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Abstract
Three important issues are often encountered in Supervised and Semi-Supervised Classification: class memberships are
unreliable for some training units (label noise), a proportion of observations might depart from the main structure of the data
(outliers) and new groups in the test set may have not been encountered earlier in the learning phase (unobserved classes).
The present work introduces a robust and adaptive Discriminant Analysis rule, capable of handling situations in which one
or more of the aforementioned problems occur. Two EM-based classifiers are proposed: the first one that jointly exploits the
training and test sets (transductive approach), and the second one that expands the parameter estimation using the test set,
to complete the group structure learned from the training set (inductive approach). Experiments on synthetic and real data,
artificially adulterated, are provided to underline the benefits of the proposed method.

Keywords Impartial trimming · Inductive inference · Label noise · Model-based classification · Novelty detection · Outliers
detection · Robust estimation · Transductive inference · Unobserved classes

1 Introduction

The standard classification framework assumes that a set
of outlier-free and correctly labelled units are available for
each and every groupwithin the population of interest. Given
these strong assumptions, the labelled observations (i.e., the
training set) are employed to build a classification rule for
assigning unlabelled samples (i.e., the test set) to one of the
known groups. However, real-world sets may contain noise,
that can adversely impact the classification performances of
induced classifiers. Two sources of anomalies may appear:
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– label noise, that is wrongly labelled data, represented in
the left panel of Fig. 1;

– feature noise, whenever erroneous measurements are
given to some units, as shown in central panel of Fig. 1.

Moreover, when new data are given to the classifier, extra
classes, not observed earlier in the training set, may appear
(see right panel of Fig. 1). Therefore, for a classification
method to succeed when the aforementioned assumptions
are violated, both anomalies and novelties need to be iden-
tified and categorized as such. Since neither anomaly nor
novelty detection is universally defined in the literature, we
hereafter characterize their meaning in the context of classi-
fication methods.

Anomaly detection refers to the problem of finding pat-
terns in data that do not conform to expected behaviour
(Chandola et al. 2009). Particularly, we designate as anoma-
lies the noisy units whose presence in the dataset obscures the
relationship between the attributes and the class membership
(Hickey 1996). Following Zhu and Wu (2004), we distin-
guish between attribute and class noise: the former identifies
units with unusual values on their predictors (outliers), whilst
with the latter we indicate observations with inaccurate class
membership (label noise). Examples of methods able to
deal with anomalies in classification include Robust Lin-
ear Discriminant Analysis (Hawkins and McLachlan 1997),
Robust Soft independent modelling of class analogies (Van-
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Fig. 1 Different classification scenarios in which the training set presents label noise (left panel), outliers (central panel) and in which the test set
contains groups not previously encountered in the learning phase (right panel)

denBranden andHubert 2005),RobustMixtureDiscriminant
Analysis (Bouveyron and Girard 2009), and, more recently,
RobustUpdatingClassificationRules (Cappozzo et al. 2019).

Novelty detection is the identification of new or unknown
data or signals that a machine learning system is not aware
of during training (Markou and Singh 2003). Particularly,
in a classification context, we indicate with novelty a group
of observations in the test set that displays a common pat-
tern not previously encountered in the training set, and can
therefore be identified as a novel or hidden class. From a
stochastic viewpoint, this is equivalent to assuming that the
probability distribution of the labels differs in the labelled
and unlabelled sets, as a result of an unknown sample rejec-
tion process.More generally, the difference between the joint
distribution of labels and input variables in the training and
test sets is denoted as the “dataset shift” problem: for a thor-
ough description of the topic, the interested reader is referred
to Quionero-Candela et al. (2009). Examples of methods that
are able to deal with novelties in classification includeClassi-
fier Instability (Tax and Duin 1998), Support Vector Method
for novelty detection (Schölkopf et al. 2000) and Adaptive
Mixture Discriminant Analysis (Bouveyron 2014). Recently,
Fop et al. (2018) extended the latter method to account for
unobserved classes and extra variables in high-dimensional
discriminant analysis.

The ever-increasing complexity of real-world datasets
motivates the development of methods that bridge the advan-
tages of both novelty and anomaly detection classifiers.
For instance, human supervision is required in biomedi-
cal applications: this costly and difficult procedure is prone
to introduce label noise in the training set, while some
less common or yet unknown patterns might be left com-
pletely undiscovered. Another example comes from the food
authenticity domain: adulterated samples are nothing but
wrongly-labeled units in the training set, whilst new and
unidentified adulterants may generate unobserved classes
that need to be discovered. Also, in food science, the state-
of-the-art approach for determining food origin is to employ
microbiome analysis as a discriminating signature: two

promising applications for identifying wine provenance and
variety are reported in Sect. 5.

In the present paper we introduce a novel classification
method for situations where class-memberships are unreli-
able for some training units (label noise), a proportion of
observations departs from themain structure of the data (out-
liers) and new groups in the test set were not encountered
earlier in the learning phase (unobserved classes). Our pro-
posal models the unobserved classes as arising from new
components of a mixture of multivariate normal densities,
and no distributional assumptions aremade on the noise com-
ponent.

The rest of the manuscript is organized as follows. Sec-
tion 2 briefly describes the adaptive mixture discriminant
analysis (AMDA): amodel-based classifier capable of detect-
ing several unobserved classes in a new set of unlabelled
observations (Bouveyron 2014). In Sect. 3, we introduce
a robust generalization of the AMDA method employing
a mixture of Gaussians: robustness is achieved via impar-
tial trimming and constraints on the parameter space and
adaptive learning is obtained by means of a transductive or
inductive EM-based procedure. Model selection is carried
out via robust information criteria. Experimental results for
evaluating the features of the proposedmethod are covered in
Sect. 4. Section 5 presents two real data applications, involv-
ing the detection of grapes origin andmust variety when only
a subset of the whole set of classes are known in advance and
learning units are not to be entirely trusted. Section 6 con-
cludes the paper with some remarks and directions for future
research.

2 Adaptivemixture discriminant analysis

The Adaptive Mixture Discriminant Analysis (AMDA),
introduced in Bouveyron (2014), is a model-based frame-
work for supervised classification that accounts for the case
when some of the test units might belong to a group not
encountered in the training set.
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More formally, consider {(x1, l1), . . . , (xN , lN )} a com-
plete set of learning observations, where xn denotes a
p-variate outcome and ln its associated class label, such that
lng = 1 if observation n belongs to group g and 0 otherwise,
g = 1, . . . ,G. Analogously, let {(y1, z1), . . . , (yM , zM )} the
set of unlabelled observations ym with unknown classes zm ,
where zmg = 1 if observationm belongs to group g and 0 oth-
erwise, g = 1, . . . , E , with E ≥ G. Both xn , n = 1, . . . , N ,
and ym , m = 1, . . . , M , are assumed to be independent real-
izations of a continuous random vector X ∈ R

p; while ln
and zm are considered to be realizations of a discrete random
vector C ∈ {1, . . . , E}. Note that onlyG classes, withG pos-
sibly smaller than E , were encountered in the learning data.
That is, there might be a number H of “hidden” classes in
the test such that E = G + H , with H ≥ 0. Therefore, the
marginal density for X is equal to:

f (x;Θ) =
E∑

g=1

τg f (x, θ g),

where τg is the prior probability of observing class g,
such that

∑E
g=1 τg = 1, f (·, θ g) is the density of the

gth component of the mixture, parametrized by θ g , and
Θ represents the collection of parameters to be estimated,
Θ = {τ1, . . . , τE , θ1, . . . , θ E }. Under the given framework,
the observed log-likelihood for the set of available informa-
tion {(xn, ln, ym)}, n = 1, . . . , N , m = 1, . . . , M , assumes
the form:

�(Θ|X,Y, l) =
N∑

n=1

G∑

g=1

lng log
[
τg f (xn; θ g)

]+

+
M∑

m=1

log

⎡

⎣
E∑

g=1

τg f (ym; θ g)

⎤

⎦.

(1)

The first term in (1) accounts for the joint distribution of
(xn, ln), since both are observed; whereas in the second term
only the marginal density of ym contributes to the likelihood,
given that its associated label zm is unknown. Two alternative
EM-based approaches for maximizing (1) with respect to Θ

in the case of Gaussian mixture are proposed in Bouveyron
(2014). The adapted classifier assigns a new observation ym
to a known or previously unseen class with the associated
highest posterior probability:

ẑmg = P(C = g|X = ym) = τ̂g f (ym; θ̂ g)
∑E

j=1 τ̂ j f (ym; θ̂ j )
,

for g = 1, . . . ,G,G + 1, . . . , E . Note that the total num-
ber E of groups is not established in advance and needs to
be estimated: standard tools for model selection in the mix-

ture model framework serve to this purpose (Akaike 1974;
Schwarz 1978).

The present paper extends the original AMDA model,
briefly summarized in this Section, in three ways. Firstly,
we account for both attribute and class noise that can appear
in the samples (Zhu and Wu 2004), employing impartial
trimming (Gordaliza 1991). Secondly, we consider a more
flexible class of learners with the parsimonious parametriza-
tion based on the eigen-decomposition of Banfield and
Raftery (1993) and Celeux and Govaert (1995). Thirdly, we
deal with a constrained parameter estimation to avoid con-
vergence to degenerate solutions and to protect the estimates
from spurious local maximizers that are likely to arise when
searching for unobserved classes (see Sect. 3.7).

The extended model is denoted as Robust and Adaptive
EigenDecompositionDiscriminantAnalysis (RAEDDA); its
formulation, inferential aspects and selection criteria are cov-
ered in the next Section.

3 Robust and adaptive EDDA

3.1 Model formulation

In this Section we introduce the new procedure, based on the
definition of trimmed log-likelihood (Neykov et al. 2007)
under a Gaussian mixture framework. Given a sample of N
training and M test data, we construct a procedure for max-
imizing the trimmed observed data log-likelihood:

�tr im(τ ,μ,Σ |X,Y, l) =

=
N∑

n=1

ζ(xn)
G∑

g=1

lng log
(
τgφ(xn;μg,Σg)

)+

+
M∑

m=1

ϕ(ym) log

⎛

⎝
E∑

g=1

τgφ(ym;μg,Σg)

⎞

⎠

(2)

where φ(·;μg,Σg) represents the multivariate Gaussian
density with mean vector μg and covariance matrix Σg; the
functions ζ(·) and ϕ(·) are indicator functions that determine
whether each observation contributes or not to the trimmed
likelihood, such that only

∑N
n=1 ζ(xn) = �N (1 − αl)� and∑M

m=1 ϕ(ym) = �M(1 − αu)� terms are not null in (2). The
labelled trimming level αl and the unlabelled trimming level
αu identify the fixed fraction of observations, respectively
belonging to the training and test sets, that are tentatively
assumed to be unreliable at each iteration during the maxi-
mization of (2). Once the trimming levels are specified, the
proposed maximization process returns robustly estimated
parameter values (see Sects. 3.2 and 3.3 for details). Finally
notice that only G groups in (2), out of the E ≥ G present
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Fig. 2 Ellipses of isodensity for each of the 14 Gaussian mod-
els obtained by eigen-decomposition in case of three groups in two
dimensions. Green (red) area denotes variable (equal) volume across
components. Dashed green (solid red) perimeter denotes variable

(equal) shape across components. Dashed green (solid red) axes denote
variable (equal) orientation across components. Solid black perimeter
denotes spherical shape. Solid black axes denote axis-aligned orienta-
tion. (Color figure online)

in the population, are already captured within the labelled
units, as in the AMDA model.

