg)
� such that μkh is

repeatedw.h times, andμkh = 0 for all k �= h are assumed to
be orthonormal. The parameter κk denotes the concentration
of the kth distribution. The proportion of points xi generated
from the kth component is denoted by the parameter πk , such
that

∑
k πk = 1 and πk > 0, ∀k ∈ {1, . . . , g}. The complete

data log-likelihood is thereby given by

Lc(Θ|X,Z) =
∑

k

z.k logπk +
∑

k

z.k log(cd(κk))

+
∑

i,k

zikκk(μ
w
k )�xi .

Assuming that all the mixing proportions are equal, i.e.,
πk = 1

g , ∀k (this does not penalize the quality of clus-
tering as a result of the conscience mechanism) and for high
dimensionality, i.e., large order r = d/2−1, a small κk (due
to the sparsity) gives 4(r + 1) + κ2

k ≈ 4(r + 1) and then

log cd(κk) ≈ − d
2 log 2π − log c where c = 4(r+1)

2r+2(r+1)! ; for
details, the reader can refer to Salah andNadif (2017a). Thus,
Lc(Θ|X,Z) becomes

Lc(Θ|X,Z) =
∑

i,k

zikκk(μ
w
k )�xi + constant. (1)

The concentration parameter κk is made inversely pro-
portional to the root square of the number of elements
in cluster k, i.e., κk = 1/

√
z.k where the row assign-

ments are done by maximizing a weighted Skmeans-like
criterion where the weights 1/

√
z.k (k ∈ {1, . . . , g}) dis-

courage the absorption of new objects by larger clusters.
This is also the case for the column assignments, where
w.k is the cardinality of the kth column cluster and μz

k =
(μk1, . . . , μk1, . . . , μkg, . . . , μkg)

� its n-dimensional cen-
troid. To sumup, following Salah andNadif (2017a)we have,

Lc(Θ|X,Z) ≡
∑

i,k

zik
1√
z.k

(μw
k )�xi

≡
∑

j,k

wjk
1√
w.k

(μz
k)

�x j .

(2)

A ≡ B means that optimizing A is equivalent to optimizing
B. The maximizing of mean directions (2) is defined as fol-
lows: μkh = 1/

√
w.k if k = h, and μkh = 0 for all k �= h.

Similarly, we deduce μw
k from 1/

√
z.k . Note that Θ is now

reduced toμw andμz the centers of row and column clusters.
The authors have derived a co-clustering algorithm that

we refer to as Directional Co-clustering with a Conscience
(DCC), tailored to high-dimensional sparse data (Alg. 1).
The DCC algorithm intertwines row and column clusterings
at each step so as to optimize Lc(Θ|X,Z). Integrating the
conscience mechanism makes it possible to avoid highly
skewed solutions with empty or very small/large clusters.
Applied on unbalanced document-termmatrices,DCC proves
more suitable than most existing co-clustering approaches
for handling directional data distributed on the surface of a
unit-hypersphere.

4 Matrix view of the DCCmodel

In this section, we propose a matrix formulation of DCC.
To this end, we first make use of the matrix formula-
tion of μw = (μw

1 , . . . ,μw
k , . . . ,μw

g ) ∈ R
d×g and μz =

(μz
1, . . . ,μ

z
k, . . . ,μ

z
g) ∈ R

n×g . Let us consider the binary
classification matrices Z ∈ {0, 1}n×g and W ∈ {0, 1}d×g ,
where the cluster sizes of Z and W are on the diagonal of
Dz = Z�Z and Dw = W�W, respectively. We therefore
have

μw = WD−0.5
w = W̃. and μz = ZD−0.5

z = Z̃. (3)

Using the above matrix formulations, and given a document-
term matrix X, the optimization of the complete data log-
likelihood of X Lc(Θ|X,Z) in (2) leads to
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Algorithm 1 Directional Co-clustering with a Conscience
(DCC).
Input: X (xi ∈ S

d−1 the unit hypersphere), g the number of co-
clusters.
Output: Z, W and Θ

Steps:
Initialization: Θ ← Θ(0);
repeat

1. Assignment of objects:
for i = 1 to n do

zi = argmaxk′ 1√
z.k′ cos(μw

k′ , xi )

end for
2. Assignment of features:
for j = 1 to d do

w j = argmaxk′ 1√
w.k′ cos(μz

k′ , x j )

end for
3. Computation of μkk ’s maximizing (2):
for k = 1 to g do

μkk ← 1√
w.k

end for
until the (2) value change is small or there is no change

∑

i,k

zik
1√
z.k

(μw
k )�xi ≡ T r(Z�XW̃D−0.5

z )

≡ T r(W�X�Z̃D−0.5
w ).

(4)

In virtue of (3), the formulas for updating the algorithm DCC
can be rewritten in the matrix form:

Z = Binarize
(
XW̃D−0.5

z

)

and

W = Binarize
(
X�Z̃D−0.5

w

)
,

(5)

where Binarize(B), means ∀i;bik = arg maxk′ bik′ .
The update rules show the mutual interaction between the set
of documents and the set of words. If a word w is common
to many documents associated with a co-cluster Ci , then the
wordwwill be associatedwith the co-clusterCi . Conversely,
if a document contains many words that are associated with a
co-cluster Ci , then the document will be associated with the
co-clusterCi . To find the desired solution for the partitionsZ
and W, we can alternate the two rules (5) until a fixed point
is reached.

