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Abstract
This article presents a novel Laplace-based algorithm that can be used to find Bayesian adaptive designs under model and
parameter uncertainty. Our algorithm uses Laplace importance sampling to provide a computationally efficient approach
to undertake adaptive design and inference when compared to standard approaches such as those based on the sequential
Monte Carlo (SMC) algorithm. Like the SMC approach, our new algorithm requires very little problem-specific tuning and
provides an efficient estimate of utility functions for parameter estimation and/or model choice. Further, within our algorithm,
we adopt methods from Pareto smoothing to improve the robustness of the algorithm in forming particle approximations
to posterior distributions. To evaluate our new adaptive design algorithm, three motivating examples from the literature are
considered including examples where binary, multiple response and count data are observed under considerable model and
parameter uncertainty. We benchmark the performance of our new algorithm against: (1) the standard SMC algorithm and (2)
a standard implementation of the Laplace approximation in adaptive design. We assess the performance of each algorithm
through comparing computational efficiency and design selection. The results show that our new algorithm is computationally
efficient and selects designs that can perform as well as or better than the other two approaches. As such, we propose our
Laplace-based algorithm as an efficient approach for designing adaptive experiments.

Keywords Importance sampling ·Model discrimination · Parameter estimation · Pareto smoothing · Sequential Monte Carlo ·
Total entropy

1 Introduction

Bayesian adaptive design is an integral component of scien-
tific investigation in fields such as the physical, chemical and
biological sciences (Roy and Notz 2014; Barz et al. 2016;
Antognini and Giovagnoli 2015). The approach is to, based
on current prior information about the experimental out-
comes, find a design to collect the next data point or batch of
data. Once this design has been selected, data are collected,
and the prior information for the experiment is updated to
reflect the new information gained from the new data. This
process then iterates a fixed number of times or until a cer-
tain stopping criterion has been met. At each iteration, the
choice of design is determined by maximising an expected
utility function over the space of all possible designs, where
the expectation is with respect to the joint distribution of
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the candidate models, the parameters and the experimental
outcomes. The expected utility is defined to encapsulate the
experimental aim/s, typically evaluating the expected amount
of information to be gained from running a given design.
This component of the scientific method can be thought of
as adaptive learning and thus fits naturally within a Bayesian
framework where the posterior distribution for a given iter-
ation becomes the prior information for the next iteration.
Thus, throughout this paper, we will consider design and
inference within a Bayesian framework.

Wakefield (1994) proposed an adaptive design algorithm
for determining an optimal dosing regimen in a pharmacoki-
netic study. In their approach, a Gibbs sampler was used to
update the posterior distribution at each iteration of the adap-
tive designprocess. Palmer andMüller (1998) generalised the
approach of Wakefield (1994) to allow more complex mod-
els to be considered. This was achieved through a Markov
chain Monte Carlo (MCMC) algorithm for sampling from
the posterior distribution at each iteration of the adaptive
design and for approximating the expected utility. We note
that both of the above approaches are rather computationally
intensive as a Gibbs or MCMC sampler needs to be run at
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every iteration of the adaptive design process, andmany times
within the selection of an optimal design. Thus, recently, a
few authors have considered a combination of MCMC sam-
plers and importance sampling for Bayesian adaptive design
(Stroud et al. 2001; Weir et al. 2007; McGree et al. 2012).
In these algorithms, MCMC was used to update the poste-
rior distribution at each iteration of the design process, and
importance sampling was then used to approximate the pos-
terior distribution when estimating the expected utility of the
design. As these design algorithms require the use ofMCMC
at each iteration, they are computationally quite wasteful as
all previous data are continually being considered within an
MCMC algorithm. A more efficient approach would be to
avoid such a step completely or at least avoid having to run
it within every iteration of the adaptive design process.