To introduce flexibility and parsimony, we consider the
eigen-decomposition for the covariance matrices of Banfield
and Raftery (1993) and Celeux and Govaert (1995):

Σg = λgDgAgD
′
g (3)

where λg = |Σg|1/p, with | · | denoting the determinant, Ag

is the scaled (|Ag| = 1) diagonal matrix of eigenvalues of
Σg sorted in decreasing order and Dg is a p × p orthogo-
nal matrix whose columns are the normalized eigenvectors
of Σg , ordered according to their eigenvalues (Greselin and
Punzo 2013). These elements correspond respectively to the
orientation, shape and volume (alternatively called scale) of
the Gaussian components. By imposing cross-constraints on
the parameters in (3) 14 patterned models can be defined:
their nomenclature and characteristics are represented in
Fig. 2. Bensmail andCeleux (1996) defined a family of super-
vised classifiers based on such decomposition, known in the
literature as Eigenvalue Decomposition Discriminant Anal-
ysis (EDDA). Our proposal generalizes the original EDDA
including robust estimation and adaptive learning, hence the
name Robust and Adaptive Eigenvalue Decomposition Dis-
criminant Analysis (RAEDDA). Two alternative estimation
procedures for maximizing (2) are proposed. The transduc-
tive approach (see Sect. 3.2) works on the simultaneous
usage of learning and test sets to estimate model parame-
ters. The inductive approach (see Sect. 3.3), instead, consists
of two distinctive phases: in the first one the training set is
employed for estimating parameters of the G known groups;

in the second phase the unlabelled observations are assigned
to the known groups whilst searching for new classes and
estimating their parameters. Computational aspects for both
procedures are detailed in the next Sections.

3.2 Estimation procedure: transductive approach

Transductive inference considers the joint exploitation of
training and test sets to solve a specific learning problem
(Vapnik 2000; Kasabov and Shaoning 2003). Transductive
reasoning is applied for instance in semi-supervised classifi-
cation methods: the data generating process is assumed to be
the same for labelled and unlabelled observations and hence
units coming from both sets can be used to build the classi-
fication rule. Within the family of model-based classifiers,
examples of such methods are the updating classification
rules byDean et al. (2006) and its robust generalization intro-
duced in Cappozzo et al. (2019). The present context is more
general than semi-supervised learning since the total number
of classes E might be strictly larger than theG ones observed
in the training set. Therefore, an ad-hoc procedure needs to
be introduced: a graphical representation of the transductive
approach is reported in Fig. 3.

An adaptation of the EM algorithm (Dempster et al. 1977)
that includes a Concentration Step (Rousseeuw and Driessen
1999) and an eigenvalue-ratio restriction (Ingrassia 2004) is
employed for maximizing (2). The former serves the pur-
pose of enforcing impartial trimming in both labelled and
unlabelled units at each step of the algorithm, whereas the
latter prevents the procedure to be trapped in spurious local
maximizers that may arise whenever a random pattern in the
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l Y

�M(1 − αu)�

X

Training Set

�N(1 − αl)�

Test Set

τ̂

μ̂1, . . . , μ̂G, μ̂G+1, . . . , μ̂E

Σ̂1, . . . , Σ̂G, Σ̂G+1, . . . , Σ̂E

Fig. 3 General framework of the robust transductive estimation
approach: �N (1 − αl )� observations in the training and �M(1 − αu)�
observations in the test are jointly employed in estimating parameters
for the known and hidden classes

test is wrongly fitted to form a hidden class (see Sect. 3.7).
Particularly, the considered eigenvalue-ratio restriction is as
follows:

Π/π ≤ c (4)

where

Π = max
g=1...E

max
l=1...p

dlg

and

π = min
g=1...E

min
l=1...p

dlg,

with dlg , l = 1, . . . , p being the eigenvalues of thematrixΣg

and c ≥ 1 being a fixed constant (Ingrassia 2004). Constraint
(4) simultaneously controls differences between groups and
departures from sphericity, by forcing the relative length of
the axes of the equidensity ellipsoids of the multivariate nor-
mal distribution (modeling each group) to be smaller than

√
c

(García-Escudero et al. 2014). From the seminal paper ofDay
(1969) we know that the likelihood for a Gaussian mixture
is unbounded and the ML approach is thus an ill posed prob-
lem, whenever constraints like in (4) are not assumed. Notice
further that the constraint in (4) is still needed whenever
either the shape or the volume is free to vary across com-
ponents (García-Escudero et al. 2018a): feasible algorithms
for enforcing the eigen-ratio constraint under different spec-
ification of the covariance matrices as per Fig. 2 have been
derived in Cappozzo et al. (2019).

Under the transductive learning phase, the trimmed com-
plete data log-likelihood reads as:

�tr imc (τ ,μ,Σ |X,Y, l, z) =

=
N∑

n=1

ζ(xn)
G∑

g=1

lng log
(
τgφ(xn;μg,Σg)

)+

+
M∑

m=1

ϕ(ym)

E∑

g=1

zmg log
(
τgφ(ym;μg,Σg)

)
.

(5)

The following steps detail a constrained EM algorithm for
jointly estimating model parameters (see Fig. 3) whilst
searching for new classes and outliers.

Unlike what is suggested in Bouveyron (2014), the EM
initialization is here performed in two subsequent steps for
preventing outliers to spoil the starting values and henceforth
driving the entire algorithm to reach uninteresting solutions.
We firstly make use of a robust procedure to obtain a set of
parameter estimates {τ̄ , μ̄, Σ̄} for the known groupsG using
only the training set. Afterwards, if E > G, we randomly
initialize the parameters for the H = E − G hidden classes
taking advantage of the known groups structure learned in
the previous step. Notice that, as in Bouveyron (2014), at
this moment the number of hidden classes E is assumed to
be known: we will discuss its estimation later (see Sect. 3.6).

– Robust Initialization for the G known groups: set k =
0. Employing only the labelled data, we obtain robust
starting values for μg and Σg , g = 1, . . . ,G as follows:

1. For each known class g, draw a random (p+1)-subset
Jg and compute its empirical mean μ̄

(0)
g and covari-

ance Σ̄
(0)
g according to the considered parsimonious

structure.
2. Set

{τ̄ , μ̄, Σ̄} = {τ̄1, . . . , τ̄G , μ̄1, . . . , μ̄G , Σ̄1, . . . , Σ̄G}
= {τ̄ (0)

1 , . . . , τ̄
(0)
G , μ̄

(0)
1 , . . . , μ̄

(0)
G , Σ̄

(0)
1 , . . . , Σ̄

(0)
G }

where τ̄
(0)
1 = . . . = τ̄

(0)
G = 1/G.

3. For each xn , n = 1, . . . , N , compute the conditional
density

f (xn |lng = 1; μ̄, Σ̄) = φ
(
xn; μ̄g, Σ̄g

)
g = 1, . . . ,G. (6)

	Nαl
% of the samples with lower values of (6)
are temporarily discarded from contributing to the
parameters estimation.The rationale being that obser-
vations suffering from either class or attribute noise
are unplausible under the currently fitted model. That
is, ζ(xn) = 0 in (5) for such observations.

4. The parameter estimates for the G known classes are
updated, based on the non-discarded observations:

τ̄g =
∑N

n=1 ζ(xn)lng
�N (1 − αl)� g = 1, . . . ,G (7)

μ̄g =
∑N

n=1 ζ(xn)lngxn∑N
n=1 ζ(xn)lng

g = 1, . . . ,G. (8)

Estimation of Σg depends on the considered pat-
terned model, details are given in Bensmail and
Celeux (1996).
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5. Iterate 3–4 until the 	Nαl
 discarded observations are
exactly the same on two consecutive iterations, then
stop.

The procedure described in steps 1–5 is performed
n_init times, and the parameter estimates {τ̄ , μ̄, Σ̄}
that lead to the highest value of the objective function

�tr im(τ̄ , μ̄, Σ̄ |X, l) =
N∑

n=1

ζ(xn)
G∑

g=1

lng log
[
τ̄gφ(xn; μ̄g, Σ̄g)

]

are retained. Therefore, {τ̄ , μ̄, Σ̄} is the output of the
robust initialization phase for the G known classes.

– Initialization for the H hidden classes: If E > G, starting
values for the H = E − G hidden classes need to be
properly initialized as follows:

1. For each hidden class h, h = G + 1, . . . , E , draw
a random (p + 1)-subset Jh and compute its empir-

ical mean μ̂
(0)
h and variance covariance matrix Σ̂

(0)
h

according to the considered parsimonious structure.
Mixing proportions τh are drawn from U[0,1] and ini-
tial values set equal to

τ̂
(0)
h = τh∑E

j=G+1 τ j
× H

E
, h = G + 1, . . . , E .

The previously estimated τg should also be renormal-
ized:

τ̂ (0)
g = τ̄g × G

E
, g = 1, . . . ,G,

to obtain that the initialized vector of mixing propor-
tion sums to 1 over the E groups.

– If the selected patterned model allows for heteroscedas-

tic Σg , and Σ̂
(0)
g , g = 1, . . . , E do not satisfy (4),

constrained maximization needs to be enforced. Given
the semi-supervised nature of the problem at hand,
we propose to further rely on the information that
can be extracted from the robustly initialized estimates
{τ̄ , μ̄, Σ̄} to set sensible values for the fixed constant
c ≥ 1 required in the eigenvalue-ratio restriction. That
is, if no prior information for the value c is available, as
it is almost always the case in real applications (García-
Escudero et al. 2018a), the following quantity could be,
al least initially, used:

c̃ = maxg=1...G maxl=1...p d̄lg
ming=1...G minl=1...p d̄lg

(9)

with d̄lg , l = 1, . . . , p being the eigenvalues of thematrix
Σ̄g , g = 1, . . . ,G. This implicitly means that we expect

extra hidden groups whose difference among group scat-
ters is no larger than that observed for the known groups.
Such a choice prevents the appearance of spurious solu-
tions, protecting the adapted learner to wrongly identify
random patterns as unobserved classes whilst allowing
for groups variability to be preserved. Nevertheless, one
mightwant to allowmore flexibility in the group structure
and use (9) as a lower bound for c, rather than an actual

reasonable value. Once having obtained Σ̂
(0)
g under the

eigenvalue ratio constraint, the following EM iterations
produce an algorithm that maximizes the observed like-
lihood in (2).