5 Regularized bi-directional co-clustering

Text data co-clustering relies on the duality between the doc-
ument andword spaces, i.e., documents can be grouped based
on their distribution with respect to words, while words can
be grouped based on their distribution with respect to doc-
uments. Existing co-clustering algorithms generally rely on
the input document-term matrixX. While some of them con-

sider also pure word–word semantic correlations, such as
proposed by Salah et al. (2018), co-clustering methods fail
to consider side information arising from both word–word
semantic correlations and document–document similarities.
To fill this gap, we propose a Regularized Bi-directional
Co-clustering (RBDCo) based on an appropriate matrix for-
mulation. We construct two similarity matrices—the first,
Sr , for similarities in document content, and the second, Sc,
for semantic correlations between words: see Sect. 5.5—in
order to exploit hidden structures in documents and words.
Our co-clustering method is then formulated as an iterative
matrix multiplication process with two similarity matrices as
regularizers, which means that the partitions of documents
and words need to be smoothed with respect to document
similarities and semantic correlations of words.

Formally, let us consider the block matrix [ZW]�. Uti-

lizing the diagonal structure of

[
0 X
X� 0

]

, we can write the

update rules of the aforementionedDCC as an iterativematrix
multiplication procedure based on the appropriate block
matrices:

[
Z
W

]

←
[

0 X
X� 0

] [
Z̃D−0.5

w
W̃D−0.5

z

]

=
[
XW̃D−0.5

z
X�Z̃D−0.5

z

]

. (6)

This formulation3 clearly shows howDCC utilizes the duality
between document and word spaces. The document cluster-
ing Z is derived as a weighted projection of the data matrix
X on the subspace spanned by the word partition W. Simi-
larly, the word partition is derived as a weighted projection of
the data matrix X on the subspace spanned by the document
partition Z.

5.1 RBDComethod

We propose a regularized bi-directional data co-clustering
method, RBDCo, that draws advantage from our block
matrix formulation of DCC (Eq. 6) and harnesses two
regularized data matrices, Mz and Mw, with values in
{X,SrX,XSc,SrXSc} (see Sect. 5.5). The objective of
RBDCo is to optimize the following trace criterion:

JR B DCo ≡ 1

2
T r

([
Z
W

]� [
0 Mz

M�
w 0

] [
Z̃D−0.5

w
W̃D−0.5

z

])

≡ 1

2
T r

(
Z�MzW̃D−0.5

z ) + T r(W�M�
wZ̃D

−0.5
w

)

≡ 1

2
T r

(
Z̃�(Mz + Mw)W̃

)
. (7)

3 to simplify notation, in the rest of the paper the symbol ← in the
updating rules for Z and W will indicate that the function Binarize(.)
is applied to the formulas of both Z and W.

123



Statistics and Computing (2021) 31 :32 Page 5 of 17 32

Algorithm 2 Regularized Bi-Directional Co-Clustering
(RBDCo).
Input: X (xi ∈ S

d−1), g number of co-clusters, Sr , Sc
Output: partitions Z and W
Initialization: random initialization of Z and W
repeat

1. Assignment of objects (8)
• Z ← MzW̃D−0.5

z• Binarize Z : ∀i zi = argmaxk′ zik′
2. Assignment of features (8)

• W ← M�
wZ̃D

−0.5
w• Binarize W : ∀ j w j = argmaxk′ w jk′

until convergence of JRB DCo (7)

The data co-clustering task is carried out by iteratively com-
puting Z and W based on the interplay between the two
updating rules derived from the maximization of the objec-
tive criterion JR B DCo,

[
Z
W

]

←
[

0 Mz

M�
w 0

] [
Z̃D−0.5

w
W̃D−0.5

z

]

=
[
MzW̃D−0.5

z
M�

wZ̃D
−0.5
w

]

. (8)

If we setMz = Mw = SrXSc, this leads to,

[
Z
W

]

←
[
SrXScW̃D−0.5

z
ScX�Sr Z̃D−0.5

w

]

. (9)

The RBDCo updating rules in (8) mutually exploit the duality
of the documents and words and reinforce their joint cluster-
ing with bi-directional multiplicative regularizations using
Sc and Sr . By generating explicit assignments of words,
RBDCo produces interpretable descriptions of the resulting
co-clusters. In addition, by iteratively alternating between
the two updating rules, RBDCo performs an implicit adap-
tiveword selection at each iteration and flexiblymeasures the
distances between documents. It therefore works well with
high-dimensional sparse data. The conscience mechanism
embedded in RBDCo also means that it performs well with
unbalanced document-term data (see Sect. 6). Algorithm 2
details the alternating procedure of RBDCo.

In the case of a symmetric regularization, we set Mz =
Mw = M, i.e., the same regularization is applied to the
update rules for both Z and W. The objective of RBDCo
is then reduced to

JR B DCo ≡ T r
(
Z�MW̃D−0.5

z

)
. (10)

IfMz = Mw = X, thenRBDCo is equivalent to the particular
case DCC. In fact, comparing (8) and (6), it is easy to see
that RBDCo generalizes DCC–DCC being RBDCo with all
similarity matrices equal to I –.

5.2 A generalized regularization framework

RBDCo offers a highly flexible framework in the context of
text data co-clustering for the integration of supplementary
information embedded in matrices that encapsulate similar-
ities between documents and semantic correlations between
words. We distinguish two types of regularization: (i) sym-
metric regularization, which consists in the application
of the same regularization for the update of Z and W
(Mz = Mw), and (ii) asymmetric regularization, which
considers different regularizations for the update ofZ andW
(Mz �= Mw). Table 1 summarizes the different symmetric
and asymmetric configurations covered by RBDCo.

