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Abstract
There is a growing interest in probabilistic numerical solutions to ordinary differential equations. In this paper, the maximum
a posteriori estimate is studied under the class of ν times differentiable linear time-invariant Gauss–Markov priors, which
can be computed with an iterated extended Kalman smoother. The maximum a posteriori estimate corresponds to an optimal
interpolant in the reproducing kernel Hilbert space associated with the prior, which in the present case is equivalent to a
Sobolev space of smoothness ν + 1. Subject to mild conditions on the vector field, convergence rates of the maximum a
posteriori estimate are then obtained via methods from nonlinear analysis and scattered data approximation. These results
closely resemble classical convergence results in the sense that a ν times differentiable prior process obtains a global order
of ν, which is demonstrated in numerical examples.

Keywords Probabilistic numerical methods · Maximum a posteriori estimation · Kernel methods

1 Introduction

Let T = [0, T ], T < ∞, f : T × R
d → R

d , y0 ∈ R
d and

consider the following ordinary differential equation (ODE):

Dy(t) = f (t, y(t)), y(0) = y0, (1)

where D denotes the time derivative operator.Approximately
solving (1) on a discrete mesh TN = {tn}Nn=0, 0 = t0 <

t1 < . . . < tN = T , involves finding a function ŷ such that
ŷ(tn) ≈ y(tn), n = 0, 1, . . . , N and a procedure for finding
ŷ is called a numerical solver. This is an important problem
in science and engineering, and vast base of knowledge has
accumulated on it (Deuflhard and Bornemann 2002; Hairer
et al. 1987; Hairer and Wanner 1996; Butcher 2008).
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Classically, the error of a numerical solver is quantified in
terms of theworst-case error. However, in applicationswhere
a numerical solution is sought as a component of a larger
statistical inference problem (see, for example, Matsuda and
Miyatake 2019; Kersting et al. 2020), it is desirable that the
error can be quantified with the same semantic, that is to
say, probabilistically (Hennig et al. 2015; Oates and Sullivan
2019). Hence, the recent endeavour to develop probabilistic
ODE solvers.

Probabilistic ODE solvers can roughly be divided into two
classes, sampling based solvers and deterministic solvers.
The former class includes classical ODE solvers that are
stochastically perturbed (Teymur et al. 2016; Conrad et al.
2017;Teymur et al. 2018;Abdulle et al. 2020;Lie et al. 2019),
solvers that approximately sample from a Bayesian infer-
ence problem (Tronarp et al. 2019b), and solvers that perform
Gaussian process regression on stochastically generated data
(Chkrebtii et al. 2016). Deterministic solvers formulate the
problem as a Gaussian process regression problem, either
with a data generation mechanism (Skilling 1992; Hennig
and Hauberg 2014; Schober et al. 2014; Kersting and Hen-
nig 2016; Magnani et al. 2017; Schober et al. 2019) or by
attempting to constrain the estimate to satisfy the ODE on
the mesh (Tronarp et al. 2019b; John et al. 2019). For com-
putational reasons, it is fruitful to select the Gaussian process
prior to be Markovian (Kersting and Hennig 2016; Magnani
et al. 2017; Schober et al. 2019; Tronarp et al. 2019b), as
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this reduces cost of inference from O(N 3) to O(N ) (Särkkä
et al. 2013; Hartikainen and Särkkä 2010). Due to the con-
nection between inference with Gauss–Markov processes
priors and spline interpolation (Kimeldorf and Wahba 1970;
Weinert and Kailath 1974; Sidhu and Weinert 1979), the
Gaussian process regression approaches are intimately con-
nected with the spline approach to ODEs (Schumaker 1982;
Wahba 1973). Convergence analysis for the deterministic
solvers has been initiated, but the theory is as of yet not
complete (Kersting et al. 2018).

The formal notion of Bayesian solvers was defined by
Cockayne et al. (2019). Under particular conditions on the
vector field, the solvers of Kersting andHennig (2016);Mag-
nani et al. (2017); Schober et al. (2019); Tronarp et al. (2019b)
produce the exact posterior, if in addition a smoothing recur-
sion is implemented, which corresponds to solving the batch
problem as posed by John et al. (2019). In some cases, the
exact Bayesian solution can also be obtained by exploiting
Lie theory (Wang et al. 2018).

In this paper, the Bayesian formalism of Cockayne et al.
(2019) is adopted for probabilistic solvers and priors of
Gauss–Markov type are considered. However, rather than the
exact posterior, the maximum a posteriori (MAP) estimate
is studied. Many of the aforementioned Gaussian inference
approaches are related to the MAP estimate. Due to the
Gauss–Markov prior, the MAP estimate can be computed
efficiently by the iterated extended Kalman smoother (Bell
1994). Furthermore, the Gauss–Markov prior corresponds to
a reproducing kernel Hilbert space (RKHS) of Sobolev type
and the MAP estimate is equivalent to an optimal interpolant
in this space. This enables the use of results from scattered
data approximation (Arcangéli et al. 2007) to establish, under
mild conditions, that the MAP estimate converges to the true
solution at a high polynomial rate in terms of the fill distance
(or equivalently, the maximum step size).

The rest of the paper is organised as follows. In Sect. 2, the
solution of theODE (1) is formulated as a Bayesian inference
problem. In Sect. 3, the associated MAP problem is stated
and the iterated extended Kalman smoother for computing it
is presented (Bell 1994). In Sect. 4, the connection between
MAP estimation and optimisation in a certain reproducing
kernel Hilbert space is reviewed. In Sect. 5, the error of the
MAP estimate is analysed, for which polynomial conver-
gence rates in the fill distance are obtained. These rates are
demonstrated in Sect. 7, and the paper is finally concluded
by a discussion in Sect. 8.

1.1 Notation

Let Ω ⊂ R, then for a (weakly) differentiable function
u : Ω → R

d , its (weak) derivative is denoted by Du, or
sometimes u̇. The space of m times continuously differen-
tiable functions from Ω to R

d is denoted by Cm(Ω,Rd).

The space of absolutely continuous functions is denoted by
AC(Ω,Rd). The vector-valued Lesbegue spaces are denoted
by Lp(Ω,Rd) and the related Sobolev spaces of m times
weakly differentiable functions are denoted by Hm

p (Ω,Rd),
that is, if u ∈ Hm

p (Ω,Rd) then Dmu ∈ Lp(Ω,Rd). The
norm of y ∈ Lp(Ω,Rd) is given by

‖y‖Lp(Ω,Rd ) =
d∑

i=1

‖yi‖Lp(Ω,R).

If p = 2, the equivalent norm

‖y‖Lp(Ω,Rd ) =
√√√√

d∑

i=1

‖yi‖2Lp(Ω,R)

is sometimes used. The Sobolev (semi-)norms are given by
(Adams and Fournier 2003; Valent 2013)

|y|Hα
p (Ω,R) = ‖Dα y‖Lp(Ω,R),

‖y‖Hα
p (Ω,R) =

( α∑

m=1

|y|pHm
p (Ω,R)

)1/p
,

‖y‖Hα
p (Ω,Rd ) =

d∑

i=1

‖yi‖Hα
p (Ω,R),

and an equivalent norm on Hα
p (Ω,Rd) is

‖y‖′
Hα

p (Ω,Rd )
=

( d∑

i=1

‖yi‖p
Hα

p (Ω,R)

)1/p
.

Henceforth, the domain and codomain of the function spaces
will be omitted unless required for clarity.

For a positive definite matrixΣ , its symmetric square root
is denoted by Σ1/2, and the associated Mahalanobis norm of
a vector a is denoted by ‖a‖Σ = aTΣ−1a.

2 A probabilistic state-spacemodel

The present approach involves defining a probabilistic state-
space model, from which the approximate solution to (1)
is inferred. This is essentially the same approach as that
of Tronarp et al. (2019b). The class of priors considered
is defined in Sect. 2.1, and the data model is introduced in
Sect. 2.2.

2.1 The prior

Let ν be a positive integer, the solution of (1) is thenmodelled
by a ν times differentiable stochastic process prior Y (t) with
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a state-space representation. That is, the stochastic process
X(t) defined by

XT(t) = (
Y T (t) DY T(t) . . . DνY T(t)

)

solves a certain stochastic differential equation. Furthermore,
let {em}νm=0 be the canonical basis on R

ν+1 and Id is the
identity matrix in R

d×d , it is then convenient to define the
matrices Em = em ⊗ Id , 0 ≤ m ≤ ν. That is, the mth
sub-vector of X is given by

Xm(t) = ET
mX(t) = DmY (t), 0 ≤ m ≤ ν.

Now let Fm ∈ R
d×d , 0 ≤ m ≤ ν and Γ ∈ R

d×d a positive
definite matrix, and define the following differential operator

A = Γ −1/2
(
Id D

ν+1 −
ν∑

m=0

FmD
m
)

and the matrix F ∈ R
d(ν+1)×d(ν+1) whose nonzero d × d

blocks are given by

Fi j =
{
Id , j = i + 1, 0 ≤ i, j < ν,

Fj , i = ν, 0 ≤ j ≤ ν.

