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Abstract
Wedevelopflexiblemethods of deriving variational inference formodelswith complex latent variable structure.By splitting the
variables in these models into “global” parameters and “local” latent variables, we define a class of variational approximations
that exploit this partitioning and go beyond Gaussian variational approximation. This approximation is motivated by the fact
that in many hierarchical models, there are global variance parameters which determine the scale of local latent variables in
their posterior conditional on the global parameters. We also consider parsimonious parametrizations by using conditional
independence structure and improved estimation of the log marginal likelihood and variational density using importance
weights. These methods are shown to improve significantly on Gaussian variational approximation methods for a similar
computational cost. Application of the methodology is illustrated using generalized linear mixed models and state space
models.

Keywords Gaussian variational approximation · Sparse precision matrix · Stochastic variational inference · Importance
weighted lower bound · Rényi’s divergence

1 Introduction

In many modern statistical applications, it is necessary to
model complex dependent data. In these situations, mod-
els which employ observation specific latent variables such
as random effects and state space models are widely used
because of their flexibility, and Bayesian approaches deal-
ing naturally with the hierarchical structure are attractive in
principle. However, incorporating observation specific latent
variables leads to a parameter dimension increasing with
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sample size, and standard Bayesian computational methods
can be challenging to implement in very high-dimensional
settings. For this reason, approximate inference methods are
attractive for thesemodels, both in exploratory settingswhere
many models need to be fitted quickly, as well as in appli-
cations involving large datasets where exact methods are
infeasible. One of the most common approximate inference
paradigms is variational inference (Ormerod andWand 2010;
Blei et al. 2017), which is the approach considered here.

Our main contribution is to consider partitioning the
unknowns in a local latent variable model into “global”
parameters and “local” latent variables and to suggest ways
of structuring the dependence in a variational approxima-
tion that match the specification of these models. We go
beyond standard Gaussian approximations by defining the
variational approximation sequentially, through a marginal
density for the global parameters and a conditional den-
sity for local parameters given global parameters. Each term
in our approximation is Gaussian, but we allow the condi-
tional covariance matrix for the local parameters to depend
on the global parameters, which leads to an approximation
that is not jointly Gaussian. We are particularly interested
in improved inference on global variance and dependence
parameters which determine the scale and dependence struc-
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ture of local latent variables. With this objective, we suggest
a parametrization of our conditional approximation to the
local variables that is well motivated and respects the exact
conditional independence structure in the true posterior dis-
tribution. Our approximations are parsimonious in terms
of the number of required variational parameters, which
is important since a high-dimensional variational optimiza-
tion is computationally burdensome. The methods suggested
improve on Gaussian variational approximation methods for
a similar computational cost. Besides defining a novel and
useful variational family appropriate to local latent variable
models, we also employ importance weighted variational
inference methods (Burda et al. 2016; Domke and Sheldon
2018) to further improve the quality of inference and elabo-
rate further on the connections between this approach and the
use of Rényi’s divergence within the variational optimization
(Li and Turner 2016; Regli and Silva 2018; Yang et al. 2019).

Our method is a contribution to the literature on the
development of flexible variational families, and there are
many interesting existing methods for this task. One fruit-
ful approach is based on normalizing flows (Rezende and
Mohamed 2015), where a variational family is defined using
an invertible transformation of a random vector with some
known density function. To be useful, the transformation
should have an easily computed Jacobian determinant. In
the original work of Rezende and Mohamed (2015), com-
positions of simple flows called radial and planar flows
were considered. Later authors have suggested alternatives,
such as autoregressive flows (Germain et al. 2015), inverse
autoregressive flows (Kingma et al. 2016), and real-valued
non-volume preserving transformations (Dinh et al. 2017),
among others. Spantini et al. (2018) gives a theoretical frame-
work connecting Markov properties of a target posterior
distribution to representations involving transport maps, with
normalizing flows being one way to parametrize such map-
pings. The variational familywe consider here can be thought
of as a simple autoregressive flow, but carefully constructed
to preserve the conditional independence structure in the
true posterior and to achieve parsimony in the representa-
tion of dependence between local latent variables and global
scale parameters. Our work is also related to the hierar-
chically structured approximations considered in Salimans
and Knowles (2013, Sect. 7.1); these authors also consider
other flexible approximations based on mixture models and
a variety of innovative numerical approaches to the varia-
tional optimization. Hoffman and Blei (2015) propose an
approach called structured stochastic variational inference
which is applicable in conditionally conjugate models. Their
approach is similar to ours, in the sense that local variables
depend on global variables in the variational posterior. How-
ever, conditional conjugacy does not hold in the examples
we consider.

The methods we describe can be thought of as extending
the Gaussian variational approximation (GVA) of Tan and
Nott (2018), where parametrization of the variational covari-
ance matrix was considered in terms of a sparse Cholesky
factor of the precision matrix. Similar approximations have
been considered for state spacemodels inArcher et al. (2016).
The sparse structure reduces the number of free variational
parameters and allows matching the exact conditional inde-
pendence structure in the true posterior. Tan (2018) propose
an approach called reparametrized variational Bayes, where
the model is reparametrized by applying an invertible affine
transformation to the local variables to minimize their poste-
rior dependency on global variables, before applying a mean
field approximation. The affine transformation is obtained by
considering a second order Taylor series approximation to the
posterior of the local variables conditional on the global vari-
ables. One way of improving on Gaussian approximations is
to considermixtures ofGaussians (Jaakkola and Jordan1998;
Salimans and Knowles 2013; Miller et al. 2016; Guo et al.
2016). However, even with a parsimonious parametrization
of component densities, a large number of additional varia-
tional parameters are added with each mixture component.
Other flexible variational families can be formed using cop-
ulas (Tran et al. 2015; Han et al. 2016; Smith et al. 2019),
hierarchical variational models (Ranganath et al. 2016) or
implicit approaches (Huszár 2017).

A closely related work is the framework for hierarchical
dynamical systems (HDS) proposed by Roeder et al. (2019)
which appeared shortly after this manuscript. To allow their
methods to scale up to massive data sets, Roeder et al. (2019)
consider amortized variational inference for HDS, which
similarly uses doubly reparameterized importance-weighted
gradient estimators. A Gaussian mean-field variational pos-
terior was assumed for the latent variables, which were
partitioned into three blocks, population, group and indi-
vidual. The mean and variance parameters of group-level
variables were expressed as functions of group indica-
tors, while that of individual-level variables were encoded
using neural networks depending on both observations and
group indicators. While our parameters are also classified
as either local or global, we do not apply the mean-
field assumption or amortized variational inference. Instead,
we consider conditionally structured variational posteriors
which exploit the conditional independence structure of
the true posterior and express the local variational param-
eters as linear functions of the global ones to capture the
strong posterior dependencies between local and global vari-
ables.

We specify themodel and notation in Sect. 2 and introduce
the conditionally structured Gaussian variational approxi-
mation (CSGVA) in Sect. 3. The algorithm for optimizing
the variational parameters is described in Sect. 4, and
Sect. 5 highlights the association between GVA and CSGVA.
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Section 6 describes how CSGVA can be improved using
importance weighting. Experimental results and applica-
tions to generalized linear mixed models (GLMMs) and
state space models are presented in Sects. 7, 8 and 9,
respectively. Section 10 gives some concluding discus-
sion.

2 Model specification and notation

Let y = (y1, . . . , yn)T be observations from a model with
global variables θG and local variables θL = (b1, . . . , bn)T ,
where bi contains latent variables specific to yi for i =
1, . . . , n. Suppose θG is a vector of length G and each bi
is a vector of length L . Let θ = (θTG , θTL )T . We consider
models where the joint density is of the form

p(y, θ) =p(θG)p(b1, . . . , b�|θG)

{ n∏
i=1

p(yi |bi , θG)

}

×
{ ∏

i>�

p(bi |bi−1, . . . , bi−�, θG)

}
.

The observations {yi } are conditionally independent given
{bi } and θG . Conditional on θG , the local variables {bi }
form a �th order Markov chain if � ≥ 1, and they
are conditionally independent if � = 0. This class of
models include important models such as GLMMs and
state space models. Next, we define some mathematical
notation before discussing CSGVA for this class of mod-
els.

2.1 Notation

For an r × r matrix A, let diag(A) denote the diagonal ele-
ments of A and dg(A) be the diagonal matrix obtained by
setting non-diagonal elements in A to zero. Let vec(A) be
the vector of length r2 obtained by stacking the columns of
A under each other from left to right and v(A) be the vector
of length r(r +1)/2 obtained from vec(A) by eliminating all
superdiagonal elements of A. Let Er be the r(r + 1)/2× r2

elimination matrix, Kr be the r2 × r2 commutation matrix
and Dr be the r2 × r(r + 1)/2 duplication matrix (see Mag-
nus and Neudecker 1980). Then Krvec(A) = vec(AT ),
Ervec(A) = v(A), ET

r v(A) = vec(A) if A is lower tri-
angular, and Drv(A) = vec(A) if A is symmetric. Let 1r be
a vector of ones of length r . Scalar functions applied to vector
arguments are evaluated element by element. Let d denote the
differential operator (see e.g. Magnus and Neudecker 1999).