The different regularization schemes described in Table 1
highlight the flexibility of the proposed model and the
connections with other approaches that can derive from it
(Sect. 5.3). In our study, we indicated and justified the choice
of the model retained for the case of document-term data
on which we focused (see Particular cases and Sect. 6.3.1).
For other types of data, the user may favor one model over
another. An automatic model selection could be part of an
interesting future study.
Particular cases The high degree of flexibility offered by
RBDCo formultiplicative bi-directional regularizations gives
rise to a variety of versions. For instance, if the identitymatrix
is assigned to the right-hand side of the regularization matri-
ces Mz and M�

w , we obtain the asymmetric uncross case:

[
Z
W

]

←
[

0 SrX
ScX� 0

] [
Z̃D−0.5

w
W̃D−0.5

z

]

=
[
SrXW̃D−0.5

z
ScX�Z̃D−0.5

w

]

.

(11)

Similarly, if the identity matrix is assigned to the left-hand
side of the Mz and M�

w regularization matrices, we obtain
the asymmetric cross case:

[
Z
W

]

←
[

0 XSc

X�Sr 0

] [
Z̃D−0.5

w
W̃D−0.5

z

]

=
[
XScW̃D−0.5

z
X�Sr Z̃D−0.5

w

]

.

(12)

This second particular case, RBDCo[Sc,Sr ], usually produces
the best performance with document-text data (see Sect. 6).
Here, row/document clusteringZ is regularizedwith theword
co-occurrence information Sc, and column/word clustering
W is regularized with the document content similarities Sr .
This cross-regularization is the most natural bi-directional
regularization, reflecting the iterative alternating projections
of words in the document space, and vice versa.
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Table 1 Description of RBDCo
regularization schemes

Regularization type Data regularization Notation

Mz Mw

Symmetric X X RBDCo[I ,I ]
Symmetric SrX SrX RBDCo[Sr ,Sr ]
Symmetric XSc XSc RBDCo[Sc,Sc]
Symmetric SrXSc SrXSc RBDCo[Sr Sc,Sr Sc]
Asymmetric SrX X RBDCo[Sr ,I ]
Asymmetric XSc X RBDCo[Sc,I ]
Asymmetric X SrX RBDCo[I ,Sr ]
Asymmetric X XSc RBDCo[I ,Sc]
Asymmetric (uncross) SrX XSc RBDCo[Sr ,Sc]
Asymmetric (cross) XSc SrX RBDCo[Sc,Sr ]

5.3 Connection tomatrix decomposition

5.3.1 Connection to NMF

Basically, Z̃ = ZD−0.5
z denotes the likelihood of documents

being associated with document clusters, and W̃ = WD−0.5
w

the likelihood of words being associated with word clusters.
The ijth entry of Z̃W̃� therefore indicates the possibility that
the jth word will be present in the ith-document, computed
as the dot product of the ith row of Z̃ and the jth row of W̃.
Hence, Z̃W̃� can be interpreted as the approximation of the
original data X. Our goal is then to find a Z and a W that
minimize the squared error between X and its approxima-
tion Z̃W̃�. From a Nonnegative Matrix Factorization (NMF)
perspective (Lee and Seung 2001), we have

min
Z,W

||X − ZD−0.5
z D−0.5

w W�||2F ≡ min
Z̃,W̃

||X − Z̃W̃�||2F

≡ max
Z̃,W̃

T r
(
Z̃�XW̃

)

≡ max
Θ,Z

Lc(Θ|X,Z).

It will be remarked that, by construction, both Z̃ and
W̃� are non-negative and orthogonal; we have Z̃�Z̃ =
D−0.5
z Z�ZD−0.5

z = I, and similarly, we also have W̃�W̃ =
D−0.5
w W�WD−0.5

w = I. Our proposed generalized regular-
ization framework RBDCo therefore allows us to see that in
its basic configuration, vMF model-based co-clustering with
a conscience mechanism is in fact equivalent to a double
orthogonal NMF applied to spherical data.

5.3.2 Link to NMTF

In a similar way, we can identify the link to Non-negative
Matrix Tri-Factorization. Let us consider the weighting
matrix D = D−0.5

z D−0.5
w , which is diagonal by construction

andwhere each diagonal valueDkk represents the square root

of the geometric mean of document and word cluster sizes in
block k. It follows that minZ,W ||X−ZD−0.5

z D−0.5
w W�||2F is

equivalent to

min
Z,W,D=D−0.5

z D−0.5
w

||X − ZDW�||2F ≡ max
Z,W,D

T r
(
Z�XWD

)

≡ max
Θ,Z

Lc(Θ|X,Z)

which is also equivalent to fast NMTF proposed in (Wang
et al. 2011), with an additional constraint on the centroid
matrixD in order to meet the requirement of directional data.

5.3.3 Link to spectral co-clustering

If, on the other hand, we relax the non-negativity constraint
on both Z̃ and W̃, we have

max
Θ,Z

Lc(Θ|X,Z) ≡ max
Z̃�Z̃=I,W̃�W̃=I

T r
(
Z̃�XW̃

)
,

where Z̃ = ZD−0.5
z and W̃ = WD−0.5

w . It is easy to ver-
ify that Z̃ and W̃ satisfy the orthogonality constraint, i.e.,
Z̃�Z̃ = I and W̃�W̃ = I. This optimization problem can
be transformed using Lagrange multipliers into an eigen-
value problem. Then, given svd(X) = Z̃ΣW̃�, the discrete
co-clustering is obtained by performing k-means on the
concatenated data [ZW]�. This is equivalent to the spec-
tral co-clustering method proposed in (Dhillon and Modha
2001).

5.4 Link to block seriation

The basic idea of block co-clustering consists in modelling
the simultaneous row and column partitions using a block
seriation relation Q defined on I × J (where I is the set of
objects and J the set of attributes). Given thatQ = ZWT , the
general term can be expressed as follows: qij = 1 if object

123



Statistics and Computing (2021) 31 :32 Page 7 of 17 32

i is in the same block as attribute j , and qij = 0 otherwise.
Thus we have

qij =
g∑

k=1

zikwjk =
(
ZW�)

ij
. (13)

The matrixQ represents a block seriation relation (see (Mar-
cotorchino 1991) for further details) that must respect the
following properties:

– Binarity qij ∈ {0, 1},∀(i, j) ∈ I × J .