– EM Iterations: denote by

Θ̂
(k) = {τ̂ (k)

1 , . . . , τ̂
(k)
E , μ̂

(k)
1 , . . . , μ̂

(k)
E , Σ̂

(k)
1 , . . . , Σ̂

(k)
E }

the parameter estimates at the k-th iteration of the algo-
rithm.

– Step 1 - Concentration: the trimming procedure is
implemented by discarding the 	Nαl
 observations
xn with smaller values of

D
(
xn; Θ̂

(k)) =
E∏

g=1

[
φ

(
xn; μ̂

(k)
g , Σ̂

(k)
g

)]lng
n = 1, . . . , N

(10)

and discarding the 	Mαu
 observations ym with
smaller values of

D
(
ym ; Θ̂

(k)) =
E∑

g=1

τ̂
(k)
g φ

(
ym ; μ̂

(k)
g , Σ̂

(k)
g

)
m=1, . . . , M .

(11)

Namely, we set ζ(·) = 0 and ϕ(·) = 0 in (5) for the
trimmed units in the training and test sets, respec-
tively. Notice that we implicitly impose lng = 0
∀ n = 1, . . . , N , g = G + 1, . . . , E in (10). That
is, none of the learning units belong to one of the
hidden classes h, h = G + 1, . . . , E .

– Step 2 - Expectation: for each non-trimmed observa-
tion ym compute the posterior probabilities

ẑ(k+1)
mg =

τ̂
(k)
g φ

(
ym; μ̂

(k)
g , Σ̂

(k)
g

)

D
(
ym; θ̂

(k)) (12)

for g = 1, . . . , E , m = 1, . . . , M .
– Step 3 - Constrained Maximization: the parameter
estimates are updated, based on the non-discarded
observations and the current estimates for the unknown
labels:

τ̂ (k+1)
g =

∑N
n=1 ζ(xn)lng + ∑M

m=1 ϕ(ym)ẑ(k+1)
mg

�N (1 − αl)� + �M(1 − αu)�
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μ̂
(k+1)
g =

∑N
n=1 ζ(xn)lngxn + ∑M

m=1 ϕ(ym)ẑ(k+1)
mg ym

∑N
n=1 ζ(xn)lng + ∑M

m=1 ϕ(ym)ẑ(k+1)
mg

for g = 1, . . . , E . Estimation of Σg depends on the
considered patterned model and on the eigenvalues
ratio constraint. Details are given in Bensmail and
Celeux (1996) and, if (4) is not satisfied, in Appendix
C of Cappozzo et al. (2019).

– Step 4 - Convergence of the EM algorithm: if con-
vergence has not been reached (see Sect. 3.5), set
k = k + 1 and repeat steps 1-4.

Notice that, once the hidden classes have been properly ini-
tialized, the transductive approach relies on an EM algorithm
that makes use of both training and test sets for jointly esti-
mating the parameters of known and hidden classes, with no
distinction between the two. The final output from the pro-
cedure is a set of parameters {τ̂g, μ̂g, Σ̂g}, g = 1, . . . , E ,
and values for the indicator functions ζ(·) and ϕ(·). Further-
more, the estimated values ẑmg provide a classification for
the unlabelled observations ym using the MAP rule.

Summing up, the procedure identifies amislabelled and/or
an outlying unit in the training set when ζ(xn) = 0, an
outlier in the test set when ϕ(ym) = 0 and an obser-
vation in the test belonging to a hidden class whenever
argmaxg=1,...,E ẑmg ∈ {G + 1, . . . , E}. As appropriately
pointed out by an anonymous reviewer, onemay be interested
in distinguishing between training units that were trimmed
due to their attribute and/or class noise; thus possibly reas-
signing correct labels to the latter subgroup. Clearly, (12)
may be used for this purpose, even though we argue that
extra care needs to be applied to avoid that outlying observa-
tions are also classified according to the MAP rule. A simple
two-step proposal to limit such risk and to identify wrongly
labeled units is as follows: firstly every trimmed training unit
is a-posteriori reassigned using (12) and, secondly, (10) is
evaluated employing the final EM estimates and the newly
reassigned class label. At this point, only the observations
displaying higher value than the αl -quantile considered in
the trimming step will be assigned to the estimated classes;
along the lines of what done in the discovery phase of the
inductive approach (see Sect. 3.3.2). As a last worthy com-
ment we remark that, from a practitioner perspective, it may
be relevant to reassign a trimmed unit to its correct class
only after careful study has been devoted to the analysis of
the discarded subset: unraveling the cause of the mislabeling
process could be of great importance and, unfortunately, no
algorithm can automatically unmask that.

3.3 Estimation procedure: inductive approach

In contrast with transductive inference, the inductive
learning approach aims at solving a broader type of prob-
lem: a generalmodel is built from the training set to be ideally
applied on any new data point, without the need of a specific
test set to be previously defined (Mitchell 1997; Shaoning
and Kasabov 2004). As a consequence, this approach is most
suitable for real-time dynamic classification of data streams,
since only the classification rule (i.e., model parameters) is
stored and the training set need not be kept inmemory.Opera-
tionally, inductive learning is performed in two steps: a robust
learning phase and a robust discovery phase (see Fig. 4). In
the learning phase, only training observations are considered
and we therefore fall into the robust fully-supervised frame-
work for classification. In the robust discovery phase only the
parameters for the E −G extra classes need to be estimated,
since the parameters obtained in the learning phase are kept
fixed. The entire procedure is detailed in the next Sections.

3.3.1 Robust learning phase

The first phase of the inductive approach consists of esti-
mating parameters for the observed classes using only the
training set. That is, we aim at building a robust fully-
supervised model considering only the complete set of
observations {xn, ln}, n = 1, . . . , N . The associated trimmed
log-likelihood to be maximized with respect to parameters
{τg,μg,Σg}, g = 1, . . . ,G, reads:

�tr im(τ ,μ,Σ |X, l) =

=
N∑

n=1

ζ(xn)
G∑

g=1

lng log
(
τgφ(xn;μg,Σg)

)
.

(13)

Notice that (13) is the first of the two terms that compose
(2). In this situation, the obtained model is the Robust Eigen-
valueDecompositionDiscriminantAnalysis (Cappozzo et al.
2019). The estimation procedure coincides with the Robust
Initialization for the G known groups step in the transductive
approach (see Sect. 3.2).

At this point, one could employ the trimmed adaptation
of the Bayesian Information Criterion (Neykov et al. 2007;
Schwarz 1978; Fraley andRaftery 2002) for selecting the best
model among the 14 covariance decompositions of Fig. 2.
Notice that the parametrization chosen in the learning phase
will influence the available models for the discovery phase
(see Fig. 5).

This concludes the learning phase and the role the training
set has in the estimation procedure: fromnowon {xn, ln}, n =
1, . . . , N may be discarded. The only exception being the
	Nαl
 units for which ζ(xn) = 0: denote such observations
with {x∗

i , l
∗
i }, i = 1, . . . , 	Nαl
. These are the observations
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l

Σ̄1, . . . , Σ̄G

τ̄

μ̄1, . . . , μ̄GX

Training Set

�N(1 − αl)�

Y X

�Nαl�

Robust Learning Phase

Augmented Test Set

�M∗(1 − αu)� τ̂

μ̂G+1, . . . , μ̂E

Σ̂G+1, . . . , Σ̂E

Robust Discovery Phase

Fig. 4 General framework of the robust inductive estimation approach.
�N (1−αl )� observations in the training are used to estimate parameters
for the known groups in the Robust Learning Phase. Keeping fixed the

estimates obtained in the previous phase, �M∗ (1 − αu)� observations
in the augmented test are then employed in estimating parameters only
for the hidden classes, M∗ = M + 	Nαl


not included in the estimation procedure, that is, samples
whose conditional density (6) is the smallest. This could be
due to either a wrong label l∗i or x∗

i to be an actual outlier:
in the former case, x∗

i could still be potentially useful for
detecting unobserved classes. We therefore propose to join
the 	Nαl
 units excluded from the learning phase with the
test set to define an augmented test set Y∗ = Y∪X(αl ), with
elements y∗

m , m = 1, . . . , M∗, M∗ = (M + 	Nαl
), to be
employed in the discovery phase. Clearly,Y∗ reduces toY if
αl = 0. In addition, depending on the real problem at hand,
the recovery of the x∗

i units may be too time consuming or
too costly or simply impossible when an online classification
is to be performed. In such cases the robust discovery phase
described in the next Section can still be applied making use
of the original test units ym , m = 1, . . . , M .

3.3.2 Robust discovery phase

In the robust discovery phase, we search for H = E − G
hidden classes robustly estimating the related parameters in
an unsupervised way. Particularly, the set {μ̄g, Σ̄g}, g =
1, . . . ,Gwill remainfixed, as indicated by the bar in the nota-
tion, throughout the discovery phase. Therefore, the observed
trimmed log-likelihood, here given by

�tr im(τ ,μ,Σ |Y∗, μ̄, Σ̄) =

=
M∗∑

m=1

ϕ(y∗
m) log

( G∑

g=1

τgφ(y∗
m; μ̄g, Σ̄g)+

+
E∑

h=G+1

τhφ(y∗
m;μh,Σh)

)
(14)

will be maximized with respect to {τ , {μh,Σh}h=G+1,...,E }.
Directmaximization of (14) is an intractable problem, andwe
extend Bouveyron (2014) making again use of an EM algo-

rithm defining a proper complete trimmed log-likelihood:

�tr imc (τ ,μ,Σ |Y∗, μ̄, Σ̄, z∗) =

=
M∗∑

m=1

ϕ(y∗
m)

( G∑

g=1

z∗mg log(τgφ(y∗
m; μ̄g, Σ̄g))+

+
E∑

h=G+1

z∗mh log(τhφ(y∗
m;μh,Σh))

)
.