3 Conditionally structured Gaussian
variational approximation

We propose to approximate the posterior distribution p(θ |y)
of the model defined in Sect. 2 by a density of the form

q(θ) = q(θG)q(θL |θG),

where q(θG) = N (μ1,�
−1
1 ), q(θL |θG) = N (μ2,�

−1
2 ), and

�1 and �2 are the precision (inverse covariance) matrices of
q(θG) and q(θL |θG), respectively. Here μ2 and �2 depend
on θG , but we do not denote this explicitly for notational
conciseness. Let C1CT

1 and C2CT
2 be unique Cholesky fac-

torizations of �1 and �2, respectively, where C1 and C2 are
lower triangular matrices with positive diagonal entries. We
further define C∗

1 and C∗
2 to be lower triangular matrices of

order G and nL , respectively, such that C∗
r ,i i = log(Cr ,i i )

and C∗
r ,i j = Cr ,i j if i �= j for r = 1, 2. The purpose of

introducing C∗
1 and C∗

2 is to allow unconstrained optimiza-
tion of the variational parameters in the stochastic gradient
ascent algorithm, since diagonal entries of C1 and C2 are
constrained to be positive. Note that C2 and C∗

2 also depend
on θG but againwe do not show this explicitly in our notation.

As �2 depends on θG , the joint distribution q(θ) is gen-
erally non-Gaussian even though q(θG) and q(θL |θG) are
individually Gaussian. Here we consider a first order approx-
imation and assume that μ2 and v(C∗

2 ) are linear functions
of θG :

μ2 = d + C−T
2 D(μ1 − θG), v(C∗

2 ) = f + FθG . (1)

In (1), d is a vector of length nL , D is a nL×G matrix, f is a
vector of length nL(nL+1)/2 and F is a nL(nL+1)/2×G
matrix. For this specification, q(θ) is not jointly Gaussian
due to dependence of the covariance matrix of q(θL |θG) on
θG . It is Gaussian if and only if F ≡ 0. The set of variational
parameters to be optimized is denoted as

λ = (μT
1 , v(C∗

1 )
T , dT , vec(D)T , f T , vec(F)T )T .

Asmotivation for the linear approximation in (1), consider
the linear mixed model,

yi =Xiβ + Zibi + εi , (i = 1, . . . , n),

β ∼ N (0, σ 2
β Ip), bi ∼ N (0,	), εi ∼ N (0, σ 2

ε Ini ),

where yi is a vector of responses of length ni for the i th
subject, Xi and Zi are covariatematrices of dimensionsni×p
and ni ×L , respectively, β is a vector of coefficients of length
p and {bi } are random effects. Assume σ 2

ε is known. Then
the global parameters θG consists of β and 	. The posterior
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of θL conditional on θG is

p(θL |y, θG) ∝
n∏

i=1

p(yi |β, bi )p(bi |	)

∝
n∏

i=1

exp[−{bTi (ZT
i Zi/σ

2
ε + 	−1)bi

− 2bTi Z
T
i (yi − Xiβ)/σ 2

ε }/2].

Thus p(θL |y, θG) = ∏n
i=1 p(bi |y, θG), where p(bi |y, θG)

is a normal density with precision matrix ZT
i Zi/σ

2
ε + 	−1

andmean (ZT
i Zi/σ

2
ε +	−1)−1ZT

i (yi−Xiβ)/σ 2
ε . The preci-

sion matrix depends on 	−1 linearly and the mean depends
on β linearly after scaling by the covariance matrix. The
linear approximation in (1) tries to mimic this dependence
relationship.

The proposed variational density is conditionally struc-
tured and highly flexible. Such dependence structure is
particularly valuable in constructing variational approxima-
tions for hierarchical models, where there are global scale
parameters in θG which help to determine the scale of local
latent variables in the conditional posterior of θL |θG . While
marginal posteriors of the global variables are often well
approximated by Gaussian densities, marginal posteriors of
the local variables tend to exhibit more skewness and kur-
tosis. This deviation from normality can be captured by
q(θL) = ∫

q(θG)q(θL |θG)dθG , which is amixture of normal
densities. The formulation in (1) also allows for a reduction
in the number of variational parameters if conditional inde-
pendence structure consistent with that in the true posterior
is imposed on the variational approximation.

3.1 Using conditional independence structure

Tan and Nott (2018) incorporate the conditional indepen-
dence structure of the true posterior into Gaussian variational
approximations by using the fact that zeros in the precision
matrix correspond to conditional independence for Gaus-
sian random vectors. This incorporation achieves sparsity
in the precision matrix of the approximation and leads to a
large reduction in the number of variational parameters to be
optimized. For high-dimensional θ , this sparse structure is
especially important because a full Gaussian approximation
involves learning a covariance matrix where the number of
elements grows quadratically with the dimension of θ .

Recall that θL = (b1, . . . , bn)T . Suppose bi is condition-
ally independent of b j in the posterior for |i − j | > �, given
θG and {b j | |i − j | ≤ �}. For instance, in a GLMM, {bi }
may be subject specific random effects, and these are con-
ditionally independent given the global parameters, so this
structure holds with � = 0. In the case of a state space model
for a time series, {bi } are the latent states, and this structure

holds with � = 1. Note that ordering of the latent variables
is important here.

Now partition the precision matrix �2 of q(θL |θG) into
L × L blocks with n row and n column partitions corre-
sponding to θL = (b1, . . . , bn)T . Let �2,i j be the block
corresponding to bi horizontally and b j vertically for i, j =
1, . . . , n. If bi is conditionally independent of b j for |i− j | >

�, given θG and {b j | |i − j | ≤ �}, then we set �2,i j = 0 for
all pairs (i, j) with |i − j | > �. Let I denote the indices of
elements in v(�2)which are fixed at zero by this conditional
independence requirement. If we choose fi = 0 and Fi j = 0
for all i ∈ I and all j in (1), then C∗

2 has the same block
sparse structure we desire for the lower triangular part of�2.
By Proposition 1 of Rothman et al. (2010), this means that
�2 will have the desired block sparse structure. Hence we
impose the constraints fi = 0 and Fi j = 0 for i ∈ I and all
j , which reduces the number of variational parameters to be
optimized.

4 Optimization of variational parameters

To make the dependence on λ explicit, write q(θ) as qλ(θ).
The variational parameters λ are optimized by minimizing
the Kullback-Leibler divergence between qλ(θ) and the true
posterior p(θ |y), where

KL{qλ||p(θ |y)} =
∫

qλ(θ) log
qλ(θ)

p(θ |y)dθ

= log p(y) −
∫

qλ(θ) log
p(y, θ)

qλ(θ)
dθ ≥ 0.

Minimizing KL{qλ||p(θ |y)} is therefore equivalent to max-
imizing an evidence lower bound LVI on the log marginal
likelihood log p(y), where

LVI = Eqλ{log p(y, θ) − log qλ(θ)}. (2)

In (2), Eqλ denotes expectationwith respect toqλ(θ).We seek
to maximize LVI with respect to λ using stochastic gradient
ascent. Starting with some initial estimate of λ, we perform
the following update at each iteration t ,

λt = λt−1 + ρt ∇̂λLVI,

where ρt represents a small stepsize taken in the direction
of the stochastic gradient ∇̂λLVI. The sequence {ρt } should
satisfy the conditions

∑
t ρt = ∞ and

∑
t ρ

2
t < ∞ (Spall

2003).
An unbiased estimate of the gradient ∇λLVI can be con-

structed using (2) by simulating θ from qλ(θ). However, this
approach usually results in large fluctuations in the stochastic
gradients. Hencewe implement the “reparametrization trick”
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(Kingma and Welling 2014; Rezende et al. 2014; Titsias and
Lázaro-Gredilla 2014), which helps to reduce the variance of
the stochastic gradients. This approach writes θ ∼ qλ(θ) as a
function of the variational parameters λ and a random vector
s having a density not depending on λ. To explain further,
let s = [sT1 , sT2 ]T , where s1 and s2 are vectors of length G
and nL corresponding to θG and θL , respectively. Consider
a transformation θ = rλ(s) of the form

[
θG
θL

]
=

[
μ1 + C−T

1 s1
μ2 + C−T

2 s2

]
. (3)

Since μ2 and C2 are functions of θG from (1),

μ2 = d + C−T
2 D(μ1 − θG) = d − C−T

2 DC−T
1 s1,

v(C∗
2 ) = f + FθG = f + F(μ1 + C−T

1 s1).

Hence μ2 and C2 are functions of s1, and θL is a function of
both s1 and s2. This transformation is invertible since given
θ and λ, we can first recover s1 = CT

1 (θG − μ1), find μ2

and C2, and then recover s2 = CT
2 (θL − μ2). Applying this

transformation,

LVI =
∫

φ(s){log p(y, θ) − log qλ(θ)}ds
= Eφ{log p(y, θ) − log qλ(θ)},

(4)

where Eφ denotes expectation with respect to φ(s) and θ =
rλ(s).

