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Abstract
Random fields on the sphere play a fundamental role in the natural sciences. This paper presents a simulation algorithm
parenthetical to the spectral turning bands method used in Euclidean spaces, for simulating scalar- or vector-valued Gaussian
random fields on the d-dimensional unit sphere. The simulated random field is obtained by a sum of Gegenbauer waves, each
of which is variable along a randomly oriented arc and constant along the parallels orthogonal to the arc. Convergence criteria
based on the Berry-Esséen inequality are proposed to choose suitable parameters for the implementation of the algorithm,
which is illustrated through numerical experiments. A by-product of this work is a closed-form expression of the Schoenberg
coefficients associated with the Chentsov and exponential covariance models on spheres of dimensions greater than or equal
to 2.

Keywords Schoenberg sequence · Turning Bands · Gegenbauer polynomials · Central limit approximation · Berry-Esséen
inequality

1 Introduction

Spherically indexed Gaussian random fields have attracted
a growing interest in recent decades. They are useful in
the modeling of georeferenced variables arising in many
branches of applied sciences, such as astronomy, clima-
tology, oceanography, biology and geosciences, amongst
many others. We refer the reader to Marinucci and Peccati
(2011), Jeong et al. (2017) and Porcu et al. (2018) for recent
reviews about this topic. In general, the space consists of a
2-dimensional sphere, but hyperspheres are sometimes met,
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e.g., in high-dimensional shape analysis (Dryden 2005; Mar-
dia and Patrangenaru 2005).

Simulation is crucial for the development of new applica-
tions in spatial statistics. It is well known that simulation
algorithms based on the Cholesky decomposition of the
covariance matrix (Ripley 1987) are computationally pro-
hibitive when the sample size is large, since the order of
computation of the Cholesky decomposition is equal to the
cube of the sample size. As a result, the search for new
efficient methods to simulate Gaussian random fields in
spherical domains is of paramount importance. Within the
class of isotropic random fields, i.e., random fields whose
finite-dimensional distributions are invariant under rotations,
several appealing alternatives have been proposed, including
spherical harmonic approximations (Lang and Schwab 2015;
Clarke et al. 2018; Emery and Porcu 2019; Lantuéjoul et al.
2019), circulant embedding approaches (Cuevas et al. 2019),
random coin type methods (Hansen et al. 2015), and simu-
lations over Euclidean spaces restricted to low-dimensional
spheres (Emery et al. 2019).

In this paper, we propose a simple algorithm that sim-
ulates a Gaussian random field with a prescribed isotropic
covariance structure, based on adequate combinations of
Gegenbauer waves. Our proposal, named the ‘turning arcs’
method, can be seen as the spherical counterpart of the spec-
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tral turning bands method developed in Euclidean spaces
(see, e.g., Matheron, 1973, Mantoglou and Wilson, 1982,
Lantuéjoul, 2002, Emery and Lantuéjoul, 2006 and Emery
et al., 2016). The advantages of this algorithm over existing
ones are threefold:

1. It is computationally less expensive than approximations
based on spherical harmonics.

2. It is applicable to the simulation not only on the 2-sphere,
but also on the d-sphere, for any dimension d.

3. It allows the simulation not only of scalar random fields,
but also on vector random fields.

The outline of the paper is as follows. In Sect. 2 pre-
liminary results about isotropic scalar- and vector-valued
Gaussian random fields on the d-sphere are reviewed. The
‘turning arcs’ simulation algorithm is then presented in
Sect. 3. In Sect. 4, the applicability of our proposal is illus-
trated through numerical examples. Section 5 discusses the
computational implementation and provides some guidelines
to practitioners. Section 6 concludes the paper, while techni-
cal proofs are given in Appendices.

2 Background

2.1 Scalar-valued isotropic Gaussian random fields
on the sphere

Let Sd = {x ∈ R
d+1 : x�x = 1} be the d-dimensional

unit sphere embedded in R
d+1, where � denotes the trans-

pose operator, and consider a real-valued random field,
Z = {Z(x) : x ∈ S

d} with finite second-order moments.
We assume Z to be Gaussian, i.e., for all k ∈ N

∗ and
x1, . . . , xk ∈ S

d , the random vector {Z(x1), . . . , Z(xk)}�
follows a multivariate normal distribution. Thus, Z is com-
pletely characterized by its mean function and its covariance
function given by

C(x1, x2) = cov{Z(x1), Z(x2)}, x1, x2 ∈ S
d .

Let us introduce the geodesic distance on S
d , which is the

main ingredient to define the property of isotropy of a random
field. For two points, x1 and x2 in Sd , their geodesic distance
is defined as ϑ(x1, x2) = arccos{x�

1 x2} ∈ [0, π ]. We shall
equivalently use ϑ(x1, x2) or the shortcut ϑ to denote the
geodesic distance. Following Marinucci and Peccati (2011),
the random field is called (weakly) isotropic if it has constant
mean and if its covariance function can be written as

C(x1, x2) = K {ϑ(x1, x2)}, x1, x2 ∈ S
d , (2.1)

for some continuous function K : [0, π ] → R. Thus, the
covariance function just depends on the geodesic distance.
It is common to call K the isotropic part of the covariance
functionC (see, e.g.,Guella andMenegatto, 2018). ForGaus-
sian random fields, isotropy also implies that the probability
distribution of {Z(x1), . . . , Z(xk)}� is invariant under the
group of rotations on S

d (see Marinucci and Peccati, 2011).
Positive semi-definiteness is a necessary and sufficient

condition for a function to be a valid covariance. In his pio-
neering paper, Schoenberg (1942) showed that C as in (2.1)
is positive semi-definite if, and only if, its isotropic part K
has a series representation of the form

K (ϑ) =
∞∑

n=0

bn,d G
(d−1)/2
n (cosϑ), 0 ≤ ϑ ≤ π, (2.2)

where {bn,d : n ∈ N} is a sequence of nonnegative coeffi-

cients such that
∑∞

n=0 bn,dG
(d−1)/2
n (1) < +∞, referred to as

a Schoenberg sequence (Gneiting 2013), while {Gλ
n : n ∈ N}

is the sequence of λ-Gegenbauer polynomials (Abramowitz
and Stegun 1972), which are implicitly defined through the
identity

1

(1 − 2r t + t2)λ
=

∞∑

n=0

Gλ
n(r)t

n, −1 ≤ r ≤ 1.

The Gegenbauer polynomials can be calculated in a
straightforwardmanner by use of the following relationships:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gλ
0(r) = 1;

Gλ
1(r) = 2 λ r;

Gλ
n(r)

= 2(n+λ−1)
n r Gλ

n−1(r) − n+2λ−2
n Gλ

n−2(r), n > 1.

(2.3)

In practice, the most usual cases correspond to spheres of
dimensions d = 1 or d = 2. When d = 1, Schoenberg’s
expansion is written in terms of Chebyshev polynomials,
G0

n(cosϑ) = cos(nϑ). When d = 2, one obtains an expan-

sion in terms of Legendre polynomials, G1/2
n (cosϑ) =

Pn(cosϑ).

There is a one-to-one correspondencebetween an isotropic
covariance K and its Schoenberg sequence. Classical inver-
sion formulae yield the identity (Schoenberg 1942; Gneiting
2013; Ziegel 2014)

bn,d = 1

‖ G(d−1)/2
n ‖2

∫ π

0
G(d−1)/2

n (cosϑ)

(sin ϑ)d−1K (ϑ)dϑ, n ∈ N, (2.4)
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with (Abramowitz and Stegun (1972), formula 22.2.3)

‖ G(d−1)/2
n ‖2 =

∫ π

0

[
G(d−1)/2

n (cosϑ)
]2 sind−1(ϑ) dϑ

=
{

2π
n2

if d = 1
23−dπ

(2n+d−1)
Γ (d−1+n)

n!Γ ((d−1)/2)2
if d ≥ 2.