(15)

The following steps delineate the procedure needed for max-
imizing (14):

– Initialization for the H hidden classes:

1. For each hidden class h, h = G + 1, . . . , E , draw a
random (p + 1)-subset Jh and compute its empirical

mean μ̂
(0)
h and covariance matrix Σ̂

(0)
h according to

the considered parsimonious structure. Mixing pro-
portions τh are drawn from U[0,1] and initial values
set equal to

τ̂
(0)
h = τh∑E

j=G+1 τ j
× H

E
, h = G + 1, . . . , E .

The τg estimated in the robust learning phase should
also be renormalized:

τ̂ (0)
g = τ̄g × G

E
, g = 1, . . . ,G.

– If the selected patterned model allows for heteroscedas-

tic Σg , and Σ̂
(0)
g , g = G + 1, . . . , E do not satisfy (4),

constrained maximization needs to be enforced. Notice
that, thanks to the inductive approach, only the estimates
for the H hidden groups covariance matrices need to sat-
isfy the eigen-ratio constraint. Moreover, the information
extracted from the robust learning phase provides a lower
bound, using (9), for the fixed constant c ≥ 1 required in
the eigenvalue-ratio restriction. The implicit assumption
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Fig. 5 Partial-order structure in
the eigen-decomposition for the
covariance matrices. Model
complexity increases from left
to right. Dashed arrows denote
equivalent models in terms of
parameters to be estimated in
the Discovery Phase EII

VII

EEI

EEE

VEI

EVI

EEV

EVE

VEE

VVI

VVE

VEV

EVV

VVV

that the hidden groups variability is no larger than that
estimated for the known classes protects new estimates
from spurious solutions: given the unsupervised nature
of the problem they can easily arise when searching for
unobserved classes also in the simplest scenarios (see
Sect. 3.7).

Once initial values have been determined for the param-
eters of the hidden classes, the following EM iterations
maximize (14).

– EM Iterations: denote by

Θ̂
(k) = {τ̂ (k)

1 , . . . , τ̂
(k)
E , μ̂

(k)
G+1, . . . , μ̂

(k)
E , Σ̂

(k)
G+1, . . . , Σ̂

(k)
E }

the parameter estimates at the k-th iteration of the algo-
rithm.

– Step 1 - Concentration: Define

Dg

(
y∗
m ; Θ̂

(k)) =
⎧
⎨

⎩
τ̂
(k)
g φ

(
y∗
m ; μ̄g, Σ̄g

)
g = 1, . . . ,G

τ̂
(k)
g φ

(
y∗
m ; μ̂

(k)
g , Σ̂

(k)
g

)
g = G + 1, . . . , E

The trimming procedure is implemented by discard-
ing the 	M∗αu
 observations y∗

m with smaller values
of

D
(
y∗
m; Θ̂

(k)) =
E∑

g=1

Dg

(
y∗
m; Θ̂

(k))
m = 1, . . . , M∗.

That is, we set ϕ(·) = 0 in (15) for the trimmed units
in the augmented test set.

– Step 2 - Expectation: for each non-trimmed observa-
tion y∗

m compute the posterior probabilities

ẑ∗(k+1)

mg =
Dg

(
y∗
m; Θ̂

(k)
)

D
(
y∗
m; Θ̂

(k)
) g = 1, . . . , E; m = 1, . . . , M∗.

– Step 3 - Constrained Maximization: the parameter
estimates are updated, based on the non-discarded
observations and the current estimates for the
unknown labels. Due to the constraint

(∑G
g=1 τg

+∑E
h=G+1 τh

)
= 1, the mixing proportions are

updated as follows using the Lagrange multipliers
method (details can be found in the online supple-
mentary material):

τ̂ (k+1)
g =

⎧
⎨

⎩
τ̄g

(
1 − ∑E

h=G+1 m
∗
h

)
g = 1, . . . ,G

∑M
m=1 ϕ(y∗

m )ẑ∗(k+1)
mg

�M∗(1−αu )� g = G + 1, . . . , E

where

m∗
h =

∑M
m=1 ϕ(y∗

m)ẑ∗(k+1)

mh

�M∗(1 − αu)� .

In words, the proportions for the G known classes
computed in the learning phase are renormalized
according to the proportions of the H new groups.
The estimate update for the mean vectors of the hid-
den classes reads:

μ̂
(k+1)
h =

∑M∗
m=1 ϕ(y∗

m)ẑ∗(k+1)
mh y∗

m∑M∗
m=1 ϕ(y∗

m)ẑ∗(k+1)
mh

h = G + 1, . . . , E .

Estimation ofΣh , h = G+1, . . . , E depends on the
selected patterned structure conditioning on the one
estimated in the learning phase. More specifically,
the parsimonious Gaussian models define a partial
order in terms of model complexity. We allow for
constraints relaxationwhen estimating the covariance
matrices for the H hidden classes, moving from left
to right in the graph of Fig. 5. While a full account on
the inductive covariance matrices estimation is post-
poned to Appendix A, a simple example is reported
here to clarify the procedure. Imagine to have selected
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a VEEmodel in the Learning Phase: Σ̄g = λ̄gD̄ĀD̄
′
,

g = 1, . . . ,G. Due to the Inductive approach, the
firstG covariance matrices need to be kept fixed with
their volume already free to vary across components,
so that only VEE, VVE, VEV and VVV models can
be selected. Considering, for instance, a VEV model
(i.e., equal shape across components) in the discov-
ery phase, the estimates for Σh , h = G + 1, . . . , E
will be:

Σ̂
(k+1)
h = λ̂

(k+1)
h D̂(k+1)

h ĀD̂(k+1)′
h

where the estimate for the shape Ā comes from the
learning phase, while λ̂

(k+1)
h and D̂(k+1)

h respectively
denote the inductive estimation for the volume and
orientation of the h-th new class. Closed form solu-
tions are obtained for all 14 models, depending on
the parsimonious structure selected in the Learning
Phase, under the eigenvalue restriction: details are
reported in Appendix A.

– Step 4 - Convergence of the EM algorithm: if con-
vergence has not been reached (see Sect. 3.5), set
k = k + 1 and repeat steps 1–4.

Notice that the EM algorithm is solely based on the aug-
mented test units for estimating parameters of the hidden
classes. That is, if E = G no extra parameters will be esti-
mated in the discovery phase and the inductive approach will
reduce to a fully-supervised classification method.

The final output from the learning phase is a set of param-
eters {τ̄g, μ̄g, Σ̄g}, g = 1, . . . ,G for the known classes
and values for the indicator function ζ(·) where ζ(xn) = 0
identify xn as an outlying observation. The final output
from the discovery phase is a set of parameters {μ̂h, Σ̂h},
h = G + 1, . . . , E , for the hidden classes together with an
update for the mixing proportion τ̂g , g = 1, . . . , E and val-
ues for the indicator functions ϕ(·)where ϕ(y∗

m) = 0 identify
y∗
m as an outlying observations. Likewise for the transductive
approach, the estimated values ẑ∗mg provide a classification
for the unlabelled observations y∗

m , assigning them to one of
the known or hidden classes.

R (R Core Team 2018) source code implementing the EM
algorithms under the transductive and inductive approaches
is available at https://github.com/AndreaCappozzo/raedda.
A dedicated R package is currently under development.

3.4 Mathematical properties of robust estimation
methods

Robust inferential procedures via trimming and constraints
are not mere heuristics that protect parameter estimates from
the bias introduced by contaminated samples. They are based
on theoretical results ensuring the existence of the solution

in both the sample and the population problem. In addition,
consistency of the sample solution to the population one has
been proven under very mild conditions on the underlying
distribution (García-Escudero et al. 2015). We contribute to
the theory of robust estimation by proving the monotonicity
of the algorithms through the following proposition:

Proposition 1 The EM algorithms described in Sect. 3.2
and 3.3 imply

�tr im(Θ̂
(k+1)|X,Y, l) ≥ �tr im(Θ̂

(k)|X,Y, l)

for the objective function (2) in the transductive approach
and

�tr im(Θ̂
(k+1)|Y∗) ≥ �tr im(Θ̂

(k)|Y∗)

for the objective function (14) in the discovery phase of the
inductive approach, at any k, respectively.

Theproof is reported in the online supplementarymaterial,
inwhichmore details on the computing times of the proposed
algorithms are also discussed.

3.5 Convergence criterion

The convergence for both transductive and inductive appro-
aches is assessed via the Aitken acceleration (Aitken 1926;
McNicholas et al. 2010):

a(k) = �
(k+1)
tr im − �

(k)
tr im

�
(k)
tr im − �

(k−1)
tr im

(16)

where �
(k)
tr im is the trimmed observed data log-likelihood from

iteration k: equation (2) and (14) for the transductive and the
inductive approach, respectively.

The asymptotic estimate of the trimmed log-likelihood at
iteration k is given by (Böhning et al. 1994):

�(k)∞tr im
= �

(k)
tr im + 1

1 − a(k)

(
�
(k+1)
tr im − �

(k)
tr im

)
. (17)

The EM algorithm is considered to have converged when
|�(k)∞tr im − �

(k)
tr im | < ε; a value of ε = 10−5 has been chosen

for the experiments reported in the next Sections.