– Assignment constraints These constraints ensure the
bijective correspondence between classes in two parti-
tions, meaning that each class in the partition of I has one
corresponding class in the partition of J , and vice versa.
These constraints are expressed linearly as follows:

{∑
j∈J qij ≥ 1 ∀i ∈ I

∑
i∈I qij ≥ 1 ∀ j ∈ J .

– Triad impossibleThe role of these constraints is to ensure
the disjoint structure of the blocks, which is expressed by
the following system inequality:

⎧
⎪⎪⎨

⎪⎪⎩

qij + qi j ′ + qi ′ j ′ − qi ′ j − 1 ≤ 1
qi ′ j ′ + qi ′ j + qij − qi j ′ − 1 ≤ 1
qi ′ j + qij + qi j ′ − qi ′ j ′ − 1 ≤ 1
qi j ′ + qi ′ j ′ + qi ′ j − qij − 1 ≤ 1.

These constraints also generalize transitivity for non-
symmetric data. In the case where I = J , it is easy to show
that the block seriation relation Q becomes an equivalence
relation, i.e., Q = ZZ� or Q = WW� .

It will be remarked that (13) is not balanced in terms of
the cluster sizes for rows and columns, meaning that a clus-
ter might become small when affected by outliers. For this
reason, we propose a new scaled block seriation relation that
considers both row and column cluster sizes:

q̃ij =
g∑

k=1

zikwjk√
z.kw.k

=
g∑

k=1

z̃ikw̃ jk =
(
Z̃W̃T

)

ij
. (14)

A new measure, which we call scaled block seriation crite-
rion, is defined as follows:

min
Z,W

||X − ZD−0.5
z D−0.5

w W�||2F ≡ min
Z̃,W̃

||X − Z̃W̃�||2F
≡ min

Q̃
||X − Q̃||2F

≡ max
Q̃

T r
(
XQ̃�)

≡ max
Θ,Z

Lc(Θ|X,Z).

This is a scaled variant of the block seriation method (Mar-
cotorchino 1991).

5.5 RBDCo regularizationmatrices

The regularization matrices Sc and Sr are built from the
original document-term matrix X ∈ R

n×d . We first con-
sider Sc, for which we use a nonlinear transformation of the
word co-occurrences, namely the Pointwise Mutual Infor-
mation (PMI). It must be emphasized that the PMI has
been shown to be strongly correlated with human assessment
for word relatedness (Newman et al. 2009; Role and Nadif
2011). However, in other contexts, the user can easily intro-
duce his own specific information about words/documents
meaning. The PMI between words wi and w j is defined as
log

(
p(wi , w j )/p(wi )p(w j )

)
. Assuming that the documents

are the context in whichwords co-occur, and using thematrix
C = X�X, we can empirically estimate the PMI as follows:

PMIC(wi , w j ) = log
cij × c..

c j .c. j
, (15)

where c.. = ∑
ij ci j , ci . = ∑

j cij and c. j = ∑
i cij. PMI val-

ues can be positive or negative. Positive values indicate that a
word pair co-occursmore thanby chance.Negative values are
harder to interpret, since they would seem to indicate word
pairs that co-occur less than by chance. A generally accepted
approximation consists in replacing all negative values with
0, giving the Positive Pointwise Mutal Information (PPMI).
One advantage of the PPMI is that it reduces the density of
the PMI matrix. In RBDCo, we consider the PPMIc matrix
as our word regularization matrix Sc. Similarly, we can com-
pute a matrix R such that R = XX�. In virtue of (15), we
can define a PMIr(di , d j ) between documents di and d j that
gives the co-occurrence frequency of two documents in the
latent space of words. Just like in the case of Sc, we consider
the PPMIR as being Sr .

We have chosen to make use of PPMI for RBDCo reg-
ularization matrices, since these matrices are very general
and suitable for incorporating side similarity information.
They can also be computed quite easily from the original
data matrix. However, other document or word embed-
dings obtained via external methods might also be used
(e.g., Word2Vec (Mikolov et al. 2013), Doc2Vec (Le and
Mikolov 2014)).

6 Experimental analysis

We now present our extensive experimental results that show
the good performance of our method across a wide range
of real-world text datasets. We first compare several vari-
ants of our RBDCo approach (Sect. 6.3.1). We then evaluate
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the best RBDCo variant in relation to baseline clustering
and co-clustering methods (Sect. 6.3.2). Specifically, the
clustering algorithms that we consider are k-means, spec-
tral clustering (Spec), Non-Negative Matrix Factorization
(NMF), and spherical k-means (Skmeans). It is gener-
ally recognized that Skmeans in particular is well-suited
to high-dimensional sparse text data. The baseline co-
clustering algorithms are NMTF, DCC, and CoClustMod.
The latter, CoClustMod, is a recent graph modularity-
based co-clustering algorithm proposed by Ailem et al.
(2016), in which CoClustMod was shown, through exten-
sive experiments on text datasets, to outperform several
other established co-clustering methods designed for the
same task, including the well-known spectral co-clustering
(Dhillon and Modha 2001), and ITCC (Dhillon 2003).
Finally, we demonstrate the effectiveness of RBDCo in com-
parison with a competitive regularized text co-clustering
method, WC-NMTF (Salah et al. 2018). Although WC-NMTF
is a regularized co-clustering approach, it is based on
an additive unidirectional regularization, where only word
co-occurrence is used. By contrast, RBDCo proposes a
bi-directional multiplicative regularization and embeds a
conscience mechanism that makes it able to handle strongly
unbalanced textual data. k-means, Spec and NMF come
from the scikit-learn4 Python package, and Skmeans
andCoClustMod from thecoclust5 Pythonpackage.We
implemented RBDCo, DCC and WC-NMTF in Python.