To avoidmuch of the computation in the above algorithms,
Lewi et al. (2009) developed an adaptive design algorithm for
neurophysiology experiments based on the Laplace approx-
imation. At each iteration of the adaptive design algorithm,
the posterior distribution is approximated by a Laplace
approximation, that is, amultivariate normal distribution. For
further computational efficiency, the Laplace approximation
was based on an approximation to the posterior distribution
formedby considering the posterior distribution from the pre-
vious iteration. For approximating the expected utility,model
predictionswere used to approximate themutual information
between the parameters and the data. Thus, the methods of
Lewi et al. (2009) could be considered as an approximate ver-
sion of a standard sequential Laplace algorithm (SLP). In this
paper, we will evaluate the performance of such an algorithm
in designing various adaptive experiments. As such, further
details about SLP will be provided in Sect. 2. Such methods
have also been considered for efficiently approximating the
posterior distribution when locating Bayesian static designs
(Ryan 2003; Long et al. 2013).

The current standard approach to Bayesian adaptive
design is based on the sequential Monte Carlo (SMC) algo-
rithm, see Del Moral et al. (2006). In SMC, posterior
distributions are approximated by repeatedly applying a re-
weight, resample and move step. Some of the major benefits
of SMC include beingmore efficient thanMCMC in terms of
capturing multi-modal distributions, and the algorithm pro-
vides an efficient estimate of the model evidence which can
be used for model selection (Del Moral et al. 2006). How-
ever, one drawback of this algorithm is the move step, where
an MCMC sampler is run to diversify the particle set. Such
a sampler can be computationally expensive as all previous
data need to be considered (further details to come later in
Sect. 2.2). Nonetheless, Drovandi et al. (2013) proposed the
use of the SMC algorithm in Bayesian adaptive design to
approximate the posterior distribution at each iteration of the
design process and used importance sampling to approxi-
mate expected utility functions. This algorithm was applied

to examples where generalised linear and nonlinear models
were used to describe discrete data. Further developments of
this approach came fromDrovandi et al. (2014)who extended
the SMC algorithm for Bayesian design to consider model
uncertainty. The goal of the experiments was to discrimi-
nate between candidate models, so a discrimination utility
based on the mutual information between the model and the
datawas considered.As in the original algorithm, importance
sampling was used to estimate the expectation of this utility.

In this paper, we propose a novel adaptive design algo-
rithm based on the Laplace approximation to efficiently
derive designs for sequential experiments. This algorithm
was developed by adopting the importance sampling (re-
weight) step of SMC but replacing the resample and move
steps with Laplace importance sampling (Kuk 1999). Fur-
ther, within this importance sampling step, Pareto smoothing
(Vehtari et al. 2017) is used to obtain stable importance
weights, and hence to improve the efficiency of posterior
estimates based on this importance sampling step. As will be
seen, this yields considerable computational efficiency with
little to no compromise in the selection of efficient designs.
Both of these benefits were observed when we compared
the performance of our new algorithm (in terms of compu-
tational efficiency and design selection) with the standard
SMC and SLP algorithms. Of note, the motivating exam-
ples used for this comparison were rather complex in that
significant model and parameter uncertainty were present a
priori. As such, designswere selected for the dual experimen-
tal goals of parameter estimation and model discrimination
using the total entropy utility (Borth 1975;McGree 2017). To
reduce the computational complexity of the sequential design
problem, a greedy/myopic design approach was considered
(Dror and Steinberg 2008;Cavagnaro et al. 2010). The results
from applying our new algorithm to these motivating exam-
ples suggest there are considerable benefits in adopting our
new algorithm over standard approaches to Bayesian adap-
tive design.

The paper proceeds as follows. In Sect. 2, an adaptive
experimental design framework is formally defined, and
background information about the standard SLP and SMC
algorithms is provided. Our novel adaptive design algorithm
is then introduced in Sect. 3. In Sect. 4, three motivating
examples are considered to demonstrate the performance of
our new adaptive design algorithm. The paper concludeswith
Sect. 5 which provides a discussion of key findings and sug-
gestions for future research.