3.6 Model selection: determining the covariance
structure and the number of components

A robust likelihood-based criterion is employed for choos-
ing the number of hidden classes, the best model among the
14 patterned covariance structures depicted in Fig. 2 and a
reasonable value for the constraint c in (4). Particularly, in
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Table 1 Nomenclature and
number of free parameters to be
estimated for the variance
covariance matrices, under the
14 patterned structures of
Banfield and Raftery (1993) and
Celeux and Govaert (1995)

Model γtransductive δtransductive γinductive δinductive ER

EII 0 1 0 0 Not Required

VII 0 E 0 H Required

EEI 0 p 0 0 Not Required

VEI 0 E + p − 1 0 H Required

EVI 0 Ep − (E − 1) 0 Hp − H Required

VVI 0 Ep 0 Hp Required

EEE p(p − 1)/2 p 0 0 Not Required

VEE p(p − 1)/2 E + p − 1 0 H Required

EVE p(p − 1)/2 Ep − (E − 1) 0 Hp − H Required

EEV Ep(p − 1)/2 p Hp(p − 1)/2 0 Not Required

VVE p(p − 1)/2 Ep 0 Hp Required

VEV Ep(p − 1)/2 E + p − 1 Hp(p − 1)/2 H Required

EVV Ep(p − 1)/2 Ep − (E − 1) Hp(p − 1)/2 Hp − H Required

VVV Ep(p − 1)/2 Ep Hp(p − 1)/2 Hp Required

γ denotes the number of parameters related to the orthogonal rotation and δ the number of parameters
related to the eigenvalues, for both transductive and inductive approach (discovery phase). The last column
indicateswhether the eigenvalue-ratio (ER) constraint is required. The learning phase of the inductive approach
possesses the number of parameters indicated for the transductive approach, with E replaced by G

our context, the problem of estimating the number of hidden
classes corresponds to setting the number of components in
a finite Gaussian mixture model (see for example Mclachlan
and Rathnayake (2014) for a discussion on the topic). The
general form of the robust information criterion is:

RBIC = 2�tr im(τ̂ , μ̂, Σ̂) − vcX X X log
(
n∗) (18)

where �tr im(τ̂ , μ̂, Σ̂) denotes the maximized trimmed obs-
erved data log-likelihood under either the transductive or
inductive approach: equation (2) and (14), respectively. The
total number of observations n∗ employed in the estimation
procedure is:

n∗ =
{

�N (1 − αl)� + �M(1 − αu)� Transductive EM

�M∗(1 − αu)� Inductive EM

In (18), the penalty term vcX X X accounts for the number of
parameters to be estimated. It depends on the estimation
procedure (either transductive or inductive), the chosen pat-
terned covariance structure (identified by the three letters
subscript XXX , where X can be either E , V or I , like in Fig.
2) and the value for the constraint c:

vcX X X = κ + γ + (δ − 1)

(
1 − 1

c

)
+ 1. (19)

κ is the number of parameters related to the mixing pro-
portions and the mean vectors: κ = Ep + (E − 1) in the
transductive setting and κ = Hp+ (E −1) for the discovery
phase in the inductive approach. γ and δ denote, respec-
tively, the number of free parameters related to the orthogonal

rotation and to the eigenvalues for the estimated covariance
matrices. Their values, for the two approaches and the dif-
ferent patterned structures are reported in Table 1.

The robust information criterion in (18) is an adaptation of
the complexity-penalized likelihood approach introduced in
Cerioli et al. (2018) that here also accounts for the trimming
levels and patterned structures. Note that, when c → +∞
and αl = αu = 0, (18) reduces to the well-known Bayesian
Information Criterion (Schwarz 1978).

Even though the RBIC in (18) is shown to work well in
all the simulated experiments of Sect. 4 and in the micro-
biome analyses of Sect. 5, a more general consideration on
the usage of trimming criteria to perform model selection
in robust mixture learning is in order. Firstly proposed by
Neykov et al. (2007), the authors asserted that the trimmed
BIC (TBIC) could be employed for robustly assessing the
number of mixture components and the percentage of con-
tamination in the data. Since its first introduction, trimming
criteria have been extensively employed in the literature for
providing/suggesting a general way to perform robust model
selection (García-Escudero et al. 2010; Gallegos and Rit-
ter 2010; García-Escudero et al. 2016, 2017; Li et al. 2016;
García-Escudero et al. 2018b). Quite naturally, the rationale
behind such criteria stems from the need of defining a model
selection procedure whose output should result close to that
obtained by standard methods on the genuine part of the
data only. Indeed, robustly estimated parameters are not suf-
ficient to provide reliable model selection if the maximized
likelihood is evaluated on the entire dataset: noisy units con-
tribute to the value of standard criteria and their effect, albeit
small, could affect the overall behavior. An example of such
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undesirable outcome, in a weighted likelihood framework, is
reported in Section 5 of Greco andAgostinelli (2019). There-
fore, it is reasonable to performmodel comparison within the
subset of genuine units only, where the subset size is deter-
mined by the trimming levels and the definition of “genuine”
is in accordance with the estimated model. That is, as cor-
rectly emphasized by an anonymous reviewer, RBIC indexes
could be based ondifferent subsets of observationswhen con-
sidering different parameterizations. This shall not be viewed
as a criterion drawback, since the RBIC precisely aims at
identifying, in a data-driven fashion, the model that better
fits the uncontaminated subgroup.

All in all, even though a formal theory corroborating
trimming criteria is still missing in the literature and model-
selection consistency guarantees is yet to be derived, RBIC
provides a well-established and powerful technique for com-
paring models conditioning on the same trimming fractions,
as performed in the paper.

3.7 On the role of the eigenvalue restrictions

Extensive literature has been devoted to studying the appear-
ance of the so-called degenerate solutions that may be
provided by the EM algorithm when fitting a finite mix-
ture to a set of data (Peel and McLachlan 2000; Biernacki
2007; Ingrassia and Rocci 2011). This is due to the likeli-
hood function itself, rather than being a shortcoming of the
EM procedure: it is easy to show that for elliptical mixture
models with unrestricted covariance matrices the associated
likelihood is unbounded (Day 1969). An even more sub-
tle problem, at least from a practitioner perspective, is the
appearance of solutions that are not exactly degenerate, but
they can be regarded as spurious since they lie very close to
the boundary of the parameter space, namely when a fitted
component has a very small generalized variance (Peel and
McLachlan 2000). Such solutions correspond to situations in
which a mixture component fits few data points almost lying
in a lower-dimensional subspace. They often display a high
likelihood value, whilst providing little insight in real-world
applications. They mostly arise as a result of modeling a
localized random pattern rather than a true underlying group.
Many possible solutions have been proposed in the literature
to tackle the problem, a comprehensive list of such references
can be found in García-Escudero et al. (2018a).

When employing mixture models for supervised learn-
ing and discriminant analysis there is actually no need in
worrying about the appearance of spurious solutions, since
the joint distribution of both observations and associated
labels is directly available. The parameters estimation there-
fore reduces to estimate the within class mean vector and
covariance matrix, without the need of any EM algorithm
(Fraley and Raftery 2002). Nonetheless, adaptive learning is
based on a partially unsupervised estimation, since hidden

classes are sought in the test set without previous knowl-
edge of their group structure extracted from the labelled set.
Therefore, efficiently dealing with the possible appearance
of spurious solutions becomes fundamental in our context,
where the identification of a hidden class might just be the
consequence of a spurious solution. For an extensive review
of eigenvalues and constraints inmixturemodeling, the inter-
ested reader is referred to García-Escudero et al. (2018a) and
references therein.

We now provide an illustrative example for underlying the
importance of protecting the adaptive learner from spurious
solutions, that may arise also in the simplest scenarios. Con-
sider a data generating process given by a three components
mixture of bivariate normal distributions (E = G = 3 and
p = 2) with the following parameters:

τ = (0.35, 0.15, 0.5)′,
μ1 = (0, 0)′, μ2 = (4,−4)′, μ3 = (5, 7)′

Σ1 = Σ2 = Σ3 =
[
1 0.3
0.3 1

]

Figure 6 graphically presents the learning problem, in which
both the training and test sets contain 300 data points. Clearly,
even from a visual exploration, the test set does not contain
any hidden group and we therefore expect that the model
selection criterion defined in Sect. 3.6 will choose a mixture
of E = 3 components as the best model for the problem
at hand. Employing transductive estimation, the RAEDDA
model is fitted to the data, with trimming levels set to 0 for
both labelled and unlabelled sets (αl = αu = 0) and con-
sidering two different values for the eigen-ratio constraint:
c = 10 in the first case and c = 1010 in the second. That
is, we set a not too restrictive constraint in the former model
(notice that the true ratio between the biggest and smallest
eigenvalues of Σg , g = 1, . . . , 3 is equal to 1.86) and we
consider a virtually unconstrained estimation for the latter.
The classification obtained for the best model in the test set,
selected via the robust information criterion in (18), under
the two different scenarios is reported in Fig. 7.

The value for the maximized log-likelihood in the first
scenario is equal to−2257.279, and it is equal to−2186.615
in the unconstrained case. With only 2 data points in the
hidden group and |Σ̂4| < 10−10 we are clearly dealing with
a spurious solution and not with a hidden class. Nonetheless,
the appearance of spurious maxima even in this simple toy
experiment casts light on how paramount it is to protect the
estimates against this harmful possibility.

3.8 Further aspects

The RAEDDA methodology is a generalization of several
model-based classification methods, in particular:
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Fig. 6 Original learning
problem, with a set of N = 300
labelled observations and
M = 300 unlabelled
observations generated from the
same mixture of bivariate
normal distributions with three
components
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Fig. 7 The classification
obtained for the best model in
the test set, with two different
values for the eigen-ratio
constraint. In the unconstrained
case the classification is based
on a spurious solution, with a
localized random pattern
wrongly identified as a hidden
class
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– EDDA (Bensmail and Celeux 1996) when only fitting the
robust learning phase with αl = 0.

– REDDA (Cappozzo et al. 2019) when only fitting the
robust learning phase with αl > 0.

– UPCLASS (Dean et al. 2006) when fitting the transduc-
tive approach with E = G and αl = 0, αu = 0

– RUPCLASS (Cappozzo et al. 2019) when fitting the
transductive approach with E = G and αl > 0, αu > 0.

– AMDA transductive (Bouveyron 2014) when fitting the
transductive approach with E ≥ G and αl = 0, αu = 0.
Notice in addition that RAEDDA considers a broader
class of learners employing patterned covariance struc-
tures.

– AMDA inductive (Bouveyron 2014) when fitting the
inductive approach with αl = 0, αu = 0. Also here
the class of considered models is larger, thanks to the
partial-order structure in the eigen-decomposition of the
covariance matrices (see Fig. 5).

4 Simulation study

In this Section, we present a simulation study in which the
performance of novelty detection methods is assessed when
dealing with different combinations of data generating pro-
cesses and contamination rates. For each scenario, an entire

class is not present in the labelled units, and it thus needs
to be discovered by the adaptive classifiers in the test set.
The problem definition is therefore as follows: we aim at
judging the performance of various methods in recovering
the true partition under a semi-supervised framework, where
the groups distribution is (approximately) Gaussian, allow-
ing for a distribution-free noise structure, both in terms of
label noise and outliers.