(2.5)

The isotropic covariance function, or its Schoenberg
sequence, is often specified to belong to a parametric fam-
ily whose members are known to be positive semi-definite.
For a thorough review on positive semi-definite functions on
spheres and a list of parametric families, we refer the reader
to Huang et al. (2011), Gneiting (2013), Arafat et al. (2018)
and Lantuéjoul et al. (2019). The Schoenberg sequences of
two specific parametric families (Chentsov and exponential
covariances) on S

d , d ≥ 2, are also given in Appendix D,
which seems to be a new result.

2.2 Vector-valued isotropic Gaussian random fields
on the sphere

Let Z = {[Z1(x), . . . , Z p(x)]� : x ∈ S
d} be a p-

variate random field, with each component having finite
second-order moments. We assume Z to be Gaussian, i.e.,
for all k ∈ N

∗ and x1, . . . , xk ∈ S
d , the random vector

{Z(x1), . . . , Z(xk)}� follows a multivariate normal distri-
bution, where Z(x) = [Z1(x), . . . , Z p(x)]�. We denote
by C(x1, x2) the p × p covariance matrix between Z(x1)
and Z(x2), with the (i, j)th entry equal to Ci j (x1, x2). The
diagonal elements, Cii (x1, x2), are called direct covariance
functions, whereas the off-diagonal elements, Ci j (x1, x2),
for i 
= j , are called cross-covariance functions.

The isotropy of a vector-valued random field can be
defined in a similar fashion to the scalar-valued case. Indeed,
the random field Z is said to be isotropic if each of its compo-
nents has a constant mean and if its matrix-valued covariance
function can be written as

C(x1, x2) = K {ϑ(x1, x2)}, x1, x2 ∈ S
d ,

for some continuous matrix-valued function K : [0, π ] →
R

p×p. The conditionof positive semi-definiteness can alsobe
adapted to the vector-valued case. The Schoenberg’s expan-
sion for the matrix-valued isotropic part is given by (Yaglom
1987; Hannan 2009)

K (ϑ) =
∞∑

n=0

Bn,d G
(d−1)/2
n (cosϑ), 0 ≤ ϑ ≤ π, (2.6)

where {Bn,d : n ∈ N} is a sequence of positive semi-
definite matrices (called Schoenberg matrices) such that∑∞

n=0 Bn,dG
(d−1)/2
n (1) < +∞ (element-wise summation).

Similarly to the scalar-valued scenario, Fourier calculus
implies that

Bn,d = 1

‖ G(d−1)/2
n ‖2

∫ π

0
G(d−1)/2

n (cosϑ)

(sin ϑ)d−1K (ϑ)dϑ, n ∈ N.

3 The turning arcs simulation algorithm

3.1 Scalar-valued case

This section presents an algorithm for simulating scalar-
valued isotropic Gaussian random fields on S

d . The repre-
sentation (2.2) allows for an immediate simulation procedure
based on the Schoenberg sequence {bn,d : n ∈ N}. The
following proposition is crucial to develop the simulation
algorithm.

Proposition 1 Let ε be a randomvariablewith zeromeanand
unit variance,ω a randomvector uniformly distributed onSd ,
and κ a discrete random variable with P(κ = n) = an, n ∈
N, whereP indicates the probability. Suppose that the support
of the probability mass sequence {an : n ∈ N} contains the
support of the Schoenberg sequence {bn,d : n ∈ N} and that
ε, ω and κ are independent. Then,

(1) For d = 1, the random field defined by

Z(x) = ε

√
2bκ,1

aκ

cos(κϑ(ω, x)), x ∈ S
1, (3.1)

is isotropic, with zero mean and covariance function with
isotropic part given by

K (ϑ) =
∞∑

n=0

bn,1 cos(nϑ), 0 ≤ ϑ ≤ π.

(2) For d ≥ 2, the random field defined by

Z(x) = ε

√
bκ,d(2κ + d − 1)

aκ(d − 1)
G(d−1)/2

κ (ω�x),

x ∈ S
d , (3.2)

is isotropic, with zero mean and covariance function with
isotropic part given by (2.2).

Proposition1, the proof ofwhich is deferred toAppendixA
for a neater exposition, provides a procedure to simulate
isotropic random fields on the sphere with the predefined
covariance function (2.2). Note that the algorithm separates
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the choice of the adaptive Schoenberg sequence, which pro-
vides the covariance structure of the simulated random field,
from the choice of the probability mass sequence {an : n ∈
N} according to which the degrees of the Gegenbauer poly-
nomials are simulated.

The simulated random field reproduces the desired first-
and second-order moments (zero mean and isotropic covari-
ance K ), but is not normally distributed. A central limit
approximation of aGaussian randomfieldwith the samefirst-
and second-order moments can be obtained by (Lantuéjoul
2002; Chilès and Delfiner 2012)

Z̃(x) = 1√
L

L∑

�=1

Z�(x), x ∈ S
d , (3.3)

where L is a large integer and Z1(x), . . . , ZL(x) are L inde-
pendent copies of Z(x).

The simulated randomfield (3.3) is the sumof L basic ran-
dom fields (Gegenbauer waves), each of which varies along
the meridians passing through a vector (pole) uniformly dis-
tributed on the sphere while it remains constant along the
parallels orthogonal to this pole. We refer this construction
as the ‘turning arcs’ algorithm, by analogy with the turning
bands method in which a random field in the Euclidean space
is obtained by spreading basic randomfields that varies along
a direction spanned by a random vector and are constant in
the hyperplanes orthogonal to this vector (Matheron 1973;
Mantoglou and Wilson 1982; Lantuéjoul 2002) (Fig. 1).

As pointed out in Emery et al. (2016) for the turning
bands method, the process time of the turning arcs algo-
rithm is, up to a pre-processing cost for generating the
random vectors {ω� : � = 1, · · · , L} and random vari-
ables {κ� : � = 1, · · · , L}, proportional to the number L
of basic random fields and to the number of target points on
the sphere, and turns out to be considerably fast. It is even
faster than the spectral algorithms where the L basic random
fields are spherical harmonics or hyperspherical harmonics
(Emery and Porcu 2019; Lantuéjoul et al. 2019), insofar as
the calculation of such harmonics is much more expensive
than that of Gegenbauer polynomials, which can be easily
computed by using (2.3), see discussion in Sect. 5.

3.2 Extension to vector-valued random fields

The goal of this section is to extend Proposition 1 to the
vector-valued case. Consider the sequence of Schoenberg
matrices, {Bn,d : n ∈ N}, and the factorization

Bn,d = Γ n,d Γ �
n,d , n ∈ N.

For instance, Γ n,d can be the Cholesky factor of Bn,d or any
square root of thismatrix; in the latter case,Γ n,d is symmetric

Fig. 1 Turning arcs on the 2-sphere: three arcs with random poles ω1,
ω2 and ω3 passing through a point x (red, green and blue great circles)
and the basic random fields Z1, Z2 and Z3 (thin colored lines) varying
along these arcs. The equator and a few meridians are superimposed
(dashed lines). The simulated random field Z at x is a weighted sum of
the three basic random fields at this point

since Bn,d is symmetric. We use the notation γ
(i)
n,d for the i th

column of Γ n,d . We observe that

p∑

i=1

γ
(i)
n,d [γ (i)

n,d ]� = Bn,d . (3.4)

The following proposition provides a simulation algo-
rithm for the vector-valued scenario.

Proposition 2 Let ε be a random variable with zero mean
and unit variance, ω a random vector uniformly distributed
on Sd , ι a random integer uniformly distributed on {1, . . . , p}
and κ a random integer with P(κ = n) = an, n ∈ N, where
{an : n ∈ N} is a probability mass sequence with a support
containing that of the sequence of matrices {Bn,d : n ∈
N}. Suppose that all these random variables and vectors are
independent. Then,

(1) For d = 1, the random field defined by

Z(x) = ε

√
2p

aκ

γ
(ι)
κ,1 cos(κϑ(ω, x)), x ∈ S

1, (3.5)
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is isotropic, with zero mean and covariance function with
isotropic part given by

K (ϑ) =
∞∑

n=0

Bn,1 cos(nϑ), 0 ≤ ϑ ≤ π.

