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Abstract
A new time-varying autoregressive stochastic volatility model with α-stable innovations (TVARαSV) is proposed. This
new model for time series data combines a time-varying autoregressive component and a stochastic scaling as known from
stochastic volatility models with α-stable distributed noise. Hence, the model can cover extreme events better than classical
stochastic volatility models. Furthermore, we develop a Gibbs sampling procedure for the estimation of the model parameters.
The procedure is based on the estimation strategy by Kim et al. (Rev Econ Stud 65(3): 361–393, 1998) for classical stochastic
volatility models, however, the estimation procedure requires a deliberate approximation of α-stable distributions by finite
mixtures of normal distributions and the application of a simulation smoother for linear Gaussian state space models. A
simulation study for the new estimation procedure illustrates the appealing accuracy. Finally, we apply the model to electricity
spot price data.

Keywords Electricity spot prices · Finite mixture model · Gibbs sampling · Stable distribution · Stochastic volatility ·
Time-varying coefficients

1 Introduction

Stochastic volatility (SV) models are widely used in finan-
cial econometrics and have been extensively studied over
many years. These models date back into the 1980s, cf. Hull
and White (1987). Properties were discussed, e.g., in Tay-
lor (1994), Shephard (1996) and Ghysels et al. (1996). The
papers by Jacquier et al. (1994) and Kim et al. (1998) pro-
posed Bayesian estimation algorithms. The key feature of
the SV models is the stochastic scaling of the innovations,
so that periods of higher and lower volatility are accurately
captured. Usually Gaussian or Student-t innovations were
used in the literature. Whereas these distributions seem to be
sufficient for many situations of classical financial markets,
they can not handle extreme price changes (spikes) which
can be observed, e.g., on electricity markets, where extreme

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s11222-
021-09995-5.

B Gernot Müller
gernot.mueller@math.uni-augsburg.de

1 Institute of Mathematics, University of Augsburg,
Universitätsstraße 14, 86159 Augsburg, Germany

values result from the lack of efficient storage possibilities
and a sudden imbalance of supply and demand. Hence, for
modeling such phenomenons, distributions with heavy tails,
as α-stable distributions, seem to be more appropriate. As a
generalization of normal distributions, the α-stable distribu-
tions also provide the possibility to account for skewness in
the empirical data.

The novel idea of this paper is to combine a time-varying
autoregressive component and a stochastic scaling as known
from stochastic volatility models with α-stably distributed
noise.Wewill abbreviate this model by TVARαSV.Note that
we use the notion stochastic volatility for our model due to
its similarity to the classical SVmodels although for the non-
degenerated α-stable distributions the variance as the second
centeredmoment does not exist.Ourmodel is related to Prim-
iceri (2005) who generalized the autoregressive model to a
time-varying structural vector autoregression model, where
the time variation derives both from the coefficients and the
covariance matrix of the multivariate Gaussian innovations.
Casarin (2004), Lombardi and Calzolari (2009) and Vankov
et al. (2019) also worked with SV-like models with α-stable
innovations, however, they did not include an autoregressive
structure in the observation equation.
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Our primary goal is the development of an estimation pro-
cedure for the TVARαSV model parameters. The challenge
for the use of α-stable distributions is that their moments of
order greater than or equal to α do not exist, for α �= 2, and
their density function cannot be described in closed form.
For this reason, maximum likelihood or moment-based esti-
mation procedures are not applicable. In order to estimate
parameters of similar models with α-stable distributions,
mainly approximate Bayesian computation (Martin et al.
2019;Vankov et al. 2019), likelihood-freeBayesian inference
(Peters et al. 2012) or indirect inference methods (Calzo-
lari et al. 2014; Lombardi and Calzolari 2009) were used in
the existing literature. Our new proposed estimation proce-
dure for the TVARαSV model parameters, and in general
for the class of SV-like models with α-stable distributions,
is also carried out in a Bayesian framework, leading to a
Markov chain Monte Carlo algorithm (Brooks et al. 2011).
The core idea is the approximation of intractable innovation
distributions by finite mixtures of normal distributions and
the application of a simulation smoother for linear Gaussian
state space models. This approach was developed by Shep-
hard (1994), De Jong and Shephard (1995) and Kim et al.
(1998). Since we have to approximate α-stable densities, we
will use not only classicalminimumdistancemixture approx-
imations but also additionally employ specific component
distributions, which we will call tail components, to improve
the approximation of the tails of the α-stable distributions.

Benth et al. (2014) and Müller and Seibert (2019) have
dealt with modeling electricity prices. They have shown that
long-term non-stationarities, i.e. significant price level devi-
ations from the mean price after removing seasonalities and
short-term effects, are present in the data. Benth et al. (2014)
take this into account by using a Lévy process in addition
to the CARMA(2,1) (continuous-time autoregressive mov-
ing average) model from García et al. (2011). Indeed, prices
show some autoregressive behavior due to the fact that the
circumstances leading to higher or lower prices, e.g., weather
or power plant failures, usually last for more than one day.
The current structural change in energy supply, mainly due
to the expansion of renewable energies, requires additional
flexibility of the model. Our application of the TVARαSV
model to electricity spot price data in Sect. 5 shows that
such structural breaks can bemodeledwellwith time-varying
parameters. For this reason, classical autoregressive mod-
els or autoregressive-moving-average models with constant
parameters seem not to be sufficiently flexible. Therefore,

describing electricity prices requires an autoregressivemodel
which accounts for time-variation in the parameters and
allows for extreme price changes as well.

The paper is organized as follows. In Sect. 2 we introduce
the TVARαSV model. A suitable estimation method of the
TVARαSV model is presented in Sect. 3. We investigate the
quality of the proposed estimation algorithm in a simulation
study in Sect. 4. In Sect. 5 we apply the estimation procedure
of the TVARαSV model to electricity spot price data.

Regarding notation, we use lower case letters to denote
random variables, whereas capital letters are used for their
realizations. Also, we shall use x1:n to denote the set
{x1, . . . , xn}. The notation p(·) is used to denote a generic
probability density. In case of continuous distributions the
reference measure is the Lebesgue measure, whereas the
counting measure is used for distributions with discrete sup-
port.

2 The time-varying autoregressive
stochastic volatility model with stable
innovations (TVAR˛SV)

Following the representation of Samorodnitsky and Taqqu
(1994), a random variable x is said to have an α-stable distri-
bution, i.e. x ∼ S(α, β, γ, δ), with α ∈ (0, 2], β ∈ [−1, 1],
γ > 0 and δ ∈ R, if it has the characteristic function

E exp(iux) =
⎧
⎨

⎩

exp
(

− γ α|u|α[1 − iβ(sign u) tan πα
2 ] + iδu

)
, for α �= 1

exp
(

− γ |u|[1 + iβ 2
π
(sign u) log |u|] + iδu

)
, for α = 1

. (1)

The characteristic parameter α describes the tail thickness.
The other three parameters β, γ , and δ are called skewness
parameter, scale parameter, and location parameter, respec-
tively. For α �= 2 an α-stable random variable is symmetric
about δ if and only if β = 0. Moreover, for α �= 2 an α-
stable distribution is right-skewed if β > 0 and left-skewed
if β < 0.

The probability densities of α-stable random variables
exist and are continuous; however, with a few exceptions,
they are not known in closed form. The most famous excep-
tion is the normal distribution,N (

μ, σ 2
) = S(2, β, σ√

2
, μ),

with arbitrary β, since for α = 2 it follows that tan
(

πα
2

) = 0
in the characteristic function (1). For α �= 2, α-stable distri-
butions have infinite variance and when α ≤ 1, they have an
infinite mean as well.

A proof of the following property is presented in
(Samorodnitsky and Taqqu 1994, Property 1.2.2 and 1.2.3
on page 11): Let x ∼ S(α, β, γ, δ), c be a real constant and
a be a real non-zero constant. Then
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ax + c ∼
{
S(α, (sign a)β, |a|γ, aδ + c), for α �= 1

S(α, (sign a)β, |a|γ, aδ − 2
π
a(log |a|)γβ + c), for α = 1

. (2)

In the following, we introduce the time-varying autore-
gressive stochastic volatilitymodelwithα-stable innovations
and discuss some important properties.

Definition 1 (TVARαSV) A process {yt }t∈N0 is called time-
varying autoregressive stochastic volatility process with α-
stable innovations, if and only if it satisfies for every t ∈ N

the equation

yt = φt yt−1 + e
ht
2 εt , εt ∼ S(α, β, 1, 0), (3)

such that the dynamic of the time-varying autoregressive
coefficient φt ∈ R and the time-varying scale parameter
ht ∈ R is determined by the equations

φt = φt−1 + σφξt,φ, ξt,φ ∼ N (0, 1), (4)

ht = ht−1 + σhξt,h, ξt,h ∼ N (0, 1), (5)

where all innovations εt , ξt,φ and ξt,h are mutually indepen-
dent. The standard deviations σφ and σh are assumed to be
positive real numbers.