6.1 Benchmark datasets

We analyzed eight benchmark datasets widely used for doc-
ument clustering purposes, namely SPORTS, TR45, LA12,
CLASSIC4,CSTR,OHSCALE,PUBMED5, andCLASSIC3.
Each dataset can be viewed as a contingencymatrixwhere the
coefficients xij indicate the number of occurrences of word j
in document i . Together, these datasets contain a number of
different challenging situations, including different degrees
of cluster balance, diverse cluster sizes, and various degrees
of cluster overlap.

Table 2 provides an overview of the important characteris-
tics of the datasets sorted in increasing order of their Balance
coefficient, which is the ratio of the smallest cluster size to the
largest cluster size. As is frequently the case in document-
term co-clustering, within these benchmark datasets labels
are known only for the documents, and not for the words.
However, given that the word partition is inherently linked
to the document partition, we would expect the quality of the
document clustering to be informative about the quality of
the word clustering.

4 https://scikit-learn.org/stable/.
5 https://pypi.python.org/pypi/coclust.

6.2 Experimental settings and evaluation

In all our experiments, the document-term count matrix
is normalized using the TF-IDF weighting scheme (term-
frequency times inverse document frequency), as imple-
mented in thescikit-learn Python package. The results
are averaged over 20 different runs. For RBDCo, each run is
done with 10 different initializations and a number of itera-
tions below 100. Specifically, the final RBDCo co-clustering
is automatically obtained based on the best criterion (Eq. 7)
among the different initializations. To avoid poor local solu-
tions that could be produced by early hard word assignments
in theRBDCo iteration,weperformstochastic columnassign-
ments during the first 70 iterations, as described in (Salah
and Nadif 2019). Whenever applicable, the approaches that
RBDCo is being compared with were also performed with 10
initializations and not more than 100 iterations.

We evaluate the document clustering quality of RBDCo
using two measures that are widely used for assessing the
similarity between the estimated clustering and the true clus-
tering. The measures are Normalized Mutual Information
(NMI) (Strehl and Ghosh 2003) and Adjusted Rand Index
(ARI) (Hubert and Arabie 1985; Steinley 2004). Specifi-
cally, NMI evaluates to what extent the estimated clustering
is informative about the known clustering, and ARI quanti-
fies the agreement between the estimated clustering and the
true labels. NMI is less sensitive than ARI to cluster splitting
or merging.

6.3 Empirical results on document clustering

6.3.1 Comparing RBDCo variants

We first compare the four RBDCo versions that incorporate
information on both the document and the word dimen-
sions, namelyRBDCo[Sc,Sr ],RBDCo[Sr ,Sc],RBDCo[Sc,Sc] and
RBDCo[Sr ,Sr ] (see Table 1 for details on RBDCo schemes).
Table 3 summarizes the NMI and ARI evaluations for these
versions on all the benchmark datasets.

These four RBDCo schemes give good NMI and ARI
results, with a null standard deviation for almost all datasets.
Overall, RBDCo[Sc,Sr ] is the most effective variant. As
already mentioned (Sect. 5.2), this version has the most nat-
ural bi-directional regularization for co-clustering. SPORTS
is an exception: for this dataset it is the uncross bi-directional
regularization RBDCo[Sr ,Sc] that provides the best results
(Table 3, first row). This may be explained by its high degree
of document cluster imbalance. Among all the datasets,
SPORTS has the lowest balance coefficient (0.036) and the
lowest ratio of minimum to expected (RME = 0.099)—this
corresponds to the smallest cluster size with respect to the
expected cluster size, that is to say n/g, where g is the number
of clusters. SPORTS also has the greatest standard devia-
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Table 2 Description of Datasets Datasets Characteristics

#documents #words g Sparsity (%) Balance

SPORTS 8580 14870 7 99.14 0.036

TR45 690 8261 10 96.60 0.088

LA12 6279 31472 6 99.52 0.281

CLASSIC4 7094 5896 4 99.41 0.323

CSTR 475 1000 4 96.60 0.399

OHSCALE 11162 11465 10 99.47 0.437

PUBMED5 12648 19518 5 99.68 0.580

CLASSIC3 3891 4303 3 98.95 0.710

Table 3 Mean±sd clustering
NMI and ARI on
documents × terms matrices for
RBDCo variants

Datasets RBDCo[Sc,Sr ] RBDCo[Sr ,Sc] RBDCo[Sc,Sc] RBDCo[Sr ,Sr ]