2 Background

Suppose an adaptive experiment is to be run to collect obser-
vations yi across n iterations, for i = 1, . . . , n. For the
purposes of this paper, we will assume that only a single data

123



Statistics and Computing (2020) 30:1183–1208 1185

point is observed within each iteration of the adaptive design
resulting in the following construction of the likelihood:

p( y1:n|d1:n, θm, M = m) =
n∏

i=1

p(yi |di , θm, M = m),

where M is the random variable associated with a set of K
candidate models and θm represents the parameters in model
m. These candidate models could (but not necessarily) be
nested models, and the dimension of θm depends on m, for
m = 1, . . . , K . Here, di = (d1i , . . . , dpi ) ∈ D denotes the
design used in the i th iteration in the design space D ⊂ R

p,
for i = 1, . . . , n.

In adaptive experiments, the Bayesian inference problem
is to approximate or sample from a sequence of posterior
distributions built up through data annealing. That is, for the
i th iteration of an adaptive design, the posterior distribution
is defined as:

p(θm |M = m, d1:i , y1:i )

= p(θm |M = m)p( y1:i |d1:i , θm, M = m)

Zm,i
,

where Zm,i = p( y1:i |d1:i , M = m) = ∫
Θm

p(θm |M =
m)p( y1:i |d1:i , θm, M = m)dθm denotes the normalising
constant or the model evidence which can be used for model
choice via the posterior model probability as follows:

p(M=m|d1:i , y1:i )=
p( y1:i |d1:i , M = m)p(M = m)

∑K
k=1 p( y1:i |d1:i , M = k)p(M = k)

,

(1)

where there is a preference for the model with the largest
posterior model probability p(M = m|d1:i , y1:i ), for m =
1, . . . , K .

The Bayesian adaptive design problem can then be stated
as selecting di at each iteration based on a proposed util-
ity function. Such a function is defined to encapsulate the
aim/s of the experiment which could include parameter esti-
mation, model discrimination and/or prediction. For the i th
iteration of an adaptive design, denote the utility function
as U (d, z, θm,m|d1:i−1, y1:i−1), where z is a supposed out-
comeobtained from runningdesignd andbelongs to the same
space as the measurement y. As z, θm and m are unknown,
the expectation is taken with respect to the joint distribu-
tion of these random variables based on the (current) prior
information. This yields the following expected utility:

U (d|d1:i−1, y1:i−1)

= Ez,θm ,m|d1:i−1, y1:i−1
[U (d, z, θm,m|d1:i−1, y1:i−1)]

=
K∑

m=1

p(M = m|d1:i−1, y1:i−1) (2)

×
∑

z∈S
p(z|d, d1:i−1, y1:i−1, M = m)

×
∫

Θm

U (d, z, θm,m|d1:i−1, y1:i−1)

×p(θm |M = m, d1:i−1, y1:i−1)dθm,

where p(z|d, d1:i−1,y1:i−1
, M = m) = ∫

Θm
p(z|d, θm, M =

m) ×p(θm |M = m, d1:i−1, y1:i−1
)dθm and S represents the

sample space of a discrete response. The above expected util-
ity U (d|d1:i−1, y1:i−1) is defined for discrete data as such
data are observed in all of the motivating examples consid-
ered in this paper. Extension to other data types, such as
continuous, is straightforward and therefore omitted.

Thus, at each iteration of an adaptive design, one seeks to
find d∗ = arg maxd∈D U (d|d1:i−1, y1:i−1), which becomes
di , the design selected at the i th iteration of the algorithm.
Unfortunately, the above expression for the expected utility
generally cannot be solved analytically and thus needs to
be approximated. The most common approach for this is
MonteCarlo (MC) integration through the simulation of prior
predictive data as follows:

U (d|d1:i−1, y1:i−1)

≈
K∑

m=1

p(M = m|d1:i−1, y1:i−1)

×
∑

z∈S
p(z|d, d1:i−1, y1:i−1, M = m)

× 1

B

B∑

b=1

U (d, z, θm,b,m|d1:i−1, y1:i−1),

(3)

where θm,b ∼ p(θm |M = m, d1:i−1, y1:i−1) and B repre-
sents the number of samples considered for MC integration.