The essential feature of this model is that both heteroskedas-
ticity and structural changes can be captured. As in the
prominent stochastic volatilitymodels the noise εt is stochas-
tically scaled via the time-varying parameter ht . In particular,
in view of (2) the conditional distribution of yt , conditioned
on yt−1, φt , ht , α and β, is given by

yt |yt−1, φt , ht , α, β

∼
⎧
⎨

⎩

S
(
α, β, e

ht
2 , φt yt−1

)
, α �= 1

S
(
α, β, e

ht
2 , φt yt−1 − βht

π
e
ht
2

)
, α = 1

,

(6)

so that extreme observations can be modeled. Furthermore,
we can describe data with asymmetric heavy tails. For iden-
tifiability reasons we set the scale and the location parameter
of the α-stable distribution in (3) equal to 1 and 0, respec-
tively. Replacing the distribution of εt by S(α, β, γ, 0),
where γ > 0, or by S(α, β, 1, δ) (or by the combination
of both) would cause an identifiability problem: In the first
case define the random variables h∗

t :=ht + log γ 2. Together
with ε∗

t ∼ S(α, β, 1, 0) this leads to a TVARαSV process
which is equivalent to the TVARαSV process where ht and
εt ∼ S(α, β, γ, 0) is used. In the latter case exploit the recur-
sive definition y∗

t :=yt + φt (y∗
t−1 − yt−1) − eht/2δ. Again,

together with ε∗
t ∼ S(α, β, 1, 0) this leads to a TVARαSV

process which is equivalent to the TVARαSV process where
yt and εt ∼ S(α, β, 1, δ) is used. For the remaining parame-
ters it is not straightforward to check identifiability. However,
from our simulation studies, with randomly drawn starting
parameters from reasonably chosen intervals but posterior
mean estimates close to the true values, there is evidence
that we are not facing any identifiability problem here.

3 An estimation procedure of the TVAR˛SV
model

3.1 General description

In this section we develop a Gibbs sampling procedure for
estimating the unknown parameters φ1:T , h1:T , σ 2

φ , σ 2
h , α,

β given data y0:T of the TVARαSV model. When deriving
full conditional distributions we mostly suppress all param-
eters and variables from which the parameter to update is
independent from, for notational convenience. We estimate
φ1:T and h1:T using the simulation smoother of De Jong and
Shephard (1995). Since this simulation smoother appears,
dependent on the situation at hand, in many different forms,
we briefly summarize the corresponding formulas required
for our analysis in the Appendix. The simulation smoother
requires to approximate the TVARαSV model by a linear
Gaussian state space model.

Therefore an important step in our estimation approach is
the approximation of α-stable distributions S(α, β, 1, 0) by
finite mixtures of normal distributions. Obviously, a standard
minimum distance approach to determine the weights and
parameters of the component distributions will not lead to
satisfying results since it only approximates the center of the
distribution accurately. The tailswhich play an important role
for our model are hardly taken into account. Therefore, we
use mixture components which are designed specifically to
approximate the tails of the α-stable distribution by fitting
corresponding extreme quantiles. We call these components
tails components. For the choice of the tail components see
Sect. 3.2.

Since the parameters α and β are updated in each itera-
tion of theGibbs sampler, theα-stable distributionwe have to
approximate changes in each iteration. To shorten the com-
putation time, we decided to compute the parameters of the
mixture approximations, i.e. weights, means and variances
of the components, before starting the algorithm. To this end
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we discretize the parameter space of the parameters α and β

by defining the set

P = {(α, β)
∣
∣ α ∈ {1.1, 1.105, 1.110, . . . , 2},

β ∈ {−1,−0.995,−0.990, . . . , 1}}.

In this discretized parameter space, the range of α is [1.1, 2],
since our developed estimation algorithm in its execution in
Sects. 4 and 5 at no time sampled values for α smaller than
1.1. For this reason, we have so far only calculated the param-
eters for the approximations for α greater than or equal to 1.1
(of course, it is straightforward to calculate parameters for
the approximations also for α smaller than 1.1). The param-
eters of the mixture approximations for these combinations
of α and β are stored in a file and can be used for different
runs of the Gibbs sampler and different data analyses as well.
Of course the accuracy of the discretization can be chosen
arbitrarily. However, in our simulation study it turns out that
we obtain accurate results using this discretization.

3.2 Estimation of�1:T

For estimation of the autoregressive parameter φt we use the
state spacemodel given by the equations (3) and (4), whereby
we approximate the distribution of the random variable εt
for fixed α and β, which we write as (εt |α, β), by a seven-
component mixture of normal distributions:

p(εt |α, β) ≈
7∑

i=1

Pr(τt = i |α, β) · p(ut |τt = i, α, β), (7)

where ut |τt = i, α, β, for i = 1, . . . , 7, denote normally
distributed random variables with meanμ(τt , α, β) and vari-
ance σ 2(τt , α, β) and Pr(τt = i |α, β) denote the mixture
weights. Depending on the α-stable parameters α and β let
τt ∈ {1, . . . , 7} indicate the component which occurs at time
t . Thus the mixture weight Pr(τt = i |α, β) is the prior den-
sity of τt and reflects the probability that the i th component
occurs at time t . Furthermore, we suppose that all normal
random variables

{
ut |τt , α, β

∣
∣ t = 1, . . . , T , τt = 1, . . . , 7, (α, β) ∈ P

}

are independent. For every combination (α, β) ∈ P the
weights and the parameters of the normally distributed com-
ponents are determined in two steps.

First, we only care about the tail components, which are
the sixth and the seventh component. In order to cover the
tails of theα-stable distribution (εt |α, β)weuse themean and
the variance of the sixth component (ut |τt = 6, α, β) such
that both the 5×10−7-quantile and 1−5×10−7-quantile of
the sixth component and the α-stable distribution coincide.

We use Pr(τt = 6|α, β) = 0.0009, and the mean μ(τt , α, β)

is chosen as the midpoint between the two quantiles. Let
qεt (·) be the quantile function of theα-stable randomvariable
εt |α, β and let q(·) be the quantile function of a standard
normal variable. Then the required variance can be calculated
by

σ 2(τt = 6, α, β) =
⎛

⎝
qεt (1 − 5 × 10−7) − qεt (5 × 10−7)

2 · q
(

5×10−7

Pr(τt=6|α,β)

)

⎞

⎠

2

.

Then we repeat the same procedure for the seventh com-
ponent with weight Pr(τt = 7|α, β) = 0.0001 and for the
5 × 10−10-quantile and the 1 − 5 × 10−10-quantile. In our
simulation studies we found using two tail components to be
sufficient to achieve accurate estimation results in our setup.
Of course, in other situations it might be advantageous to
add more tail components to cover the tails of the α-stable
distribution even more accurately.

Second, the weights and the parameters of the five
remaining components are estimated using a minimum
distance approach (see Titterington et al. 1985, Section
4.5). Let fS( · |α, β, 1, 0) be the density function of the
α-stable random variable εt |α, β. As support for the min-
imum distance estimation we choose X = {qεt (x) | x ∈
{0.002, 0.006, 0.01, . . . , 0.998}} and the L2-norm as dis-
tance function. To this end, we have to find a solution for
the optimization problem

min
ψ∈

∑

x∈X

[

fS(x |α, β, 1, 0) −
7∑

i=1

Pr(τt = i |α, β)
√
2πσ 2(τt = i, α, β)

exp

(

− (x − μ(τt = i, α, β))2

2σ 2(τt = i, α, β)

)]2

with parameter space

 =
{ {

Pr(τt |α, β), μ(τt , α, β), σ 2(τt , α, β)
}5

τt=1

∣
∣
∣
∣

0 ≤ Pr(τt |α, β) ≤ 1, μ(τt , α, β) ∈ R,

σ 2(τt , α, β) ∈ R
+ for τt = 1, . . . , 5 and

5∑

i=1

Pr(τt = i |α, β) = 0.999

}

.

We have implemented this optimization problem in MAT-
LAB (2020) using the function fmincon with the stopping
criterion that the L2-normmust be less than 0.02. For a more
detailed examination of the approximation quality using the
L2-norm as well as the Hellinger distance we refer to Sect. A
of the Appendix.
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Hence we can simulate φ1:T from p(φ1:T |y0:T , h1:T ,

σ 2
φ , τ1:T , α, β) by using the simulation smootherwith respect

to the linear Gaussian state space model

yt = e
ht
2 μ(τt , α, β) + φt yt−1 + e

ht
2

(
σ 2(τt , α, β)

) 1
2
ũt ,

ũt ∼ N (0, 1), (8)

φt = φt−1 + σφξt,φ, ξt,φ ∼ N (0, 1), (9)

using the centered and standardized version ũ1:T of u1:T .
The application of the simulation smoother requires an initial
value φ0. We use a constant improper prior, p(φ0) = 1, so
thatwe can draw samples ofφ0 from the posterior distribution
N (φ1, σ

2
φ ), where we use φ1 from the last iteration of the

Gibbs sampler (or its starting value at the beginning: this
could be any reasonable fixed hyperparameter or a randomly
drawn value depending of the specific situation at hand, cf.
the simulation study in Sect. 4).