4.1 Stochastic gradients

Next, we differentiate (4) with respect to λ to find unbiased
estimates of the gradients. As log qλ(θ) depends on λ directly
as well as through θ , applying the chain rule, we have

∇λLVI = Eφ[∇λrλ(s){∇θ log p(y, θ) − ∇θ log qλ(θ)}
− ∇λ log qλ(θ)] (5)

= Eφ[∇λrλ(s){∇θ log p(y, θ) − ∇θ log qλ(θ)}]. (6)

Note that Eφ{∇λ log qλ(θ)} = 0 as it is the expectation of the
score function. Roeder et al. (2017) refer to the expressions
inside the expectations in (5) and (6) as the total derivative
and path derivative, respectively. In (6), the contributions
to the gradient from log p(y, θ) and log qλ(θ) cancel each
other if qλ(θ) approximates the true posterior well (at con-
vergence). However, the score function ∇λ log qλ(θ) is not
necessarily small even if qλ(θ) is a good approximation to
p(θ |y). This term affects adversely the ability of the algo-
rithm to converge and “stick” to the optimal variational
parameters, a phenomenon Roeder et al. (2017) refers to as

“sticking the landing”. Hence, we consider the path deriva-
tive,

∇̂λLVI = ∇λrλ(s){∇θ log p(y, θ) − ∇θ log qλ(θ)} (7)

as an unbiased estimate of the true gradient ∇λLVI. Tan and
Nott (2018) and Tan (2018) also demonstrate that the path
derivative has smaller variation about zero when the algo-
rithm is close to convergence.

Let ∇θ log p(y, θ) − ∇θ log qλ(θ) = (GT
1 ,GT

2 )T , where
G1 and G2 are vectors of length G and nL , respectively,
corresponding to the partitioning of θ = [θTG , θTL ]T . Then
∇̂λLVI = ∇λrλ(s)(GT

1 ,GT
2 )T is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

G1 + ∇μ1θLG2
−D∗

1v[C−T
1 s1{G1 + (∇μ1θL − DTC−1

2 )G2}TC−T
1 ]

G2
−vec(C−1

2 G2sT1 C−1
1 )

∇ f θLG2
vec(∇ f θLG2θTG )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

∇μ1θL = FT∇ f θL ,

∇ f θLG2 = −D∗
2v{C−T

2 (s2 − DC−T
1 s1)GT

2 C
−T
2 }.

Here D∗
1 and D∗

2 are diagonal matrices of order G(G +
1)/2 and nL(nL + 1)/2, respectively, such that dv(Cr ) =
D∗
r dv(C∗

r ) for r = 1, 2. Formally, D∗
1 = diag{v(dg(C1) +

1G1TG − IG)} and D∗
2 = diag{v(dg(C2) + 1nL1TnL − InL)}.

The full expression and derivation of ∇λrλ(s) are given in
“Appendix A”. In addition, we show (in “Appendix A”) that

∇θ log qλ(θ) =
[∇θG log qλ(θ)

∇θL log qλ(θ)

]

=
[
FT [v(InL) − D∗

2v{(θL − d)sT2 }] − C1s1 − DT s2
−C2s2

]
.

∇θ log p(y, θ) is model specific and we discuss the applica-
tion to GLMMs and state space models in Sects. 8 and 9,
respectively.

4.2 Stochastic variational algorithm

The stochastic gradient ascent algorithm for CSGVA is out-
lined in Algorithm 1. For computing the stepsize, we use
Adam (Kingma and Ba 2015), which uses bias-corrected
estimates of the first and second moments of the stochastic
gradients to compute adaptive learning rates.

At iteration t , the variational parameter λ is updated as
λt = λt−1 + �t . Let gt denote the stochastic gradient esti-
mate at iteration t . In steps 3 and 4,Adamcomputes estimates
of the mean (first moment) and uncentered variance (second
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Initialize λ0 = 0, m0 = 0, v0 = 0,

For t = 1, . . . , N ,

1. Generate s ∼ N (0, InL+G) and compute θ = rλt−1 (s).
2. Compute gradient gt = ∇̂λLVI.
3. Update biased first moment estimate:

mt = τ1mt−1 + (1 − τ1)gt .
4. Update biased second moment estimate:

vt = τ2vt−1 + (1 − τ2)g2t .
5. Compute bias-corrected first moment estimate:

m̂t = mt/(1 − τ t1).
6. Compute bias-corrected second moment estimate:

v̂t = vt/(1 − τ t2).

7. Update λt = λt−1 + αm̂t/(
√

v̂t + ε).

Algorithm 1: CSGVA algorithm.

moment) of the gradients using exponential moving aver-
ages, where τ1, τ2 ∈ [0, 1) control the decay rates. In step 4,
g2t is evaluated as gt � gt , where � denotes the Hadamard
(element-wise) product. As mt and vt are initialized as zero,
these moment estimates tend to be biased towards zero, espe-
cially at the beginning of the algorithm if τ1, τ2 are close to
one. As mt = (1 − τ1)

∑t
i=1 τ t−i

1 gi ,

E(mt ) = E(gt )(1 − τ t1) + ζ,

where ζ = 0 if E(gi ) = E(gt ) for 1 ≤ i < t . Otherwise, ζ
canbekept small since theweights for past gradients decrease
exponentially. An analogous argument holds for vt . Thus the
bias can be corrected by using the estimates m̂t and v̂t in
steps 5 and 6. The change is then computed as

�t = αm̂t√
v̂t + ε

,

where α controls the magnitude of the stepsize and ε is a
small positive constant which ensures that the denominator
is positive. In our experiments, we set α = 0.001, τ1 = 0.9,
τ2 = 0.99 and ε = 10−8, values close to what is recom-
mended by Kingma and Ba (2015).

At each iteration t , we can also compute an unbiased esti-
mate of the lower bound,

L̂VI = log p(y, θ) − log qλt−1(θ),

where θ is computed in step 1. Since these estimates are
stochastic, we follow the path traced by L̄VI, which is an
average of the lower bounds averaged over every 1000 itera-
tions, as a means to diagnose the convergence of Algorithm
1. L̄VI tends to increase monotonically at the start, but as
the algorithm comes close to convergence, the values of L̄VI

fluctuate close to and about the true maximum lower bound.
Hence, we fit a least squares regression line to the past κ

values of L̄VI and terminate Algorithm 1 once the gradient

of the regression line becomes negative (see Tan 2018). For
our experiments, we set κ = 6.

5 Links to Gaussian variational
approximation

CSGVA is an extension of Gaussian variational approxima-
tion (GVA, Tan and Nott 2018). In both approaches, the
conditional posterior independence structure of the local
latent variables is used to introduce sparsity in the preci-
sion matrix of the approximation. Below we demonstrate
that GVA is a special case of CSGVA when F ≡ 0.

Tan and Nott (2018) consider a GVA of the form

[
θL
θG

]
∼ N

([
μL

μG

]
, T−T T−1

)
where T =

[
TLL 0
TGL TGG

]
.

Note that TLL and TGG are lower triangular matrices. Using
a vector s = [sTL , sTG ]T ∼ N (0, InL+G), we can write

[
θL
θG

]
=

[
μL

μG

]
+ T−T

[
sL
sG

]
,

where T−T =
[
T−T
LL −T−T

LL T T
GLT

−T
GG

0 T−T
GG

]
.

Assuming F ≡ 0 for CSGVA, we have from (3) that

[
θL
θG

]
=

[
d
μ1

]
+

[
C−T
2 −C−T

2 DC−T
1

0 C−T
1

] [
s2
s1

]
,

where [sT2 , sT1 ]T ∼ N (0, InL+G). Hence we can identify

μ1 = μG, d = μL , C1 = TGG , C2 = TLL , D = T T
GL .

If the standard way of initializing of Algorithm 1 (by set-
ting λ = 0) does not work well, we can use this association
to initialize Algorithm 1 by using the fit from GVA. This
informative initialization can reduce computation time sig-
nificantly although there may be a risk of getting stuck in a
local mode.

6 Importance weighted variational inference

Here we discuss how CSGVA can be improved by maxi-
mizing an importance weighted lower bound (IWLB, Burda
et al. 2016), which leads to a tighter lower bound on the
log marginal likelihood, and a variational approximation less
prone to underestimation of the true posterior variance. We
also relate the IWLB with Rényi’s divergence (Rényi 1961;
van Erven and Harremos 2014) between qλ(θ) and p(θ |y),
demonstrating thatmaximizing the IWLB insteadof the usual
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evidence lower bound leads to a transition in the behav-
ior of the variational approximation from “mode-seeking”
to “mass-covering”. We first define Rényi’s divergence and
the variational Rényi bound (Li and Turner 2016), before
introducing the IWLB as the expectation of a Monte Carlo
approximation of the variational Rényi bound.