The class of priors considered herein is then given by

Y (t) = ET
0 exp(Ft)X(0) +

∫ T

0
GY (t, τ ) dW (τ ), (2)

where W is a standard Wiener process onto R
d , X(0) ∼

N (0,Σ(t−0 )), andGY is theGreen’s function associatedwith
A on T with initial condition Dmy(t0) = 0, m = 0, . . . , ν.
The Green’s function is given by

GY (t, τ ) = ET
0GX (t, τ ), (3a)

GX (t, τ ) = θ(t − τ) exp(F(t − τ))EνΓ
1/2, (3b)

where θ is Heaviside’s step function. By construction, (2) has
a state-space representation, which is given by the following
stochastic differential equation (Øksendal 2003)

dX(t) = FX(t) dt+EνΓ
1/2 dW (t), X(0) ∼ N (0,Σ(t−0 )),

(4)

where X takes values in R
d(ν+1) and the mth sub-vector of

X is given by Xm = DmY and takes values in R
d for 0 ≤

m ≤ ν. The transition densities for X are given by (Särkkä
and Solin 2019)

X(t + h) | X(t) ∼ N (A(h)X(t), Q(h)), (5)

where N (μ,Σ) denotes the normal distribution with mean
and covariance μ and Σ , respectively, and

A(h) = exp(Fh), (6a)

Q(h) =
∫ T

0
GX (h, τ )GT

X (h, τ ) dτ. (6b)

Note that the integrand in (6b) has limited support, that is,
the effective interval of integration is [0, h]. These parameters
can practically be computed via the matrix fraction decom-
position method (Särkkä and Solin 2019). Details are given
in “Appendix A”.

2.1.1 The selection of prior

While ν determines the smoothness of the prior, the actual
estimator will be of smoothness ν + 1 (see Sect. 4) and the
convergence results of Sect. 5 pertain to the case when the
solution is of smoothness ν +1 as well. Consequently, if it is
known that the solution is of smoothness α ≥ 2 then setting
ν = α −1 ensures the present convergence guarantees are in
effect. Though it is likely convergence rates can be obtained
for priors that are “too smooth” as well (see Kanagawa et al.
2020 for such results pertaining to numerical integration).

Once the degree of smoothness ν has been selected, the
parameters Σ(t−0 ), {Fm}νm=0, and Γ need to be selected.
Some common sub-classes of (2) are listed below.

– (Released ν times integrated Wiener process onto R
d ).

The process Y is a ν times integrated Wiener process if
Fm = 0, m = 1, . . . , ν. The parameters Σ(t−0 ) and Γ

are free. Though it is advisable to set Γ = σ 2Id for some
scalar σ 2. In this case, σ 2 can be fit (estimated) to the
particular ODE being solved (see “Appendix B”). This
class of processes is denoted by Y ∼ IWP(Γ , ν).

– (ν times integrated Ornstein–Uhlenbeck process onto
R
d ). The process Y is a ν times integrated Ornstein–

Uhlenbeck process if Fm = 0, m = 1, . . . , ν − 1.
The parameters Σ(t−0 ), Fν , and Γ are free. As with
IWP(Γ , ν), it is advisable to set Γ = σ 2Id . These pro-
cesses are denoted by Y ∼ IOUP(Fν, Γ , ν).

– (Mateŕn processes of smoothness ν ontoR). If d = 1 then
Y is a Mateŕn process of smoothness ν if (cf. Hartikainen
and Särkkä 2010)

Fm = −
(

ν + 1

m

)
λν+1−m, m = 0, . . . , ν,

Γ = 2σ 2λ2ν+1,

for some λ, σ 2 > 0, and Σ(t−0 ) is set to the stationary
covariance matrix of the resulting X process. If d > 1,
then each coordinate of the solution can be modelled by
an individual Mateŕn process.
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Remark 1 Many popular choices of Gaussian processes not
mentioned here also have state-space representations or can
be approximated by a state-space model (Karvonen and
Sarkkä 2016; Tronarp et al. 2018; Hartikainen and Särkkä
2010; Solin and Särkkä 2014). A notable example is Gaus-
sian processes with squared exponential kernel (Hartikainen
andSärkkä2010). SeeChapter 12ofSärkkä andSolin (2019),
for a thorough exposition.

2.2 The datamodel

For the Bayesian formulation of probabilistic numerical
methods, the data model is defined in terms of an information
operator (Cockayne et al. 2019). In this paper, the informa-
tion operator is given by

Z = D − S f , (7)

whereS f is theNemytsky operator associatedwith the vector
field f (Marcus and Mizel 1973),1 that is,

S f [y](t) = f (t, y(t)). (8)

Clearly, Z maps the solution of (1) to a known quantity, the
zero function. Consequently, inferring Y reduces to condi-
tioning on

Z[Y ](t) = 0, t ∈ TN .

The function Z[Y ](t) can be expressed in simpler terms by
use of the process X . That is, define the function

z(t, x) := x1 − f (t, x0),

then Z[Y ](t) = Sz[X ](t) = z(t, X(t)). Furthermore, it is
necessary to account for the initial condition, X0(0) = y0,
and with small additional cost the initial condition of the
derivative can also be enforced X1(0) = f (0, y0).

Remark 2 The properties of the Nemytsky operator are
entirely determined by the vector field f . For instance, if
f ∈ Cα(T × R

d ,Rd), α ≥ 0, then S f maps Cν(T,Rd) to
Cmin(ν,α)(T,R), which is fine for present purposes.However,
in the subsequent convergence analysis it is more appropriate
to view S f (and Z) as a mapping between different Sobolev
spaces, which is possible if α is sufficiently large (Valent
2013).

1 Nemytsky operators are also known as composition operators and
superposition operators.

3 Maximum a posteriori estimation

The MAP estimate for Y , or equivalently for X , is in view of
(5) the solution to the optimisation problem

min
x(t0:N )

V(x(t0:N )) (9a)

subject to ET
0x(t0) − y0 = 0, (9b)

ET
1x(t0) − f (t0, y0) = 0, (9c)

z(tn, x(tn)) = 0, n = 1, . . . , N ,

(9d)

where hn = tn − tn−1 is the step size sequence and V is up
to a constant, the negative log density

V(x(t0:N )) = 1

2

N∑

n=1

‖x(tn) − A(hn)x(tn−1)‖2Q(hn)

+ 1

2
‖x(t0)‖2Σ(t−0 )

.

(10)

If the vector field is affine in y, then theMAP estimate and the
full posterior can be computed exactly via Gaussian filtering
and smoothing (Särkkä 2013). However, when this is not the
case then, for instance, a Gauss–Newtonmethod can be used,
which can be efficiently implemented by Gaussian filtering
and smoothing as well. This method for MAP estimation
is known as the iterated extended Kalman smoother (Bell
1994).

3.1 Inference with affine vector fields

If the vector field is affine

f (t, y) = Λ(t)y + ζ(t),

then the information operator reduces to

z(t, x) = x1 − Λ(t)x0 − ζ(t),

and the inference problem reduces to Gaussian process
regression (Rasmussen and Williams 2006) with a linear
combination of function and derivative observations. In
the spline literature this is known as (extended) Hermite–
Birkhoff data (Sidhu and Weinert 1979). In this case, the
inference problem can be solved exactly with Gaussian filter-
ing and smoothing (Kalman 1960; Kalman and Bucy 1961;
Rauch et al. 1965; Särkkä 2013; Särkkä and Solin 2019).
Define the information sets

Z (t) = {z(τ, X(τ )) = 0 : τ ∈ TN , τ ≤ t},
Z (t−) = {z(τ, X(τ )) = 0 : τ ∈ TN , τ < t}.
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In Gaussian filtering and smoothing, only the mean and
covariance matrix of X(t) are tracked. The mean and covari-
ance at time t , conditioned onZ (t) are denoted byμF (t) and
ΣF (t), respectively, and μF (t−) and ΣF (t−) correspond to
conditioning on Z (t−), which are limits from the left. The
mean and covariance conditioned on Z (T ) at time t are
denoted by μS(t) and ΣS(t), respectively.

Before starting the filtering and smoothing recursions, the
process X needs to be conditioned on the initial values

ET
0X(0) = y0, ET

1X(0) = f (t0, y0).

This is can be done by a Kalman update

CT(t0) = (
E0 E1

)
, (11a)

S(t0) = C(t0)Σ(t−0 )CT(t0), (11b)

K (t0) = Σ(t−0 )CT(t0)S
−1(t0), (11c)

μF (t0) = K (t0)

(
y0

f (t0, y0)

)
, (11d)

ΣF (t0) = Σ(t−0 ) − K (t0)S(t0)K
T(t0). (11e)

The filtering mean and covariance on the mesh evolve as

μF (t−n ) = A(hn)μF (tn−1), (12a)

ΣF (t−n ) = A(hn)ΣF (tn−1)A
T(hn) + Q(hn). (12b)

The predictionmoments at t ∈ TN are then corrected accord-
ing to the Kalman update

C(tn) = ET
1 − Λ(tn)E

T
0, (13a)

S(tn) = C(tn)ΣF (t−n )CT(tn), (13b)

K (tn) = ΣF (t−n )CT(tn)S
−1(tn), (13c)

μF (tn) = μF (t−n ) + K (tn)
(
ζ(tn) − C(tn)μF (t−n )

)
, (13d)

ΣF (tn) = ΣF (t−n ) − K (tn)S(tn)K
T(tn). (13e)

On the mesh TN , the smoothing moments are given by

G(tn) = ΣF (tn)A
T(hn+1)Σ

−1
F (t−n+1), (14a)

μS(tn) = μF (tn) + G(tn)(μS(tn+1) − μF (t−n+1)), (14b)

ΣS(tn) = G(tn)
(
ΣS(tn+1) − ΣF (t−n+1)

)
GT(tn)

+ ΣF (tn), (14c)

with terminal conditions μS(tN ) = μF (tN ), and ΣS(tN ) =
ΣF (tN ). The MAP estimate and its derivatives, on the mesh,
are then given by

Dm ŷ(t) = ET
mμS(t), t ∈ TN , m = 0, . . . , ν.