3.3 Estimation of h1:T

For estimation of the scale parameter ht we transform equa-
tion (8) which leads to the state space model

log (yt − φt yt−1)
2 = ht + log

(
u2t
)

,

ut |τt , α, β ∼ N
(
μ(τt , α, β), σ 2(τt , α, β)

)
, (10)

ht = ht−1 + σhξt,h, ξt,h ∼ N (0, 1). (11)

For fixed t , α and β there are seven different normally
distributed random variables ut indicated by τt . Since equa-
tions (10) and (11) define a non-Gaussian state space model,
we approximate the distribution of the random variable
log
(
u2t
)
for fixed τt , α and β again by a seven-component

mixture of normal distributions, similar to Shephard (1994),
where the transformation of a standard normal distribution
was approximated:

p
(
log
(
u2t
) ∣
∣
∣τt , α, β

)

≈
7∑

j=1

Pr(ωt = j |τt , α, β) · p(vt |ωt = j, τt , α, β). (12)

Here vt |ωt = j, τt , α, β, for j = 1, . . . , 7, t = 1, . . . , T ,

τt = 1, . . . , 7, (α, β) ∈ P, are independent and nor-
mally distributed with mean μ(ωt , τt , α, β) and variance
σ 2(ωt , τt , α, β) and Pr(ωt = j |τt , α, β) denote the mixture
weights. For t = 1, . . . , T the variables ωt define inde-
pendently distributed integer valued random variables with
prior Pr(ωt |τt , α, β). Using again the described minimum
distance approach in Sect. 3.2 with the same distance func-
tion and stopping criteria we estimate the weights and the

parameters of the normal distributions appearing in equa-
tion (12) for each possible combination (α, β, τt ) ∈ P ×
{1, . . . , 7}. As support for the minimum distance approach
the 0.002, 0.006, 0.01, . . . , 0.998-quantiles of the distribu-
tion of log

(
u2t
)
are also used.

By defining y∗
t = log (yt − φt yt−1)

2 we finally obtain the
linear Gaussian state space model

y∗
t = μ(ωt , τt , α, β) + ht +

(
σ 2(ωt , τt , α, β)

) 1
2
ṽt ,

ṽt ∼ N (0, 1), (13)

ht = ht−1 + σhξt,h, ξt,h ∼ N (0, 1). (14)

The application of the simulation smoother to the equa-
tions (13) and (14) provides samples from p(h1:T |y0:T , φ1:T ,

σ 2
h , ω1:T , τ1:T , α, β), where we assume a constant improper

prior, p(h0) = 1, so that we can draw samples of h0
from the posterior distribution N (h1, σ 2

h ), where we use h1
from the last iteration of the Gibbs sampler (or its starting
value at the beginning: this could be any reasonable fixed
hyperparameter or a randomly drawn value depending of
the specific situation at hand, cf. the simulation study in
Sect. 4).

3.4 Estimation of the parameters �1:T,!1:T,�2
�,�2

h,
˛ andˇ

The unknownmixture indices τ1:T andω1:T , the variances σ 2
φ

andσ 2
h and the parameters of theα-stable distributionα andβ

must also be updated in every iteration of the Gibbs sampler,
whereby the general estimation procedure is specified here
and technical details leading to the conditional distributions
can be found in the Appendix.

Since the mixture indices τ1:T (resp. ω1:T ) are condition-
ally independent, we can draw τt (resp. ωt ) separately. For
this purposewe evaluate, for τt , ωt = 1, . . . , 7, the following
densities

p(τt |y0:T , φ1:T , h1:T , α, β)

∝ p(yt |yt−1, φt , ht , τt , α, β) · Pr(τt |α, β)

and

p(ωt |y0:T , φ1:T , h1:T , τ1:T , α, β)

∝ p(y∗
t |ht , ωt , τt , α, β) · Pr(ωt |τt , α, β),

where yt and y∗
t conditioned on the chosen mixture com-

ponents are normally distributed according to equation (8)
and (13). After standardizing these probabilities we can draw
τt ∈ {1, . . . , 7} and ωt ∈ {1, . . . , 7}.

We assume that the prior distributions for σ 2
φ and σ 2

h are
the inverse gamma distributions IG(sφ, rφ) and IG(sh, rh),
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where sφ, sh > 0 are the shape parameters and rφ, rh > 0
the scale parameters. Due to the use of conjugate priors, one
obtains the following inverse-gamma distributions as poste-
rior distributions:

σ 2
φ |φ1:T ∼ IG

⎛

⎝sφ + T − 1

2
, rφ + 1

2

T∑

j=2

(φ j − φ j−1)
2

⎞

⎠ ,

σ 2
h |h1:T ∼ IG

⎛

⎝sh + T − 1

2
, rh + 1

2

T∑

j=2

(
h j − h j−1

)2

⎞

⎠ .

It turned out that the accuracy of the estimation of σ 2
φ (resp.

σ 2
h ) can be further improved, when we scale always the new

sample ofσ 2
φ (resp. σ 2

h ) in such away that the estimated resid-

uals ξ̂1:T ,φ (resp. ξ̂1:T ,h) are standardized, cf. equation (4)
and (5).

For the estimation of α and β the original observation
equation (3) can be used without a mixture approximation of
the α-stable distributions. We choose flat priors for α and β,
i.e. p(α) = 1

21(0,2](α) and p(β) = 1
21[−1,1](β). Hence α

and β can be drawn from the posterior density

p(α, β|y0:T , φ1:T , h1:T )

∝
T∏

t=1

p(yt |yt−1, φt , ht , α, β) · p(α) · p(β),

where the observation yt is distributed according to (6). Since
we can not directly draw samples from the posterior distri-
bution of α and β, we perform one step of the random walk
Metropolis-Hastings algorithm in every iteration of theGibbs
sampler. Thereforewe drawaproposal ofα andβ froma two-
dimensional normal distribution with covariance matrix� to
be chosen by the user. If the new proposed value is rejected,
we retain the last sample of α and β. Finally, the drawn sam-
ples of α and β must be rounded to the nearest values in the
discretized parameter spaceP. It should not remain unmen-
tioned that there are of course also alternative approaches to
generate candidates for α and β.

3.5 Gibbs sampling procedure

In this subsection we design a suitable Gibbs sampling pro-
cedure where all unknown parameters are drawn from the
corresponding full conditional distribution.

The Gibbs sampler starts with the estimation of the
scale parameters h1:T where the distribution of log

(
u2t
)
is

approximated by a finite mixture of normal distributions (cf.
Sect. 3.3). Next we update the variance σ 2

h and the α-stable
parameters α and β.

We point out that sampling φ1:T can be performed using
equation (8) so that we do not require the approximation of
log
(
u2t
)
; hence, the parameters ω1:T are not involved here.

The same holds for sampling τ1:T . As a consequence, the
parameters φ1:T , σ 2

φ , τ1:T and ω1:T need to be simulated in
one common block of the Gibbs sampling algorithm. It is
therefore advantageous to draw from the joint distribution of
φ1:T , σ 2

φ and τ1:T and then from the conditional distribution

of ω1:T given φ1:T , σ 2
φ and τ1:T , using

p(φ1:T , σ 2
φ , τ1:T , ω1:T ) = p(ω1:T |φ1:T , σ 2

φ , τ1:T )

·p(φ1:T , σ 2
φ , τ1:T ).

Due to the dependence structure of our model it is cru-
cial for a fast convergence of the sampler to update φ1:T , σ 2

φ

and τ1:T in one block. Since it seems impossible to draw all
these parameters from one single high-dimensional distribu-
tion, we employ again a Gibbs sampler to draw from the joint
distribution φ1:T , σ 2

φ and τ1:T conditional on all other param-
eters. After this innerGibbs sampler has been executed in one
iteration of the overall Gibbs sampler, a sample of φ1:T , σ 2

φ

and τ1:T is randomly selected, with the first draws discarded
as burn-in period. Thus a suitable Gibbs sampling procedure
is given as follows:

(I) Simulate h1:T from p(h1:T |y0:T , φ1:T , σ 2
h , ω1:T , τ1:T ,

α, β).
(II) Simulate σ 2

h from p(σ 2
h |h1:T ).

(III) Simulate α, β from p(α, β|y0:T , φ1:T , h1:T ).
(IV) Simulate φ1:T , σ 2

φ , τ 1:T , ω1:T .

(1) Simulate φ1:T , σ 2
φ , τ 1:T using Gibbs sampling.

(i) Simulate τ 1:T from p(τ1:T |y0:T , φ1:T , h1:T ,

α, β).
(ii) Simulateφ1:T from p(φ1:T |y0:T , h1:T , σ 2

φ , τ1:T ,

α, β).
(iii) Simulate σ 2

φ from p(σ 2
φ |φ1:T ).

(2) Simulate ω1:T | φ1:T , σ 2
φ , τ 1:T from p(ω1:T

|y0:T , φ1:T , h1:T , τ1:T , α, β).

The precise algorithm is outlined in Algorithm 1, which
we have completely implemented in R (R Core Team 2020).
Similarly to Del Negro and Primiceri (2015) it is possible
to add a Metropolis-Hastings step for sampling φ1:T and
h1:T in order to remove the mixture approximation error.
However, this is practically not desirable here due to the
enormous additional computing time (an estimated doubling
of the computing time) caused by the α-stable density func-
tions. Furthermore,DelNegro andPrimiceri (2015) conclude
that the results of the original and the extended algorithm
are indistinguishable and the mixture approximation error is
negligible.
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Algorithm 1 Estimation of the TVARαSV model

Initialization: For i = 0.

• Initializeφ
(i)
1:T , h

(i)
1 , σ 2

φ

(i)
, σ 2

h
(i)
,ω(i)

1:T , τ
(i)
1:T ,α(i),β(i) and deter-

mine prior hyperparameters sh , rh , sφ , rφ , �.

Gibbs Sampling: For i = 1, . . . , N .

• Simulate h(i)
1:T from p

(
h1:T

∣
∣
∣y0:T , φ

(i−1)
1:T , σ 2

h
(i−1)

, ω
(i−1)
1:T ,

τ
(i−1)
1:T , α(i−1), β(i−1)

)
using the simulation smoother with

respect to the equations (13) and (14). The start value h(i)
0

for Kalman filtering is drawn from N
(
h(i−1)
1 , σ 2

h
(i−1)

)
.