(2) For d ≥ 2, the random field defined by

Z(x) = ε

√
p(2κ + d − 1)

aκ(d − 1)
γ

(ι)
κ,d G

(d−1)/2
κ (ω�x),

x ∈ S
d , (3.6)

is isotropic, with zero mean and covariance function with
isotropic part given by (2.6).

Theproof ofProposition2has beendeferred toAppendixB.
As for the scalar case, a central limit approximation of a
vector-valued Gaussian random field is obtained by putting

Z̃(x) = 1√
L

L∑

�=1

Z�(x), x ∈ S
d , (3.7)

where Z1(x), . . . , ZL(x) are L independent simulated copies,
and L is a large integer.

3.3 Choice of the distributions of " and �

The results presented in the previous subsections show that
the desired spatial correlation structure is reproduced as
soon as the random variable ε has a zero mean and unit
variance and the random integer κ has a probability mass
sequence whose support contains the support of the Schoen-
berg sequence associated with the covariance of the target
random field.

The choice of the distributions of ε and κ only impacts the
rate of convergence of the central-limit approximation to the
multivariate normal distribution. Which distributions yield
a faster rate of convergence? To answer this question, fol-
lowing Chilès and Delfiner (2012), we focus on the marginal
distribution of Z̃(x), as defined in (3.3) (the same exercise
could be done in the multivariate case, by examining each
component of Z̃(x) as defined in (3.7)). The Berry-Esséen
inequality (Berry 1941; Esséen 1942) gives an upper bound
for the Kolmogorov-Smirnov distance between the marginal
distribution of Z̃(x) and a normal distribution:

sup
z∈R

∣∣∣∣P
(
Z̃(x)

σ
< z

)
− G(z)

∣∣∣∣ ≤ ξμZ
3

σ 3
√
L

, (3.8)

whereG is the standard normal cumulative distribution func-
tion, μZ

3 is the third-order absolute moment of the basic
random field Z(x) as defined in (3.1) or (3.2), that is: μZ

3 =

E{|Z(x)|3}, L is the number of basic randomfields as defined
in (3.3), σ 2 = K (0) (variance of Z(x) and Z̃(x)) and ξ is a
constant greater than 0.4097 and lower than 0.4748 (Esséen
1956; Korolev and Shevtsova 2010; Shevtsova 2011).

Hereinafter, we focus on the case when d ≥ 2 in order to
express the third-order absolute moment μZ

3 and to find out
an upper bound for this moment. Accounting for the fact that
ε is independent of κ and ω, one can write:

μZ
3 = E

(
|ε|3

)
E

{(
bκ,d(2κ + d − 1)

aκ(d − 1)

)3/2

E

(
|G(d−1)/2

κ (ωT x)|3
∣∣∣κ
)}

.

For μZ
3 to be minimum, the third-order absolute moment

of ε must be minimum. Jensen’s moment inequality (Jensen
1906) implies that E{|ε|3} ≥ E{ε2}3/2 = 1, the equality
being reached when ε has a symmetric two-point distribution
concentrated at −1 and +1 (Rademacher distribution), i.e.,
ε is a random sign with equal probability of being positive
or negative. On the other hand, one has (Appendix C):

μG
3 (n) := E

(
|G(d−1)/2

κ (ωT x)|3
∣∣∣κ = n

)

=

⎧
⎪⎪⎨

⎪⎪⎩

O(n−3/2) if d = 2

O(ln n) if d = 3

O(n3�
d−1
2 ) if d ≥ 4,

(3.9)

where �· denotes the floor function. Under these conditions,
one has

μZ
3 = 1

(d − 1)3/2
∑

n

b3/2n,d (2n + d − 1)3/2 μG
3 (n)

a1/2n

, (3.10)

the sum being extended over the integers n such that an > 0.
The following cases provide criteria to choose a proba-

bility mass sequence {an : n ∈ N} that yields a finite value
for μZ

3 , therefore a finite upper bound in the Berry-Esséen
inequality (3.8), ensuring the convergence of the distribution
of Z̃(x) to a normal distribution with a rate in L−1/2, where
L is defined in (3.3) or (3.7):

– Case 1 The Schoenberg sequence {bn,d : n ∈ N} has
a finite support, i.e., bn,d is nonzero for finitely many
values of n. In this case, any choice of the probability
mass sequence {an : n ∈ N} leads to a finite value for
μZ
3 , therefore to a finite upper bound in the Berry-Esséen

inequality.
– Case 2 The Schoenberg sequence {bn,d : n ∈ N} is

nonzero for infinitely many values of n and is such that
lim supn→+∞ n

√
bn,d = r < 1. In such a case, based on

the Cauchy root convergence test, μZ
3 is finite provided

that the following condition holds:
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lim inf
n→+∞

n
√
an ≥ r3. (3.11)

– Case 3 The Schoenberg sequence {bn,d : n ∈ N} is
nonzero for infinitely many values of n and such that
bn,d = O(n−θ ). On the one hand, the convergence of the

series {bn,d G
(d−1)/2
n (1) : n ∈ N} implies θ > d − 1. On

the other hand, using formula 6.1.46 of Abramowitz and
Stegun (1972), it is found that the summand in (3.10) is
O(a−1/2

n n3/2−3θ/2 μG
3 (n)). Based on (3.9), μZ

3 is finite
if an ≥ c n−θ ′

when n ≥ n0, with n0 ∈ N, c > 0 and
θ ′ ∈]1, θ ′

max[ with

θ ′
max =

⎧
⎪⎪⎨

⎪⎪⎩

3θ − 2 if d = 2

3θ − 5 if d = 3

3θ − 5 − 6
⌊d − 1

2

⌋
if d ≥ 4.

(3.12)

Because θ > d − 1, a value of θ ′ can always be found in
the nonempty interval ]1, θ ′

max[ when d = 2 and d = 3.
In contrast, for d ≥ 4, θ must be greater than 2� d+1

2  for
the interval ]1, θ ′

max[ to be nonempty.

4 Examples

4.1 Example 1: Bivariate random field with
multiquadric covariance on S2

The isotropic multiquadric covariance with parameter δ ∈
]0, 1[ and the associated Schoenberg sequence on the 2-
sphere are given by (Gneiting 2013; Moller et al. 2018)

KM (ϑ; δ) = 1 − δ√
1 + δ2 − 2δ cosϑ

, 0 ≤ ϑ ≤ π, (4.1)

bMn,2(δ) = (1 − δ) δn, n ∈ N. (4.2)

A bivariate multiquadric covariance model and its associ-
ated Schoenberg sequence can be obtained as follows (Emery
and Porcu 2019):

KM (ϑ; δ, ρ)

=
[

KM (ϑ; δ11) ρ KM (ϑ; δ12)

ρ KM (ϑ; δ12) KM (ϑ; δ22)

]
, 0 ≤ ϑ ≤ π,

(4.3)

BM
n,2(δ, ρ)

=
[

bMn,2(δ11) ρ bMn,2(δ12)

ρ bMn,2(δ12) bMn,2(δ22)

]
, n ∈ N, (4.4)

with δ = (δ11, δ12, δ22) such that δ11 < 1, δ22 < 1 and
δ12 ≤ min(δ11, δ22), and |ρ| ≤

√
(1−δ11)(1−δ22)

1−δ12
.

As {bMn,2(δ) : n ∈ N} in (4.2) is a geometric series,

lim supn→+∞ n
√
bMn,2(δ) = δ. According to (3.11), to ensure

a finite Berry-Esséen bound in (3.8) for both components
of a bivariate random field with covariance (4.3), it suffices
to choose a probability mass sequence {an : n ∈ N} such
that lim infn→+∞ n

√
an ≥ min(δ311, δ

3
22). As an illustration,

Fig. 2 shows orthographic projections of one realization of a
bivariate random field obtained by applying the turning arcs
algorithm with the following parameters:

– δ11 = δ12 = 0.2, δ22 = 0.7, ρ = 0.6;
– L = 15, 150 or 1500;
– ε with a Rademacher distribution;
– κ with a geometric distribution with success probability
0.01;

– discretization of S2 into 500 × 500 faces with regularly-
spaced colatitudes and longitudes.