Remark 3 The filtering covariance can be written as

ΣF (tn) = Σ
1/2
F (t−n )

(
I − Proj

(
Σ

1/2
F (t−n )CT(tn)

))

× Σ
1/2
F (t−n ),

where Proj(A) = A(ATA)−1AT is the projectionmatrix onto
the column space of A. By (13a) andΣF (t−n )  0, the dimen-

sion of the column space ofΣ1/2
F (t−n )CT(tn) is readily seen to

be d. That is, the null space of ΣF (tn) is of dimension d. By
(14a) and (14c), it is also seen that ΣF (tn) and ΣS(tn) share
null space. This rank deficiency is not a problem in principle
since the addition of Q(hn) in (12b) ensuresΣF (t−n ) is of full
rank. However, in practice Q(hn) may become numerically
singular for very small step sizes.

While Gaussian filtering and smoothing only provides the
posterior for affine vector fields, it forms the template for non-
linear problems aswell. That is, the vector field is replaced by
an affine approximation (Schober et al. 2019; Tronarp et al.
2019b; Magnani et al. 2017). The iterated extended Kalman
smoother approach for doing so is discussed in the following.

3.2 The iterated extended Kalman Smoother

For non-affine vector fields, only the update becomes
intractable. Approximation methods involve different ways
of approximating the vector field with an affine function

f (t, y) ≈ Λ̂(t)y + ζ̂ (t),

whereafter approximate filter means and covariances are
obtained byplugging Λ̂ and ζ̂ into (13). The iterated extended
Kalman smoother linearises f around the smoothing mean
in an iterative fashion. That is,

Λ̂l(tn) = J f (tn,E
T
0μ

l
S(tn)), (15a)

ζ̂ l(tn) = f (tn,E
T
0μ

l
S(tn)) − J f (tn,E

T
0μ

l
S(tn))E

T
0μ

l
S(tn).

(15b)

The smoothingmean and covariance at iteration l+1,μl+1
S (t)

and Σ l+1
S (t), are then obtained by running the filter and

smoother with the parameters in (15).
Asmentioned, this is just theGauss–Newton algorithm for

the maximum a posteriori trajectory (Bell 1994), and it can
be shown that, under some conditions on the Jacobian of the
vector field, the fixed point is at least a local optimum to the
MAP problem (9) (Knoth 1989). Moreover, the IEKS is just
a clever implementation of the method of John et al. (2019)
whenever the prior process has a state-space representation.
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3.2.1 Initialisation

In order to implement the IEKS, a method of initialisation
needs to be devised. Fortunately, there exists non-iterative
Gaussian solvers for this purpose (Schober et al. 2019;
Tronarp et al. 2019b). These methods also employ Taylor
series expansions to construct an affine approximation of the
vector field. These methods select an expansion point at the
prediction estimates ET

0μF (t−n ), and consequently, the affine
approximation can be constructed on the fly within the fil-
ter recursion. The affine approximation due to a zeroth-order
expansion gives the parameters (Schober et al. 2019)

Λ̂(tn) = 0, (16a)

ζ̂ (tn) = f (tn,E
T
0μF (tn)), (16b)

and will be referred to as the zeroth-order extended Kalman
smoother (EKS0). The affine expansion due to a first-order
expansion (Tronarp et al. 2019b) gives the parameters

Λ̂(tn) = J f (tn,E
T
0μF (tn)), (17a)

ζ̂ (tn) = f (tn,E
T
0μF (tn)) − J f (tn,E

T
0μF (tn))E

T
0μF (tn),

(17b)

and will be referred to as the first-order extended Kalman
smoother (EKS1). Note that EKS0 computes the exact MAP
estimate in the event that the vector field f is constant in y,
while EKS1 computes the exact MAP estimate in the more
general case when f is affine in y. Consequently, as EKS1
makes a more accurate approximation of the vector field than
EKS0, it is expected to perform better.

Furthermore, as Jacobians of the vector field will be com-
puted in the IEKS iteration anyway, the preferred method
of initialisation is EKS1, which is the method used in the
subsequent experiments.

3.2.2 Computational complexity

The computational complexity of a Gaussian filtering and
smoothing method for approximating the solution of (1)
can be separated into two parts: (1) the cost of linearisa-
tion and (2) the cost of inference. The cost of inference
here refers to the computational cost associated with the fil-
tering and smoothing recursion, which for affine systems
is O(Nd3ν3). Since EKS0 and EKS1 perform the filter-
ing and smoothing recursion once, their cost of inference
is the same, O(Nd3ν3). Furthermore, the linearisation cost
of EKS0 amounts to N + 1 evaluations of f and no evalua-
tions of J f , while EKS1 evaluates f N + 1 times and J f N
times, respectively. Assuming IEKS is initialised by EKS1
using L iterations, including the initialisation, then the cost
of inference isO(LNd3ν3), f is evaluated LN+1 times, and

Table 1 Comparison of the computational cost between EKS0, EKS1,
and IEKS, where L denotes the total number of iterations for IEKS and
it is assumed that IEKS is initialised by EKS1

EKS0 EKS1 IEKS

Inference cost O(Nd3ν3) O(Nd3ν3) O(LNd3ν3)

# Evals of f N + 1 N + 1 LN + 1

# Evals of J f 0 N LN

J f is evaluated LN times. A summary of the computational
costs is given in Table 1.

4 Interpolation in reproducing Kernel
Hilbert space

The correspondence between inference in stochastic pro-
cesses and optimisation in reproducing kernel Hilbert spaces
is well known (Kimeldorf and Wahba 1970; Weinert and
Kailath 1974; Sidhu and Weinert 1979). This correspon-
dence is indeed present in the current setting as well, in
the sense that MAP estimation as discussed in Sect. 3 is
equivalent to optimisation in the reproducing kernel Hilbert
space (RKHS) associated with Y and X (see Kanagawa et al.
2018, Proposition 3.6 for standard Gaussian process regres-
sion). The purpose of this section is thus to establish that the
RKHS associated with Y , which establishes what function
space theMAP estimator lie in. Furthermore, it is shown that
the MAP estimate is equivalent to an interpolation problem
in this RKHS, which implies properties on its norm. These
results will then be used in the convergence analysis of the
MAP estimate in Sect. 5.

4.1 The reproducing Kernel Hilbert space of the prior

The RKHS of the Wiener process with domain T and
codomain R

d is the set (cf. van der Vaart and van Zanten
2008, section 10)

W0 = {w : w ∈ AC(T,Rd), w(0) = 0, ẇ ∈ L2(T,Rd)},

with inner product given by

〈w,w′〉W0 =
∫ T

0
ẇT(τ )ẇ′(τ ) dτ = 〈ẇ, ẇ′〉L2 .

Let Yν+1 denote the reproducing kernel Hilbert space asso-
ciated with the prior process Y as defined by (2), then Y

ν+1

is given by the image of the operator (van der Vaart and van
Zanten 2008, lemmas 7.1, 8.1, and 9.1)

T (�y0, ẇy)(t) = ET
0 exp(Ft)�y0 +

∫ T

0
GY (t, τ )ẇy(τ ) dτ,
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where �y0 ∈ R
d(ν+1) and ẇy ∈ L2(T,Rd). That is,

Y
ν+1 =
{y : y = T (�y0, ẇy), �y0 ∈ R

d(ν+1), ẇy ∈ L2(T,Rd)},

and inner product is given by

〈y, y′〉Yν+1 = �yT0Σ−1(t−0 )�y′
0 + 〈Ay,Ay′〉L2

= �yT0Σ−1(t−0 )�y′
0 + 〈ẇy, ẇy′ 〉L2 .

Remark 4 For an element y ∈ Y
ν+1, the vector �y0 contains

the initial values for Dmy(t), m = 0, . . . , ν, in similarity
with the vector X(0) in the definition of the prior process
Y in (2). That is, �y0 should not be confused with the initial
value of (1).

Since GY is the Green’s function of a differential operator of
order ν + 1 with smooth coefficients, Yν+1 can be identified
as follows. A function y : T → R

d is in Yν+1 if and only if

Dmy ∈ AC(T,Rd), m = 0, . . . , ν, (18a)

Dν+1y ∈ L2(T,Rd). (18b)

Hence, by similar arguments as for the released ν times inte-
grated Wiener process, Proposition 1 holds (see proposition
2.6.24 and remark 2.6.25 of Giné and Nickl 2016).

Proposition 1 The reproducing kernel Hilbert spaceYν+1 as
a set is equal to the Sobolev space H ν+1

2 (T,Rd) and their
norms are equivalent.

The reproducing kernel ofYν+1 is given by (cf. Sidhu and
Weinert 1979)

R(t, s) = ET
0 exp(Ft)Σ(t−0 ) exp(FTs)E0

+
∫ T

0
GY (t, τ )GT

Y (s, τ ) dτ,

which is also the covariance function of Y . The linear func-
tionals

y �→ vTDmy(s), v ∈ R
d , t ∈ T, m = 0, . . . , ν,

are continuous and their representers are given by

ηm,v
s = R(0,m)(t, s)v,

〈ηm,v
s , y〉Yν+1 = vTDmy(s),

where R(m,k) denotes R differentiated m and k times with
respect to the first and second arguments, respectively. Fur-
thermore, define the matrix

ηms = (
η
m,e1
s . . . η

m,ed
s

)
,

and with notation overloaded in the obvious way, the follow-
ing identities hold

Dmy(t) = 〈ηmt , y〉Yν+1 ,

R(m,k)(t, s) = 〈ηmt , ηks 〉Yν+1 .