• Simulate σ 2
h
(i)|h(i)

1:T ∼ IG
(
sh + T−1

2 , rh + 1
2

∑T
j=2

(
h(i)
j

−h(i)
j−1

)2
)

.

• Simulate
(
α(i),β(i)

)′ ∼ N2

((
α(i−1), β(i−1)

)′
, �
)

and

accept with probability (A3). Otherwise
(
α(i), β(i)

)
=

(
α(i−1), β(i−1)

)
.

• Initialize φ̃
(0)
1:T = φ

(i−1)
1:T , σ̃ 2

φ

(0) = σ 2
φ

(i−1)
and do Gibbs sam-

pling for j = 1, . . . ,G:

– For t = 1, . . . , T draw τ̃
( j)
t ∈ {1, . . . , 7} according to the

probabilities (A1) given y0:T , φ̃( j−1)
1:T , h(i)

1:T , α(i), β(i).

– Simulate φ̃
( j)
1:T from p

(
φ1:T

∣
∣
∣y0:T , h(i)

1:T , σ̃ 2
φ

( j−1)
, τ̃

( j)
1:T ,

α(i), β(i)
)
using the simulation smoother with respect to

the equations (8) and (9). The start value φ̃
( j)
0 for Kalman

filtering is drawn from N
(
φ̃

( j−1)
1 , σ̃ 2

φ

( j−1)
)
.

– Simulate σ̃ 2
φ

( j) |φ̃( j)
1:T ∼ IG

(
sφ + T−1

2 , rφ + 1
2

∑T
l=2

(
φ̃

( j)
l − φ̃

( j)
l−1

)2
)

.

• Draw k ∈ {�0.7 · G�, . . . ,G} and take τ
(i)
1:T = τ̃

(k)
1:T , φ

(i)
1:T =

φ̃
(k)
1:T and σ 2

φ

(i) = σ̃ 2
φ

(k)
.

• For t = 1, . . . , T draw ω
(i)
t ∈ {1, . . . , 7} according to the

probabilities (A2) given y0:T , φ(i)
1:T , h

(i)
1:T , τ

(i)
1:T , α(i), β(i).

4 Simulation study

For assessing the accuracy of the proposed estimation pro-
cedure described in Sect. 3 we investigate 1000 data sets
each consisting of Y0:2500, φ1:2500 and h1:2500 (T = 2500)
of the TVARαSV model according to Definition 1 with
σ 2

φ = 0.00058, σ 2
h = 0.011, φ0 = 0.5, h0 = 2.5, α = 1.73,

β = −0.14 and y0 ∼ S(α, β, eh0/2, 0). These parame-
ters were set equal to those found in the application of the
TVARαSV model to electricity spot price data, cf. Sect. 5.

The behavior of the observed realization from the
TVARαSV process depends crucially on the range of the
autoregressive parameters φ1:T . If these leave the interval
(−1, 1) substantially long and/or significantly this usually
leads to an explosion of the observable time series Y0:T (even
if the process returns to the initial level again later). Since

we do not observe such an extreme behavior for electricity
spot price data, we focus here in assessing the quality of
our Bayesian inference procedure for realizations from the
TVARαSV process, where φt takes on only values in the
interval (−1, 1). In Sect. D of the Appendix we investigate
additionallyTVARαSVprocesses,whereφt takes values out-
side the interval (−1, 1), too.

Since inmost cases in practice one has a priori no informa-
tion about the range ofφt , our estimation procedure here does
not use this knowledge, that φt , for all t = 1, . . . , T , takes
on only values in the interval (-1,1), and we apply Algo-
rithm 1 unchanged for the 1000 simulated time series. On
the other hand, the systematic consideration of TVARαSV
processes with underlying |φt | < 1, for all t = 1, . . . , T ,
corresponds to introducing an indicator function to the prior
of φ1:T . Hence, also the posterior of φ1:T must reflect this
specification. For this reason, assuming that this additional
knowledge about the prior of φ1:T is available, we have
applied an adapted version of Algorithm 1 to the same 1000
simulated time series, which is presented in Sect. E of the
Appendix. At the end, the question about the truncated pos-
terior boils down to which prior information the practitioner
wants to use. If one is convinced that the data set at hand is
based on a truncated vector φ1:T , one must use the second
version of the Gibbs sampler (cf. Sect. E of the Appendix),
which includes a resampling step for φ1:T . If one does not
want to put such a prior information on φ1:T , Algorithm 1 is
appropriate.

For the estimation of α and β we use a normal pro-
posal density with a diagonal matrix with 0.001 on the
main diagonal as covariance matrix�. Moreover, we choose
sh = rh = sφ = rφ = 0.001 such that we obtain quite
noninformative priors. As starting values we use for each
data set randomly drawn values from uniform distributions:

σ 2
φ

(0) ∼ U[0.00001, 0.1], φ
(0)
1 = φ

(0)
2 = · · · = φ

(0)
T ∼

U[0.1, 0.9], α(0) ∼ U[1.4, 1.9], σ 2
h

(0) ∼ U[0.00001, 0.1],
h(0)
1 ∼ U[−2, 7], β(0) ∼ U[−0.6, 0.6]. The boundaries of

the uniform distributions were determined according to the
following considerations: Looking at the observations of the

Table 1 Results of the simulation study using 6000 iterations after a
burn-in period of 4000 iterations

Mean SD 2.5%
quantile

97.5%
quantile

Statistics of average biases of 1000 simulations

φ1:T −0.0010 0.0166 −0.0313 0.0305

h1:T −0.0607 0.0417 −0.1423 0.0186

Statistics of RMSEs of 1000 simulations

φ1:T 0.0984 0.0087 0.0828 0.1181

h1:T 0.3220 0.0213 0.2821 0.3670
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simulation study, it can be checked a priori whether or not the
signs of the first observations are systematically alternating
and whether or not there are explosive periods, which leads
in our case to fixing the underlying interval of the uniform
distribution for the starting values of φ1:T to [0.1, 0.9]. If the
time series initially shows values with alternating signs we
recommend to choose negative initial values of φ1:T instead.
From degenerated submodels we can also guess the mag-
nitude of the other parameters. For instance, assuming one
constant value for φ1:T and one constant value h for h1:T ,
and α = 2, one can estimate the magnitude of h by fit-
ting the degenerated submodel to the truncated time series,
where the truncation is used to exclude extreme observations
caused by the α-stable distribution. Moreover, from recent
publications using α-stable processes for modelling electric-
ity prices (cf. Müller and Seibert 2019) we learn that even
for daily peak prices the parameter α is usually greater then
1.4, so that the interval given above seems to be a reason-
able choice for the starting values of α. Assuming a quite
smooth behavior of φ1:T and h1:T the chosen intervals for
σ 2

φ and σ 2
h have a very large right boundary in view of the

two-sigma rule. We avoid values of β close to 1 or −1,
since those values would imply an extreme behavior of the
noise process ε1:T . Next we need to initialize the mixture
indices τ

(0)
1:T and ω

(0)
1:T . First, the mixture indices τ

(0)
1:T are

independently drawn from {1, . . . , 7} according to the proba-
bilities Pr(τt |α(0), β(0)). Afterwards, we independently draw
the mixture indices ω

(0)
1:T from {1, . . . , 7} according to the

prior probabilities Pr(ωt |τ (0)
t , α(0), β(0)).

The Gibbs sampler in Sect. 3.5 was carried out through
10000 iterations for each of the 1000 time series. Fur-
thermore, the inner Gibbs sampler for the simulation of
τ1:T , φ1:T and σ 2

φ was carried out through 50 iterations.
We kept the last 6000 draws for inference. To measure the
accuracy of the posterior mean estimates of φ1:T we calcu-
lated 1000 root mean square errors (RMSEs) of the form
(
∑2500

t=1 (φ̂t − φt )
2/2500)1/2 and 1000 average biases of the

form
∑2500

t=1 (φ̂t − φt )/2500 where φ̂t denotes the posterior
mean estimate of φt (analogously for h1:T ). The results are
summarized in Table 1 and Table 2.

On average the RMSEs of φ1:T is quite concentrated
around 0.09, which is remarkably accurate given the range of

|φt | < 1 for the simulated parameters. Similarly, the average
RMSE of h1:T can be considered satisfactory, as the magni-
tude of h1:T is not limited and the simulated paths of h1:T
range from -14.45 to 20.46. In view of σ 2

h ≈ 19 · σ 2
φ and the

correspondingly higher range of ht also ht is estimated quite
accurately on average. From Table 2 it is easy to see that all
parameters σ 2

φ , σ
2
h , α and β are estimated very precisely.

Additionally, we plotted estimation and convergence
results of one simulation for illustrative purpose in Fig. 1.
This figure supports that all parameters including the time-
varying parameters φt and ht are estimated very accurately.
The 95% credibility corridors cover almost all true values.
Moreover, from the last four plots of Fig. 1 it is obvious that
the chains converge very quickly to the area around the true
values and that the mixing behavior of the chains is very
satisfying.

Finally we note that running the Algorithm in Sect. 3.5
with 10000 iterations for one data set of length 2500 takes
about 28 hours on an Intel Core i7-3635QM (2.40 GHz) pro-
cessor.