Arc-shaped artifacts (striations) can be observed on the
projections obtained with L = 15, which indicates that
the finite-dimensional distributions of the associated ran-
dom field deviate from the multivariate normal distributions
expected for a Gaussian random field. This phenomenon is
similar to the banding or striping effect of the continuous
spectral and turning bands methods in the Euclidean space
(Mantoglou and Wilson 1982; Tompson et al. 1989; Emery
and Lantuéjoul 2006, 2008). The artifacts are no longer
perceptible on the projections obtained with L = 150 or
L = 1500 basic random fields, which display realizations
that are visually close to that of a Gaussian random field, in
agreement with the central limit theorem.

4.2 Example 2: Bivariate random field with
spectral-Matérn covariance on S2

The isotropic spectral-Matérn covariance with parameters
α > 0 and ν > 0 on the 2-sphere, hereafter denoted by
KSM (ϑ;α, ν) with 0 ≤ ϑ ≤ π , is associated with the fol-
lowing Schoenberg sequence (Guinness and Fuentes 2016):

bSMn,2 (α, ν) = (n2 + α2)−ν−1/2

∑+∞
k=0(k

2 + α2)−ν−1/2
, n ∈ N. (4.5)

As n gets very large, the Schoenberg coefficient bSMn,2 (α, ν)

is asymptotically of the order of n−θ with θ = 2ν +1. Based
on the third case presented in Sect. 3.3, a finite Berry-Esséen
bound is obtained when {an : n ∈ N} is a zeta probability
mass sequence with parameter θ ′ ∈]1, 6ν + 1[ (Eq. (3.12))
shifted by one unit, i.e.,

an = 1

ζ(θ ′)
(1 + n)−θ ′

, (4.6)
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Fig. 2 Orthographic projections
showing a realization of a
bivariate random field with a
multiquadric covariance
(δ11 = δ12 = 0.2, δ22 = 0.7 and
ρ = 0.6), obtained by using
L = 15 (top), L = 150 (center)
and L = 1500 (bottom) basic
random fields, a Rademacher
distribution for ε and a
geometric distribution with
success probability 0.01 for κ .
Left: first random field
component; right: second
random field component

where ζ refers to theRiemann zeta function (Abramowitz and
Stegun 1972). The simulation of a random variable κ with
such a shifted zeta distribution can be done by the acceptance-
rejection algorithm proposed by Devroye (1986).

Abivariate spectral-Matérn covariancemodel and its asso-
ciated Schoenberg sequence can be obtained as follows
(Emery and Porcu 2019):

K SM (ϑ;α, ν, ρ)

=
[

KSM (ϑ;α, ν11) ρ KSM (ϑ;α, ν12)

ρ KSM (ϑ;α, ν12) KSM (ϑ;α, ν22)

]
,

0 ≤ ϑ ≤ π, (4.7)

with α > 0, ν = (ν11, ν12, ν22) such that ν11 > 0, ν22 > 0
and ν12 ≥ ν11+ν22

2 , and |ρ| ≤ min(1, α2ν12−ν11−ν22).

The following illustration (Fig. 3) showsorthographic pro-
jections of one realizationof a bivariate randomfieldobtained
by applying the turning arcs algorithm with the following
parameters:

– α = 1, ν11 = 2, ν12 = ν22 = 0.75, ρ = −0.6;
– L = 1500;
– ε with a Rademacher distribution;
– κ + 1 with a zeta distribution with parameter 2;
– discretization of S2 into 500 × 500 faces with regularly-
spaced colatitudes and longitudes.
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Fig. 3 Orthographic projections
showing a realization of a
bivariate random field with a
spectral-Matérn covariance
(α = 1, ν11 = 2,
ν12 = ν22 = 0.75 and
ρ = −0.6), obtained by using
L = 1500 basic random fields, a
Rademacher distribution for ε

and a zeta distribution with
parameter 2 for κ + 1. Left: first
random field component; right:
second random field component

The two components are negatively correlated (ρ < 0),
the first one being smoother than the second one because
ν11 > ν22 (Guinness and Fuentes 2016). The striation effect
is slightly perceptible in the right-hand side figure, which can
be explained because the rate of convergence of the Schoen-
berg sequence {bSMn,2 (α, ν22) : n ∈ N} is slower than that of

the sequence {bSMn,2 (α, ν11) : n ∈ N}, hence the third-order
absolute moment (3.10) and the upper bound in the Berry-
Esséen inequality (3.8) are higher: for the same number L of
basic random fields, the deviations from marginal normality
and, a fortiori, from multivariate normality, are likely to be
more important for the second random field component than
for the first one.

4.3 Example 3: Univariate random field with
generalizedF -covariance on S3

The isotropic generalized F-covariance on S
d is associated

with the Schoenberg sequence {bFn,d : n ∈ N} defined as
follows (Alegria et al. 2018):

bFn,d(α, ν, τ )

= B(α, ν + τ)

B(α, ν)

(α)n (τ )n

(α + ν + τ)n n! , n ∈ N, (4.8)

where α > 0, ν > 0, τ > 0, B(·, ·) is the beta function
and (a)n denotes the Pochhammer symbol (Abramowitz and
Stegun 1972).

As n increases, the Schoenberg coefficient bFn,d(α, ν, τ )

is of the order of n−ν−1. As for the previous example, this
suggests the use of a probability mass sequence {an : n ∈ N}
with a shifted zeta distributionwith parameter θ ′ ∈]1, 3ν−2[
(Eq. (3.12)).

The following illustration (Fig. 4) shows orthographic
projections of one realization of a univariate random field
obtained by applying the turning arcs algorithm with the fol-
lowing parameters:

– α = 1, ν = 3.5, τ = 2;
– L = 1500;

– ε with a Rademacher distribution;
– κ + 1 with a zeta distribution with parameter 2;
– d = 3;
– discretization of each 2-sphere resulting from a cross-
section of S3 into 500× 500 faces with regularly-spaced
colatitudes and longitudes.

4.4 Example 4: Univariate random field with
Chentsov covariance on Sd

The isotropic Chentsov covariance on S
d is defined as

KC (ϑ) = 1− 2ϑ
π
and its Schoenberg sequence {bCn,d : n ∈ N}

is given in Appendix D. The following illustration (Fig. 5)
displays orthographic projections of realizations on the 2-
sphere such that x21 + x22 + x23 = 1 and x4 = · · · = xd+1 = 0
(intersection of Sd with the subspace whose last d−2 coordi-
nates are zero), obtained with L = 1500 basic random fields,
a Rademacher distribution for ε, a zero probability for even
integers κ and a zeta distribution with parameter 2 for odd
integers κ , for dimensions d ranging between 2 and 256. One
notes that the striation effect is all the more pronounced as d
increases, which may be explained because the central limit
approximation has a slower and slower rate of convergence.
In particular, since the Schoenberg coefficient bCn,d behaves

like n−d as n increases, theBerry-Esséen bound is finite in the
cases d = 2 and d = 3, but not necessarily for higher dimen-
sions (Eq (3.12)). Interestingly, the striation effect becomes
imperceptible when increasing the number of basic random
fields to L = 20, 000 (Fig. 6).