6.1 Rényi’s divergence and variational Rényi bound

Rényi’s divergence provides a measure of the distance
between two densities q and p, and it is defined as

Dα(q||p) = 1

α − 1
log

∫
q(θ)α p(θ)1−αdθ,

for 0 < α < ∞, α �= 1. This definition can be extended
by continuity to the orders 0, 1 and ∞, as well as to neg-
ative orders α < 0. Note that Dα(q||p) is no longer a
divergence measure if α < 0, but we can write Dα(q||p)
as α

1−α
D1−α(p||q) for α /∈ {0, 1} by the skew symmetry

property. As α approaches 1, the limit of Dα(q||p) is the
Kullback-Leibler divergence, KL(q||p). In variational infer-
ence, minimizing the Kullback-Leibler divergence between
the variational density qλ(θ) and the true posterior p(θ |y)
is equivalent to maximizing a lower bound LVI on the log
marginal likelihood due to the relationship:

LVI = log p(y) − KL{qλ||p(θ |y)} = Eqλ

{
log

p(y, θ)

qλ(θ)

}
.

Generalizing this relation using Rényi’s divergence measure,
Li and Turner (2016) define the variational Rényi bound Lα

as

Lα = log p(y) − Dα{qλ||p(θ |y)}

= 1

1 − α
log Eqλ

{(
p(y, θ)

qλ(θ)

)1−α
}

.

Note that L1, the limit of Lα as α → 1, is equal to LVI. A
Monte Carlo approximation of Lα when the expectation is
intractable is

L̂α,K = 1

1 − α
log

1

K

K∑
k=1

w1−α
k , (8)

where �K = [θ1, . . . , θK ] is a set of K samples generated
randomly from qλ(θ), and

wk = w(θk) = p(y, θk)

qλ(θk)
, k = 1, . . . , K ,

are importance weights. For each k, Eqλ(wk) = p(y). The

limit of L̂α,K as α → 1 is 1
K

∑K
k=1 log

p(y,θk )
qλ(θk )

. Hence L̂1,K

is an unbiased estimate of L1 as E�K (L̂1,K ) = L1 = LVI,
where E�K denotes expectation with respect to q(�K ) =∏K

k=1 qλ(θk). For α �= 1, L̂α,K is not an unbiased estimate
of Lα .

6.2 Importance weighted lower bound

The importance weighted lower bound (IWLB, Burda et al.
2016) is defined as

LIW
K = E�K (L̂0,K ) = E�K

(
log

1

K

K∑
k=1

wk

)
,

where α = 0 in (8). It reduces to LVI when K = 1. By
Jensen’s inequality,

LIW
K ≤ log E�K

(
1

K

K∑
k=1

wk

)
= log p(y).

Thus LIW
K provides a lower bound to the log marginal like-

lihood for any positive integer K . From Theorem 1 (Burda
et al. 2016), this bound becomes tighter as K increases.

Theorem 1 LIW
K increases with K and approaches log p(y)

as K → ∞ if wk is bounded.

Proof Let I = {wI1, . . . , wIK } be selected randomlywithout
replacement from {w1, . . . , wK+1}. Then EI |�K+1(wI j ) =
1

K+1

∑K+1
k=1 wk for any j = 1, . . . , K , where EI |�K+1

denotes the expectation associated with the randomness in
selecting I given �K+1. Thus

LIW
K+1 = E�K+1

(
log

1

K + 1

∑K+1

k=1
wk

)

= E�K+1

{
log EI |�K+1

(
1

K

∑K

j=1
wI j

)}

≥ E�K+1

{
EI |�K+1 log

(
1

K

∑K

j=1
wI j

)}

= E�K log

(
1

K

∑K

k=1
wk

)
= LIW

K .

If wk is bounded, then 1
K

∑K
k=1 wk

a.s.→ p(y) as K → ∞ by

the lawof largenumbers.HenceLIW
K =E�K (log 1

K

∑K
k=1 wk)

→ log p(y) as K → ∞. ��
Next, we present some properties of Rényi’s divergence

and E�K (L̂α,K ) which are important in understanding the
behavior of the variational density arising from maximizing
LIW
K . The proofs of these properties can be found in vanErven

and Harremos (2014) and Li and Turner (2016).

Property 1 Dα is increasing in α, and is continuous in α on
[0, 1] ∪ {α /∈ [0, 1] | |Dα| < ∞}.
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Property 2 E�K (L̂α,K ) is continuous and decreasing in α for
fixed K .

Theorem 2 There exists 0 ≤ αqλ,K ≤ 1 for given qλ and K
such that

log p(y) = Dαqλ,K {qλ||p(θ |y)} + LIW
K .

Proof From Property 2,

L1 = E�K (L̂1,K ) ≤ E�K (L̂0,K ) = LIW
K ≤ L0,

L1 − log p(y) ≤ LIW
K − log p(y) ≤ L0 − log p(y),

D0{qλ||p(θ |y)} ≤ log p(y) − LIW
K ≤ D1{qλ||p(θ |y)}.

From Property 1, since Dα is continuous and decreasing for
α ∈ [0, 1], there exists 0 ≤ αqλ,K ≤ 1 such that log p(y) −
LIW
K = Dαqλ,K {qλ||p(θ |y)}. ��

Minimizing Rényi’s divergence for α � 1 tends to produce
approximations which are mode-seeking (zero-forcing),
while maximizing Rényi’s divergence for α � 0 encourages
mass-covering behavior. Theorem 2 suggests that maximiz-
ing the IWLB results in a variational approximation qλ whose
Rényi’s divergence from the true posterior can be captured
with 0 ≤ α ≤ 1, which represents a mix and certain balance
between mode-seeking and mass-covering behavior (Minka
2005). In our experiments, we observe that maximizing the
IWLB is highly effective in correcting the underestimation
of posterior variance in variational inference.

Alternatively, if we approximate LIW
K by considering a

second-order Taylor expansion of log w̄K about E�(w̄K ) =
p(y), where w̄K = 1

K

∑K
k=1 wK , and then take expectations,

we have

LIW
K ≈ log p(y) − var(wk)

2Kp(y)2
.

Maddison et al. (2017) and Domke and Sheldon (2018) pro-
vide bounds on the order of the remainder term in the Taylor
approximation above, and demonstrate that the “looseness”
of the IWLB is given by var(wk) as K → ∞. Minimiz-
ing var(wK ) is equivalent to minimizing the χ2 divergence
D2(p||q). Note that if qλ(θ) has thin tails compared to
p(θ |y), then the variance of var(wk) will be large. Hence
minimizing var(wK ) attempts to match p(θ |y) with qλ(θ)

so that qλ(θ) is able to cover the tails.

6.3 Unbiased gradient estimate of importance
weighted lower bound

To maximize the IWLB in CSGVA, we need to find an unbi-
ased estimate of ∇λLIW

K using the transformation in (3). Let

sk ∼ N (0, IG+nL), θk = rλ(sk) for k = 1, . . . , K , and
SK = [s1, . . . , sK ]T .

∇λLIW
K = ∇λE�K (log w̄K ) = ∇λESK (log w̄K )

= ESK

[
K∑

k=1

∇λwk∑K
k′=1 wk′

]

= ESK

[
K∑

k=1

wk∇λ logwk∑K
k′=1 wk′

]

= ESK

[∑K

k=1
w̃k∇λ logwk

]
,

(9)

where wk = w(θk) = w{rλ(sk)} and w̃k = wk/
∑K

k′=1 wk′
for k = 1, . . . , K are normalized importance weights.
Applying chain rule,

∇λ logwk = ∇λrλ(sk)∇θk logwk − ∇λ log qλ(θk). (10)

In Sect. 4.1, we note that Eφ{∇λ log qλ(θ)} = 0 as it is the
expectation of the score function, and hence, we can omit
∇λ log qλ(θ) to obtain an unbiased estimate of ∇λLVI. How-
ever, in this case, it is unclear if

ESK

[
K∑

k=1

w̃k∇λ log qλ(θk)

]
= 0. (11)

Roeder et al. (2017) conjecture that (11) is true and report
improved results when omitting the term ∇λ log qλ(θk) from
∇λ logwk in computing gradient estimates. However, Tucker
et al. (2018) demonstrated via simulations that (11) does not
hold generally and that such omission will result in biased
gradient estimates. Our own simulations using CSGVA also
suggest that (11) does not hold even though omission of
∇λ log qλ(θk) does lead to improved results. As the stochastic
gradient algorithm is not guaranteed to converge with biased
gradient estimates, we turn to the double reparametrized gra-
dient estimate proposed by Tucker et al. (2018) which allows
unbiased gradient estimates to be constructed with the omis-
sion of ∇λ log qλ(θk) albeit with revised weights.