5 Application of the TVAR˛SVmodel to
electricity spot price data

5.1 Description of the electricity spot prices

We consider the daily base prices for power traded at the
European Power Exchange (EPEXSPOTSE). The base price
is the average of the hourly market prices of one day. The
price index for the German and Austrian market is called the
Physical Electricity Index (Phelix). The data are available
fromEEX (EuropeanEnergyExchange) and cover the period
from July 1, 2002 to November 18, 2017. Hence, our data set
has length 5620 and is shown in the first row of Fig. 2. We
summarize some key features of daily electricity spot prices
in the following list, without any intention to be exhaustive
in our presentation. We refer to Klüppelberg, Meyer-Brandis
and Schmidt (2010), where the stylized facts of electricity
spot prices are presented in detail.

(i) Seasonality The plot of the empirical autocorrelation
function demonstrates seasonal behavior in weekly

Table 2 Results of the
simulation study using 6000
iterations after a burn-in period
of 4000 iterations

True value Statistics of posterior means of 1000 simulations
Mean SD 2.5%

quantile
97.5%
quantile

Bias

σ 2
φ 0.00058 0.000528 0.000181 0.000221 0.000898 − 0.000052

σ 2
h 0.011 0.010635 0.002678 0.005737 0.016151 − 0.000365

α 1.73 1.704864 0.031869 1.642219 1.764899 − 0.025136

β − 0.14 − 0.131964 0.072848 − 0.286128 − 0.001879 0.008036
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Fig. 1 Application of the
estimation procedure presented
in Sect. 3. The time series
Y0:2500 was generated according
to Definition 1 (first row). In the
second and third row the smooth
dashed line constitutes the
posterior mean of the 6000 used
Gibbs sampling estimations and
the solid line constitutes the true
values of φ1:2500 and h1:2500.
The 95% confidence bound is
plotted gray. In the fourth and
fifth row the solid (resp.
horizontal dashed) line
corresponds to the estimated
(resp. true) values of σφ , σh , α
and β

cycles (seeFig. 8 in theAppendix).Moreover, a seasonal
behavior in yearly cycles can be observed (cf. Sect. F in
the Appendix).

(ii) Spikes, Skewness, Non-Gaussianity The electricity spot
prices exhibit large spikes (see Fig. 2) and skewness
which cannot be modeled by a Gaussian distribution.

(iii) Mean reversionAfter attaining extreme spikes, electric-
ity spot prices are mean reverting. The price index does
not jump directly from the extreme value to the trend,
but decreases step by step.

(iv) Heteroscedasticity A rolling window analysis of the
Phelix Day Base prices shows that the standard devi-
ation significantly changes over time (see Fig. 3).

According to the argumentation in Sect. 2 the TVARαSV
model covers the stylized facts (ii), (iii) and (iv) and,

hence, seems to be appropriate for modeling these data after
accounting for (i) by removing seasonal effects.

5.2 Estimation results

After estimation and elimination of trend and (weekly and
yearly) seasonal components, cf. Sect. F in the Appendix, we
applied our estimation procedure for the TVARαSV model
(Algorithm 1) to the deseasonalized and trend adjusted elec-
tricity spot prices Ŷt , which are shown in the second row
of Fig. 2. The Gibbs sampler in Sect. 3.5 was carried out
through 10000 iterations, with the last 6000 draws being kept
for inference. Furthermore, the inner Gibbs sampler for the
simulation of τ1:T , φ1:T and σ 2

φ was carried out for 50 itera-
tions each. We suppose the same prior hyperparameters as in
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Fig. 2 Daily EEX Phelix Base
electricity price index from July
1, 2002 to November 18, 2017
and deseasonalized and trend
adjusted data Ŷt (cf. Sect. F of
the Appendix)

Fig. 3 Estimated standard
deviations of the deseasonalized
Phelix Day Base prices using a
rolling window of size 101

Table 3 Means and standard deviations of the marginal posterior dis-
tributions using 6000 iterations after a burn-in period of 4000 iterations

σ 2
φ σ 2

h α β

Mean 0.000579 0.011019 1.732964 −0.138908

SD 0.000112 0.001628 0.021264 0.058420

the simulation study of Sect. 4 and σ 2
φ

(0) = 0.01, φ(0)
1:T = 0.6,

α(0) = 1.5, σ 2
h

(0) = 0.01, h(0)
1 = 0, β(0) = 0.25 as starting

values. The results are shown in Table 3 and Fig. 4.
The marginal posterior distributions of σ 2

φ and σ 2
h support

our assumption of time-varying parameters φt and ht . The
stability parameterα has a posteriormean of about 1.733with
a small standard deviation of 0.021, which indicates clearly
that the distribution of the innovations εt has heavier tails than
the Gaussian distribution. From the estimate of β we learn
that the innovations are slightly negatively skewed. Figure 4
shows that there is evidence of a significant autoregressive
structure in the electricity spot price data. Furthermore, rises
of the scale parameter ht coincide with periods of higher
fluctuations of Ŷt . Investigating extreme values of the data
set, the extreme spikes are created by large values of the
innovations, but not by high values of the time-varying scale
parameter ht .

5.3 Model verification

In this subsection we briefly check whether some basic
model assumptions are satisfied in our empirical data anal-
ysis. In particular, we look at the assumptions of normality,
homoscedasticity and serial independence of ξt,φ and ξt,h
appearing in equations (4) and (5). To this end, we check the
null of normality of the series using Jarque-Bera tests (Jarque
and Bera 1980), the null of residual homoscedasticity using
ARCH tests (Engle 1982), and the null of independence of
the series by Ljung-Box tests (Ljung and Box 1978). In each
of the 6000 iterations after the burn-in period, we first derived
estimates ξ̂t,φ and ξ̂t,h using the estimates of φ1:T , h1:T , σ 2

φ

and σ 2
h , and then calculated all corresponding statistics. Each

line of Table 4 evaluates the 6000 values of the test statistics
by reporting the percentage which leads to a rejection of the
null on the levels of 2.5%, 5%, and 10%. The table indicates
that the model assumptions under investigation are satisfied.

These results are also strongly supported by Fig. 5: It
shows the the autocorrelation and quantile plots for the esti-
mated residuals ξ̂2:T ,φ and ξ̂2:T ,h of one randomly chosen
iteration in the Gibbs sampling estimation. The plots shown
in Fig. 5 are a further indication that the assumption of nor-
mality and serial independence of ξt,φ and ξt,h have been
met.
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Fig. 4 Application of the
estimation procedure presented
in Sect. 3 to the Phelix Day Base
price Ŷt after removing the trend
and the seasonal component. In
the first and second row the solid
line constitutes the posterior
mean of the 6000 used Gibbs
sampling estimations of φ1:T
and h1:T . The 95% confidence
bound is plotted in gray

Table 4 Test results for the 6000 iterations after a burn-in period of
4000 iterations

Test Residuals Percentage of rejections
for a level of ...

2.5% 5% 10%

Jarque-Bera test ξ̂t,φ 2.70 5.02 9.65

ξ̂t,h 2.33 4.80 9.93

ARCH test ξ̂t,φ 2.95 5.22 10.23

ξ̂t,h 2.75 5.30 10.03

Ljung-Box test ξ̂t,φ 3.12 5.57 10.25

ξ̂t,h 3.80 7.05 13.13

6 Conclusion and outlook

Motivated by the stylized facts of electricity spot prices, we
introduced the time-varying autoregressive stochastic volatil-
ity model with α-stable innovations

(
TVARαSV

)
. The novel

idea is to combine a time-varying autoregressive component
and a stochastic scaling as known from stochastic volatility
models with stably distributed noise. Furthermore, we devel-
oped a Gibbs sampling procedure for the estimation of the
model parameters. A key step of this estimation procedure is
the approximation ofα-stable densities and transformedmix-
ture components by finite mixtures of normal distributions,

which enable the application of the simulation smoother of
De Jong and Shephard (1995). In a simulation study we
showed that the algorithm provides very accurate estimates.
In an empirical application the TVARαSV model was fit-
ted to the daily base prices of PHELIX. We observed that
the spikes in the data are associated to the α-stable innova-
tions, whereas the time-varying scaling parameter accounts
for periods of larger fluctuations.

It is work in progress to extend the TVARαSV model in
theway that it is able to discover a (classical or inverse) lever-
age effect, as it has been discussed, e.g., in Benth and Vos
(2013) or Kristoufek (2014). However, there is evidence that
the leverage (or inverse leverage) effect is quite limited in
Germany (cf. Erdogdu 2016), so that this extension seems to
be irrelevant for the data analyzed here. Nevertheless, adapt-
ing our model in that direction is an interesting challenge,
since we use stable distributions, where introducing a lever-
age effect is not as straightforward as in the Gaussian case:
Due to the lack of finite second moments, a correlation in its
original sense does not exist for stable distributions. Instead,
variousmodified notions of “covariance” have been proposed
in the literature (see, e.g., Samorodnitsky and Taqqu 1994).
In particular, the correlation structure of a multivariate stable
distribution is usually determined by the spectral measure.
Besides the theoretical efforts of incorporating a leverage
effect into our model, also the estimation of the extended
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Fig. 5 Empirical
autocorrelation functions for the
estimated residuals ξ̂t,φ (first
row left) and ξ̂t,h (first row
right). QQ-plots of the estimated
residuals ξ̂t,φ and ξ̂t,h against
standard normal distributions
can be seen in the second row

model including the spectral measure (cf. Pivato and Seco
2003) seems to be a new challenge which we defer to a future
paper.
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Appendix

A Investigation of the approximation
accuracy of ˛-stable distributions by finite
mixtures of normal distributions

In our estimation procedure, the approximations of α-stable
distributions as well as of their squared and logarith-
mized normally distributed components by finite mixtures
of normal distributions are a key step for successful param-
eter estimation (cf. Sects. 3.2 and 3.3). For this reason,
the approximation accuracy will be examined in this sec-
tion. We used the L2-norm as distance function for both
approximations with a corresponding stopping criteria and
the 0.002, 0.006, 0.01, . . . , 0.998-quantiles of the respective
approximated distribution as support. In addition to the L2-
norm, the mean absolute percentage error (MAPE) and the
continuous form of the Hellinger distance is evaluated on
the support used for the optimization in order to quantify
the similarity between the true distribution and its approx-
imation: Let fS( · ) be the density function of the α-stable
random variable εt |α, β and fA( · ) the density function
of the approximation defined in equation (7). Using the
0.002, 0.006, 0.01, . . . , 0.998-quantiles of the distribution
of εt |α, β as support points X = {x1, x2, x3, . . . , x250}, the
MAPE is defined by 1

|X |
∑

x∈X | fS(x) − fA(x)| / | fS(x)|.