Since there is a one-to-one correspondence between the pro-
cesses Y and X , the RKHS associated with X is isometrically
isomorphic to Y

ν+1, and it is given by

X
ν+1 = {x : x0 ∈ Y

ν+1, xm = Dmx0, m = 1, . . . , ν},

where xm is the mth sub-vector of x of dimension d. The
kernel associated with X

ν+1 is given by

P(t, s) = exp(Ft)Σ(t−0 ) exp(FTs)

+
∫ T

0
GX (t, τ )GT

X (s, τ ) dτ,
(19)

and the d × d blocks of P are given by

Pm,k(t, s) = R(m,k)(t, s),

and ψs = P(t, s) is the representer of evaluation at s,

x(s) = 〈ψs, x〉Xν+1 .

In the following, the shorthands Y = Y
ν+1 and X = X

ν+1

are in effect.

4.2 Nonlinear Kernel interpolation

Consider the interpolation problem

ŷ = arg min
y∈IN

1

2
‖y‖2

Y
, (20)

where the feasible set is given by

IN = {y ∈ Y : y(0) = y0, ẏ(0) = f (0, y0)}
∩ {y ∈ Y : Z[y](t) = 0, t ∈ TN }.

Define the following sub-spaces of Y

RN (m) = span
{
η
l,ei
tn }m,N ,d

l=0,n=0,i=1, m ≤ ν + 1.

Similarly to other situations (Kimeldorf and Wahba 1971;
Cox and O’Sullivan 1990; Girosi et al. 1995), our optimum
can be expanded in a finite sub-space spanned by represen-
ters, which is the statement of Proposition 2.

Proposition 2 The solution to (20) is contained inRN (1).

123



23 Page 8 of 18 Statistics and Computing (2021) 31 :23

Proof Any y ∈ Y has the orthogonal decomposition y =
y‖ + y⊥, where y‖ ∈ RN (1) and y⊥ ∈ R⊥

N (1). However, it
must be the case that ‖y⊥‖Y = 0, since

1

2
‖y‖2

Y
= 1

2
‖y‖‖2Y + 1

2
‖y⊥‖2

Y
≥ 1

2
‖y‖‖2Y

and

Dmy(0) = 〈ηm0 , y‖〉Y, m = 0, . . . , ν + 1,

Z[y](t) = 〈η1t , y‖〉Y − f
(
(t, 〈η0t , y‖〉Y

)
,

for all t ∈ TN . ��
By Proposition 2, the optimal point of (20) can be written

as

y =
N∑

n=0

(
η0tn η1tn

) (
b0(tn)
b1(tn)

)
.

However, it is more convenient to expand the optimal point
in the larger sub-space, RN (ν) ⊃ RN (1)

b(tn) = (
bT0(tn) . . . bTν (tn)

)T
, (21a)

y =
N∑

n=0

(
η0tn . . . ην

tn

)
b(tn), (21b)

x =
N∑

n=0

ψtn b(tn), (21c)

where x is the equivalent element in X and

‖y‖2
Y

= ‖x‖2
X

=
N∑

n,m=0

bT(tn)P(tn, tm)b(tm),

or more compactly

‖x‖2
X

= xT P−1x, (22)

where

x = (
xT(t0) . . . xT(tN )

)T
, Pn,m = P(tn, tm).

Here, P is the kernel matrix associated with function value
observations of X atTN . That is, (22) is up to a constant equal
to the negative logdensity of X restricted toTN . Proposition3
immediately follows.

Proposition 3 The optimisation problem (20) is equivalent
to the MAP problem (9).

5 Convergence analysis

In this section, convergence rates of the kernel interpolant ŷ
as defined by (20), and by Proposition 3, the MAP estimate
are obtained. These rates will be in terms of the fill distance
of the mesh TN , which is2

δ = sup
t∈T

min
n=0,...,N

|t − tn|. (23)

In the following, results from the scattered data approxima-
tion literature (Arcangéli et al. 2007) are employed. More
specifically, for any y ∈ Y, which satisfies the initial condi-
tion y(0) = y0, formally has the following representation

y(t) = y0 +
∫ t

0
f (τ, y(τ )) dτ + E[y](t),

where the error operator E is defined as

E[y](t) =
∫ t

0
Z[y](τ ) dτ.

Of course, any reasonable estimator ŷ′ ought to have the
property that Z[ŷ′](t) ≈ 0 for t ∈ TN . The approach is thus
to boundZ[ŷ′](t) in some suitable norm, which in turn gives
a bound on E[ŷ′](t).

Throughout the discussion, ν ≥ 1 is some fixed integer,
which corresponds to the differentiability of the prior, that
is, the kernel interpolant is in H ν+1

2 (T,Rd). Furthermore,
some regularity of the vector field will be required, namely
Assumption 1, given below.

Assumption 1 Vector field f ∈ Cα+1(T̃×R
d ,Rd)with α ≥

ν and some set T̃ with T ⊂ T̃ ⊂ R.

Assumption 1 will, without explicit mention, be in force
throughout the discussion of this section. It implies that (i)
the model is well specified for sufficiently small T and (ii)
the information operator is well behaved. This shall be made
precise in the following.

5.1 Model correctness and regularity of the solution

Since ν ≥ 1,Assumption1 implies f is locallyLipschitz, and
the classical existence and uniqueness results for the solution
of Equation (1) apply. The extra smoothness on f ensures
the solution itself is sufficiently smooth for present purposes.
These facts are summarised in Theorem 1. For proof(s), refer
to (Arnol’d 1992, chapter 4, paragraph 32).

Theorem 1 There exists T ∗ > 0 such that Equation (1)
admits a unique solution y∗ ∈ Cα+1([0, T ∗),Rd).

2 Classically the error of a numerical integrator is assessed in terms of
the maximum step size which is twice the fill distance.
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Theorem 1makes apparent the necessity of the next standing
assumption.

Assumption 2 T < T ∗. That is, T ⊂ [0, T ∗).

The model is thus correctly specified in the following sense.

Corollary 1 (Correct model) The solution y∗ of Equation (1)
on T is in Y.

Proof Firstly, y∗ ∈ Cν+1(T,Rd) due to Assumption 1,
Theorem 1, and Assumption 2. Since Dν+1y∗ is continu-
ous and T is compact, it follows that Dν+1y∗ is bounded
and Dν+1y∗ ∈ Lp(T,Rd) for any p ∈ [1,∞]. Therefore
(see, for example, Nielson 1997, Theorem 20.8), Dmy∗ ∈
AC(T,Rd), m = 0, . . . , ν. ��
Corollary 1 essentially ensures that there is an a priori bound
on the norm of the MAP estimate, that is, ‖ŷ‖Y ≤ ‖y∗‖Y.
Remark 5 It is in general difficult to determine T ∗ for a
given vector field f and initial condition y0, which makes
Assumption 2 hard to verify in general. However, additional
conditions can be imposedwhich assures T ∗ = ∞. An exam-
ple of such a condition is that the vector field is uniformly
Lipschitz as mapping of R+ × R

d → R
d (Kelley and Peter-

son 2010, Theorem 8.13). That is, for any y, y′ ∈ R
d it holds

that

sup
t∈R+

‖ f (t, y) − f (t, y′)‖ ≤ Lip( f )‖y − y′‖,

where Lip( f ) < ∞ is a positive constant.

5.2 Properties of the information operator

By Proposition 1, Y correspond to the Sobolev space
H ν+1
2 (T,Rd); hence, it is crucial to understand how the

Nemytsky operator S f , and consequentlyZ , acts on Sobolev
spaces. For theNemytsky operator, thework has already been
done (Valent 2013, 1985), and Theorem 2 is immediate.

Theorem 2 Let U be an open subset of H ν+1
2 (T,Rd) such

that y(T) ⊂ U for any y ∈ U , where U some open subset
of Rd . The Nemytsky operator, S fi , associated with the i th
coordinate of f is then C1 mapping fromU onto H ν

2 (T,R)

for i = 1, . . . , d. If, in addition, U is convex and bounded,
then for any y′ ∈ U there is number c0(y′) > 0 such that

‖S fi [y] − S fi [y′]‖Hν
2

≤ c0(y
′)| fi |ν+1,U‖y − y′‖Hν+1

2
,

for all y ∈ U , where

| fi |ν+1,U :=
ν+1∑

m=0

sup
(t,a)∈T×U

|Dm fi (t, a)|.

Proof The first claim is just an application of Theorem 4.1
of (Valent 2013, page 32) and the second claim follows from
(ii) in the proof of Theorem 4.5 in (Valent 2013, page 37). ��

Theorem 2 establishes that S fi as a mapping of U onto
H ν
2 (T,R) is locally Lipschitz. This property is inherited by

the information operator.

Proposition 4 In the same setting asTheorem2. The ith coor-
dinate of the information operator,Zi , is a C1 mapping from
U onto H ν

2 (T,R), for i = 1, . . . , d. If in addition, U is
convex and bounded, then for any y′ ∈ U there is number
c1(y′, ν, fi ,U ) > 0 such that

‖Zi [y] − Zi [y′]‖Hν
2

≤ c1(y
′, ν, fi ,U )‖y − y′‖Hν+1

2
,

for all y ∈ U .