Since w̃k depends on λ directly as well as through θk , we
use chain rule to obtain

∇λEθk (w̃k) = ∇λEsk (w̃k)

= Esk (∇λθk∇θk w̃k) + Esk (∇λw̃k),
(12)

where

∇θk w̃k =
{

1∑K
k′=1 wk′

− wk

(
∑K

k′=1 wk′)2

}
∇θkwk

= (w̃k − w̃2
k )∇θk logwk .
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Alternatively,

∇λEθk (w̃k) = ∇λ

∫
qλ(θk)w̃k dθk

=
∫

w̃k∇λqλ(θk) + qλ(θk)∇λw̃k dθk

=
∫

w̃kqλ(θk)∇λ log qλ(θk) dθk + Eθk (∇λw̃k)

= Eθk [w̃k∇λ log qλ(θk)] + Esk (∇λw̃k).

(13)

Comparing (12) and (13), we have

E�K

(∑K

k=1
w̃k∇λ log qλ(θk)

)

=
∑K

k=1
E�K \θk Eθk [w̃k∇λ log qλ(θk)]

=
∑K

k=1
ESK \sk Esk (∇λθk(w̃k − w̃2

k )∇θk logwk)

= ESK

{∑K

k=1
(w̃k − w̃2

k )∇λrλ(sk)∇θk logwk

}
.

Combining the above expression with (9) and (10), we find
that

∇λLIW
K = ESK

(∑K

k=1
w̃2
k∇λrλ(sk)∇θk logwk

)

An unbiased gradient estimate is thus given by

∇̂λLIW
K =

K∑
k=1

w̃2
k∇λrλ(sk)∇θk {log p(y, θk) − log qλ(θk)}.

Thus, to useCSGVAwith importantweights,weonly need
to modify Algorithm 1 by drawing K samples s1, . . . , sK in
step 1 instead of a single sample and then compute the unbi-
ased gradient estimate, gt = ∇̂λLIW

K , in step 2. The rest of the
steps in Algorithm 1 remain unchanged. In the importance
weighted version of CSGVA, the gradient estimate based on
a single sample s is replaced by a weighted sum of the gradi-
ents in (7) based on K samples s1, . . . , sK . However, these
weights do not necessarily sum to 1. An unbiased estimate
of LIW

K itself is given by L̂IW
K = log 1

K

∑K
k=1 wk .

7 Experimental results

We apply CSGVA to GLMMs and state space models and
compare the results with that of GVA in terms of computa-
tion time and accuracy of the posterior approximation. Lower
bounds reported exclude constants which are independent of
the model variables. We also illustrate how CSGVA can be
improved using importanceweighting (IW-CSGVA), consid-
ering K ∈ {5, 20, 100}. We find that IW-CSGVA performs

poorly if it is initialized in the standard manner using λ = 0.
This is because, when qλ(θ) is still far from optimal, a few of
the importance weights tend to dominate with the rest close
to zero, thus producing inaccurate estimates of the gradients.
Hence, we initialize IW-CSGVA using the CSGVA fit, and
the algorithm is terminated after a short run of 1000 iterations
as IW-CSGVA is computationally intensive and improve-
ments in the IWLB and variational approximation seem to be
negligible thereafter. Posterior distributions estimated using
MCMC via RStan are regarded as the ground truth. Code for
all variational algorithms are written in Julia and are avail-
able as supplementary materials. All experiments are run on
Intel Core i9-9900K CPU @3.60 GHz with 16GB RAM.
As the computation time of IW-CSGVA increases linearly
with K , we also investigate the speedup that can be achieved
through parallel computing on a machine with 8 cores. Julia
retains one worker (or core) as the master process, and par-
allel computing is implemented using the remaining seven
workers.

The parametrization of a hierarchical model plays a major
role in the rate of convergence of both GVA and CSGVA. In
some cases, it can even affect the ability of the algorithm
to converge (to a local mode). We have attempted both the
centered and noncentered parametrizations (Papaspiliopou-
los et al. 2003, 2007), which are known to have a huge impact
on the rate of convergence of MCMC algorithms. These two
parametrizations are complementary, and neither is superior
to the other. If an algorithm converges slowly under one
parametrization, it often converges much faster under the
other. Which parametrization works better usually depends
on the nature of data. For the datasets that we use in the exper-
iments, the centered parametrizationwas found to have better
convergence properties than the noncentered parametrization
for GLMMs while the noncentered parametrization is pre-
ferred for stochastic volatility models. These observations
are further discussed below.

8 Generalized linear mixedmodels

Let yi = (yi1, . . . , yini )
T denote the vector of responses of

length ni for the i th subject for i = 1, . . . , n, where yi j is
generated from some distribution in the exponential family.
The mean μi j = E(yi j ) is connected to the linear predictor
ηi j via

g(μi j ) = ηi j = XT
i jβ + ZT

i j bi ,

for some smooth invertible link function g(·). The fixed
effects β is a p × 1 vector and bi ∼ N (0,	) is a L × 1
vector of random effects specific to the i th subject. Xi j and
Zi j are vectors of covariates of length p and L , respec-
tively. Let ηi = [ηi1, . . . , ηini ]T , Xi = [Xi1, . . . , Xini ]T
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and Zi = [Zi1, . . . , Zini ]T . We focus on the one-parameter
exponential family with canonical links. This includes the
Bernoulli model, yi j ∼ Bern(μi j ), with the logit link
g(μi j ) = log{μi j/(1 − μi j )} and the Poisson model, yi j ∼
Pois(μi j ), with the log link g(μi j ) = log(μi j ). LetWWT be
the unique Cholesky decomposition of 	−1, where W is a
lower triangular matrix with positive diagonal entries. Define
W ∗ such that W ∗

i i = log(Wii ) and W ∗
i j = Wi j if i �= j , and

let ω = v(W ∗). We consider normal priors, β ∼ N (0, σ 2
β I )

and ω ∼ N (0, σ 2
ω I ), where σ 2

β and σ 2
ω are set as 100.

The above parametrization of the GLMM is noncentered
since bi has mean 0. Alternatively, we can consider the
centered parametrization proposed by Tan and Nott (2013).
Suppose the covariates for the random effects are a subset of
the covariates for the fixed effects and the first column of Xi

and Zi are ones corresponding to an intercept and random
intercept, respectively. Then we can write

ηi = Xiβ + Zibi = ZiβR + XG
i βG + Zibi .

where β = [βT
R , βT

G ]T . We further split XG
i into covariates

which are subject specific (varies onlywith i and assumes the
same value for j = 1, . . . , ni ) and those which are not, and
βG = [βT

G1
, βT

G2
]T accordingly, where βG1 , βG2 are vectors

of length g1 and g2, respectively. Then

ηi = ZiβR + 1ni x
G1
i

T
βG1 + XG2

i βG2 + Zibi

= Zi (CiβRG1 + bi ) + XG2
i βG2 ,

where

Ci =
[
IL

xG1
i

T

0L−1×g1

]
and βRG1 =

[
βR

βG1

]
.

Let b̃i = CiβRG1 + bi . The centered parametrization is rep-
resented as

ηi = Zi b̃i + XG2
i βG2 , b̃i ∼ N (CiβRG1,	) (14)

for i = 1, . . . , n.
Tan and Nott (2013) compare the centered, noncentered

and partially noncentered parametrizations for GLMMs in
the context of variational Bayes, showing that the choice
of parametrization affects not only the rate of convergence,
but also the accuracy of the variational approximation. For
CSGVA, we observe that the accuracy of the variational
approximation and the rate of convergence can also be greatly
affected. Tan and Nott (2013) demonstrate that the centered
parametrization is preferredwhen the observations are highly
informative about the latent variables. In practice, a general
guideline is to use the centered parametrization for Poisson

models when observed counts are large and the noncen-
tered parametrization when most counts are close to zero.
For Bernoulli models, differences between using centered
and noncentered parametrizations are usually minor. Here
we use the centered parametrization in (14), which has been
observed to yield gains in convergence rates for the datasets
used for illustration.

The global parameters are θG = (βT , ωT )T of dimension
G = p + L(L + 1)/2, and the local variables are θL =
(b̃1, . . . , b̃n)T . The joint density is

p(y, θ) = p(β)p(ω)

n∏
i=1

{
p(b̃i |ω, β)

ni∏
j=1

p(yi j |β, b̃i )

}
.

The log of the joint density is given by

log p(y, θ) =
∑n

i=1
{yiηi − 1T h(ηi )

− (b̃i − CiβRG1)
T WWT (b̃i − CiβRG1)/2}

− βTβ/(2σ 2
β ) − ωTω/(2σ 2

ω) + n log |W | + c,

where h(·) is the log-partition function and c is a constant
independent of θ . For the Poisson model with log link,
h(x) = exp(x). For the Bernoulli model with logit link,
h(x) = log{1+exp(x)}. The gradient∇θ log p(y, θ) is given
in “Appendix B”.

For the GLMM, bi and b j are conditionally independent
given θG for i �= j in p(θ |y). Hencewe impose the following
sparsity structure on �2 and C2,

�2 =

⎡
⎢⎢⎢⎣

�2,11 0 . . . 0
0 �2,22 . . . 0
...