Table 5 Evaluated distance functions for the approximations to the

distributions of the random variables (εt |α, β) and
(
log
(
u2t
) ∣∣
∣τt , α, β

)

for (α, β, τt ) ∈ P × {1, . . . , 7}
(εt |α, β)

(
log
(
u2t
) ∣∣
∣τt , α, β

)

Mean SD Mean SD

L2-norm 0.0001 0.0006 0.0005 0.0031

MAPE (%) 2.33 3.42 1.24 0.43

Hellinger distance 0.0399 0.0394 0.0129 0.0053

With the trapezoidal rule, the continuous form of the
Hellinger distance can be approximated by
(
1

2

∫

R

(√
fS(x) −√ fA(x)

)2
dx

) 1
2 ≈

(
1

4

250∑

k=2

(xk − xk−1)

((√
fS(xk−1) −√ fA(xk−1)

)2 +
(√

fS(xk) −√ fA(xk)
)2
)) 1

2

.

An advantage of considering Hellinger distances is that
they only take on distance values between 0 and 1, and their
interpretability: The closer the distance value is to 0, the
more the two probability distributions match. This evalua-
tion of the mentioned distance functions was also performed
equivalently for the approximation to the distribution of the

randomvariables
(
log
(
u2t
) ∣∣
∣τt , α, β

)
in Sect. 3.3. The results

are shown in Table 5.
The evaluated distance functions reveal an appealing

accuracy for both approximations, which is additionally
supported by the successful parameter estimation in the sim-
ulation study in Sect. 4. The two components created for the
approximation of the tails provide additional certainty about
the approximation quality at the tails of the α-stable distri-
butions, since these two components are constructed in such
a way that they correspond to the alpha-stable distribution in
the 5 × 10−7 (resp. 5 × 10−10) and 1 − 5 × 10−7-quantile
(resp. 1 − 5 × 10−10-quantile).
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Table 6 Parameters of the mixture approximation for α = 1.73 and β = −0.14

ωt 1 2 3 4 5 6 7

τ t=1 Pr(τt |α, β) = 0.291 μ(τt , α, β) = 0.137 σ 2(τt , α, β) = 1.221

Pr(ωt |τt , α, β) 0.076 0.082 0.159 0.202 0.273 0.018 0.190

μ(ωt , τt , α, β) −4.432 −3.097 −1.615 −1.337 −0.139 0.931 0.949

σ 2(ωt , τt , α, β) 5.623 6.943 2.845 1.729 0.742 7.959 0.432

τ t=2 Pr(τt |α, β) = 0.212 μ(τt , α, β) = 0.041 σ 2(τt , α, β) = 1.835

Pr(ωt |τt , α, β) 0.106 0.210 0.070 0.081 0.387 0.140 0.006

μ(ωt , τt , α, β) −4.229 −1.899 −1.058 −1.002 0.461 1.500 2.899

σ 2(ωt , τt , α, β) 5.897 2.404 1.095 0.686 0.731 0.383 5.304

τ t=3 Pr(τt |α, β) = 0.209 μ(τt , α, β) = 0.042 σ 2(τt , α, β) = 1.861

Pr(ωt |τt , α, β) 0.085 0.101 0.175 0.181 0.264 0.177 0.018

μ(ωt , τt , α, β) −3.710 −2.949 −0.961 −0.768 0.365 1.403 1.834

σ 2(ωt , τt , α, β) 6.657 4.139 2.037 1.668 0.707 0.423 6.830

τ t=4 Pr(τt |α, β) = 0.201 μ(τt , α, β) = −0.118 σ 2(τt , α, β) = 2.982

Pr(ωt |τt , α, β) 0.078 0.221 0.117 0.125 0.314 0.139 0.006

μ(ωt , τt , α, β) −4.227 −1.536 −0.352 −0.225 1.039 2.004 3.222

σ 2(ωt , τt , α, β) 6.269 2.983 1.417 0.915 0.659 0.376 5.683

τ t=5 Pr(τt |α, β) = 0.086 μ(τt , α, β) = −0.219 σ 2(τt , α, β) = 14.384

Pr(ωt |τt , α, β) 0.090 0.148 0.158 0.168 0.258 0.165 0.013

μ(ωt , τt , α, β) −2.370 −0.318 1.304 1.468 2.511 3.501 5.015

σ 2(ωt , τt , α, β) 5.989 2.612 1.609 1.377 0.663 0.404 5.481

τ t=6 Pr(τt |α, β) = 0.0009 μ(τt , α, β) = −104.349 σ 2(τt , α, β) = 155018.415

Pr(ωt |τt , α, β) 0.042 0.029 0.026 0.216 0.289 0.271 0.126

μ(ωt , τt , α, β) 7.254 7.297 7.322 9.304 10.885 12.055 12.973

σ 2(ωt , τt , α, β) 9.069 10.007 10.351 2.755 1.161 0.605 0.354

τ t=7 Pr(τt |α, β) = 0.0001 μ(τt , α, β) = −5657.136 σ 2(τt , α, β) = 248276285.709

Pr(ωt |τt , α, β) 0.091 0.129 0.144 0.134 0.156 0.158 0.188

μ(ωt , τt , α, β) 14.298 16.802 17.245 18.943 19.015 19.021 20.120

σ 2(ωt , τt , α, β) 5.652 2.796 1.873 1.294 1.117 1.088 0.485

For illustration, the parameters of the mixture approx-
imation for the α-stable distribution with α = 1.73 and
β = −0.14, for which the Hellinger distance is equal to
0.0143, can be found in Table 6.

B Computation of conditional distributions

B.1 Estimation of �1:T

Since themixture indices τ1:T are conditionally independent,
we can draw τt from

p(τt |y0:T , φ1:T , h1:T , α, β)

= p(τt |yt , yt−1, φt , ht , α, β)

∝ p(yt |yt−1, φt , ht , τt , α, β) · p(yt−1, φt , ht , τt , α, β)

∝ p(yt |yt−1, φt , ht , τt , α, β) · Pr(τt |α, β),

where the last proportionality follows from the fact that the
mixture index τt for the approximation of εt does not depend
on the product φt yt−1 and the scale parameter ht in the
observation equation (3). Since yt conditioned on the cho-
sen mixture component is normally distributed according to
equation (8), the likelihood is given by

r τ
i,t :=p(yt |yt−1, φt , ht , τt = i, α, β)

=
(
2πehtσ 2(τt = i, α, β)

)− 1
2

exp

⎛

⎜
⎝−

(
yt − e

ht
2 μ(τt = i, α, β) − φt yt−1

)2

2ehtσ 2(τt = i, α, β)

⎞

⎟
⎠ ,

for i = 1, . . . , 7 and t = 1, . . . , T . Therefore we draw τt
from {1, . . . , 7} according to the posterior probabilities

123



36 Page 14 of 19 Statistics and Computing (2021) 31 :36

p(τt = i |y0:T , φ1:T , h1:T , α, β)

= r τ
i,t · Pr(τt = i |α, β)

∑7
j=1 r

τ
j,t · Pr(τt = j |α, β)

, i = 1, . . . , 7. (A1)

B.2 Estimation of!1:T

We have to draw ωt in each iteration of the Gibbs sampler
from

p(ωt |y0:T , φ1:T , h1:T , τ1:T , α, β)

= p(ωt |yt , yt−1, φt , ht , τt , α, β)

∝ p(y∗
t |ht , ωt , τt , α, β) · p(ht , ωt , τt , α, β)

∝ p(y∗
t |ht , ωt , τt , α, β) · Pr(ωt |τt , α, β),

where y∗
t is normally distributed, cf. equation (13). In order

to update ωt we calculate the value of the conditional distri-
bution

rω
i,t := p(y∗

t |ht , ωt = i, τt , α, β)

=
(
2πσ 2(ωt = i, τt , α, β)

)− 1
2

exp

(

−
(
y∗
t − μ(ωt = i, τt , α, β) − ht

)2

2σ 2(ωt = i, τt , α, β)

)

for i = 1, . . . , 7 and thenwe drawωt ∈ {1, . . . , 7} according
to the posterior probabilities

p(ωt = i |y0:T , φ1:T , h1:T , τ1:T , α, β)

= rω
i,t · Pr(ωt = i |τt , α, β)

∑7
j=1 r

ω
j,t · Pr(ωt = j |τt , α, β)

. (A2)

B.3 Estimation of�2
� and�2

h

We assume that the prior distribution for σ 2
φ is the inverse

gamma distribution IG(sφ, rφ) with density r
sφ
φ x−sφ−1

exp(−rφ/x)/�(sφ), x > 0, where sφ > 0 is the shape
parameter and rφ > 0 the scale parameter. From the state
equation (4) we derive

p
(
φ1:T

∣
∣
∣σ

2
φ

)
=

T∏

j=2

p
(
φ j

∣
∣
∣φ j−1, σ

2
φ

)

∝ σ
−(T−1)
φ exp

(

−
∑T

j=2(φ j − φ j−1)
2

2σ 2
φ

)

so that

p
(
σ 2

φ

∣
∣
∣φ1:T

)
∝
(
σ 2

φ

)−
(
sφ+ T−1

2

)
−1

exp

(

−rφ + 1
2

∑T
j=2(φ j − φ j−1)

2

σ 2
φ

)

.