The adaptive design process described above is outlined
in Algorithm 1 where initially the prior information about
the models and parameters is defined along with the design
space. The process then, in our case, iterates a fixednumber of
timeswhere the i th optimal design is found bymaximising an
expected utility (line 3), the i th data point is collected (line 4)
and prior information (about the models and the parameters)
is updated based on the information gained from the i th data
point (lines 5 and 6). For themotivating examples considered
in this desktop study, data cannot actually be collected (line
4). In place of this, we assume data are generated from an
underlyingmodel with specified parameter values. Addition-
ally, within our description of the adaptive design process,
we include computation of the model evidence (line 6) as
we will consider model uncertainty throughout this paper.
We also note that such a quantity is needed to evaluate the
expected utility in Eq. (3) (via the posterior model probabil-
ity).
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Algorithm 1 Adaptive design algorithm
1: Initialise the prior information p(θm |M = m), p(M = m), for

m = 1, 2, . . . , K
2: for i = 1 to n do
3: Find the i th optimal design point di , by maximising the utility

U (d|d1:i−1, y1:i−1)

4: Collect data point yi at design point di
5: Update the posterior distribution p(θm |M = m, d1:i , y1:i )
6: Compute model evidence p( y1:i |d1:i , M = m) for m =

1, 2, . . . , K
7: end for

In considering the adaptive design process as outlined
in Algorithm 1, there are two main difficulties (at least
computationally). These are: (1) efficiently updating prior
information as new data arrive (lines 5 and 6); (2) effi-
ciently approximating the expected utility function (line 3).
In this paper, we propose a new algorithm that addresses
both of these difficulties. Before describing this approach,
we outline two previously proposed algorithms based on
standard implementations of: (1) the Laplace approxima-
tion and (2) the SMC algorithm. We provide details on both
of these algorithms, not only because we benchmark the
performance our new algorithm against them, but also so
the reader can understand the differences between the three
approaches.

2.1 Adaptive design based on the Laplace
approximation

In this section, we describe a standard Laplace-based
approach to Bayesian adaptive design where the posterior
distribution of the parameters at each iteration is approxi-
mated by a Laplace approximation, and the expectation of
the utility function is approximated via importance sam-
pling. Pseudo-code for this approach is provided in Algo-
rithm 2.

To initialise the algorithm, for each candidate model, a
set of particles is drawn from the prior distribution of the
parameters, and each particle is given equal weight (line 1).
Within each iteration of the design process, importance sam-
pling is used to efficiently approximate expected utilities.
That is, assume that we want to evaluate the expectation of
h(X)where h(.) is some function and X is a random variable
with a probability distribution p(x). The expectation can be
defined as follows:

E[h(X)] =
∫

X

h(x)p(x)dx .

In some cases, this integral may not be solvable analyt-
ically, but can be approximated using MC integration as
follows:

E[h(X)] ≈
N∑

j=1

h(x j )p(x j ) =
N∑

j=1

h(x j )w
j ,

where x j ∼ p(x) and w j = 1/N .
From the above, it can be seen that sampling from p(x) is

required to approximate the expectation. In somecases, direct
sampling from this distributionmaybedifficult.Accordingly,
importance sampling can be used through the following for-
mulation:

E[h(X)] =
∫

X

h(x)p(x)

q(x)
q(x)dx, (4)

where q(x) is an importance distribution that is straightfor-
ward to sample fromdirectly andprovides sufficient coverage
of p(x).