4.1 Experimental setup

The E = 3 classes are generated via multivariate normal
distributions of dimension p = 6 with the following param-
eters:

μ1 = (0, 8, 0, 0, 0, 0)′, μ2 = (8, 0, 0, 0, 0, 0)′,
μ3 = (−8,−8, 0, 0, 0, 0)′, Σ1 = diag(1, a, 1, 1, 1, 1),

Σ2 = diag(b, c, 1, 1, 1, 1), Σ3 =
⎛

⎝
d e
e f

0

0 I

⎞

⎠

We consider 5 different combinations of (a, b, c, d, e, f ):

– (a, b, c, d, e, f ) = (1, 1, 1, 1, 0, 1), spherical groups
with equal volumes (EII)
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– (a, b, c, d, e, f ) = (5, 1, 5, 1, 0, 5), diagonal groups
with equal covariance matrices (EEI)

– (a, b, c, d, e, f ) = (5, 5, 1, 3,−2, 3), groups with equal
volume, but varying shapes and orientations (EVV)

– (a, b, c, d, e, f ) = (1, 20, 5, 15,−10, 15), groups with
different volumes, shapes and orientations (VVV)

– (a, b, c, d, e, f ) = (1, 45, 30, 15,−10, 15), groupswith
different volumes, shapes and orientations (VVV) but
with two severe overlap

The afore-described data generating process has been intro-
duced in García-Escudero et al. (2008): we adopt it here as
it elegantly provides a well-defined set of resulting parsimo-
nious covariance structures. In addition, two different group
proportions are included:

– equal: N1 = N2 = 285 and M1 = M2 = M3 = 360
– unequal: N1 = 190, N2 = 380 and M1 = 210, M2 =
430, M3 = 60

where Ng, g = 1, 2 and Mh, h = 1, 2, 3 denote the sample
sizes for each group in the training and test sets, respectively.
According to the notation introduced in Sect. 2, we observe
G = 2 classes in the training and H = 1 extra class in the
test set. Furthermore, we apply contamination adding both
attribute and class noise as follows. A fixed number Ql and
Qu of uniformly distributed outliers, having squared Maha-
lanobis distances from μ1,μ2 and μ3 greater than χ2

6,0.975,
are respectively added to the labelled and unlabelled sets.
Additionally, we assign a wrong label to Ql genuine units,
randomly chosen in the training set. Four different contami-
nation levels are considered, varying Ql and Qu :

– No contamination: Ql = Qu = 0,
– Low contamination: Ql = 10 and Qu = 40,
– Medium contamination: Ql = 20 and Qu = 80,
– Strong contamination: Ql = 30 and Qu = 120.

Notice that, for the unequal group proportion, the hidden
class sample size is smaller than the total number of outlying
units when medium and strong contamination is considered.
A total of B = 1000 Monte Carlo replications are generated
for each combination of covariance structure, groups pro-
portion and contamination rate. Results for the considered
scenarios are reported in the next Section.

4.2 Simulation results

Given the simulation framework presented in the previous
Section, we compare the performance of RAEDDA against
the original AMDAmodel (denoting by RAEDDAt, AMDAt
andRAEDDAi,AMDAi their transductive and inductive ver-
sions) and two popular novelty detection methods, namely

Classifier Instability (Tax and Duin 1998) and Support Vec-
tor Method for novelty detection (Schölkopf et al. 2000),
respectively denoted as QDA-ND and SVM-ND hereafter.
For assessing the performance in terms of classification accu-
racy, outliers detection and hidden groups discovery for the
competing methods, a set of 4 metrics is recorded at each
replication of the simulation study:

– % Label Noise: the proportion of Ql mislabelled units
in the training set correctly identified as such by the
RAEDDA model (for which the final value of the trim-
ming function ζ(·) is equal to 0);

– % Hidden Group: the proportion of units in the test set
belonging to the third group correctly assigned to a pre-
viously unseen class by AMDA and RAEDDAmethods;

– ARI: Adjusted Rand Index (Rand 1971), measuring the
similarity between the partition returned by a given
method and the underlying true structure;

– % Novelty: the proportion of units in the test set belong-
ing either to the third group or to the set of Qu outliers
correctly identified by the novelty detection methods.

Box plots for the four metrics, resulting from the B Monte
Carlo repetitions under different covariance structure, groups
proportion and contamination rate are reported in Figs. 8 and
9.

The “% Label Noise” metric assesses the ability of our
proposal to identify the Ql incorrectly labelled units in the
training set, thus protecting the parameter estimates from
bias. Both transductive and inductive approaches perform
well regardless of the contamination rate; the number of
detected mislabelled units however slightly decreases under
the VVV and VVV with overlap simulation scenarios. This
is nonetheless due to the more complex covariance structure
and to the presence of overlapping groups: this makes the
identification of label noise more difficult and less crucial
for obtaining reliable inference. The “% of Hidden group”
metric in Fig. 8 shows remarkably good performance in
detecting the third unobserved class for the adaptive Dis-
criminant Analysis methods, both for AMDA and its robust
generalization RAEDDA. Careful investigation of this pecu-
liar result revealed that the AMDA method tended to merge
outlying units and the third (unobserved) class in one single
extra group. This effect is intensified for the unequal group
proportion, as the sample size of the unobserved class ismuch
smaller than the sizes of the knowngroups and,whenmedium
and strong contamination is considered, more anomalous
units than novelties are present in the test set. Notwithstand-
ing, we notice that the RAEDDA performance in terms of
“% of Hidden group” is only slightly lower than its non-
robust counterpart: our methodology successfully separates
the uniform background noise from the hidden pattern, even
when the magnitude of the former is higher than the latter’s.
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Fig. 8 Box plots for % Label Noise and % Hidden Group metrics for B = 1000 Monte Carlo repetitions under different covariance structure,
groups proportion and contamination rate
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Fig. 9 Box plots for ARI and % Novelty metrics for B = 1000 Monte Carlo repetitions under different covariance structure, groups proportion
and contamination rate
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Fig. 10 Box plots for ARI, % Hidden Group, % Label Noise, % Novelty and number of detected hidden groups for B = 1000 Monte Carlo
repetitions under different trimming levels and eigenvalue-ratio constraint

Multiple robust initializations are paramount for achieving
this result since, as it may be expected, the EM algorithm
could be trapped in local maxima due to the discovery of
uninteresting structures within the anomalous units. Even
though the AMDA method correctly discovers the presence
of an extra class, the associated parameter estimates are com-
pletely spoiled by the presence of outliers. Furthermore, the
same result does not hold in the twomost complex scenarios,
where the negative effect of attribute and class noise strongly
undermines the adaptive effectiveness of the AMDA model,
especially when the transductive estimation is performed.
The “ARI” metric in Fig. 9 highlights the predictive power
of the RAEDDA model: by means of the MAP rule and the
trimming indicator function ϕ(·) the true partition of the test
set, that jointly includes known groups, one extra class and
the subgroup of Qu outlying units, is efficiently recovered.
As previously mentioned, AMDA fails in separating the uni-
form noise from the extra Gaussian class, with consequent
lower values for the ARI metric. Lastly, the “% Novelty”
metric serves the purpose of extending the comparison from
the two adaptive models to the novelty detection methods,
stemming from the machine learning literature. Particularly,
the latter class of algorithms only distinguishes the known
patterns (i.e., the first two groups in the training set) and the
novelty: in our case the hidden class and the uniform noise. It
is evident that, as soon as few noisy data points are added to
the training set, both novelty detection methods fail in sepa-
rating known and novel patterns. In addition, the QDA-ND
and SVM-ND performances deteriorate when more complex
covariance structures are considered. This unexpected behav-
ior seems due to the fact that 4 out of the 6 dimensions are
actually irrelevant for group discrimination and consequent
novelty detection, lowering the algorithms performance even
under outlier-free scenarios (Evangelista et al. 2006; Nguyen
and de la Torre 2010).

Notice that themodel selection criterion for the RAEDDA
method defined in Sect. 3.6 was used for identifying not
only the number of components but also the parsimonious

covariance structure: this always yielded to choose the true
parametrization according to the values of (a, b, c, d, e, f ).
As a last worthy note, the simulation study was performed
employing the rationale defined in (9) for setting c in the
eigenvalue-ratio restriction, whilst the impartial trimming
levels αl and αu were set high enough to account for the
presence of both label noise and outliers. A simple sensitiv-
ity study is reported in the upcoming Section for displaying
how different choices for the trimming levels and the eigen-
ratio constraint affect the novel procedures.

4.3 Sensitivity study

Trimming level and eigenvalue-ratio constraint have a syn-
ergic impact on the final solution of robust clustering
procedures, as shown, for instance, in the extensive simu-
lation study performed by Coretto and Hennig (2016). To
evaluate their influence in our robust and adaptive classifier,
we generate a further B = 1000Monte Carlo replications for
the EVV covariance structure with equal group proportion
and medium contamination level, considering the following
combination of hyper-parameters:

– Trimming levels

– Low: αl = 0.5 × 2Ql
N , αu = 0.5 × Qu

M

– Correct: αl = 2Ql
N , αu = Qu

M

– High: αl = 1.5 × 2Ql
N , αu = 1.5 × Qu

M

– Eigenvalue-ratio constraint

– Precisely inferred from known groups: c = c̃
– Slightly larger than known groups: c = 5c̃
– Considerably larger than known groups: c = 50c̃

Results for the sensitivity study are displayed in Fig. 10,
where we report the previously considered metrics. In addi-
tion, the right-most graph presents barplots showing the
detected number of hidden groups for each repetition, vary-
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ing trimming levels and eigenvalue-ratio constraint. TheARI,
% Hidden Group, % Label Noise and % Novelty metrics are
essentially unaffected by the considered c value, whereas
the trimming levels have a considerable effect in the clas-
sification output. Undoubtedly, underestimating the noise
percentage produces far worse results, even though the cor-
rect partition is better recovered when the true contamination
level is considered. Interestingly, the label noise is almost
perfectly detected by setting the “right” labeled trimming
level, without needing to cautiously overestimate it. The
eigenvalue-ratio constraint does have an impact, as expected,
when we focus on the appearance of spurious solutions as
highlighted in the barplots of Fig. 10. Their presence, iden-
tified by the incorrect detection of a second hidden group, is
positively correlated with the underestimation of the noise
level. In particular, notice that c̃ is itself inferred by the esti-
mated covariance matrices for the known groups: that is the
reason why some spurious solutions are present even in the
plot on the top-left corner. Overall, the inductive approach
seems to be more sensitive to the appearance of uninteresting
groups.

Even though no extreme situations were found in mov-
ing the model hyper-parameters, their correct tuning remains
a critical challenge, especially for the trimming levels: a
promising ideawas recently proposed byCerioli et al. (2019),
however, further research in the robust classification frame-
work is still to be pursued.

5 Grapevinemicrobiome analysis for
detection of provenances and varieties

In recent years, the tremendous advancements in metage-
nomics have brought to statisticians a whole new set of
questions to be addressed with dedicated methodologies,
fostering the fast development of research literature in this
field (Waldron 2018; Calle 2019). In particular, the role of
plant microbiota in grapevine cultivar (Vitis vinifera L.) is
notably relevant since it has been proven to act as discrimi-
nating signature for grape origin and variety (Bokulich et al.
2014; Mezzasalma et al. 2017). Therefore, the employment
of microbiome analysis for automatically identifying wine
characteristics is a promising approach in the food authen-
ticity domain.