...
. . .

...

0 0 . . . �2,nn

⎤
⎥⎥⎥⎦ ,

C∗
2 =

⎡
⎢⎢⎢⎣
C∗
2,11 0 . . . 0
0 C∗

2,22 . . . 0
...

...
. . .

...

0 0 . . . C∗
2,nn

⎤
⎥⎥⎥⎦ ,

where each �2,i i is a L × L block matrix and each C∗
2,i i is a

L×L lower triangular matrix.We set fi = 0 and Fi j = 0 for
all i ∈ I and all j , where I denotes the set of indices in v(C∗

2 )

which are fixed as zero. The number of nonzero elements
in v(C∗

2 ) is nL(L + 1)/2. Hence the number of variational
parameters to be optimized are reduced from nL(nL + 1)/2
to nL(L + 1)/2 for f and from nL(nL + 1)G/2 to nL(L +
1)G/2 for F .
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Table 1 Epilepsy data. Number of iterations I (in thousands), runtimes
(in s) and estimates of lower bound (SD in brackets) of the variational
methods

K I Time Parallel L̂IW
K

GVA 1 31 13.9 – 3138.3 (1.8)

CSGVA 1 39 16.2 – 3139.2 (1.5)

IW-CSGVA 5 1 2.5 6.1 3139.9 (0.7)

20 1 6.9 8.1 3140.1 (0.4)

100 1 33.5 16.0 3140.1 (0.3)

8.1 Epilepsy data

In this epilepsy data (Thall and Vail 1990), n = 59 patients
are involved in a clinical trial to investigate the effects of
the anti-epileptic drug Progabide. The patients are randomly
assigned to receive either the drug (Trt = 1) or a placebo
(Trt = 0). The response yi denotes the number of epileptic
attacks patient i had during 4 follow-up periods of twoweeks
each. Covariates include the log of the age of the patients
(Age), the log of 1/4 the baseline seizure count recorded
over an eight-week period prior to the trial (Base) and Visit
(coded as Visit1 = − 0.3, Visit2 = − 0.1, Visit3 = 0.1 and
Visit4 = 0.3). Note that Age is centered about its mean.
Consider yi j ∼ Pois(μi j ), where

logμi j = β0 + βBaseBasei + βTrtTrti + βAgeAgei
+ βBase×TrtBasei × Trti + βVisitVisiti j

+ bi1 + bi2Visiti j ,

for i = 1, . . . , 59, j = 1, . . . , 4 (Breslow and Clayton
1993).

Table 1 shows the results obtained fromapplying the varia-
tional algorithms to this data. The lower bounds are estimated
using 1000 simulations in each case, and the mean and stan-
dard deviation from these simulations are reported. CSGVA
produced an improvement in the estimate of the lower bound
(3139.2) as compared to GVA (3138.3) and maximizing the
IWLB led to further improvements. Using a larger K of 20
or 100 resulted in minimal improvements compared with
K = 5. As this dataset is small, parallel computing is slower
than serial for a small K . This is because, even though the
importance weights and gradients for K samples are com-
puted in parallel, the cost of sending and fetching data from
the workers at each iteration dwarfs the cost of computation
when K is small. For K = 100, parallel computing reduces
the computation time by about half.

The estimated marginal posterior distributions of the
global parameters are shown in Fig. 1. The plots show that
CSGVA (red) produces improved estimates of the posterior
distribution as compared to GVA (blue), especially in esti-
mating the posterior variance of the precision parameters ω2
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Fig. 1 Epilepsy data. Marginal posterior distributions of global param-
eters. Black (MCMC), blue (GVA), red (CSGVA), purple (K = 5),
orange (K = 20), green (K = 100). (Color figure online)

and ω3. The posteriors estimated using IW-CSGVA for the
different values of K are very close. By using just K = 5, we
are able to obtain estimates that are virtually indistinguish-
able from that of MCMC.

8.2 Madras data

These data come from theMadras longitudinal schizophrenia
study (Diggle et al. 2002) for detecting apsychiatric symptom
called “thought disorder.”Monthly records showing whether
the symptom is present in a patient are kept for n = 86
patients over 12months.The response yi j is a binary indicator
for presence of the symptom. Covariates include the time
in months since initial hospitalization (t), gender of patient
(Gender = 0 if male and 1 if female) and age of patient (Age
= 0 if the patient is younger than 20 years and 1 otherwise).
Consider yi j ∼ Bern(μi j ) and

logit(μi j ) = β0 + βAge Agei + βGender Genderi + βt ti j

+βAge×t Agei × ti j + βGender×t Genderi × ti j + bi ,

for i = 1, . . . , 86, 1 ≤ j ≤ 12.
The results in Table 2 are quite similar to that of the

epilepsy data. CSGVA yields an improvement in the lower
bound estimate as compared to GVA and IW-CSGVA pro-
vided further improvements, which are evident starting with
a K as small as 5. Parallel computing halved the compu-
tation time for K = 100 but did not yield any benefits for
K ∈ {5, 20}. From Fig. 2, CSGVA and IW-CSGVA are again
able to capture the posterior variance of the precision param-
eter ω1 better than GVA.
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Table 2 Madras data. Number of iterations I (in thousands), runtimes
(in s) and estimates of lower bound (SD in brackets) of the variational
methods

K I Time Parallel L̂IW
K

GVA 1 25 13.1 – −383.4 (1.4)

CSGVA 1 35 12.6 – −383.1 (1.4)

IW-CSGVA 5 1 2.4 7.1 −382.5 (0.7)

20 1 6.8 8.9 −382.4 (0.4)

100 1 33.9 16.8 −382.3 (0.2)
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Fig. 2 Madras data. Marginal posterior distributions of global param-
eters. Black (MCMC), blue (GVA), red (CSGVA), purple (K = 5),
orange (K = 20), green (K = 100). (Color figure online)

Table 3 Six cities data. Number of iterations I (in thousands), runtimes
(in s) and estimates of lower bound (SD in brackets) of the variational
methods

K I Time parallel L̂K

GVA 1 26 60.3 – −816.4 (4.0)

CSGVA 1 28 36.5 – −816.0 (3.9)

IW-CSGVA 5 1 6.5 16.3 −812.6 (2.5)

20 1 23.1 24.5 −811.0 (1.9)

100 1 115.5 61.4 −809.8 (1.5)

8.3 Six cities data

In the six cities data (Fitzmaurice and Laird 1993), n = 537
children from Steubenville, Ohio, are involved in a longitu-
dinal study to investigate the health effects of air pollution.
Each child is examined yearly from age 7 to 10, and the
response yi j is a binary indicator for wheezing. There are
two covariates, Smokei (a binary indicator for smoking sta-
tus of the mother of child i) and Agei j (age of child i at
time point j , centered at 9 years). Consider yi j ∼ Bern(μi j ),
where

logit(μi j ) = β0 + βSmokeSmokei + βAge Agei j

+ βSmoke×Age Smokei × Agei j + bi ,

for i = 1, . . . , 537, j = 1, . . . , 4.
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Fig. 3 Six cities data. Marginal posterior distributions of global param-
eters. Black (MCMC), blue (GVA), red (CSGVA), purple (K = 5),
orange (K = 20), green (K = 100). (Color figure online)

From Table 3, CSGVA managed to achieve a higher
lower bound than GVA in about half the runtime. As K
increases, IW-CSGVA produced tighter lower bounds for
the log marginal likelihood. As in the previous two exam-
ples, parallel computing is beneficial only when K = 100,
cutting the runtime by about half. From Fig. 3, there is slight
overestimation of the posterior means of β0 and ω1 by all
the variational methods. However, CSGVA and IW-CSGVA
are able to capture the posterior variance of these parameters
much better than GVA especially for ω1.

9 Application to state spacemodels

Here we consider the stochastic volatility model (SVM)
widely used for modeling financial time series. Let each
observation yi for i = 1, . . . , n, be generated from a
zero-mean Gaussian distribution where the error variance
is stochastically evolving over time. The unobserved log
volatility bi is modeled using an autoregressive process of
order one with Gaussian disturbances:

yi |bi , σ, κ ∼ N (0, eσbi+κ), (i = 1, . . . , n)

bi |φ ∼ N (φbi−1, 1), (i = 2, . . . , n)

b1|φ ∼ N (0, 1/(1 − φ2)),

where κ ∈ R, σ > 0 and 0 < φ < 1. Here, yi rep-
resents the mean-corrected return at time i and the states
{bi } come from a stationary process with b1 drawn from
the stationary distribution. The parametrization of the SVM
above is noncentered. The centered parametrization can be
obtained by replacing bi by (b̃i − κ)/σ . The performance
of GVA and CSGVA are sensitive to the parametrization
both in terms of rate of convergence and attained local
mode. For the data sets below, the noncentered parametriza-
tion was found to have better convergence properties. The
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sensitivity of the stochastic volatility model to parametriza-
tion when fitted using MCMC algorithms is well known
in the literature. To “combine the best of different worlds,”
Kastner and Frühwirth-Schnatter (2014) introduce a strategy
that samples parameters from the centered and noncen-
teredparametrizations alternately. Tan (2017) studies optimal
partially noncentered parametrizations for Gaussian state
space models fitted using EM, MCMC or variational algo-
rithms.