5 Practical aspects

5.1 Distribution of �

The distribution of κ should give a non-negligible probability
to any degree having a significant contribution to the spectral
representation of the target random field (degree n for which
the Schoenberg matrix Bn,d has large entries). In practice,
many of the usual covariance models (with the exception of
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Fig. 4 Orthographic projections
showing a realization of a
univariate random field with a
generalized F-covariance
(α = 1, ν = 3.5 and τ = 2) on
the 3-sphere, obtained by using
L = 1500 basic random fields, a
Rademacher distribution for ε

and a zeta distribution with
parameter 2 for κ + 1.
Representations of the 2-sphere
corresponding to the sections of
the 3-sphere with the fourth
coordinate equal to −0.75 (top
left), −0.25 (top right), 0.25
(bottom left) and 0.75 (bottom
right)

the multiquadric model) have a Schoenberg sequence that is
lower bounded by a hyperharmonic series (behaving like n−θ

with θ > d−1) and their rate of decay as n increases is quite
slow. Based on the third case presented in Sect. 3.3, it is con-
venient to choose a shifted zeta distribution for the random
integer κ (Eq. (3.12)) in order to ensure a finite Berry-Esséen
bound and a convergence to normality in L−1/2. Such a distri-
bution is long-tailed and allows the simulated random field to
be amixture ofGegenbauerwaveswith degrees ranging from
very low to very high. This option, which has been adopted
in Examples 2 to 4 above, is particularly interesting in order
to reproduce both the low-frequency (large-scale) and high-
frequency (small-scale) variations of the target random field.

However, when simulating on high-dimensional spheres
or when the covariance model is associated with a Schoen-
berg sequence that is not lower bounded by a hyperharmonic
series (which corresponds to a strongly irregular random
field), the use of a shifted zeta distribution for κ may not guar-
antee the existence of a finite Berry-Esséen bound. In such
cases, one may trade the zeta distribution for a ‘super-heavy’
tailed distribution, e.g., a distribution with a logarithmically
decaying tail such as the discretized log-Cauchy distribu-
tion. The same issue arises with simulation algorithms based
on spherical or hyperspherical harmonics approximations
(Emery and Porcu 2019; Lantuéjoul et al. 2019), with the
inconvenience that the calculation of such harmonics for high
degrees is particularly expensive and can make these algo-

rithms prohibitive in terms of computation time. Also note
that having a infinite Berry-Esséen bound does not prevent
the simulated random field to converge to a Gaussian random
field as L tends to infinity: it just means that the convergence
rate can be slower than L−1/2.

5.2 Number of basic random fields (Gegenbauer
waves)

The choice of the number L of basic random fields depends
on the smoothness of the target random field and the dimen-
sion of the sphere on which it is simulated: as illustrated
with the examples, more basic random fields are needed
for irregular random fields (covariance function that quickly
decays near the origin) and/or for high-dimensional spheres,
in order to avoid the striation effect. The latter effect indi-
cates that the convergence to multivariate normality is not
reached, although the simulated field possesses the correct
first- and second-order moments (expectation and covari-
ance function). As a rule of thumbs, unless the target random
field is strongly irregular or the simulation is performed on a
high-dimensional sphere, a few thousand basic randomfields
(L = 1000 to 5000) is often sufficient to get ‘good-looking’
realizations.
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Fig. 5 Orthographic projections
showing a realization of a
univariate random field with a
Chentsov covariance, obtained
by using L = 1500 basic
random fields, ε with a
Rademacher distribution and κ

of the form 2n − 1 with a zeta
distribution of parameter 2 for n.
Representations of the 2-sphere
corresponding to the sections of
the d-sphere with the last d − 2
coordinates equal to 0. From top
to bottom and left to right:
d = 2, 4, 8, 16, 32, 64, 128 and
256
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Fig. 6 Orthographic projection showing a realization of a univariate
random field with a Chentsov covariance in S

256, obtained by using
L = 20, 000 basic random fields, all the other parameters being the
same as in Fig. 5

5.3 Computer implementation and running time

A set of Matlab® scripts implementing turning arcs simu-
lation is provided in Supplementary Material. These scripts
consist of

– onemain routine (turningarcs.m) allowing the simulation
of random fields on S

d with multiquadric, spectral-
Matérn, generalizedF , Chentsov and exponential covari-
ances, using a Rademacher distribution for ε and a zeta
distribution with parameter 2 for κ + 1 or, in the case of
the Chentov model, for 2κ − 1;

– two subroutines (Gegenbauer.m and zetarnd.m) used to
calculate Gegenbauer polynomials based on (2.3) and to
simulate κ , respectively;

– one instruction file (examples.m) that reproduces the
examples shown in Sect. 4.

Executing the examples on a desktop with 128 GB RAM
and an Intel® Xeon® processor @2.10 GHz for simulating a
random field on S

2 discretized into 500 × 500 faces takes
around 2 seconds when using L = 15 (Example 1 for a
bivariate multiquadric covariance) and around 30 seconds
when using L = 1500 (Examples 1, 2 and 4 for the bivari-
ate multiquadric, bivariate spectral-Matérn and univariate
Chentsov covariances). These running times, which include
pre-processing, simulation andwriting the results into an out-
put file, are comparable to that (around 1 and 25 seconds
for L = 15 and L = 1500, respectively) of the spec-
tral algorithms based on spherical harmonics approximations
proposed by Emery and Porcu (2019) and Lantuéjoul et al.
(2019) when taking advantage of the fact that the sphere
is discretized into a regular lattice, these algorithms being
the most competitive alternatives to date. However, the dif-
ference in running time between the turning arcs and other

spectral algorithms considerably increases when simulating
at irregularly spaced colatitudes and longitudes, in which
case the spherical harmonics must be calculated at each
target point. For instance, for an irregular discretization of
the sphere into 250, 000 points, this implies a running time
about 500 times higher than for a regular discretization into
500×500 points (i.e., about 3.5 hours for L = 1500, instead
of 25 seconds), while the running time of the turning arcs
remains exactly the same (30 seconds).

Still with L = 1500, the turning arcs algorithm takes
150 seconds to simulate a random field with a generalized
F-covariance on S

3 discretized into 8 × 500 × 500 faces,
from which the maps in Fig. 4 can be obtained (Example
3): the higher computation time (5 times more than for the
examples in S

2) is mainly explained because there are 8
times more points targeted for simulation in this example.
As for Example 4 concerning the simulation of a random
field with a Chentsov covariance on a sphere of dimension
256 discretized into 500× 500× 1× · · ·× 1 faces, the com-
putation time increases to 258 seconds (4.3 minutes) when
using L = 1500 basic random fields and 1110 seconds (18.5
minutes)with L = 20, 000.All these examples prove that the
turning arcs simulation on spheres of more than two dimen-
sions is a fast and simple alternative to the spectral simulation
algorithms based on expansions into hyperspherical harmon-
ics (Emery and Porcu 2019), the computation of which is
laborious and numerically expensive on irregular lattices.

Finally note that the turning arcs algorithm lends itself to
parallel computing (not implemented in the Supplementary
Material scripts), which could decrease all the aforemen-
tioned calculation times by one or two orders of magnitude.

6 Conclusions

The turning arcs algorithmallows simulating isotropic scalar-
and vector-valued Gaussian random fields on the sphere
S
d , provided that the spectral representation (Schoenberg

sequence) of their covariance function is known. The sim-
ulation is obtained by spreading Gegenbauer waves that vary
along randomly oriented arcs and remain constant along
the parallels orthogonal to these arcs, alike the continu-
ous spectral and turning bands algorithms used to simulate
random fields in Euclidean spaces. The advantages of the
algorithm over existing alternatives are threefold: (1) it is
extremely flexible, as it allows the simulation of vector ran-
dom fields with any number of components, any isotropic
covariance structure, on any d-dimensional sphere and any
number and configuration of points targeted for simulation;
(2) it accurately reproduces the desired covariance, and (3)
it is computationally inexpensive, the numerical complexity
being essentially proportional to the number of target points.
Furthermore, with a suitable choice of the simulation param-
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eters, the rate of convergence of the simulated random field
to normality is at most of the order of L−1/2, where L is the
number of Gegenbauer waves, except for covariance mod-
els on high-dimensional spheres (d ≥ 4) whose Schoenberg
coefficients decrease slowly as n increases. A by-product of
this research is a closed-form expression of the Schoenberg
coefficients associated with the Chentsov and exponential
covariance models in Sd for any d ≥ 2.
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Appendices

A Proof of Proposition 1

Before stating the proof of Proposition 1, we must introduce
some properties of Gegenbauer polynomials. A classical
duplication equation (see, e.g., Ziegel 2014, Equation 2.4)
establishes that, for d ≥ 2, n, k ∈ N and x1, x2 ∈ S

d ,

∫

Sd
G(d−1)/2

n (ω�x1)G
(d−1)/2
k (ω�x2)U (dω)

= δn,k(d − 1)

2n + d − 1
G(d−1)/2

n (x�
1 x2), (A.1)

where U is the uniform probability measure on S
d and δn,k

denotes the Kronecker delta. For d = 1, one has a similar
identity. Let n, k ∈ N, then

∫

S1
cos(nϑ(ω, x1)) cos(kϑ(ω, x2))U (dω)

= δn,k

2
cos(nϑ(x1, x2)), x1, x2 ∈ S

1.