Proof The differential operator DeTi is a C1 mapping of U
onto H ν

2 (T,R). Consequently, by Theorem 2 the same holds
for the operator DeTi − S fi = Zi . For the second part, the
triangle inequality gives

‖Zi [y] − Zi [y′]‖Hν
2

≤ ‖Dyi − Dy′
i‖Hν

2

+ ‖S fi [y] − S fi [y′]‖Hν
2
,

and clearly

‖Dyi − Dy′
i‖Hν

2
≤ ‖y − y′‖Hν+1

2
.

Consequently, by Theorem2 the statement holds by selecting

c1(y
′, ν, fi ,U ) = 1 + c0(y

′)| fi |ν+1,U .

��

5.3 Convergence of theMAP estimate

Proceeding with the convergence analysis of the MAP esti-
mate canfinally be done in viewof the regularity properties of
the solution y∗ and the information operatorZ established by
Corollary 1 and Proposition 4. Combining these results with
Theorem 4.1 of Arcangéli et al. (2007) leads to Lemma 1.

Lemma 1 Letρ ∈ Ywith‖ρ‖Y > ‖[‖0]y∗
Y andq ∈ [1,∞].

Then there are positive constants c2, δ0,ν , r (depending on
ρ), and c3(y∗, ν, fi , r) such that for any y ∈ B(0, ‖ρ‖Y) the
following estimate holds for all δ < δ0,ν andm = 0, . . . , ν−
1

|Zi [y]|Hm
q

≤ c2δ
ν−m−(1/2−1/q)+c3(y

∗, ν, fi , r)

‖y − y∗‖Hν+1
2

+ c2δ
−m‖Zi [y] | TN‖∞,
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where

‖Zi [y] | TN‖∞ := max
t∈TN

|Zi [y](t)|.

Proof Firstly, Cauchy–Schwartz inequality yields

|yi (t)| = |〈η0,eit , y〉Y| ≤ √
Rii (t, t)‖y‖Y;

hence, there is a positive constant c̃ such that

‖yi‖L∞ ≤ c̃‖y‖Y.

Consequently, there exists a radius r (depending on ρ) such
that y(T) ⊂ B(0, r) whenever y ∈ B(0, ‖ρ‖Y). The set
B(0, ‖ρ‖Y) is open in Y, and by Proposition 1, it is an
open set in H ν+1

2 (T,Rd). Therefore, all the conditions of
Proposition 4 are met for the sets B(0, ‖ρ‖Y) and B(0, r). In
particular, Zi [y] ∈ H ν

2 (T) for all y ∈ B(0, ‖ρ‖Y). Conse-
quently, for appropriate selection of parameters (Arcangéli
et al. 2007, Theorem 4.1 page 193) gives

|Zi [y]|Hm
q

≤ c2δ
ν−m−(1/2−1/q)+|Zi [y]|Hν

2

+ c2δ
−m‖Zi [y] | TN‖∞

for all δ < δ0,ν and m = 0, . . . , ν − 1. Since Z[y∗] = 0, it
follows that

|Zi [y]|Hν
2

= |[|0]Zi [y] − Zi [y∗]Hν
2

≤ ‖Zi [y] − Zi [y∗]‖Hν
2
,

and by Proposition 4, the lemma holds by selecting

c3(y
∗, ν, fi , r) = c1(y

∗, ν, fi , B(0, r)),

which concludes the proof. ��

In view of Lemma 1, for any estimator ŷ′ ∈ Y, its con-
vergence rate can be established provided the following is
shown:

(i) There is ρ ∈ Y independent of ŷ′ such that y∗, ŷ′ ∈
B(0, ‖ρ‖Y)

(ii) A bound proportional to δγ , γ > 0, of ‖Zi [ŷ′] | TN‖∞
exists.

Neither (i) nor (ii) appear trivial to establish for Gaussian
estimators in general (e.g. the methods of Schober et al. 2019
and Tronarp et al. 2019b). However, (i) and (ii) hold for the
optimal (MAP) estimate ŷ, which yields Theorem 3.

Theorem 3 Let q ∈ [1,∞], thenunder the sameassumptions
as in Lemma 1, there is a constant c4(y∗, ν, fi , r) such that
for δ < δ0,ν the following holds:

|Ei [ŷ]|H0
q

≤ δνT 1/qc4(y
∗, ν, fi , r)‖y∗‖Y,

|Ei [ŷ]|Hm
q

≤ δν+1−m−(1/2−1/q)+c4(y
∗, ν, fi , r)‖y∗‖Y,

where m = 1, . . . , ν.

Proof Firstly, note that ‖ŷ‖Y ≤ ‖y∗‖Y and |Ei [ŷ]|Hm
q

=
|Zi [ŷ]|Hm−1

q
. By definition,

‖Zi [ŷ] | TN‖∞ = 0;

hence, ŷ ∈ B(0, ‖ρ‖Y), and Lemma 1 gives for m =
1, . . . , ν

|Zi [ŷ]|Hm−1
q

≤ δν+1−m−(1/2−1/q)+c2c3(y
∗, ν, fi , r)

× ‖ŷ − y∗‖Hν+1
2

.

By Proposition 1, the fact that ‖ŷ‖Y ≤ ‖y∗‖Y, and the trian-
gle inequality, there exists a constant cB (independent of ŷ
and y∗) such that

‖ŷ − y∗‖Hν+1
2

≤ cB‖y∗‖Y,

and thus, the second bound holds by selecting

c4(y
∗, ν, fi , r) = c2cBc3(y

∗, ν, fi , r).

For the first bound, the triangle inequality for integrals gives

|Ei [ŷ](t)| ≤ |Zi [ŷ]|H0
1
,

and hence,

|Ei [ŷ](t)|H0
q

≤ T 1/q |Zi [ŷ]|H0
1
,

which combined with the second bound gives the first. ��
At first glance, it may appear that there is an appalling

absence of dependence on T in the constants of the conver-
gence rates provided byTheorem3. This is not the case; the T
dependence has conveniently been hidden in ‖y∗‖Y and pos-
sibly c4(y∗, ν, fi , r). Now c4(y∗, ν, fi , r) depends on c0(y∗)
and | fi |ν+1,B(0,r), and unfortunately, an explicit expression
for c0(y∗) is not provided by Valent (2013), which makes the
effect of c4(y∗, ν, fi , r) difficult to untangle. Nevertheless,
the factor ‖y∗‖Y does indeed depend on the interval length
T . For example, let λ, y0 ∈ R and consider the following
ODE

ẏ(t) = λy(t), y(0) = y0. (24)
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Setting Σ(t−0 ) = I and selecting the prior IWP(I, ν) gives
the following (in this case A = Dν+1)

‖y∗‖2
Y

= y20

( ν∑

m=0

λ2m + λ2ν+1

2

(
exp(2λT ) − 1

))
. (25)

Consequently, the global error can be quite bad when λ > 0
and T is large even when δ is very small, which is the usual
situation (cf. Theorem 3.4 of Hairer et al. (1987)).

In the present context, it is instructive to view the solution
of (1) as a family of a quadrature problems

y(t) = y0 +
∫ t

0
f (τ, y(τ )) dτ, (26)

where ẏ(t) = f (t, y(t)) is modelled by an element of
H ν
2 (T,Rd). In viewofTheorem3, Dm ˙̂y converges uniformly

to Dm ẏ∗ at a rate of δν−m−1/2, m = 0, . . . , ν − 1; thus,
for ˙̂y the same rate as for standard spline interpolation is
obtained (Schultz 1970). Furthermore, the rate obtained for
ŷ by Theorem 3 matches the rate for integral approximations
using Sobolev kernels (Kanagawa et al. 2020, Proposition
1). That is, although dealing with a nonlinear interpola-
tion/integration problem, Assumption 1 ensures the problem
is still nice enough for the optimal interpolant to enjoy the
classical convergence rates.

6 Selecting the hyperparameters

In order to calibrate the credible intervals, the parameters
Σ(t−0 ) and Γ need to be appropriately scaled to the problem
being solved. It is practical to work with the parametrisation
Σ(t−0 ) = σ 2Σ̆(t−0 ) and Γ = σ 2Γ̆ for fixed Σ(t−0 ) and Γ̆ .
In this case, the quasi-maximum likelihood estimate of σ 2

can be computed cheaply, see Appendix B.
In principle, the parameters Fm (0 ≤ m ≤ ν) can be esti-

mated via quasi-maximum likelihood as well, but this would
require iterative optimisation. For a given computational bud-
get, this may not be advantageous since the convergence
rate obtained in Theorem 3 holds for any selection of these
parameters. Thus, it is not clear that spending a portion of a
computational budget on estimating Fm (0 ≤ m ≤ ν) will
yield a smaller solution error than solving the MAP problem
on a denser grid (smaller δ) for a fixed parameters, with the
same total computational budget. The IWP(σ 2Γ̆ , ν) class
of priors thus seem like a good default choice (Fm = 0,
0 ≤ m ≤ ν).

Nevertheless, the parameters could in principle be selected
to optimise the constant appearing in Theorem 3. That is,
solving the following optimisation problem

min
F0,...,Fν

c4(y
∗, ν, fi , r)‖y∗‖2, (27)

which unfortunately appears to be intractable in general.
However, it might be a good idea to use the second factor,
‖y∗‖2 as a proxy. For instance, consider solving the ODE in
(24) again, but this time with the prior set to IOUP(λ, 1, ν).
In this case,A = Dν+1−λDν , and theRKHSnorm becomes

‖y∗‖2
Y

= y20
∑ν

m=0
λ2m, (28)

which is strictly smaller than the RKHS norm obtained by
IWP(I, ν) in (25).