We use the following transformations to map constrained
parameters to R:

α = log(exp(σ ) − 1), ψ = logit(φ).

This transformation for α works better than α = log(σ ),
which leads to erratic fluctuations in the lower bound and
convergence issuesmore often. Theglobal variables are θG =
[α, κ, ψ]T of dimension G = 3 and the local variables are
θL = [b1, . . . , bn]T of length n.We assume normal priors for
the global parameters, where α ∼ N (0, σ 2

α ), κ ∼ N (0, σ 2
κ )

and ψ ∼ N (0, σ 2
ψ), where σ 2

α = σ 2
κ = σ 2

ψ = 10. The joint
density can be written as

p(y, θ) =p(α)p(κ)p(ψ)p(b1|ψ)

{ n∏
i=2

p(bi |bi−1, ψ)

}

×
{ n∏

i=1

p(yi |bi , α, κ)

}
.

The log joint density is

log p(y, θ) = −nκ

2
− σ

2

n∑
i=1

bi − 1

2

n∑
i=1

y2i e
−σbi−κ

− 1

2

n∑
i=2

(bi − φbi−1)
2 − 1

2
b21(1 − φ2)

+ 1

2
log(1 − φ2) − α2

2σ 2
α

− κ2

2σ 2
κ

− ψ2

2σ 2
ψ

+ c,

where φ = exp(ψ)/{1+ exp(ψ)}, σ = log(exp(α)+ 1) and
c is a constant independent of θ . The gradient ∇θ log p(y, θ)

is given in “Appendix C”. For this model, bi is conditionally
independent of b j in the posterior if |i − j | > 1 given θG .
Thus, the sparsity structure imposed on �2 and C2 are

� =

⎡
⎢⎢⎢⎢⎢⎣

�2,11 �2,12 0 . . . 0
�2,21 �2,22 �2,23 . . . 0
0 �2,32 �2,33 . . . 0
...

...
...

. . .
...

0 0 0 . . . �2,nn

⎤
⎥⎥⎥⎥⎥⎦

,

C2 =

⎡
⎢⎢⎢⎢⎢⎣

C2,11 0 0 . . . 0
C2,21 C2,22 0 . . . 0
0 C2,32 C2,33 . . . 0
...

...
...

. . .
...

0 0 0 . . . C2,nn

⎤
⎥⎥⎥⎥⎥⎦

.

The number of nonzero elements in v(C∗
2 ) is 2n − 1. Setting

fi = 0 and Fi j = 0 for all i ∈ I and all j , where I denotes
the set of indices in v(C∗

2 )which are fixed as zero, the number
of variational parameters to be optimized are reduced from
n(n+1)/2 to 2n−1 for f , and from n(n+1)G/2 to (2n−1)G
for F .

9.1 GBP/USD exchange rate data

These data contain 946 observations of the exchange rates
of the US Dollar (USD) against the British Pound (GBP),
recorded daily from 1 October 1981, to 28 June 1985. These
data are available from the “Garch” dataset in the R package
Ecdat. Themean-corrected responses {yt |t = 1, . . . , n} are
computed from the exchange rates {rt |t = 0, . . . , n} as

yt = 100

{
log

(
rt
rt−1

)
− 1

n

n∑
i=1

log

(
ri
ri−1

)}
,

where n = 945.
For these data, CSGVA failed to achieve a higher lower

bound when it was initialized using λ = 0. Hence we ini-
tialize CSGVA using the fit from GVA instead, by using
the association discussed in Sect. 5. With this informative
starting point, CSGVA converged in 16000 iterations and
managed to improve upon the GVA fit, attaining a higher
lower bound. IW-CSGVA led to further improvements with
increasing K . As this dataset contains a large number of
observations with correspondingly more variational param-
eters to be optimized, the computation is more intensive and
parallel computing comes in very useful reducing the compu-
tation time by factors of 1.8, 2.9 and 4.2 for K = 5, 20, 100
respectively (Table 4).

Figure 4 shows the estimated marginal posteriors of the
global parameters. CSGVA provides significant improve-
ments in estimating the posterior variance of α and ψ as
compared to GVA. With the application of IW-CSGVA, we
are able to obtain posterior estimates that are quite close to
that of MCMC even with a small K .
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Table 4 GBP data. Number of iterations I (in thousands), runtimes
(in s) and estimates of lower bound (SD in brackets) of the variational
methods

K I Time parallel L̂IW
K

GVA 1 61 239.7 – −138.2 (1.3)

CSGVA 1 16 58.6 – −137.8 (1.3)

IW-CSGVA 5 1 18.3 10.2 −137.4 (1.0)

20 1 71.2 24.4 −137.0 (0.5)

100 1 355.3 84.3 −136.8 (0.4)
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Fig. 4 GBP data.Marginal posterior distributions of global parameters.
Black (MCMC), blue (GVA), red (CSGVA), purple (K = 5), orange
(K = 20), green (K = 100). (Color figure online)

Figure 5 shows the estimated marginal posteriors of the
latent states {bi } summarized using the mean (solid line)
and one standard deviation from the mean (dotted line)
estimated by MCMC (black) and IW-CSGVA (K = 5, pur-
ple). For IW-CSGVA, the means and standard deviations are
estimated based on 2000 samples, by generating θG from
q(θG) followed by θL from q(θL |θG). For MCMC, esti-
mation was based on 5000 samples. IW-CSGVA estimated
the means quite accurately (with a little overestimation),
but the standard deviations are underestimated when com-
pared to MCMC. The boxplot shows the difference between
the means and standard deviations estimated by IW-CSGVA
(K = 5) andGVAwithMCMC.We can see that IW-CSGVA
estimated both themeans and standard deviationsmore accu-
rately as compared to GVA.

9.2 NewYork stock exchange data

Next we consider 2000 observations of the returns of the
New York Stock Exchange (NYSE) from February 2, 1984
to December 31, 1991. These data are available as the dataset
“nyse” from the R package astsa. We consider 100 times
the mean-corrected returns as responses {yi }.

From Table 5, CSGVA was able to attain a higher lower
bound than GVA when initialized in the standard manner
using λ = 0. Applying IW-CSGVA led to further improve-
ments as K increases. For this massive data set, parallel
computing yields significant reductions in computation time,
by factors of 2.9, 4.5 and 5.5 corresponding to K = 5, 20,
100, respectively.
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Fig. 5 GBP data. Top: Posterior means (solid line) of the latent states
and one standard deviation from the mean (dotted line) estimated using
MCMC (black) and IW-CSGVA (K = 5, purple). Bottom: Boxplots of
meanMCMC − meanVA and sdMCMC − sdVA. (Color figure online)

Table 5 NYSE data. Number of iterations I (in thousands), runtimes
(in s) and estimates of lower bound (SD in brackets) of the variational
methods

K I Time Parallel L̂IW
K

GVA 1 43 679.0 – −570.8 (1.8)

CSGVA 1 49 749.2 – −570.7 (2.0)

IW-CSGVA 5 1 76.0 26.1 −569.4 (1.1)

20 1 305.0 67.9 −569.0 (0.7)

100 1 1503.0 274.0 −568.7 (0.4)
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Fig. 6 NYSE data. Marginal posterior distributions of global param-
eters. Black (MCMC), blue (GVA), red (CSGVA), purple (K = 5),
orange (K = 20), green (K = 100). (Color figure online)

Figure 6 shows that the marginal posteriors estimated
using CSGVA are quite close to that of MCMC, while GVA
underestimated the posterior variance of α and ψ quite
severely. Posteriors estimated by IW-CSGVA are virtually
indistinguishable from MCMC.