Proof of proposition 1 We only prove the result for d ≥ 2,
since the case d = 1 is completely analogous. Let Z be the
random field defined in (3.2). Because ε is independent of
κ and ω and has a zero mean, it is straightforward to prove
that E{Z(x)} = 0 for any x ∈ S

d . On the other hand, the
covariance between any two variables Z(x1) and Z(x2), with
x1, x2 ∈ S

d , is:

E{Z(x1)Z(x2)}
= E{ε2}

∞∑

n=0

bn,d(2n + d − 1)

d − 1
∫

Sd
G(d−1)/2

n (ω�x1)G
(d−1)/2
n (ω�x2)U (dω).

Using (A.1) and the fact that E{ε2} = 1, the announced
covariance function is obtained. ��

B Proof of proposition 2

Again, we only prove the result for d ≥ 2, the one-
dimensional case being similar. Let Z be the vector-valued
random field defined in (3.6). Its mean vector is zero, insofar
as ε has zero mean and is independent of ω, ι and κ .

The variance-covariance matrix between any two vectors
Z(x1) and Z(x2), with x1, x2 ∈ S

d , is:

E{Z(x1)Z(x2)�}

= E{ε2}
∞∑

n=0

2n + d − 1

d − 1

p∑

i=1

γ
(i)
n,d [γ (i)

n,d ]�
∫

Sd
G(d−1)/2

n (ω�x1)G
(d−1)/2
n (ω�x2)U (dω).

Using property (A.1) and the fact that ε is an independent ran-
dom variable with zero mean and unit variance, one obtains

E{Z(x1)Z(x2)�}

=
∞∑

n=0

{ p∑

i=1

γ
(i)
n,d [γ (i)

n,d ]�
}
G(d−1)/2

n (x�
1 x2).

The covariance function is obtained by using (3.4).

C Upper bound for the third-order absolute
moment of a Gegenbauer wave

Let d, n ∈ N, d ≥ 2, λ = d−1
2 , x ∈ S

d (fixed) and ω

uniformly distributed on S
d . It is of interest to find an upper

bound for the following third-order absolute moment:

μ3
n,d = E{|Gλ

n(ω
T x)|3}.

By introducing spherical coordinates such that:

⎧
⎪⎨

⎪⎩

x = (1, 0, · · · , 0)

ω = (cosϕ1, sin ϕ1 cosϕ2, · · · , sin ϕ1 · · · sin ϕd−1 cosϕd ,

sin ϕ1 · · · sin ϕd−1 sin ϕd),

with ϕ1, · · · , ϕd−1 ∈ [0, π ] and ϕd ∈ [0, 2π [, one obtains:

μ3
n,d =

∫

Sd
|Gλ

n(ω
T x)|3U (dω)

= Γ
( d+1

2

)

2π
d+1
2

∫ 2π

0
dϕd

∫ π

0
sin ϕd−1dϕd−1 · · ·

×
∫ π

0
sind−2 ϕ2dϕ2

∫ π

0
|Gλ

n(cosϕ1)|3 sind−1 ϕ1dϕ1.
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Since
∫ π

0 sinm−1 ϕ =
√

πΓ (m2 )

Γ (m+1
2 )

(Gradshteyn and Ryzhik

(2007), formula 3.621.5), one has:

μ3
n,d = 2Γ

( d+1
2

)
√

πΓ
( d
2

)
∫ π

2

0
|Gλ

n(cosϕ1)|3 sind−1 ϕ1dϕ1. (C.1)

To find an upper bound for such a moment, we distinguish
the cases d = 2, d = 3 and d ≥ 4.

– Case d = 2. Using inequality 22.14.3 of (Abramowitz
and Stegun 1972):

|G
1
2
n (cosϕ1)| ≤

√
2

nπ sin ϕ1
, ϕ1 ∈]0, π [,

one finds

μ3
n,2 ≤ 2Γ

( d+1
2

)
√

πΓ
( d
2

)
(

2

nπ

) 3
2
∫ π

2

0

1√
sin(ϕ1)

dϕ1,

i.e.,

μ3
n,2 ≤

(
2

nπ

) 3
2 Γ

( 1
4

)

πΓ
( 3
4

) = O
(
n− 3

2

)
. (C.2)

– Case d = 3. In this case, the Gegenbauer polynomials
of order λ = 1 coincide with the Chebyshev polynomi-
als of the second kind (Abramowitz and Stegun (1972),
formulae 22.5.34 and 22.3.16):

G1
n(cosϕ1) = sin ((n + 1)ϕ1)

sin(ϕ1)
, n ∈ N, ϕ1 ∈]0, π [.

We use the following inequalities:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|sin ((n + 1)ϕ1)| ≤ (n + 1)ϕ1 for 0 ≤ ϕ1 ≤ π

2(n + 1)

|sin ((n + 1)ϕ1)| ≤ 1 for
π

2(n + 1)
≤ ϕ1 ≤ π

2

|sin(ϕ1)| ≥ 2

π
ϕ1 for 0 ≤ ϕ1 ≤ π

2
,

which yield:

μ3
n,3 ≤ 2Γ

( d+1
2

)
√

πΓ
( d
2

)
(

π3(n + 1)3

23

∫ π
2(n+1)

0
ϕ2
1dϕ1 + π3

23

∫ π
2

π
2(n+1)

dϕ1

ϕ1

)
,

that is:

μ3
n,3 ≤ π5

48
+ π2 ln(n + 1)

2
= O (ln n) . (C.3)

– Case d ≥ 4. Let us pose λ = d−1
2 . For any integer ν ∈

[1, λ[, Reimer (1996) showed that there exists a constant
�λ

ν,n depending on ν, n and λ such that

|Gλ
n(cosϕ1)| ≤ �λ

ν,nG
λ
n(1)|n sin(ϕ1)|−ν, ϕ1 ∈]0, π [.

Plugging this inequality into (C.1), one obtains:

μ3
n,d ≤ 2Γ

( d+1
2

)
√

πΓ
( d
2

)
(
�λ

ν,n G
λ
n(1)

)3
n−3ν

∫ π
2

0
sind−1−3ν(ϕ1)dϕ1,

with Gλ
n(1) = Γ (n+2λ)

Γ (2λ)Γ (n+1) (Abramowitz and Stegun
(1972), formula 22.2.3).
The above integral converges when d − 1 − 3ν is
greater than−1 (Gradshteyn and Ryzhik (2007), formula
3.621.5), in which case one has:

μ3
n,d ≤ 2Γ

( d+1
2

)
√

πΓ
( d
2

)
(

�λ
ν,n

Γ (n + d − 1)

Γ (d − 1)Γ (n + 1)

)3

n−3ν

√
πΓ

( d−3ν
2

)

2Γ
( d−3ν+1

2

) .