A flexible method that performs online classification
of grapevine samples, discriminating potentially fraudulent
units from known or previously unseen qualities is likely to
have a great impact on the field.

Motivated by two datasets of microbiome composition of
grape samples, we validate the performance of the method
introduced in Sect. 3 under different contamination and
dataset shifts scenarios.

5.1 Grapemicrobiota of Northern Italy and Spain
vineyards

5.1.1 Data

The first considered dataset reports microbiome composition
of 45 grape samples collected in 3 different regions having
similar pedological features. The first sampling site was the
Lombardy Regional Collection in Northern Italy (hereafter
NI); the second site was the germplasm collection of E.Mach
Foundation in the Trento province, at the foot of the Ital-
ian Alps (AI); while the third group of grapes comes from
the Government of La Rioja collection, located in Northern
Spain (NS). A total of 15 units were retained from each site.
The processes ofDNAextraction, sequencing andnumbering
of microbial composition are thoroughly described in Mez-
zasalma et al. (2018): we refer the reader interested in the
bioinformatics details to consult that paper and references
therein.

At the end of sample preparation, the resulting dataset
consists of an abundance table with 836 features (bacte-
rial communities) defined as Operational Taxonomic Unit
(OTU): collapsed clusters of similar DNA sequences that
describe the total microbial diversity. For each site, 15 obser-
vations are available: a graphical representation of the count
table, collapsed at OTU level for ease of visualization, is
reported in Fig. 11.

5.1.2 Dimension reduction

Given the high-dimensional nature of the considered dataset
and the small sample size, a preprocessing step for reducing
the dimensionality is paramount before fitting the RAEDDA
model. Focusing on the counting nature of the observations
at hand, a natural choice would be to perform probabilistic
Poisson PCA (PLNPCA): a flexible methodology based on
the Poisson Lognormal model recently introduced in the lit-
erature (Chiquet et al. 2018). Nevertheless, the variational
approximation employed for PLNPCA inference makes its
generalization from training to test set not so straightfor-
ward, and, furthermore, the whole procedure is not robust
to outlying observations. Therefore, given the classifica-
tion framework in which the preprocessing step needs to
be embedded, a less domain-specific, yet robust and well-
established techniquewas preferred for dimension reduction.

The considered preprocessing step proceeds as follows:
we fit Robust Principal Component Analysis (ROBPCA) to
the labelled set, and afterwards we project the test units to
the obtained subspace; please refer to Hubert et al. (2005)
for a detailed description of the employed methodology. In
this way, robust and test-independent (i.e., suitable for either
transductive or inductive inference) low-dimensional scores
are available for adaptive classification.
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Fig. 11 Count table depicting the abundance and distribution of the OTUs resulting from the sequence analysis for each sample in the 3 different
regions: Northern Italy (NI), Italian Alps (AI) and Northern Spain (NS). Grape microbiota data

5.1.3 Anomaly and novelty detection: label noise and one
unobserved class

The first experiment involves the random selection of 12
NI and 12 AI units for constructing the training set, with a
consequent test set of 21 samples including all the 15 grapes
collected in Northern Spain (NS). Furthermore, 2 of the NI
units in the learning set are incorrectly labelled as grapes
coming from the AI site. The aim of the experiment is there-
fore to determine whether the RAEDDA method is capable
of recovering the unobserved NS class whilst identifying
the label noise in the training set. The preprocessing step
described in Sect. 5.1.2 is applied prior to perform classifi-
cation: standard setting for the PcaHubert function in the
rrcov R package (Todorov and Filzmoser 2009) retains
d = 2 robustly estimated principal components, a graphical
representation of the learning scenario is reported in Fig. 12.
A RAEDDA model is then employed for building a classifi-
cation rule, considering both a transductive and an inductive
approach. The robust information criterion in (18) is used
for selecting the best patterned structure and, more impor-
tantly, the number of extra classes. RBIC values for the two
estimation procedures are reported in Tables 2 and 3: thanks
to the orthogonal equivariance of the ROBPCA method, we
restrict our attention to the subset of diagonal models only.
Notice that, in the inductive approach, once the VVI model

is selected in the learning phase, only the most flexible diag-
onal model needs to be fitted to the test data, thanks to the
partial order structure of Fig. 5. Our findings show that the
robust information criterion correctly detects the true number
of classes E = 3, in both inferential approaches. Regarding
anomaly detection, the two units affected by label noise are
identified and a posteriori classified as coming from the NI
site by the inductive approach. Contrarily, just one out of the
two anomalies was captured by the transductive approach.
In this and in the upcoming experiment, trimming levels
αl = αu = 0.1 were considered for both training and test
sets, while the eigenvalue-ratio restriction was automatically
inferred by the estimated group scatters of the known classes.

Table 4 reports the confusion matrices for the RAEDDA
classifier. The model correctly identifies the presence of a
hidden class, recovering the true data partition with an accu-
racy of 86% (3 misclassified units) and 90% (2 misclassified
units) in the transductive and inductive framework, respec-
tively.

Considering the challenging classification problem and
the limited sample size, the RAEDDAmodel shows remark-
ably good performance.
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Fig. 12 Learning scenario for
anomaly and novelty detection
of the grapevine microbiota data
on the ROBPCA subspace: 1
unobserved region and label
noise
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Table 2 RBIC for different
patterned structures and number
of hidden classes for the
RAEDDA model, transductive
inference

# Classes Covariance structure

EII VII EEI VEI EVI VVI

2 −1278.25 −1204.55 −1279.60 −1208.11 −1221.39 −1175.25

3 −1289.24 −1240.30 −1291.21 −1242.67 −1241.95 −1148.50

4 −1300.23 −1254.60 −1302.20 −1257.00 −1256.57 −1163.34

Themodelwith the highestRBICvalue is highlighted in bold.Grapevinemicrobiomedatawith oneunobserved
class (NS)

Table 3 RBIC for different
patterned structures and number
of hidden classes for the
RAEDDA model, inductive
inference

# Classes Covariance structure

EII VII EEI VEI EVI VVI

Robust learning phase

2 −719.26 −709.13 −718.97 −712.11 −688.40 −678.29

# Classes Covariance structure
VVI

Robust discovery phase

2 −642.89

3 −509.63

4 −516.87

The models with the highest RBIC value are highlighted in bold. Grapevine microbiome data with one
unobserved class (NS)

5.1.4 Anomaly and novelty detection: outliers and two
unobserved classes

This second experiment considers an even more extreme
scenario: the training set contains only 14 observations,
among which 12 units truly belong to the NI region, while
the remaining 2 come from the AI area but with an incorrect
NI label. That is, in the remaining 31 unlabelled units there
are two sampling sites, namely AI and NS, that need to be
discovered.

Likewise in the previous Section, ROBPCA retains d = 2
principal components when fitted to the training set: the

grapevine sample in the robustly estimated subspace is plot-
ted in Fig. 13. Notice in this context the compelling necessity
of performing robust dimensional reduction: the two misla-
belled observations from the AI area in the training set can be
seen as outliers, and a dimensional reduction technique sen-
sitive to them may have introduced masked and/or swamped
units. The RBIC is used to select the best patterned structure
and number of components: results are reported in Tables 5
and 6.
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Fig. 13 Learning scenario for
anomaly and novelty detection
of the grapevine microbiota data
on the ROBPCA subspace: 2
unobserved regions and outliers
in the training set
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Table 5 RBIC for different
patterned structures and number
of hidden classes for the
RAEDDA model, transductive
inference

# Classes Covariance structure

EII VII EEI VEI EVI VVI

1 −1339.32 – −1340.13 – – –

2 −1326.16 −1251.13 −1347.46 −1254.85 −1351.08 −1268.71

3 −1337.30 −1240.35 −1358.60 −1244.33 −1365.89 −1222.04

The model with the highest RBIC value is highlighted in bold. Grapevine microbiome data with two unob-
served classes (NS and NI)

Table 4 Confusion tables for RAEDDA classifier (transductive and
inductive inference) on the test set for the Grapevine microbiome data
with one unobserved class (NS)

Truth

Classification NI NS AI

RAEDDA Transductive

NI 1 1 0

AI 0 0 3

HIDDEN GROUP 1 2 14 0

RAEDDA Inductive

NI 2 1 0

AI 0 0 3

HIDDEN GROUP 1 1 14 0

Again, also in this more extreme experiment both inferen-
tial procedures recover the true number of sites from which
the grapeswere sampled.Due to theROBPCAoutput, in both
transductive and inductive approaches the wrongly labelled
units in the training set are easily trimmed off and identi-
fied as belonging to an area different from NI. Classification
results for the chosen model are reported in Table 7, where
the recovered data partition notably agrees with the 3 differ-
ent sampling sites, with only 4 and 3 misclassified units for
the transductive and inductive estimation, respectively.

Table 6 RBIC for different patterned structures and number of hidden
classes for the RAEDDA model, inductive inference

# Classes Covariance structure

EII VII EEI VEI EVI VVI

Robust learning phase

1 −390.83 – −364.67 – – –

# Classes Covariance structure
EEI VEI EVI VVI

Robust discovery phase

1 −3910.27

2 −1418.22 −1042.85 −982.86 −979.16

3 −1104.38 −1037.56 −955.12 −897.46

The models with the highest RBIC value are highlighted in bold.
Grapevine microbiome data with two unobserved classes (NS and NI)

5.2 Must microbiota of Napa and Sonoma Counties,
California

5.2.1 Data

The second dataset reports microbiome composition of 239
crushed grapes (must) for 3 different wine varieties; namely
Dolce, Cabernet Sauvignon and Chardonnay grown through-
out Napa and Sonoma Counties, California. The considered
samples are a subset of the “Bokulich Microbial Terroir”
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Table 7 Confusion tables for RAEDDA classifier (transductive and
inductive inference) on the test set for the Grapevine microbiome data
with two unobserved classes (NS and NI)

Truth

Classification NI NS AI

RAEDDA Transductive

NI 1 1 1

HIDDEN GROUP 1 0 0 12

HIDDEN GROUP 2 2 14 0

RAEDDA Inductive

NI 1 0 1

HIDDEN GROUP 1 2 15 0

HIDDEN GROUP 2 0 0 12

study, and are publicly available in the QIITA database under
accession no. 10119 (http://qiita.ucsd.edu/study/description/
10119). Likewise for the previous analysis, technical details
concerning the retrieval of the final abundance table are
deferred to the original paper (Bokulich et al. 2016). Ulti-
mately, sample features encompass the counts of 9943
bacterial communities (OTU) and data partition with respect
to wine type is as follows: 99 must units belong to Cabernet
Sauvignon, 114 to Chardonnay and 26 to Dolce variety.