From Fig. 7, we can see that the marginal posteriors of the
latent states are also estimated very well using IW-CSGVA
(K = 5), and there is no systematic underestimation of the
posterior variance unlike the previous example. GVA cap-
tures the posterior means very well but did not perform as
well as IW-CSGVA in estimating the posterior variance.
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Fig. 7 NYSE data. Top: Posterior means (solid line) of the latent states
and one standard deviation from the mean (dotted line) estimated using
MCMC (black) and IW-CSGVA (K = 5, purple). Bottom: Boxplots of
meanMCMC − meanVA and sdMCMC − sdVA. (Color figure online)

10 Conclusion

In this article, we have proposed a Gaussian variational
approximation for hierarchical models that adopts a condi-
tional structure q(θ) = q(θG)q(θL |θG). The dependence of
the local variables θL on global variables θG are then captured
using a linear approximation. This structure is very useful
when there are global scale parameters in θG which help
to determine the scale of local variables in the conditional
posterior of θL |θG . We further demonstrate how CSGVA
can be improved by maximizing the importance weighted
lower bound. From our experiments, using a K as small
as 5 can lead to significant improvements in the variational
approximation, with just a short run. Moreover, for massive
datasets, computation time can be further reduced through
parallel computing. Our experiments indicate that CSGVA
coupled with importance weighting is particularly useful in
improving the estimation of the posterior variance of pre-
cision parameters ω in GLMMs, and the persistence φ and
volatility σ of the log-variance in SVMs.
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Appendix A: Derivation of stochastic
gradient

Let ⊗ denote the Kronecker product between any two matri-
ces. We have

rλ(s) =
[
θG
θL

]
=

[
μ1 + C−T

1 s1
d + C−T

2 (s2 − DC−T
1 s1)

]
,

where v(C∗
2 ) = f + F(μ1 + C−T

1 s1). Differentiating rλ(s)
with respect to λ, ∇λrλ(s) is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

∇μ1θG ∇μ1θL
∇v(C∗

1 )θG ∇v(C∗
1 )θL

∇dθG ∇dθL
∇vec(D)θG ∇vec(D)θL

∇ f θG ∇ f θL
∇vec(F)θG ∇vec(F)θL

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since θG does not depend on d, D, f and F , we have

∇dθG = 0nL×G , ∇vec(D)θG = 0nLG×G

∇ f θG = 0nL(nL+1)/2×G , ∇vec(F)θG = 0nLG(nL+1)/2×G .

It is easy to see that ∇μ1θG = IG and ∇dθL = InL . The rest
of the terms are derived as follows.

Differentiating θG with respect to v(C∗
1 ),

dθG = −C−T
1 d(CT

1 )C−T
1 s1

= −(sT1 C
−1
1 ⊗ C−T

1 )KGE
T
GD∗

1dv(C∗
1 )

= −(C−T
1 ⊗ sT1 C

−1
1 )ET

GD∗
1dv(C∗

1 ).

∴ ∇v(C∗
1 )θG = −D∗

1EG(C−1
1 ⊗ C−T

1 s1).

Differentiating θL with respect to f ,

dθL = −C−T
2 d(CT

2 )C−T
2 (s2 − DC−T

1 s1)

= −{(s2 − DC−T
1 s1)

TC−1
2 ⊗ C−T

2 }
× KnL E

T
nL D

∗
2d f

∴ ∇ f θL = −D∗
2EnL{C−1

2 ⊗ C−T
2 (s2 − DC−T

1 s1)}.

Differentiating θL with respect to F ,

dθL = (∇ f θL)T dFθG

= {θTG ⊗ (∇ f θL)T }dvec(F).

∴ ∇vec(F)θL = θG ⊗ ∇ f θL .

Differentiating θL with respect to D,

dθL = −C−T
2 dDC−T

1 s1

= −(sT1 C
−1
1 ⊗ C−T

2 )dvec(D).

∴ ∇vec(D)θL = −(C−T
1 s1 ⊗ C−1

2 ).

Differentiating θL with respect to μ1,

dθL = (∇ f θL)T Fdμ1

∴ ∇μ1θL = FT (∇ f θL).
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Differentiating θL with respect to v(C1),

dθL = −C−T
2 d(CT

2 )C−T
2 (s2 − DC−T

1 s1)

− C−T
2 Dd(C−T

1 )s1

= (∇ f θL)T Fd(C−T
1 )s1 − C−T

2 Dd(C−T
1 )s1

= {(∇ f θL)T F − C−T
2 D}(∇v(C∗

1 )θG)T dv(C∗
1 )

∴ ∇v(C∗
1 )θL = ∇v(C∗

1 )θG{FT∇ f θL − DTC−1
2 }

= ∇v(C∗
1 )θG{∇μ1θL − DTC−1

2 }.

Since s1 = CT
1 (θG −μ1) and s2 = CT

2 (θL −μ2), we have

log qλ(θ) = log q(θG) + log q(θL |θG)

= −G

2
log(2π) + log |C1|

− 1

2
(θG − μ1)

TC1C
T
1 (θG − μ1)

− nL

2
log(2π) + log |C2|

− 1

2
(θL − μ2)

TC2C
T
2 (θL − μ2)

= −nL + G

2
log(2π) + log |C1C2| − 1

2
sT s.

As μ2 = d + C−T
2 D(μ1 − θG) and v(C∗

2 ) = f + FθG ,
differentiating log qλ(θ) with respect to θG ,

d log qλ(θ) = −(θG − μ1)
T C1C

T
1 dθG − (θL − μ2)

T C2C
T
2 (−dμ2)

− (θL − μ2)
T dC2s2 + tr(C−1

2 dC2)

= −sT1 C
T
1 dθG + sT2 C

T
2 {−C−T

2 DdθG

+ d(C−T
2 )D(μ1 − θG)}

− vec(C−T
2 s2s

T
2 )T dvec(C2) + vec(C−T

2 )T dvec(C2)

= vec(C−T
2 − {C−T

2 s2 + (μ2 − d)}sT2 )T dvec(C2)

− sT1 C
T
1 dθG − sT2 DdθG

= vec(C−T
2 − (θL − d)sT2 )T ET

nL D
∗
2FdθG

− sT1 C
T
1 dθG − sT2 DdθG .

Therefore

∇θG log qλ(θ) = FT D∗
2v(C−T

2 − (θL − d)sT2 )

− C1s1 − DT s2.

Note that D∗
2v(C−T

2 ) = v(InL) as C−T
2 is upper triangular

and v(C−T
2 ) only retains the diagonal elements of C−T

2 .
Differentiating log qλ(θ) with respect to θL ,

d log qλ(θ) = −(θL − μ2)
TC2C

T
2 dθL

= −sT2 C
T
2 dθL .

∴ ∇θL log qλ(θ) = −C2s2.

Appendix B: Gradients for generalized linear
mixedmodels

Since θ = [βT , ωT , b̃T1 , . . . , b̃Tn ]T , we require

∇θ log p(y, θ) = [∇β log p(y, θ),∇ω log p(y, θ),

∇b̃1
log p(y, θ), . . . ,∇b̃n

log p(y, θ)]T .

For the centered parametrization, the components in
∇θ log p(y, θ) are given below.Note thatβ = [βT

RG1
, βT

G2
]T .

∇βG2
log p(y, θ) =

n∑
i=1

XG2
i

T {yi − h′(ηi )} − βG2/σ
2
β .

∇βRG1
log p(y, θ) =

n∑
i=1

CT
i WWT (b̃i − CiβRG1)

−βRG1/σ
2
β .

Differentiating log p(y, θ) with respect to ω,

d log p(y, θ) = −
n∑

i=1

(b̃i − CiβRG1)
T dWWT (b̃i − CiβRG1)

+ ntr(W−1dW ) − ωT dω/σ 2
ω

= vec

{
−

n∑
i=1

(b̃i − CiβRG1)(b̃i − CiβRG1)
T W

+ nW−T
}T

ET
L D

∗
Ldω − ωT dω/σ 2

ω,

where dv(W ) = D∗
Ldω and D∗

L = diag{v(dg(W )+ 1L1TL −
IL)}. Hence

∇ω log p(y, θ) = −D∗
L

n∑
i=1

v{(b̃i − CiβRG1)(b̃i

− CiβRG1)
T W }

+ nv(IL) − ω/σ 2
ω.

Note that D∗
Lv(W−T ) = v(IL) because W−T is upper trian-

gular and v(W−T ) only retains the diagonal elements.

∇b̃i
log p(y, θ) = ZT

i {yi − h′(ηi )} − WWT (b̃i − CiβRG1).

Appendix C: Gradients for state space
models

Since θ = [α, κ, ψ, bT1 , . . . , bTn ]T , we require

∇θ log p(y, θ) = [∇α log p(y, θ),∇κ log p(y, θ),
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∇ψ log p(y, θ),∇b1 log p(y, θ), . . . , ∇bn log p(y, θ)]T .

The components in ∇θ log p(y, θ) are given below.

∇α log p(y, θ) = 1

2

n∑
i=1

(bi y
2
i e

−σbi−κ − bi )(1 − e−σ ) − α

σ 2
α

.

∇κ log p(y, θ) = 1

2

( n∑
i=1

y2i e
−σbi−κ − n

)
− κ/σ 2

κ .

∇ψ log p(y, θ) =
{ n∑
i=2

(bi − φbi−1)bi−1 + b21φ − φ

1 − φ2

}

×φ(1 − φ) − ψ/σ 2
ψ .

∇b1 log p(y, θ) = σ

2
(y21e

−σb1−κ − 1)

+φ(b2 − φb1) − b1(1 − φ)2.

For 2 ≤ i ≤ n − 1,

∇bi log p(y, θ) = σ

2
(y2i e

−σbi−κ − 1) + φ(bi+1 − φbi )

− (bi − φbi−1).

∇bn log p(y, θ) = σ

2
(y2ne

−σbn−κ − 1) − (bn − φbn−1).
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