Reimer (1996) showed that �λ
ν,n = O(1) as n becomes

infinitely large. Furthermore, Stirling’s approximation
to the factorial implies that Γ (n+d−1)

Γ (n+1) = O (nd−2
)

(Abramowitz and Stegun (1972), formula 6.1.46). The
lowest asymptotic bound is obtained by choosing ν =
� d
2  − 1:

μ3
n,d ≤ O

(
n3d−6−3ν

)
= O

(
n3�

d−1
2 ) . (C.4)

D Calculation of Schoenberg coefficients

LetC be an isotropic covariance on Sd , d ≥ 2, K its isotropic
part, and {bn,d : n ∈ N} the associated Schoenberg sequence,
as defined in (2.2). The change of variable t = cosϑ in (2.4)
gives

bn,d = 1

‖ Gλ
n ‖2

∫ +1

−1
K (arccos t)Gλ

n(t)
(
1 − t2

)λ−1/2
dt,

with λ = d−1
2 > 0. Suppose now that t �→ K (arccos t) can

be expanded into a power series

K (arccos t) =
∞∑

k=0

αk t
k .
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Then, using the expansion of themonomials intoGegenbauer
polynomials (Rainville 1960; Kim et al. 2012)

tk = k!
2k

�k/2∑

�=0

λ + k − 2�

�!
Γ (λ)

Γ (λ + k + 1 − �)
Gλ

k−2�(t),

where �· is the floor function, it follows

bn,d = 1

‖ Gλ
n ‖2

∞∑

k=0

αk
k!
2k

�k/2∑

�=0

(λ + k − 2�) Γ (λ)

�! Γ (λ + k + 1 − �)

∫ +1

−1
Gλ

k−2�(t)G
λ
n(t)

(
1 − t2

)λ−1/2
dt .

The latter integral vanishes unless k−2� = n, in which case
it is equal to ‖ Gλ

n ‖2. We thus obtain the generic formula

bn,d =
∞∑

�=0

αn+2�
(n + 2�)!
2n+2�

λ + n

�!
Γ (λ)

Γ (λ + n + � + 1)
·

(D.1)

The rest of the calculation must be done on a case-by-case
basis. Two examples are given below.

D.1 Chentsov covariance

As a first example, consider K (ϑ) = 1 − 2ϑ/π . The power
series of K (arccos t) = 2

π
arcsin t is given by formula 4.4.40

of Abramowitz and Stegun (1972):

K (arccos t) = 2

π
√

π

∞∑

k=0

Γ (k + 1/2)

(2k + 1) k! t2k+1,

from which we derive α2k = 0 and

α2k+1 = 2

π
√

π

Γ (k + 1/2)

(2k + 1) k! ·

Plugging these coefficients into (D.1), we obtain that b2n,d =
0 and

b2n+1,d = 2

π
√

π

∞∑

�=0

Γ (n + � + 1/2)

(2n + 2� + 1) (n + �)!
(2n + 2� + 1)!

22n+2�+1

λ + 2n + 1

�!
Γ (λ)

Γ (λ + 2n + � + 2)
.

Using the duplication formula of the gamma function (for-
mula 6.1.18 of Abramowitz and Stegun (1972)), it comes

b2n+1,d = 1

π2

∞∑

�=0

Γ 2(n + � + 1/2) (λ + 2n + 1) Γ (λ)

�! Γ (λ + 2n + � + 2)

= (λ + 2n + 1) Γ (λ)

π2

Γ 2(n + 1/2)

Γ (λ + 2n + 2)

2F1

(
n + 1

2
, n + 1

2
; λ + 2n + 2; 1

)
,

where 2F1 is the Gaussian hypergeometric function. Owing
toGauss’s theorem (formula 15.1.20 of Abramowitz and Ste-
gun (1972)), this finally reduces to

b2n+1,d = (λ + 2n + 1) Γ (λ) Γ (λ + 1)

π2

Γ 2(n + 1/2)

Γ 2(λ + n + 3/2)
. (D.2)

These coefficients can be calculated directly, or by using the
recurrence relation

b2n+1,d = λ + 2n + 1

λ + 2n − 1

(n − 1/2)2

(λ + n + 1/2)2
b2n−1,d , n ≥ 1,

starting from

b1,d = Γ (λ) Γ (λ + 2)

π Γ 2(λ + 3/2)
.

Equation (D.2) generalizes the expressions provided by
Huang et al. (2011) and Lantuéjoul et al. (2019) for the spe-
cific case when d = 2.

D.2 Exponential covariance

Put K (ϑ) = exp(−νϑ) with ν > 0. The power series of
F(t) = exp(−ν arccos t) is required. A first derivation gives√
1 − t2F ′(x)−νF(t) = 0.A second derivation followed by

a multiplication by
√
1 − t2 yields (1− t2)F ′′(t)− t F ′(t)−

ν
√
1 − t2F ′(t) = 0. Replacing the third term by its expres-

sion in the first derivation, we finally obtain

(1 − t2)F ′′(t) − t F ′(t) − ν2F(t) = 0. (D.3)

Let us now expand F into a power series:

F(t) =
∞∑

k=0

αk t
k .

Owing to the expression of F and to the first derivation for-
mula, the first two coefficients are α0 = exp(−νπ/2) and
α1 = ν exp(−νπ/2). More generally, if the the power series
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of F ′ and F ′′ are plugged into (D.3), then the following recur-
rence relation is obtained:

αk+2 = αk
k2 + ν2

(k + 1)(k + 2)

= αk
4

(k + 1)(k + 2)

(
k + iν

2

)(
k − iν

2

)
,

where i is the imaginary unit. If k is even, we have

αk = α0
2k

k!
Γ
( k+iν

2

)

Γ
( iν
2

)
Γ
( k−iν

2

)

Γ
(− iν

2

)

= α0
2k

k!
∣∣∣∣Γ
(
k + iν

2

)∣∣∣∣
2 ν sinh

(
πν
2

)

2π
,

the last equality being obtained by using formula 6.1.29 of
Abramowitz and Stegun (1972). Likewise, if k is odd, we
have

αk = α1
2k−1

k!
Γ
( k+iν

2

)

Γ
( 1+iν

2

)
Γ
( k−iν

2

)

Γ
( 1−iν

2

)

= α1
2k

k!
∣∣∣∣Γ
(
k + iν

2

)∣∣∣∣
2 cosh

(
πν
2

)

2π
,

the last equality being obtained by using formula 6.1.30 of
Abramowitz and Stegun (1972).

Accordingly, accounting for the above expressions of α0

and α1, in all cases we have

αk = C(ν, k)
2k

k!
∣∣∣∣Γ
(
k + iν

2

)∣∣∣∣
2

, (D.4)

where

C(ν, k) =

⎧
⎪⎨

⎪⎩

ν exp(−πν/2) sinh(πν/2)

2π
if k is even

ν exp(−πν/2) cosh(πν/2)

2π
if k is odd.

Plugging this expression into formula (D.1), we obtain

bn,d = C(ν, n)

∞∑

�=0

Γ

(
� + n + iν

2

)
Γ

(
� + n − iν

2

)

λ + n

�!
Γ (λ)

Γ (λ + n + � + 1)

= (λ + n) Γ (λ)C(ν, n)
Γ
( n+iν

2

)
Γ
( n−iν

2

)

Γ (λ + n + 1)

2F1

(
n + iν

2
,
n − iν

2
; λ + n + 1; 1

)
.

By Gauss’s theorem, it comes

bn,d = C(ν, n) (λ + n) Γ (λ) Γ (λ + 1)

∣∣∣∣Γ
(
n + iν

2

)∣∣∣∣
2

∣∣∣∣Γ
(

λ + 1 + n + iν

2

)∣∣∣∣
2 . (D.5)

Calculating the squared modulus of the complex-valued
gamma function in the numerator of (D.5) can be done by
applying the recurrence relation

∣∣∣∣Γ
(
n + iν

2

)∣∣∣∣
2

= (n − 2)2 + ν2

4

∣∣∣∣Γ
(
n − 2 + iν

2

)∣∣∣∣
2

, n ≥ 2,

alongwith the initial values (Abramowitz and Stegun (1972),
formulae 6.1.29 and 6.1.30)

∣∣∣∣Γ
(
iν

2

)∣∣∣∣
2

= 2π

ν sinh(πν/2)
∣∣∣∣Γ
(
1 + iν

2

)∣∣∣∣
2

= π

cosh(πν/2)
.

The same procedure applies for the calculation of the
denominator in (D.5). Other expressions of bn,d have been
provided by Arafat et al. (2018) and Lantuéjoul et al. (2019),
but they are valid only when d = 2.