SPORTS NMI 0.67 ± 0.01 0.71 ± 0.00 0.64 ± 0.00 0.70 ± 0.00

ARI 0.57 ± 0.03 0.68 ± 0.00 0.57 ± 0.00 0.65 ± 0.00

TR45 NMI 0.76 ± 0.00 0.74 ± 0.00 0.76 ± 0.00 0.74 ± 0.00

ARI 0.68 ± 0.00 0.67 ± 0.00 0.68 ± 0.00 0.68 ± 0.00

LA12 NMI 0.58 ± 0.00 0.55 ± 0.00 0.56 ± 0.03 0.57 ± 0.01

ARI 0.56 ± 0.00 0.53 ± 0.00 0.54 ± 0.03 0.53 ± 0.01

CLASSIC4 NMI 0.77 ± 0.00 0.75 ± 0.00 0.76 ± 0.00 0.76 ± 0.00

ARI 0.78 ± 0.00 0.76 ± 0.00 0.77 ± 0.00 0.78 ± 0.00

CSTR NMI 0.78 ± 0.00 0.73 ± 0.00 0.77 ± 0.00 0.73 ± 0.00

ARI 0.82 ± 0.00 0.77 ± 0.00 0.81 ± 0.00 0.78 ± 0.00

OHSCALE NMI 0.44 ± 0.00 0.44 ± 0.01 0.44 ± 0.00 0.45 ± 0.00

ARI 0.35 ± 0.00 0.34 ± 0.01 0.34 ± 0.00 0.36 ± 0.00

PUBMED5 NMI 0.91 ± 0.00 0.90 ± 0.00 0.91 ± 0.00 0.91 ± 0.00

ARI 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

CLASSIC3 NMI 0.95 ± 0.00 0.93 ± 0.00 0.95 ± 0.00 0.93 ± 0.00

ARI 0.97 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.96 ± 0.00

Bold values indicate the best result over all methods

tion in cluster sizes (SDCS = 1253.01), which is defined as
{1/(g − 1)

∑g
k=1(nk − n/g)2}0.5, where n is the total num-

ber of documents and nk is the cardinality of the kth cluster.
This dataset therefore requires that the document similarity
Sr be applied on the document dimension rather than on the
word dimension in order to achieve a significantly higher
NMI (0.71) and ARI (0.68).

Below, in the light of these results, we will consider only
the cross-regularized RBDCo scheme RBDCo[Sc,Sr ], where
the document clustering Z is regularized with word co-
occurrence information Sc, and the word clustering W is
regularized with document content similarity Sr .

6.3.2 Evaluating RBDCo against baselines

Table 4 is a synopsis of our results for RBDCo and the
other clustering/co-clusteringmethods, comparing theirNMI
and ARI values across the various benchmark datasets. The
first thing to notice is that RBDCo clearly outperforms the

standard or competitive co-clustering methods shown in the
rightmost three columns of Table 4 (see also Average ranks).
In contrast toDCC,CoClustMod andNMF,RBDCo uses two
regularization terms, specifically a word correlation matrix
Sc and a document similarity matrix Sr . The superior per-
formance of RBDCo can therefore be attributed to these
regularization terms. The ARI metric is generally more sen-
sitive than NMI to cluster merging or splitting. However,
RBDCo has good performances for both NMI and ARI, even
for highly unbalanced datasets (such asTR45 and SPORTS).

As expected, our co-clustering approach generally out-
performs baseline clustering methods for the document
clustering, with a higher mean margin for NMF, k-means
and Spec than for the co-clustering approaches. It will
be remarked that Skmeans performs well on two bench-
mark datasets, PubMed5 and ClASSIC3, with a small
mean margin of 0.02 for NMI and 0.01 for ARI. However,
our approach significantly outperforms Skmeans on unbal-
anced text datasets (from SPORTS to OHSCALE), with a
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Fig. 2 NMI and ARI comparison of RBDCo[Sc,Sc], WC-NMTF and DCC on documents × terms matrices

Fig. 3 Original datasets (a and c) and reorganized version (b and d) using RBDCo[Sc,Sr ]

meanmargin of 0.06 for NMI and 0.11 for ARI (Table 4, first
two columns). These good results on text datasets against a
strong competitor like Skmeans are an indication of how
well RBDCo is able to deal with a wide range of textual
datasets, and in particular in relation to text data with very
small or very large (co-)clusters (see Table 4,Average ranks).
It should also be remembered thatRBDCo provides a simulta-
neous clustering of documents and words and hence ensures
the identification of the main document cluster topics, while
Skmeans gives only a one-sided clustering without auto-
matic association between documents and words.

6.3.3 Bi-directionalword-based regularization

Wewill now compare RBDCowith a competitive regularized
method, namely WC-NMTF. WC-NMTF uses an additive uni-
directional regularization, where only word co-occurrence
is used on the partition of columns to obtain block diagonal
co-clusters. A comparison of RBDCo[Sc,Sc] with WC-NMTF
allows us to evaluate the advantage to be derived from mul-
tiplicative bi-directional word similarity regularization (i.e.,
Sc applied on the columns and the rows of X). To further
enrich our comparison,we also consider theDCC evaluations.
As detailed in Sect. 3, DCC, just like RBDCo, incorporates
a conscience mechanism, but it does not use any regu-
larization. Figure 2 gives the NMI and ARI measures for
RBDCo[Sc,Sc], WC-NMTF, and DCC, on all datasets. These
results clearly show the better performance of RBDCo. In
particular, RBDCo improves the PUBMED5 document parti-

tioning almost by a factor of two in relation to WC-NMTF,
although the bi-directional regularization uses only word
similarity information.

6.4 Empirical results on word clustering

6.4.1 Block diagonal co-clustering

RBDCo partitions the data in diagonal document-term co-
clusters, resulting in a document and a word clustering.
Figure 3b, d shows the structures revealed by RBDCo[Sc,Sr ]
for PUBMED5 and CLASSIC4 (dots indicate strong TF-IDF
weights). While the original PUBMED5matrix does not have
any explicit structure (Fig. 3a), RBDCo proposes a very clear
co-clustering of the documents and terms (Fig. 3b; NMI =
0.91,ARI = 0.94). Figure 3d shows the structure uncovered
by RBDCo for CLASSIC4 (NMI = 0.77,ARI = 0.78).