7 Numerical examples

In this section, the MAP estimate as implemented by the
iterated extended Kalman smoother (IEKS) is compared to
the methods of Schober et al. (2019) (EKS0), and Tronarp
et al. (2019b) (EKS1). In particular, the convergence rates of
the MAP estimator from Sect. 5 are verified, which appear
to generalise to the other methods as well.

In Sects. 7.1, 7.2, and 7.3 the logistic equation, Riccati
equation, and the Fitz–Hugh–Nagumo model are investi-
gated, respectively. The vector field is a polynomial in these
cases, which means it is infinitely many times differentiable
and Assumption 1 is satisfied for any ν ≥ 1. Lastly, in
Sect. 7.4, a case where the vector field is only continuous
is given, which means that Assumption 1 is violated for any
ν ≥ 1.

7.1 The logistic equation

Consider the logistic equation

ẏ(t) = 10y(t)(1 − y(t)), y(0) = y0 = 15/100,

which has the following solution.

y(t) = exp(10t)

exp(10t) + 1/y0 − 1
.

The approximate solutions are computed by EKS0, EKS1,
and IEKSon the interval [0, 1]on auniform, dense using, grid
with interval length 2−12 using a prior in the class IWP(I, ν),
ν = 1, . . . , 4. The filter updates only occur on a decimation
of this dense grid by a factor of 23+m, m = 1, . . . , 8, which
yields the fill distances δm = 2m−10, m = 1, . . . , 8. The
L∞ error of the zeroth and first derivative estimates of the
methods are computed on the dense grid and compared to δν

and δν−1/2 (predicted rates), respectively. The errors of the
approximate solutions versus fill distance are shown in Fig. 1
and it appears that EKS0, EKS1, and IEKS all attain at worst
the predicted rates once δ is small enough. It appears the rate
for EKS1/IEKS tapers off for ν = 4 and small δ. However, it
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Fig. 1 L∞ error of the solution estimate as produced by EKS0 (red),
EKS1 (blue), IEKS (green), and the predicted MAP rate δν (black),
versus fill distance. (Color figure online)

Fig. 2 L∞ error of the derivative estimate as produced by EKS0 (red),
EKS1 (blue), IEKS (green), and the predictedMAP rate δν−1/2 (black),
versus fill distance. (Color figure online)

can be verified that this is due to numerical instability when
computing the smoothing gains as the prediction covariances
ΣF (t−n ) become numerically singular for too small hn (see
(14a)). The results are similar for the derivative of the approx-
imate solution, see Fig. 2.

Solution estimates by EKS0 and EKS1 are illustrated in
Fig. 3 for ν = 2 and δ = 2−4 (IEKS is very similar EKS1 and
therefore not shown). The credible intervals are calibrated via
the quasi-maximum likelihood method, see “Appendix B”.
While both methods produce credible intervals that cover the
true solution, those of EKS1 are much tighter. That is, here

Fig. 3 Reconstruction of the logistic map (left) and its derivative (right)
with two standard deviation credible bands for EKS0 (red) and EKS1
(blue). (Color figure online)

the EKS1 estimate is of higher quality than that of EKS0,
which is particularly clear when looking at the derivative
estimates.

7.2 A Riccati equation

The convergence rates are examined for a Riccati equation
as well. That is, consider the following ODE

ẏ(t) = −c
y3(t)

2
, y(0) = y0 = 1,

which has the following solution

y(t) = 1√
ct + 1/y20

.

Just as for the logistic map, the solution is approximated
by EKS0, EKS1, and IEKS on the interval [0, 1], using a
IWP(I, ν), ν = 1, . . . , 4, for various fill distances δ. TheL∞
errors of the zeroth and first derivative estimates are shown in
Figs. 4 and 5, respectively. The general results are the same as
before, EKS1 and IEKS are very similar, and EKS0 is some
orders of magnitude worse while still appearing to converge
at a similar rate as the former. The numerical instability in
the computation of smoothing gains is still present for large
ν and small δ.

Additionally, the output of the solvers for ν = 2 is visu-
alised for step sizes of h = 0.125 and h = 0.25 in Figs. 6
and 7, respectively. It can be seen that already for h = 0.25,
the solution estimate and uncertainty quantification of the
IEKS, while EKS0 and EKS1 leave room for improvement
in terms of both accuracy and uncertainty quantification. By
halving the step size EKS1 and IEKS become near identical
(wherefore IEKS is not shown in Fig. 6), though the error of
the EKS0 is still oscillating quite a bit, particularly for the
derivative.
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Fig. 4 L∞ error of the solution estimate as produced by EKS0 (red),
EKS1 (blue), IEKS (green), and the predicted MAP rate δν (black),
versus fill distance. (Color figure online)

Fig. 5 L∞ error of the derivative estimate as produced by EKS0 (red),
EKS1 (blue), IEKS (green), and the predictedMAP rate δν−1/2 (black),
versus fill distance. (Color figure online)

Fig. 6 Reconstruction of the Riccati map (left) and its derivative (right)
with two standard deviation credible bands for EKS0 (red) and EKS1
(blue), using a step size of h = 0.125. (Color figure online)

Fig. 7 Reconstruction of the Riccati map (left) and its derivative (right)
with two standard deviation credible bands forEKS0 (red), EKS1 (blue),
and IEKS (green), using a step size of h = 0.25. (Color figure online)

7.3 The Fitz–Hugh–Nagumomodel

Consider the Fitz–Hugh–Nagumo model, which is given by

D

(
y1(t)
y2(t)

)
=

(
c(y1(t) − y31(t)/3 + y2(t))
− 1

c (y1(t) − a + by2(t))

)
. (29)

The initial conditions and parameters are set to y2(0) =
−y1(0) = 1, and (a, b, c) = (0.2, 0.2, 2), respectively. The
solution is estimated by EKS0, EKS1, and IEKS with an
IWP(I, ν) prior (1 ≤ ν ≤ 4) on a uniform grid with 212 + 1
points on the interval [0, 2.5], using the same decimation
scheme as previously. As this ODE does not have a closed
form solution, it is approximated withode453 inMATLAB,
which is called with the parameters RelTol = 10−14, and
AbsTol = 10−14. The approximate L2 error of the zeroth-
and first-order derivative estimates of y∗

1 are shown in Figs. 8
and 9, respectively. The results appear to be consistent with
the findings from the previous experiments.

Examples of the solver output of EKS1 and IEKS for ν =
2 and h = 0.4375 is in Figs. 10 and 11 for the first and second
coordinates of y, respectively. The estimate and uncertainty
quantification of the IEKS can be seen to be quite good,
except for a slight undershoot in the estimate of ẏ1 at t = 1.
The performance of EKS1 is poorer, and it overshoots quite
a bit in its estimate of y1 at around t = 1.5, which is not
appropriately reflected in its credible interval.

7.4 A non-smooth example

Let the vector field f be given by

f (y) =
{

κ, y ≤ b,

κ + λ(y − b), y > b,
(30)

and consider the following ODE:

ẏ(t) = f (y(t)), y(0) = y0 ≤ b. (31)

3 This is an adaptive embedded Runge–Kutta 4/5 method.

123



23 Page 14 of 18 Statistics and Computing (2021) 31 :23

Fig. 8 L∞ error of the solution estimate as produced by EKS0 (red),
EKS1 (blue), IEKS (green), and the predicted MAP rate δν (black),
versus fill distance. (Color figure online)

Fig. 9 L∞ error of the derivative estimate as produced by EKS0 (red),
EKS1 (blue), IEKS (green), and the predictedMAP rate δν−1/2 (black),
versus fill distance. (Color figure online)

Fig. 10 Reconstruction of the first coordinate, y1, in the Fitz–Hugh–
Nagumo model (left) and its derivative (right) with two standard
deviation credible bands for EKS1 (blue) and IEKS (green), using a
step size of h = 0.25. (Color figure online)

Fig. 11 Reconstruction of the first coordinate, y2, in the Fitz–Hugh–
Nagumo model (left) and its derivative (right) with two standard
deviation credible bands for EKS1 (blue) and IEKS (green), using a
step size of h = 0.25. (Color figure online)

Fig. 12 L∞ error of the solution estimate as produced by EKS0 (red),
EKS1 (blue), IEKS (green), and the predicted MAP rate δν (black),
versus fill distance. (Color figure online)

Fig. 13 L∞ error of the derivative estimate as produced by EKS0 (red),
EKS1 (blue), IEKS (green), and the predicted MAP rate δν (black),
versus fill distance. (Color figure online)
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Fig. 14 Reconstruction of the solution to the non-smooth ODE (left)
and its derivative (right) with two standard deviation credible bands for
EKS1 (blue) and IEKS (green), using a step size of h = 0.25. (Color
figure online)

If κ > 0, the solution is given by

y∗(t) =
{
y0 + κt, t ≤ τ ∗,
b + 1

λ
(exp(λ(t − τ ∗)) − 1)κ, t > τ ∗,

(32)

where τ ∗ = (b − y0)/κ . While f is continuous, it has
a discontinuity in its derivative at y = b, and therefore,
Assumption 1 is violated for all ν ≥ 1. Nonetheless, the
solution is approximated by EKS0, EKS1, and IEKS using
an IWP prior of smoothness 0 ≤ ν ≤ 4, and the parameters
are set to y0 = 0, b = 1, κ = 2(b − y0), and λ = −5. The
L∞ errors of the zeroth and first derivative of the approx-
imate solutions are shown in Figs. 12 and 13, respectively.
Additionally, a comparison of the solver outputs of EKS1
and IEKS is shown in Fig. 14 for ν = 2 and h = 0.25.