Hence we can simulate σ 2
φ from the posterior distribution

σ 2
φ |φ1:T

∼ IG
⎛

⎝sφ + T − 1

2
, rφ + 1

2

T∑

j=2

(φ j − φ j−1)
2

⎞

⎠ .

It turned out that the accuracy of the estimation of σ 2
φ can

be further improved, when we scale always the new sample
of σ 2

φ in such a way that the estimated residuals ξ̂1:T ,φ are
standardized. An analogous procedure was also chosen for
the estimation of σ 2

h .

B.4 Estimation of˛ andˇ

We choose flat priors for α and β, i.e. p(α) = 1
21(0,2](α)

and p(β) = 1
21[−1,1](β). For the estimation of α and β

the original observation equation (3) can be used without a
mixture approximation of the stable distributions. We draw
α and β from the posterior density

p(α, β|y0:T , φ1:T , h1:T )

∝ p(y0:T |φ1:T , h1:T , α, β) · p(α) · p(β)

=
T∏

t=1

p(yt |yt−1, φt , ht , α, β) · p(α) · p(β),

where the observation yt is distributed according to equation
(6). As described in Sect. 3.4, we perform one step of the
random walk Metropolis-Hastings algorithm in every itera-
tion of the Gibbs sampler, i.e. we draw a proposal of α and β

from a two-dimensional normal distribution with covariance
matrix � to be chosen by the user, and accept the proposal
with probability
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min

⎧
⎨

⎩

∏T
t=1 fS

(
yt |αnew, βnew, e

ht
2 , μαnew,βnew

)
· 1(0,2](αnew) · 1[−1,1](βnew)

∏T
t=1 fS

(
yt |αold , βold , e

ht
2 , μαold ,βold

) , 1

⎫
⎬

⎭
, (A3)

where

μα,β =
{

φt yt−1, α �= 1

φt yt−1 − βht
π
e
ht
2 , α = 1

.

If the newproposedvalue is rejected,we retain the last sample
of α and β. Finally, the drawn samples of α and β must be
rounded to the nearest values in the discretized parameter
space P.

C Formulas of the simulation smoother in our
analysis

We briefly summarize here the formulas of the simulation
smoother by De Jong and Shephard (1995) in the form
required for our analysis. We consider the linear Gaussian
state space model defined by the equations

yt = ct + zt xt + gtεt , εt ∼ N (0, 1),

xt = dt + st xt−1 + htξt , ξt ∼ N (0, 1),

where the innovations εt and ξt are mutually independent for
t = 1, . . . , T . The parameter vector θ = (c1:T , z1:T , g1:T ,

d1:T , s1:T , h1:T ) is assumed to be known. The simula-
tion smoother provides a sample from the distribution
p(ε1:T |y1:T , θ).

Algorithm 2 Simulation smoother

0. Initialisation of x1|0 and p1|0 = h21.
1. Kalman filtering: For t = 1, . . . , T .

vt = yt − ct − zt xt |t−1, xt+1|t = dt+1 + st+1xt |t−1 + ktvt ,

ft = z2t pt |t−1 + g2t , lt = st+1 − zt kt ,

kt = st+1zt pt |t−1 f
−1
t , pt+1|t = st+1 pt |t−1lt + h2t+1.

2. Saving of v1:T , f1:T , k1:T and l1:T .
3. Simulation smoothing: For t = T , . . . , 1, with uT = 0 and
rT = 0.

ψt = 1 − g2t f
−1
t − g2t k

2
t ut , rt−1 = zt f

−1
t vt + lt rt − wtψ

−1
t ηt ,

ηt ∼ N (0, ψt ), ut−1 = z2t f
−1
t + l2t ut + w2

t ψ
−1
t ,

wt = gt f
−1
t zt − gt kt ut lt , ε̃t = gt f

−1
t vt − gt kt rt + ηt .

It can be shown that ε̃t in Algorithm 2 is a sample from
p(εt |εt+1:T , y1:T , θ). Since

p(ε1:T |y1:T , θ) =
T∏

t=1

p(εt |εt+1:T , y1:T , θ)

this implies directly that ε̃1:T is a sample from p(ε1:T |y1:T , θ).

D TVAR˛SV processes with |�t| ≥ 1

In the simulation study of Sect. 4, we have only investigated
TVARαSV processes where the process of the autoregres-
sive parameter φt moves exclusively in the interval (−1, 1).
In this section also the TVARαSV processes are analyzed,
for which φt takes values outside the interval (−1, 1) too.
These processes were simulated with the same parameters
as in the simulation study of Sect. 4. When analyzing these
time series, it is noticeable that if the absolute value of φt is
greater than 1 over a certain period of time, the time series
very quickly reaches extreme values that are not caused by
the α-stable innovations. If this behavior occurs, one can
differentiate between the two scenarios that the time series
either returns to values of the initial magnitude or contin-
ues to increase (or decrease) within the time period under
consideration.

Figure 6 shows the first scenario where the underlying
Gaussian random walk of φt causes an extremely strong
decrease and subsequent increase of the observable time
series Y0:2500 in a certain time period. In this time frame, φt

is estimated very accurately by the posterior mean, whereas
the posterior mean of ht differs clearly from the true values.
This can be explained by the fact that in this situation in the
observation equation (3), due to the achieved order of mag-
nitude of the last observations yt−1, the stochastically scaled
innovations are negligible in contrast to the autoregressive
part.

The second scenario, in which the observable time series
Y0:2500 does not return to the initialmagnitude, is illustrated in
Fig. 7. The last line in this figure also clarifies that this devel-
opment is not caused by the α-stable innovations ε1:2500.
According to our experience for the reason already men-
tioned above, ht cannot be estimated at the end of this time
series at all and endangers the overall stability of the estima-
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Fig. 6 Application of the
estimation procedure presented
in Sect. 3. The time series
Y0:2500 was generated according
to Definition 1 (first row). In the
second and third row the smooth
dashed line constitutes the
posterior mean of the 6000 used
Gibbs sampling estimations and
the solid line constitutes the true
values of φ1:2500 and h1:2500.
The 95% confidence bound is
plotted gray. In the fourth and
fifth row the solid (resp.
horizontal dashed) line
corresponds to the estimated
(resp. true) values of σφ , σh , α
and β

tion algorithm, which is why the estimation procedure was
not applied to this TVARαSV realization.

E Simulation study with additional prior
knowledge of �1:T

In the simulation study of Sect. 4, we truncated the prior of
φ1:T by systematically selecting only TVARαSV processes
with |φt | < 1, for t = 1, . . . , T , which actually requires a
reflection in the posterior of φ1:T . In this section we assume
that this information about the prior of φ1:T is available and
take the changed posterior into account by resampling φ1:T .
This means that Algorithm 1 changes in the way that now in

each iteration of the Gibbs sampler the vector φ̃
( j)
1:T is sam-

pled repeatably using the same simulation smoother until
|φ̃( j)

t | < 1, for t = 1, . . . , T , is achieved. We applied this
adjusted Gibbs sampler to the same 1000 simulated time
series fromSect. 4, using the same randomstarting values and
hyperparameters. Furthermore, resampling of φ1:T was only
used after 3500 iterations so that the algorithm can conduct
more flexible moves in a certain part of the burn-in phase. In
a next step we performed the identical evaluation of the esti-
mation results as in Sect. 4, which is summarized in Table 7
and Table 8. When comparing these tables with Table 1 and
Table 2 in Sect. 4, one can see that the estimation results do
not differ essentially.
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Fig. 7 The time series Y0:2500
and the underlying α-stable
innovations ε1:2500 were
generated according to
Definition 1

Table 7 Results of the simulation study with resampled φ1:T using
6000 iterations after a burn-in period of 4000 iterations

Mean SD 2.5%
quantile

97.5%
quantile

Statistics of average biases of 1000 simulations

φ1:T − 0.0010 0.0165 − 0.0315 0.0305

h1:T − 0.0604 0.0418 − 0.1400 0.0194

Statistics of RMSEs of 1000 simulations

φ1:T 0.0983 0.0087 0.0823 0.1178

h1:T 0.3220 0.0212 0.2813 0.3657

F Estimation and elimination of trend and
seasonal components

When we plot the daily EEX Phelix Base electricity price
index, we observe a slowly changing local trend component,
cf. Fig. 2. Moreover, considering the empirical autocorrela-
tion function, cf. Fig. 8, we see that the data contain a weekly
seasonal component. To estimate and eliminate the trend and
seasonal component we apply a method based on moving
average estimation; see Brockwell and Davis (1991).