5.2.2 Dimension reduction

The high-dimensional nature of the problem requires a fea-
ture reduction technique to be performed prior to employ
our anomaly and novelty detection method. Given that the
number of bacterial communities is almost 12 times larger in
magnitudewith respect to thedataset of Sect. 5.1, amore stan-
dard microbiome preprocessing procedure has been adopted.
By means of the QIIME2 bioinformatics platform (Bolyen
et al. 2019), Bray-Curtis dissimilarity metrics (evenly sam-
pled at 2000 reads per sample) are computed between each
pair of units. From the resulting distance matrix, a robust
version of the Principal Coordinates Analysis (PCoA) is per-
formed considering a robust singular value decomposition
(Hawkins et al. 2001) within the classical multidimensional
scaling algorithm. Lastly, a total of p = 10 coordinates
are retained for the subsequent study. Notice that, as high-
lighted in Section 5 ofHawkins et al. (2001), the eigenvectors
returned by the robust singular value decomposition are, in
general, not orthogonal. Therefore, differently from the pre-
vious application, the whole set of 14 covariance structures
will be considered when fitting the RAEDDA models.

Table 10 Confusion tables for RAEDDA classifier (transductive and
inductive inference) on the test set for the must microbiota data with
one unobserved class (Dolce)

Truth
Classification Cabernet S. Chardonnay Dolce

RAEDDA Transductive

Cabernet S. 24 11 0

Chardonnay 2 22 0

HIDDEN GROUP 1 3 1 22

RAEDDA Inductive

Cabernet S. 25 9 0

Chardonnay 1 25 0

HIDDEN GROUP 1 3 0 22

5.2.3 Anomaly and novelty detection: label noise and one
unobserved class

The dataset is randomly partitioned in labeled and unlabeled
sets: the former is composedby80Chardonnay and70Caber-
net Sauvignon units, while the latter by 24 Chardonnay, 29
Cabernet Sauvignon and 22 Dolce units. The remaining 4
samples from the Dolce variety are appended to the learning
set wrongly setting their label to be Cabernet Sauvignon. The
adulteration procedure mimics the one in Sect. 5.1.3, never-
theless, this second dataset poses amore challenging problem
due to the higher feature dimension, even after its reduction
according to the procedure described in Sect. 5.2.2, and the
small sample size of the unobserved class. The robust infor-
mation criterion in (18) is employed for selecting the best
patterned structure and the number of extra classes: Tables 8
and 9 report its value under transductive and inductive infer-
ence, respectively. The hidden class is correctly discovered
by both approaches, as it can be seen in the confusion matri-
ces of Table 10. Trimming levels αl = 0.03 and αu = 0.05
are sufficient for identifying the units with label noise and
correctly assigning them to the newly revealed class in the
robust discovery phase (inductive inference). As expected,
the overall classification accuracy is lower in this dataset with
respect to the previous one, this is mostly driven by the diffi-
culty in discriminating Chardonnay and Cabernet Sauvignon
musts.

All in all, considering these and additional experiments
not reported in the present paper, the inductive approach
seems to perform slightly better in terms of anomaly and
novelty detection, especially if the sample size of the hidden
classes is small. This had already been noted in Bouveyron
(2014), and it may be even more evident in our proposal due
to the augmented test set (see end of Sect. 3.3.1) employed
in the discovery phase. For instance, in this experiment, the
four Dolce units that are trimmed off in the learning phase
come back again in the parameter estimation of the dis-
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Table 8 RBIC for different
patterned structures and number
of hidden classes for the
RAEDDA model, transductive
inference

# Classes Covariance structure

EII VII EEI VEI EVI VVI EEE

2 4881.67 5984.40 5927.50 6617.88 6106.50 6966.14 6845.79

3 5432.89 6278.19 6404.65 7020.50 6553.41 7180.49 7296.24

4 5479.22 6325.52 6456.40 7037.37 6595.53 7228.00 7502.04

# Classes Covariance structure

EVE VEE VVE EEV VEV EVV VVV

2 7277.23 7460.51 7656.49 7443.72 8040.17 7233.28 8067.80

3 7760.96 8281.65 7985.32 8464.17 7895.36 8400.12

4 7934.52 7875.29 8338.43 8203.00

The model with the highest RBIC value is highlighted in bold. Must microbiota data with one unobserved
class (Dolce)

Table 9 RBIC for different
patterned structures and number
of hidden classes for the
RAEDDA model, inductive
inference

# Classes Covariance structure

EII VII EEI VEI EVI VVI EEE

Robust learning phase

2 3419.46 3883.43 4219.49 4521.48 4289.74 4642.67 4997.97

# Classes Covariance structure

EVE VEE VVE EEV VEV EVV VVV

Robust learning phase

2 5219.08 5158.22 5385.09 5281.61 5532.97 5258.35 5512.86

# Classes Covariance structure

VEV VVV

Robust discovery phase

2 −8496.47

3 3020.84 3007.11

4 3013.27 2904.01

The models with the highest RBIC value are highlighted in bold. Must microbiota data with one unobserved
class (Dolce)

covery phase, improving the classifier efficiency. Contrarily,
the transductive approach simply does not account for them
when estimating the parameters of the Dolce group.

Even though domain-expert supervision will always be
crucial for class interpretationwhenextra groups are detected,
an automatic pipeline that performs microbiome composi-
tion, dimension reduction and robust and adaptive classifica-
tion seems a promising procedure for enhancing the quality,
speed and mechanization of food authenticity analyses.

6 Concluding remarks

In the present paper, we have proposed a model-based
discriminant analysis method for anomaly and novelty detec-
tion. We have shown that the methodology effectively
performs classification in presence of label noise, outliers and

unobserved classes in the test set. By incorporating impar-
tial trimming and eigenvalue-ratio constraints, our proposal
robustly estimates model parameters of known and hidden
classes, identifying as a by-product wrongly labelled and/or
adulterated observations. Considering a parsimonious fam-
ily of patterned models, two flexible EM-based approaches
have been proposed for parameter estimation: one based
on the union of training and test sets, and the other made
of two phases, performing sequential inference for known
and hidden groups. Furthermore, we let the latter approach
exploit the partial order structure of the parsimonious mod-
els, deriving fast and closed-form solutions for estimating
the parameters of the extra classes. The resulting methodol-
ogy includes several model-based classification methods as
special cases. A robust data-driven criterion has been adapted
for selecting the number of unobserved groups and constraint
strength in covariances estimation. An extensive simulation
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study and applications on twograpevinemicrobiomedatasets
have proved the effectiveness of our proposal. Particularly,
the classifier capability in discriminating (known and previ-
ously unobserved) grape provenances and varieties, within
an adulterated context, may lead to promising developments
in the food authenticity domain.

Further research directions include a data-driven proce-
dure for selecting reasonable values for the trimming levels,
and a metric that automatically categorizes trimmed units as
being affected by label and/or attribute noise. Additionally,
the definition of a general framework for robust and adap-
tive variable selection and classification, suitable for data of
large dimensions, is imperative in domains like chemomet-
rics, computer vision and genetics: a proposal is currently
under study and it will be the object of future developments.
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Appendix A: Inductive covariance matrices
estimation

This appendix provides closed form solutions for the esti-
mation of the covariance matrices Σh , h = G + 1, . . . , E
of the unobserved classes via the inductive approach; our
main reference here is the seminal paper of Celeux and
Govaert (1995), where patterned covariance matrices were
firstly defined and algorithms for their ML estimation were
proposed. In the robust discovery phase only the parame-
ters for the H = E − G densities need to be estimated,
according to the available patterned models, given the one
considered in the Learning Phase (see Fig. 5). Denote with

Wh = ∑M∗
m=1 ϕ(y∗

m)ẑ∗mh

[(
y∗
m − μ̂h

) (
y∗
m − μ̂h

)′] and let

Wh = LhΔhL
′
h be its eigenvalue decomposition. Further,

consider nh = ∑M∗
m=1 ϕ(y∗

m)ẑ∗mh for h = G + 1, . . . , E .
Lastly, denote with a bar the estimates obtained in the robust
learning phase for the G known groups: they are fixed and
should not be changed. The formulae needed for the param-
eter updates are as follows:

– VII model: Σh = λh I

λ̂h = tr(Wh)

p nh
, h = G + 1, . . . , E .

– VEI model: Σh = λh Ā

λ̂h = tr(Wh Ā−1)

p nh
, h = G + 1, . . . , E .

– EVI model: Σh = λ̄Ah

Âh = diag(Wh)

|diag(Wh)|1/p , h = G + 1, . . . , E .

– VVI model: Σh = λh Ah

λ̂h = |diag(Wh)|1/p
nh

, h = G + 1, . . . , E .

Âh = diag(Wh)

|diag(Wh)|1/p , h = G + 1, . . . , E .

– VEE model: Σh = λh D̄ Ā D̄
′

Let C̄ = D̄ Ā D̄
′
and

λ̂h = tr(Wh C̄
−1

)

p nh
, h = G + 1, . . . , E .

– EVE model: Σh = λ̄ D̄Ah D̄
′

Âh = diag( D̄
′
Wh D̄)

|diag( D̄′
Wh D̄)|1/p

, h = G + 1, . . . , E .

– EEV model: Σh = λ̄Dh ĀD
′
h

D̂h = Lh, h = G + 1, . . . , E .

– VVE model: Σh = λh D̄Ah D̄′

Let Rh = λh Ah

R̂h = 1

nh
diag( D̄

′
Wh D̄), h = G + 1, . . . , E .

and, subsequently

λ̂h = |R̂h |1/p, h = G + 1, . . . , E .

Âh = 1

λ̂h
R̂h, h = G + 1, . . . , E .

– VEV model: Σh = λhDh ĀD
′
h

D̂h = Lh, h = G + 1, . . . , E .

λ̂h = tr(Wh D̂h Ā
−1

D̂h
′)

p nh
, h = G + 1, . . . , E .
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– EVV model: Σh = λ̄Dh AhD
′
h

Let Ch = Dh AhD
′
h

Ĉh = Wh

|Wh |1/p , h = G + 1, . . . , E .

Âh , D̂h are obtained through the eigenvalue decomposi-
tion of Ĉh , h = G + 1, . . . , E .

– VVV model: Σh = λhDh AhD
′
h

Σ̂h = 1

nh
Wh

λ̂h , Âh , D̂h are obtained through the eigenvalue decom-
position of Σ̂h , h = G + 1, . . . , E .

Lastly, it is easy to see that whenever themodel in the discov-
ery phase is EII, EEI or EEE, no extra parameters need to be
estimated for the covariance matrices of the hidden groups.
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