The estimates still appear to converge as shown in Figs. 12
and 13. However, while the rate predicted by Theorem 3
appears to still be obtained for ν = 1, a rate reduction is
observed for ν > 1 (in comparison with the rate of Theo-
rem 3). As Assumption 1 is violated, these results cannot be
explained by the present theory.

However, note that Theorem 3 was obtained using y∗ ∈
Y (Corollary 1) and S f is locally Lipschitz (Theorem 2),
together with the sampling inequalities of Arcangéli et al.
(2007). These properties of f and y∗ may be obtainable by
other means than invoking Assumption 1. This could explain
the results for ν = 1.

On the other hand, in the setting of numerical integration,
reduction in convergence rates when the RKHS is smoother
than the integrand has been investigated by Kanagawa et al.
2020. If these results can be extended to the setting of solving
ODEs, it could explain the results for ν > 1.

8 Conclusion

In this paper, the maximum a posteriori estimate associated
with the Bayesian solution of initial value problems (Cock-

ayne et al. 2019) was examined and it was shown to enjoy
fast convergence rates to the true solution.

In the present setting, the MAP estimate is just taken as a
given, in the sense that IEKS is not guaranteed to produced
the global optimum of the MAP problem. It would there-
fore be fruitful to study the MAP problem more carefully. In
particular, establishing conditions on the vector field and the
fill distance under which the MAP problem admits a unique
local optimum would be a point for future research. On the
algorithmic side, other MAP estimators can be considered,
such as Levenberg–Marquardt (Särkkä and Svensson 2020)
or alternate directionmethod ofmultipliers (Boyd et al. 2011;
Gao et al. 2019).

Furthermore, the empirical findings of Sect. 7 suggests,
although not being MAP estimators, EKS0 and EKS1 can
likely be given convergence statements similar to Theorem 3.
It is not immediately clear what the most effective approach
for this purpose is. On the one hand, one can attempt to sig-
nificantly extend the results of Kersting et al. (2018), which
is more in line with how convergence rates are obtained for
classical solvers. On the other hand, it seems like themethod-
ology developed here can be extended for local convergence
analysis as well by considering the filter update as an inter-
polation problem in some RKHS on each interval [tn−1, tn].
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A Computing transition densities

An effective method for computing the parameters of the
transition density in (6) is the matrix fraction decomposition
(Van Loan 1978; Axelsson and Gustafsson 2014; Särkkä and
Solin 2019). Define the matrix-valued function

Ξ(h) = exp

( (
F EνΓ ET

ν

0 −FT

)
h

)
.

It can then be shown that Ξ has the following structure

Ξ(h) =
(

Ξ11(h) Ξ12(h)

0 Ξ22(h)

)
,

and (Axelsson and Gustafsson 2014)

A(h) = Ξ11(h), (33a)

Q(h) = Ξ12(h)ΞT
11(h). (33b)

Furthermore, the Green’s functions can be evaluated by the
same means by noting that (see (3))

GX (t, τ ) = θ(t − τ)A(t − τ)EνΓ
1/2.

B Calibration

For a full statistical treatment of the inference problem, the
parameters Fm m = 0, . . . , ν, Γ and Σ(t−0 ) need to be
estimated. Of particular importance in terms of calibrating
uncertainty properly are Σ(t−0 ) and Γ (see (4)), which the
present discussion is just concerned with.

It can be shown that the logarithm of (quasi-)likelihood
as produced by the Gaussian inference methods is, up to an
unimportant constant, given by (cf. Tronarp et al. 2019a)

� = −1

2
log det S(t0) − 1

2

(
y0

f (0, y0)

)T

S−1(t0)

(
y0

f (0, y0)

)

− 1

2

N∑

n=1

log det S(tn)

− 1

2

N∑

n=1

‖ζ(tn) − C(tn)μF (t−n )‖2S(tn).

Additionally, if Σ(t−0 ) = σ 2Σ̆(t−0 ) and Γ = σ 2Γ̆ for
some positive definite matrices Σ̆F (t−0 ) and Γ̆ , then it can
be shown that the log likelihood, up to some unimportant
constant, reduces to (see Appendix C of Tronarp et al. 2019b

for details)4

�(σ ) = − 1

2σ 2

(
y0

f (0, y0)

)T

S̆−1(t0)

(
y0

f (0, y0)

)

− 1

2σ 2

N∑

n=1

‖ζ(tn) − C(tn)μF (t−n )‖2
S̆(tn)

− d(N + 2)

2
log σ 2,

where ·̆ denotes the output of the filter using the parameters
(Σ̆(t−0 ), Γ̆ ) rather than (Σ(t−0 ), Γ ). This yields the follow-
ing proposition, which is proved in Appendix C of Tronarp
et al. (2019b), mutatis mutandis.

Proposition 5 Let Σ(t−0 ) = σ 2Σ̆(t−0 ) and Γ = σ 2Γ̆

for some positive definite matrices Σ̆(t−0 ) and Γ̆ , then the
(quasi-)maximum likelihood estimate of σ 2 is given by

σ̂ 2
N = 1

d(N + 2)

(
y0

f (0, y0)

)T

S̆−1(t0)

(
y0

f (0, y0)

)

+ 1

d(N + 2)

N∑

n=1

‖ζ(tn) − C(tn)μF (t−n )‖2
S̆(tn)

.

(34)

Bounds for worst-case overconfidence and underconfi-
dence under maximum likelihood estimation of σ 2 has
recently been obtained by Karvonen et al. (2020). These
results appear to carry over to the present setting for affine
vector fields. However, it is not immediately clear how to
generalise this to a larger class of vector fields.

References

Abdulle, A., Garegnani, G.: Random time step probabilistic methods
for uncertainty quantification in chaotic and geometric numerical
integration. Stat. Comput. 30, 907–932 (2020)

Adams, R.A., Fournier, J.J.: Sobolev Spaces, vol. 140. Elsevier, London
(2003)

Arcangéli, R., de Silanes, M.C.L., Torrens, J.J.: An extension of a
bound for functions in Sobolev spaces, with applications to (m,
s)-spline interpolation and smoothing. Numer. Math. 107(2), 181–
211 (2007)

Arnol’d, V.I.: Ordinary Differential Equations. Springer, Berlin, Hei-
delberg (1992)

Axelsson, P., Gustafsson, F.: Discrete-time solutions to the continuous-
time differential Lyapunov equation with applications to Kalman
filtering. IEEE Trans. Autom. Control 60(3), 632–643 (2014)

Bell, B.M.: The iterated Kalman smoother as a Gauss–Newton method.
SIAM J. Optim. 4(3), 626–636 (1994)

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed
optimization and statistical learning via the alternating direction

4 There is a slight difference in the log-likelihood expression from that
of Tronarp et al. (2019b). This is because here the initial conditions are
inferred while Tronarp et al. (2019b) encodes them directly in the prior.

123



Statistics and Computing (2021) 31 :23 Page 17 of 18 23

method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122
(2011)

Butcher, J.C.: Numerical Methods for Ordinary Differential Equations,
2nd edn. Wiley, London (2008)

Chkrebtii, O.A., Campbell, D.A., Calderhead, B., Girolami, M.A.:
Bayesian solution uncertainty quantification for differential equa-
tions. Bayesian Anal. 11(4), 1239–1267 (2016)

Cockayne, J., Oates, C.J., Sullivan, T.J., Girolami, M.: Bayesian prob-
abilistic numerical methods. SIAM Rev. 61(4), 756–789 (2019)

Conrad, P.R., Girolami, M., Särkkä, S., Stuart, A., Zygalakis, K.: Sta-
tistical analysis of differential equations: introducing probability
measures on numerical solutions. Stat. Comput. 27(4), 1065–1082
(2017)

Cox, D.D., O’Sullivan, F.: Asymptotic analysis of penalized likelihood
and related estimators. Ann. Stat. 18, 1676–1695 (1990)

Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Dif-
ferential Equations. Springer, Berlin (2002)

Gao, R., Tronarp, F., Särkkä, S.: Iterated extended Kalman smoother-
based variable splitting for L1-regularized state estimation. IEEE
Trans. Signal Process. 67(19), 5078–5092 (2019)

Giné, E., Nickl, R.: Mathematical Foundations of Infinite-Dimensional
Statistical Models. Cambridge University Press, Cambridge
(2016)

Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural net-
works architectures. Neural Comput. 7(2), 219–269 (1995)

Hairer, E.,Wanner, G.: Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems. Springer, Berlin (1996)

Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equa-
tions I—Nonstiff Problems. Springer, Berlin (1987)

Hartikainen, J., Särkkä, S.: Kalman filtering and smoothing solutions
to temporal Gaussian process regression models. In: 2010 IEEE
International Workshop on Machine Learning for Signal Process-
ing. IEEE, pp. 379–384 (2010)

Hennig, P., Hauberg, S.: Probabilistic solutions to differential equations
and their application to Riemannian statistics. In: Proceedings of
the 17th International Conference on Artificial Intelligence and
Statistics (AISTATS), JMLR, W&CP, vol. 33 (2014)

Hennig, P., Osborne, M.A., Girolami, M.: Probabilistic numerics and
uncertainty in computations. Proc. R. Soc. AMath. Phys. Eng. Sci.
471(2179), 20150142 (2015)