We assume that the data xt are the sum of a trend compo-
nent mt , a weekly seasonal component st and a TVARαSV

Table 8 Results of the
simulation study with resampled
φ1:T using 6000 iterations after
a burn-in period of 4000
iterations

True value Statistics of posterior means of 1000 simulations

Mean SD 2.5% quantile 97.5% quantile Bias

σ 2
φ 0.00058 0.000512 0.000170 0.000223 0.000872 − 0.000068

σ 2
h 0.011 0.010617 0.002677 0.005764 0.016146 − 0.000383

α 1.73 1.704942 0.031771 1.643511 1.765120 − 0.025058

β − 0.14 − 0.132107 0.072290 − 0.283576 − 0.002801 0.007893
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Fig. 8 Empirical
autocorrelation function for the
Phelix Day Base prices

Fig. 9 Estimation of trend and
seasonal components according
to the approach described in
Sect. 1. Day 0 reflects Monday

process yt which is scaled by a yearly periodical compo-
nent ζ ∗

t :

xt = mt + st + ζ ∗
t yt ,

where Eyt = 0, st+7 = st , for t = 0, . . . , T ,
∑6

j=0 s j = 0.
The exact form and meaning of ζ ∗

t is explained later. First,
we estimate the trendmt using a moving average with a win-
dow of length 161, that is m̂t = ∑80

j=−80 xt+ j/161, where
x− j = x0 and xT+ j = xT for j = 1, . . . , 80. Second, we
compute the weekly seasonal component st by calculating
wk = 1

w

∑w−1
j=0 (xk+7 j − m̂k+7 j ) for k = 0, . . . , 6, where

w = T
7 is the number of weeks covered by the data, and then

setting

ŝt =
{

wt − 1
7

∑6
j=0 w j , for t = 0, . . . , 6

ŝt−7, for t > 6
.

As in Brockwell and Davis (1991), Section 1.4 (Method S2)
we finally reestimate the trend component m̂t from the desea-
sonalized data xt − ŝt . For removing a seasonal pattern in the
scaling, we first define

ζt :=
{

− cos
( 2π t
366

)
, if t lies in a leap year

− cos
( 2π t
365

)
, otherwise

.

Due to the extreme spikes the commonly used variance
estimate is very sensitive. Hence, we work here with the
modulus, i.e. we assume a linear regression of the form

|xt − m̂t − ŝt | = μ + βζt + κt .

The parameter μ reflects the mean level of the scaling, and
β is the amplitude of the cosine oscillation modeled by ζt .
The random variables κt reflect the noise in the regression
equation. As estimates we obtain μ̂ = 6.753 with a stan-
dard error of 0.117 and β̂ = 1.537 with a standard error of
0.166 which clearly indicates the presence of a yearly sea-
sonal scaling factor. To keep the magnitude of values in the
original data set, we do not divide xt − m̂t − ŝt by μ̂ + β̂ζt ,
but by ζ ∗

t = 1 + (β̂/μ̂)ζt , i.e.

ŷt = xt − m̂t − ŝt

1 + β̂

μ̂
ζt

, t = 0, . . . , T .

The results of the described method are shown in Fig. 9.

References

Benth, F.E., Klüppelberg, C., Müller, G., Vos, L.: Futures pricing in
electricity markets based on stable CARMA spot models. Energy
Econ. 44, 392–406 (2014)

Benth, F.E., Vos, L.: Cross-commodity spot price modeling with
stochastic volatility and leverage for energy markets. Adv. Appl.
Probab. 45(2), 545–571 (2013)

Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd
edn. Springer, New York (1991)

Brooks, S., Gelman, A., Jones, G., Meng, X.-L. (eds.): Handbook of
Markov Chain Monte Carlo. Chapman and Hall/CRC, New York
(2011)

Calzolari, G., Halbleib, R., Parrini, A.: Estimating GARCH-type mod-
els with symmetric stable innovations: Indirect inference versus
maximum likelihood. Comput. Stat. Data Anal. 76, 158–171.
CFEnetwork: The Annals of Computational and Financial Econo-
metrics (2014)

123



Statistics and Computing (2021) 31 :36 Page 19 of 19 36

Casarin, R.: Bayesian inference for generalised Markov switching
stochastic volatility models. Cahier du CEREMADE (0414)
(2004)

De Jong, P., Shephard, N.: The simulation smoother for time series
models. Biometrika 82(2), 339–350 (1995)

Del Negro, M., Primiceri, G.E.: Time varying structural vector autore-
gressions and monetary policy: a corrigendum. Rev. Econ. Stud.
82(4), 1342–1345 (2015)

Engle, R.F.: Autoregressive conditional heteroscedasticity with esti-
mates of the variance of United Kingdom inflation. Econometrica
50(4), 987–1007 (1982)

Erdogdu, E.: Asymmetric volatility in European day-ahead power mar-
kets: a comparative microeconomic analysis. Energy Econ. 56,
398–409 (2016)

García, I., Klüppelberg, C., Müller, G.: Estimation of stable CARMA
models with an application to electricity spot prices. Stat. Model.
11(5), 447–470 (2011)

Ghysels, E., Harvey, A.C., Renault, E.: Stochastic volatility. In: Mad-
dala, G., Rao, C. (Eds.), StatisticalMethods in Finance, Volume 14
of Handbook of Statistics, pp. 119–191. Elsevier (1996)

Hull, J., White, A.: The pricing of options on assets with stochastic
volatilities. J. Finance 42(2), 281–300 (1987)

Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic
volatility models. J. Bus. Econ. Stat. 12(4), 371–389 (1994)

Jarque,C.M.,Bera,A.K.: Efficient tests for normality, homoscedasticity
and serial independence of regression residuals. Econ. Lett. 6(3),
255–259 (1980)

Kim, S., Shephard, N., Chib, S.: Stochastic volatility: likelihood infer-
ence and comparison with ARCHmodels. Rev. Econ. Stud. 65(3),
361–393 (1998)

Klüppelberg, C., Meyer-Brandis, T., Schmidt, A.: Electricity spot price
modelling with a view towards extreme spike risk. Quant. Finance
10(9), 963–974 (2010)

Kristoufek, L.: Leverage effect in energy futures. Energy Econ. 45, 1–9
(2014)

Ljung, G.M., Box, G.E.P.: On a measure of lack of fit in time series
models. Biometrika 65(2), 297–303 (1978)

Lombardi,M.J., Calzolari, G.: Indirect estimation of α-stable stochastic
volatility models. Comput. Stat. Data Anal. 53(6), 2298–2308.
(2009) The Fourth Special Issue on Computational Econometrics

Martin, G.M., McCabe, B.P.M., Frazier, D.T., Maneesoonthorn, W.,
Robert, C.P.: Auxiliary likelihood-based approximate Bayesian
computation in state space models. J. Comput. Gr. Stat. 28(3),
508–522 (2019)

MATLAB (2020). version 9.8 (R2020a). Natick, Massachusetts: The
MathWorks Inc

Müller, G., Seibert, A.: Bayesian estimation of stable CARMA spot
models for electricity prices. Energy Econ. 78, 267–277 (2019)

Peters, G.W., Sisson, S.A., Fan, Y.: Likelihood-free Bayesian inference
for α-stable models. Computational Statistics & Data Analy-
sis 56(11), 3743–3756. (2012) 1st issue of the Annals of Com-
putational and Financial Econometrics Sixth Special Issue on
Computational Econometrics

Pivato, M., Seco, L.: Estimating the spectral measure of a multivariate
stable distribution via spherical harmonic analysis. J. Multivar.
Anal. 87(2), 219–240 (2003)

Primiceri, G.E.: Time varying structural vector autoregressions and
monetary policy. Rev. Econ. Stud. 72(3), 821–852 (2005)

R Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria
(2020)

Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variance. Chapman and
Hall/CRC, New York (1994)

Shephard, N.: Partial non-Gaussian state space. Biometrika 81(1), 115–
131 (1994)

Shephard, N.: Statistical aspects of ARCH and stochastic volatility.
In: Cox, D., Hinkley, D.V., Barndorff-Nielsen, O.E. (eds.) Time
Series Models in Econometrics, Finance and Other Fields, pp. 1–
67. Chapman & Hall, London (1996)

Taylor, S.J.: Modeling stochastic volatility: a review and comparative
study. Math. Finance 4(2), 183–204 (1994)

Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical Analysis of
Finite Mixture Distributions, 1st edn. Wiley, Chichester (1985)

Vankov, E.R., Guindani, M., Ensor, K.B.: Filtering and estimation for
a class of stochastic volatility models with intractable likelihoods.
Bayesian Anal. 14(1), 29–52 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Estimation of time-varying autoregressive stochastic volatility models with stable innovations
	Abstract
	1 Introduction
	2 The time-varying autoregressive stochastic volatility model with stable innovations (TVARαSV)
	3 An estimation procedure of the TVARαSV model
	3.1 General description
	3.2 Estimation of φ1:T
	3.3 Estimation of h1:T
	3.4 Estimation of the parameters τ1:T, ω1:T, σφ2, σh2, α and β
	3.5 Gibbs sampling procedure

	4 Simulation study
	5 Application of the TVARαSV model to electricity spot price data
	5.1 Description of the electricity spot prices
	5.2 Estimation results
	5.3 Model verification

	6 Conclusion and outlook
	Acknowledgements
	Appendix
	A Investigation of the approximation   accuracy of α-stable distributions by finite   mixtures of normal distributions
	B Computation of conditional distributions
	B.1 Estimation of τ1:T
	B.2 Estimation of ω1:T
	B.3 Estimation of σφ2 and σh2
	B.4 Estimation of α and β

	C Formulas of the simulation smoother in our   analysis
	D TVARαSV processes with |φt|1
	E Simulation study with additional prior   knowledge of φ1:T
	F Estimation and elimination of trend and   seasonal components
	References