References

Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover Publica-
tions, New York (1972)

Alegria, A., Cuevas, F., Diggle, P., Porcu, E.: A family of covariance
functions for random fields on spheres. CSGB Research Reports,
Department of Mathematics, Aarhus University (2018)

Arafat,M., Gregori, P., Porcu, E.: Schoenberg coefficients and curvature
at the origin of continuous isotropic definite kernels on the sphere
(2018). arXiv:1807.02363v1

Berry, A.C.: The accuracy of the Gaussian approximation to the sum
of independent variates. Trans. Am. Math. Soc. 49(1), 122–136
(1941)

Chilès, J.-P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty.
John Wiley and Sons, New York (2012)

Clarke, J., Alegría, A., Porcu, E.: Regularity properties and simulations
of Gaussian random fields on the sphere cross time. Electron. J.
Stat. 12(1), 399–426 (2018)

Cuevas, F., Allard, D., Porcu, E.: Fast and exact simulation of Gaus-
sian random fields defined on the sphere cross time. Statistics and
Computing (2019). in press

Devroye, L.: Non-Uniform RandomVariate Generation. Springer, New
York (1986)

Dryden, I.: Statistical analysis on high-dimensional spheres and shape
spaces. Ann. Stat. 33(4), 1643–1665 (2005)

Emery, X., Arroyo, D., Porcu, E.: An improved spectral turning-bands
algorithm for simulating stationary vector Gaussian random fields.
Stoch. Environ. Res. Risk Assess. 30(7), 1863–1873 (2016)

123

http://arxiv.org/abs/1807.02363v1


1418 Statistics and Computing (2020) 30:1403–1418

Emery, X., Furrer, R., Porcu, E.: A turning bands method for simulating
isotropic Gaussian random fields on the sphere. Stat. Probab. Lett.
144, 9–15 (2019)

Emery, X., Lantuéjoul, C.: TBSIM: a computer program for conditional
simulation of three-dimensional Gaussian random fields via the
turning bandsmethod.Comput.Geosci.32(10), 1615–1628 (2006)

Emery, X., Lantuéjoul, C.: A spectral approach to simulating intrin-
sic random fields with power and spline generalized covariances.
Comput. Geosci. 12(1), 121–132 (2008)

Emery, X., Porcu, E.: Simulating isotropic vector-valued Gaussian ran-
dom fields on the sphere through finite harmonics approximations.
Stoch. Environ. Res. Risk Assess. 33(8–9), 1659–1667 (2019)

Esséen, C.: On the Liapunoff limit of error in the theory of probability.
Arkiv Mat Astron. och Fysik A28, 1–19 (1942)

Esséen, C.: Amoment inequality with an application to the central limit
theorem. Scand. Actuar. J. 39(2), 160–170 (1956)

Gneiting, T.: Strictly and non-strictly positive definite functions on
spheres. Bernoulli 19(4), 1327–1349 (2013)

Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products. Aca-
demic Press, Amsterdam (2007)

Guella, J., Menegatto, V.: Unitarily invariant strictly positive definite
kernels on spheres. Positivity 22(1), 91–103 (2018)

Guinness, J., Fuentes, M.: Isotropic covariance functions on spheres:
some properties and modeling considerations. J. Multivar. Anal.
143, 143–152 (2016)

Hannan, E.: Multiple Time Series. Wiley Series in Probability and
Statistics. Wiley (2009)

Hansen, L.V., Thorarinsdottir, T.L., Ovcharov, E., Gneiting, T.,
Richards, D.: Gaussian random particles with flexible Hausdorff
dimension. Adv. Appl. Probab. 47(2), 307–327 (2015)

Huang, C., Zhang, H., Robeson, S.: On the validity of commonly used
covariance and variogram functions on the sphere. Math. Geosci.
43, 721–733 (2011)

Jensen, J.: Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Math. 30, 175–193 (1906)

Jeong, J., Jun, M., Genton, M.G.: Spherical process models for global
spatial statistics. Stat. Sci. 32(4), 501–513 (2017)

Kim, D., Kim, T., Rim, S.: Some identities involving Gegenbauer poly-
nomials. Adv. Diff. Equ. 2012, 219 (2012)

Korolev, V.Y., Shevtsova, I.: On the upper bound for the absolute con-
stant in the Berry-Esseen inequality. Theory Probab. Appl. 54(4),
638–658 (2010)

Lang, A., Schwab, C.: Isotropic Gaussian random fields on the sphere:
regularity, fast simulation and stochastic partial differential equa-
tions. Ann. Appl. Probab. 25(6), 3047–3094 (2015)

Lantuéjoul, C.: Geostatistical Simulation: Models and Algorithms.
Springer, Berlin (2002)

Lantuéjoul, C., Freulon, X., Renard, D.: Spectral simulation of isotropic
Gaussian random fields on a sphere. Mathematical Geosciences
(2019). in press

Mantoglou, A., Wilson, J.L.: The turning bands method for simulation
of random fields using line generation by a spectral method. Water
Resour. Res. 18(5), 1379–1394 (1982)

Mardia, K., Patrangenaru, V.: Directions and projective shapes. Ann.
Stat. 33(4), 1666–1699 (2005)

Marinucci, D., Peccati, G.: Random Fields on the Sphere: Representa-
tion, Limit Theorems and Cosmological Applications. Cambridge
University Press, Cambridge (2011)

Matheron, G.: The intrinsic random functions and their applications.
Adv. Appl. Probab. 5(3), 439–468 (1973)

Moller, J., Nielsen, M., Porcu, E., Rubak, E.: Determinantal point pro-
cess models on the sphere. Bernoulli 24(2), 1171–1201 (2018)

Porcu, E., Alegria, A., Furrer, R.: Modeling temporally evolving and
spatially globally dependent data. Int. Stat. Rev. 86(2), 344–377
(2018)

Rainville, E.: Special function. Chelsea PublishingCompany,NewYork
(1960)

Reimer, M.: Uniform inequalities for Gegenbauer polynomials. Acta
Math. Hung. 70(1–2), 13–26 (1996)

Ripley, B.: Stoch. Simul. John Wiley & Sons, New York (1987)
Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J.

9(1), 96–108 (1942)
Shevtsova, I.: On the absolute constants in the Berry Esséen

type inequalities for identically distributed summands (2011).
arXiv:1111.6554

Tompson, A., Ababou, R., Gelhar, L.: Implementation of the three-
dimensional turning bands random field generator. Water Resour.
Res. 25(8), 2227–2243 (1989)

Yaglom, A.M.: Correlation Theory of Stationary and Related Random
Functions. Volume I: Basic Results. Springer, New York (1987)

Ziegel, J.: Convolution roots and differentiability of isotropic positive
definite functions on spheres. Proc. Am.Math. Soc. 142(6), 2063–
2077 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1111.6554

	The turning arcs: a computationally efficient algorithm to simulate isotropic vector-valued Gaussian random fields on the d-sphere
	Abstract
	1 Introduction
	2 Background
	2.1 Scalar-valued isotropic Gaussian random fields on the sphere
	2.2 Vector-valued isotropic Gaussian random fields on the sphere

	3 The turning arcs simulation algorithm
	3.1 Scalar-valued case
	3.2 Extension to vector-valued random fields
	3.3 Choice of the distributions of ε and κ

	4 Examples
	4.1 Example 1: Bivariate random field with multiquadric covariance on mathbbS2
	4.2 Example 2: Bivariate random field with spectral-Matérn covariance on mathbbS2
	4.3 Example 3: Univariate random field with generalized mathcalF-covariance on mathbbS3
	4.4 Example 4: Univariate random field with Chentsov covariance on mathbbSd
	5 Practical aspects
	5.1 Distribution of κ
	5.2 Number of basic random fields (Gegenbauer waves)
	5.3 Computer implementation and running time

	6 Conclusions

	Acknowledgements
	Appendices
	A Proof of Proposition 1
	B Proof of proposition 2
	C Upper bound for the third-order absolute moment of a Gegenbauer wave
	D Calculation of Schoenberg coefficients
	D.1 Chentsov covariance
	D.2 Exponential covariance
	References