The words that occur most frequently within a co-cluster
Ci are usually considered to be the most representative
terms for that co-cluster. The ranking of these top terms
obtained with RBDCo is given in Table 5 for PUBMED5
and CLASSIC4. We can see that these terms provide
a good interpretability of the partitioning. Most impor-
tantly, they can easily be linked to the topics of the true
document classes. PUBMED5 is composed of five docu-
ment classes, namely Age-related Macular Degeneration
(AMD), Otitis, Kidney Stones, Hay Fever and Migraine.
RBDCo clearly uncovers associated topic words. Similarly,
forCLASSIC4RBDCogives top terms that are highly indica-
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22 tive of the true document classes, namely CISI (information

retrieval), CACM (computing machinery), MEDLINE (medi-
cal) and CRANFIELD (aeronautical systems). We recall that
PUBMED5 and CLASSIC4 contain stemmed terms, so, for
example, we have ‘ey’ rather than ‘eye’, and ‘studi’ rather
than ‘study’.

6.4.2 Quantifying the quality of word clusters

Assessing the quality of word clustering is challenging, since
the benchmark datasets commonly used in text document co-
clustering provide the true document labels only. To assess
the quality of the incorporation of word similarity informa-
tion on the word partitioning, we first focus on the PPMI
score. We then propose an enhanced version of the NPMI
(Normalized Pointwise Mutual Information) score, to quan-
tify the quality of the word clustering.
PPMI-score assessment We first consider the ten most fre-
quent terms in each word cluster as the top terms. Table 5
gives the average pairwise PPMI values for the ten most fre-
quent terms within and between word clusters. A random
average is also given as a reference. This is an average pair-
wise PPMI over 100 random groups of ten words from the
1000 most frequent words within the whole corpus. Interest-
ingly, for both the PUBMED5 and the CLASSIC4 datasets,
the within PPMI average is much higher than the between
PPMI average, indicating that RBDComakes effective use of
the PPMI regularization information given as input through-
out its alternating iterations in a way that ultimately favors
the grouping of semantically relatedwords. The average pair-
wise PPMI between RBDCo word clusters even exhibits a
stronger antagonism than the average pairwise PPMI for ran-
dom groups of words (PPMIrandom ∼ 0.2). Word clusters
with less specific vocabulary have a lower PPMI average
(e.g., Migraine from PUBMED5: Table 5). Although infor-
mative, these average PPMI evaluations on most frequent
words cannot properly assess the quality of the word clus-
ters. One drawback of the PPMI value is that it is unbounded.
Furthermore, the frequency of the words might not be the
most appropriate ranking score for identifying representative
words. As an example, the terms wa and group can be found
among the most frequent terms in the AMD word cluster
for PUBMED5. In addition, word clusters might also contain
different subtopics that are indirectly related to each other.
Therefore, considering the average PPMI over all pairs of
words has the effect of lowering the global score, and leads
to the spurious conclusion that the word cluster is not coher-
ent.
NPMI-score assessment We propose evaluating the word
cluster coherence using the Normalized PMI (NPMI) via
a k-nn-like (k nearest-neighbor) approach. The NPMI
ranges between −1 and +1 and is formally defined as
NPMI(wi , w j ) = PMI(wi,wj)/ log(p(wi , w j )). For each
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word, we propose computing an NPMIi score defined as

NPMIi = 1

|Ωi |
∑

w j ∈Ωi

NPMI(wi , w j ) (16)

where Ωi is the set of k words w j having the highest NPMI
score with wi . NPMIi quantifies the degree to which a word
belongs to a cluster, based on its relationships with its k
closest NPMI neighbors. NPMIi scores can be computed
within or betweenword clusters. Table 6 gives the topNPMIi
words for PUBMED5 word clusters (k = 5 neighbors among
the 30 most frequent terms). Probabilities are derived from
the whole English Wikipedia, using a NPMI implementa-
tion proposed by Röder et al. (2015). The NPMIi scores are
therefore independent of the input document-term data and
regularization matrices. The top NPMIi terms contain new
meaningful words rather than the most frequent terms. It can
be seen that triptan, which is a drug specific to migraine, is
in third position in theMigraine cluster. The topHay Fever
terms now include immunotherapy, a seasonal allergy treat-
ment, and oesinophil, a marker in seasonal allergic rhinitis.
The word pneumonia can be found in the top Otitis terms,
reflecting the fact that Streptococcus pneumoniae is the most
common microbial agent found in otitis. Finally, the top
AMD terms include diabet, an AMD risk factor, edema, a
symptom of macular degeneration, and inject, which that
corresponds to intravitreal injection, a treatment for AMD
(intravitr is found in 14th position with NPMIi = 0.21).

Figure 4 gives more insight into the relationships between
the top NPMIi words in the case of AMD. The color of the
vertices reflects the NPMIi word score, with warmer colors
corresponding to higher scores, and the thickness of the edges
represents the strength of the pairwise NPMI coefficient.
The most important word in terms of NPMIi is macular.
Directly related to this word are words that generally define
the disease, namely amd and degen for Age-Related Macular
Degeneration, and neovascular for advanced neovascular
AMD, which is a serious type of AMD. In the upper part
of the graph, we have eye-related vocabulary (e.g., acuit(i)y,
visual). On the right we see the words risk, factor, and associ,
all of which are linked to diabet, an AMD risk factor. The
intravitr inject bigram is directly related to edema and diabet.
This makes sense, given that intravitreal injection is a treat-
ment for diabetic macular edema. All in all, our results based
on the NPMIi score and NPMI coefficient indicate that the
word clusters obtained with RBDCo are highly coherent (see
Sect. 6.4.3 for the remaining word clusters on PUBMED5).

Figure 5 shows the average of the top ten NPMIi terms
within and between PUBMED5 word clusters obtained using
RBDCo. Thewithin average NPMIi score is seen to be higher
than the between average NPMIi score. The cluster with the
strongest NPMIi with other clusters is the Migraine word

Fig. 4 NPMI graph of RBDCo AMD word cluster on PUBMED5

Fig. 5 Mean top NPMIi for RBDCo clusters on PUBMED5

cluster, for which the top terms are related to the topic but
not specific to it.