John,D.,Heuveline,V., Schober,M.:GOODE:AGaussianoff-the-shelf
ordinary differential equation solver. In: Chaudhuri K, Salakhut-
dinov R (eds) Proceedings of the 36th International Conference
onMachine Learning, PMLR, Long Beach, California, USA, Pro-
ceedings of Machine Learning Research, vol. 97, pp. 3152–3162
(2019)

Kalman, R.E.: A new approach to linear filtering and prediction prob-
lems. J. Basic Eng. 82(1), 35–45 (1960)

Kalman, R., Bucy, R.: New results in linear filtering and prediction
theory. Trans. ASME J. Basic Eng. 83, 95–108 (1961)

Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B.K.: Gaus-
sian processes and kernel methods: a review on connections and
equivalences. arXiv:1807.02582 (2018)

Kanagawa,M., Sriperumbudur, B.K., Fukumizu, K.: Convergence anal-
ysis of deterministic kernel-based quadrature rules in misspecified
settings. Found. Comput. Math. 20, 155–194 (2020)

Karvonen, T., Sarkkä, S.: Approximate state-space Gaussian processes
via spectral transformation. In: 2016 IEEE 26th International
Workshop on Machine Learning for Signal Processing (MLSP)
(2016)

Karvonen, T., Wynne, G., Tronarp, F., Oates, C.J., Särkkä, S.:
Maximum likelihood estimation and uncertainty quantification
for Gaussian process approximation of deterministic functions.
arXiv:2001.10965 (2020)

Kelley, W.G., Peterson, A.C.: The Theory of Differential Equations:
Classical and Qualitative. Springer, Berlin (2010)

Kersting, H., Hennig, P.: Active uncertainty calibration in Bayesian
ODE solvers. In: Uncertainty in Artificial Intelligence (UAI) 2016,
AUAI, New York City (2016)

Kersting, H., Sullivan, T.J., Hennig, P.: Convergence rates of Gaussian
ODE filters. arXiv:1807.09737 (2018)

Kersting,H.,Krämer,N., Schiegg,M.,Daniel, C., Tiemann,M.,Hennig,
P.: Differentiable likelihoods for fast inversion of ’likelihood-free’
dynamical systems. arXiv:2002.09301 (2020)

Kimeldorf, G.,Wahba, G.: Some results on Tchebycheffian spline func-
tions. J. Math. Anal. Appl. 33(1), 82–95 (1971)

Kimeldorf, G.S., Wahba, G.: A correspondence between Bayesian esti-
mation on stochastic processes and smoothing by splines. Ann.
Math. Stat. 41(2), 495–502 (1970)

Knoth, O.: A globalization scheme for the generalized Gauss–Newton
method. Numer. Math. 56(6), 591–607 (1989)

Lie, H.C., Stuart, A.M., Sullivan, T.J.: Strong convergence rates of
probabilistic integrators for ordinary differential equations. Stat.
Comput. 29(6), 1265–1283 (2019)

Magnani, E., Kersting, H., Schober, M., Hennig, P.: Bayesian Filter-
ing for ODEswith bounded derivatives. arXiv:1709.08471 [csNA]
(2017)

Marcus, M., Mizel, V.J.: Nemytsky operators on Sobolev spaces. Arch.
Ration. Mech. Anal. 51, 347–370 (1973)

Matsuda, T., Miyatake, Y.: Estimation of ordinary differential equation
models with discretization error quantification. arXiv:1907.10565
(2019)

Nielson, O.A.: An Introduction to Integration and Measure Theory.
Wiley, New York (1997)

Oates, C.J., Sullivan, T.J.: A modern retrospective on probabilistic
numerics. Stat. Comput. 29(6), 1335–1351 (2019)

Øksendal, B.: Stochastic Differential Equations—An Introduction with
Applications. Springer, Berlin (2003)

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine
Learning. MIT Press, New York (2006)

Rauch, H.E., Tung, F., Striebel, C.T.: Maximum likelihood estimates of
linear dynamic system. AIAA J. 3(8), 1445–1450 (1965)

Särkkä, S.: Bayesian Filtering and Smoothing. Cambridge University
Press, Cambridge (2013)

Särkkä, S., Solin, A.: Applied Stochastic Differential Equations. Cam-
bridge University Press, Cambridge (2019)

Särkkä, S., Svensson, L.: Levenberg–Marquardt and line-search
extended Kalman smoothers. In: 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing. IEEE, Virtual
location (2020)

Särkkä, S., Solin, A., Hartikainen, J.: Spatiotemporal learning via
infinite-dimensional Bayesian filtering and smoothing: a look at
Gaussian process regression through Kalman filtering. IEEE Sig-
nal Process. Mag. 30(4), 51–61 (2013)

Schober, M., Duvenaud, D.K., Hennig, P.: Probabilistic ODE solvers
with Runge-Kuttameans. In: Ghahramani, Z.,Welling,M., Cortes,
C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems 27, pp. 739–747. Curran Asso-
ciates Inc, Montréal (2014)

Schober, M., Särkkä, S., Hennig, P.: A probabilistic model for the
numerical solution of initial value problems. Stat. Comput. 29(1),
99–122 (2019)

Schultz, M.H.: Error bounds for polynomial spline interpolation. Math.
Comput. 24(111), 507–515 (1970)

Schumaker, L.L.:Optimal spline solutions of systems of ordinary differ-
ential equations. In: Differential Equations. Springer, pp. 272–283
(1982)

Sidhu, G.S., Weinert, H.L.: Vector-valued Lg-splines II interpolating
splines. J. Math. Anal. Appl. 70(2), 505–529 (1979)

Skilling, J.: Bayesian solution of ordinary differential equations. In:
Maximum Entropy and Bayesian Methods. Springer, pp. 23–37
(1992)

123

http://arxiv.org/abs/1807.02582
http://arxiv.org/abs/2001.10965
http://arxiv.org/abs/1807.09737
http://arxiv.org/abs/2002.09301
http://arxiv.org/abs/1709.08471
http://arxiv.org/abs/1907.10565


23 Page 18 of 18 Statistics and Computing (2021) 31 :23

Solin, A., Särkkä, S.: Gaussian quadratures for state space approxima-
tion of scalemixtures of squared exponential covariance functions.
In: 2014 IEEE International Workshop on Machine Learning for
Signal Processing (MLSP) (2014)

Teymur,O., Zygalakis,K.,Calderhead,B.: Probabilistic linearmultistep
methods. In: Advances in Neural Information Processing Systems
(NIPS) (2016)

Teymur, O., Lie, H.C., Sullivan, T., Calderhead, B.: Implicit proba-
bilistic integrators for ODEs. In: Advances in Neural Information
Processing Systems (NIPS) (2018)

Tronarp, F., Karvonen, T., Särkkä, S.: Mixture representation of the
Matérn class with applications in state space approximations and
Bayesian quadrature. In: 2018 IEEE 28th International Workshop
on Machine Learning for Signal Processing (MLSP) (2018)

Tronarp, F., Karvonen, T., Särkkä, S.: Student’s t-filters for noise scale
estimation. IEEE Signal Process. Lett. 26(2), 352–356 (2019a)

Tronarp, F., Kersting, H., Särkkä, S., Hennig, P.: Probabilistic solutions
to ordinary differential equations as nonlinear Bayesian filtering:
a new perspective. Stat. Comput. 29(6), 1297–1315 (2019b)

van der Vaart, A.W., van Zanten, J.H.: Reproducing kernel Hilbert
spaces of Gaussian priors. In: Pushing the Limits of Contemporary
Statistics: Contributions in Honor of Jayanta K. Ghosh. Institute
of Mathematical Statistics, pp. 200–222 (2008)

Valent, T.: A property of multiplication in Sobolev spaces. Some appli-
cations. Rendiconti del Seminario Matematico della Università di
Padova 74, 63–73 (1985)

Valent, T.: Boundary Value Problems of Finite Elasticity: Local The-
orems on Existence, Uniqueness, and Analytic Dependence on
Data, vol. 31. Springer, Berlin (2013)

Van Loan, C.: Computing integrals involving the matrix exponential.
IEEE Trans. Autom. Control 23(3), 395–404 (1978)

Wahba, G.: A class of approximate solutions to linear operator equa-
tions. J. Approx. Theory 9(1), 61–77 (1973)

Wang, J., Cockayne, J., Oates, C.J.: A role for symmetry in the Bayesian
solution of differential equations. Bayesian Anal. 15, 1057–1085
(2018)

Weinert, H.L., Kailath, T.: Stochastic interpretations and recursive algo-
rithms for spline functions. Ann. Stat. 2(4), 787–794 (1974)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Bayesian ODE solvers: the maximum a posteriori estimate
	Abstract
	1 Introduction
	1.1 Notation

	2 A probabilistic state-space model
	2.1 The prior
	2.1.1 The selection of prior

	2.2 The data model

	3 Maximum a posteriori estimation
	3.1 Inference with affine vector fields
	3.2 The iterated extended Kalman Smoother
	3.2.1 Initialisation
	3.2.2 Computational complexity


	4 Interpolation in reproducing Kernel Hilbert space
	4.1 The reproducing Kernel Hilbert space of the prior
	4.2 Nonlinear Kernel interpolation

	5 Convergence analysis
	5.1 Model correctness and regularity of the solution
	5.2 Properties of the information operator
	5.3 Convergence of the MAP estimate

	6 Selecting the hyperparameters
	7 Numerical examples
	7.1 The logistic equation
	7.2 A Riccati equation
	7.3 The Fitz–Hugh–Nagumo model
	7.4 A non-smooth example

	8 Conclusion
	Acknowledgements
	A Computing transition densities
	B Calibration
	References