6.4.3 RBDCoword cluster graphs on PUBMED5

We now discuss the coherence of the word cluster graphs
obtained with RBDCo[Sc,Sr ] on PUBMED5. The graphs are
constructed based on the pairwise NPMI coefficient between
the terms that have the highest individual NPMIi score
(Eq. 16, main text). The color of the vertices reflects the
NPMIi word score, with warmer colors corresponding to
higher scores, and the thickness of the edges represents the
strength of the pairwise NPMI value.
Otitis (Fig. 6). We observe that otitis is logically related
to ear and media, with otitis media (OM) being a group
of inflammatory diseases of the middle ear. The two main
types are acute otitis media and otitis media with effu-
sion. Our graph relates acute and effusion to otitis. Other
words generally used to characterize otitis can also be found
in the graph, such as recurrent and chronic. Furthermore,
S.pneumoniae andH.influenzae are the most common causes
of OM. S.pneumoniae is also the main cause of recurrent
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Fig. 6 NPMI graph of RBDCo Otitis word cluster on PUBMED5

Fig. 7 NPMI graph of RBDCoMigraine word cluster on PUBMED5

infections and postinfectious complications. This is fully
coherent with the proposed graphical representation.
Migraine (Fig. 7). The most important word in this graph
with respect to its NPMIi score ismigraine, which is strongly
related to headache and aura. Aura is a neurological phe-
nomenon that can accompany migraine, manifesting itself
in the form of visual, sensory, and motor disturbances. As
for triptan, this refers to a family of drugs that have been
clinically assessed as being effective in the treatment of pain.
We can find all these terms related in our graph, in addi-
tion to sumatriptan, a commonmigrainemedication.General
headache qualifiers (e.g., severe, pain) are also present.
Kidney Stones (Fig. 8). The kidnei(y) stones or renal calculi
graph is enriched with urinary-tract-related vocabulary, such
as ureter, urine, uric and urinari(y). The graph also contains
common bigrams including urinari tract and uric acid. The
kidney has a clearance function that requires the excretion
(excret) of certain metabolites (metabol) by our organism.
In addition, the definition of kidney stones is to be seen (on
the right): they are solid masses made of crystals that form
calcium oxalate stones. Finally,we note the presence of shock
wave lithotripsi(y), the most common treatment for kidney
stones.
Hay fever (Fig. 9). Hay fever, also known as allergic rhinitis,
is a seasonal allergi(y) caused in large part by pollen. These
terms are related in the graph, with pollen linked to allergen.
The words intranasal and nasal refer to common hay fever
medications (e.g., corticosteroid nasal spray, intranasal anti-
histamine). The term immunotherapi(y), also to be seen in the

Fig. 8 NPMI graph of RBDCo Kidney Stones word cluster on
PUBMED5

Fig. 9 NPMI graph of RBDCo Hay Fever word cluster on PUBMED5

graph, is a treatment for hay fever involving a desensitization
through doses of certain allergens (e.g., grass and pollen).
Our graphical representation also contains oesinophil and
cell, which are linked. In fact, oesinophil is a specialized cell
within the immune system that helps promote inflammation
and plays a key role in the symptoms of asthma and allergies.
Interestingly, the terms allergi, rhiniti and asthma are linked
to symptom. In fact, the asthma and allergic rhinitis symp-
toms are so close that people with asthma may not recognize
that they also have allergic rhinitis.

7 Conclusion

We proposed a flexible general framework, RBDCo, for text
data matrix co-clustering. RBDCo derives from a vonMises–
Fisher model-based co-clustering suitable for data that is
high-dimensional, sparse, and unbalanced. Specifically, we
defined our model with a matrix formulation suitable for
the incorporation of complementary information to improve
the co-clustering. Under some constraints, this formulation
bears a close relationship to the well-known Spherical
k-means, NMF and NMTF. Our approach utilizes the direc-
tional nature of text data andoutperforms existingmethods by
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using bi-directional multiplicative regularizations to incor-
porate side information on the document and word dimen-
sions. Our experiments demonstrate the good performance
of RBDCo, its robustness despite its random initialization,
and its capabilities in terms of co-clustering quality and
interpretability. Although all versions of RBDCo give good
results, our results suggest that RBDCo[Sc,Sr ] should be pre-
ferred. The proposed bi-directional regularization may also
be seen as a means of performing a semi-supervised co-
clustering. The regularization matrices might contain side
expert information on the data to be partitioned, thus allow-
ing a co-clustering that does not only depend on the input
data.

In our study, we assumed that the number of co-clusters is
known.Often, in practice, the number of clusters is not known
and needs to be determined by the user. Assessing the num-
ber of clusters is, however, not straightforward and remains
one of the biggest challenges in co-clustering. Unfortunately,
in our approach we cannot rely on the well-established sta-
tistical theory of model selection, since our algorithm is not
based on the maximization of the likelihood or, more pre-
cisely, on the complete-data likelihood. However, based on
the vMF-Fisher mixture model designed for co-clustering,
Salah and Nadif (2019) showed that (AIC) (Akaike 1998)
and AIC3 (Bozdogan 2000) are effective. They also showed
that these criteria give better results than the versions of the
Bayesian information criterion (BIC) (Schwarz 1978) and
the integrated classification likelihood (ICL) (Keribin et al.
2015) derived from latent block models (Govaert and Nadif
2003, 2005). As Salah and Nadif pointed out in their paper,
this is due to the effective number of free parameters in the
vMF-Fishermixturemodel. Inspired by this result, our objec-
tive is now to address this issue in future work.

To go further, in the future we are planning to improve
upon our proposed method in measuring the impact of each
matrix Sr and Sc in the construction of the objective function
by considering two different weights for both matrices.
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