The approximation to the expectation is then given as fol-
lows:

E[h(X)] ≈
N∑

j=1

h(x j )p(x j )

q(x j )
=

N∑

j=1

h(x j )w
j ,

where x j ∼ q(x) and w j = p(x j )
q(x j )

are the importance

weights. Then, the weighted sample {x j , w j }Nj=1 is a par-
ticle approximation to the target distribution p(x).

For the purpose of evaluating the expectation of a util-
ity function, p(x) will be the posterior distribution of θm .
Accordingly, evaluating p(x) will yield density values that
are only proportional to the posterior distribution. Again,
importance sampling can still be used in such cases (i.e. when
p(x) is an unnormalised density). Here, the approximation
becomes:

E[h(X)] ≈
N∑

j=1

h(x j )

(
w j

∑N
k=1 wk

)
=

N∑

j=1

h(x j )W
j , (5)

where w j = p(x j )
q(x j )

and W j = w j
∑N

k=1 wk
are the normalised

importanceweights. Thus,we have obtained aweighted sam-
ple from the target distribution which can be denoted as
{x j ,W j }Nj=1.

For approximating the expectation of utilities, the utility
functionU (d, z, θm,m| y1:i−1, d1:i−1) is evaluated based on
the posterior distribution of θm. This requires updating the
posterior distribution based on a supposed outcome z, at a
design point d. For this purpose, importance sampling is used
throughout the SLP algorithm with importance distribution
p(θ | y1:i−1, d1:i−1, M = m) (i.e. the posterior distribution at
the (i−1)th iteration). Thus, the evaluation of the utility func-
tion will be based on a weighted particle set, see Drovandi
et al. (2013) for further details.
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Once the i th design has been selected and the data col-
lected, a Laplace approximation is formed for each candidate
model. This is achieved by forming a multivariate normal
approximation to the posterior distribution (of each model)
by first finding the posterior mode as follows:

θ∗
m = argmax

θm

{
log p( y1:i |d1:i , θm, M = m)

+ log p(θm |M = m)
}
.

(6)

This mode becomes the mean of the multivariate normal
approximation. The variance–covariance matrix is formed
via the inverse of the negative Hessian matrix at this mode.
This Hessian matrix can be defined as follows:

H(θ∗
m) = ∂2{ f (θm)}

∂θm∂θm
′

∣∣∣
θm=θ∗

m

, (7)

where f (θm)= log p( y1:i |d1:i , θm, M=m)+ log p(θm |M =
m).

The approximation to the posterior distribution can then
be defined as follows:

p(θm |M = m, y1:i , d1:i ) ≈ MV N (θ∗
m,Σ(θ∗

m)), (8)

where Σ(θ∗
m) = [−H(θ∗

m)]−1. The Laplace approximation
to the posterior distribution is computationally efficient when
compared to alternatives such as MCMC and SMC (Lewi
et al. 2009). When the posterior concentrates around a sin-
gle mode or sub-manifold, the Laplace approximation can be
highly efficient for estimating utility functions in Bayesian
design (Long et al. 2015). However, this approximation may
introduce error/biaswhen the posterior distribution is skewed
ormulti-modal. To reduce such error/bias, other authors have
proposed including high-order derivatives in the approxima-
tion (Shun and McCullagh 1995; Clark and Dixon 2017;
Ogden 2018). However, this comes with additional compu-
tational costs.

As shown in Bernardo and Smith (2000), the model evi-
dence for model m can be approximated based on a given
Laplace approximation and has the following form:

p( y1:i |d1:i , M = m)

= (2π)(
qm
2 )|Σ(θ∗

m)|p( y1:i |d1:i , θ∗
m, M = m)

× p(θ∗
m |M = m),

(9)

where qm is the number of parameters in model m. As
shown in Eq. (1), these model evidences can be normalised
to approximate posterior model probabilities. Such approxi-
mations have been considered previously in Bayesian static
design, see, for example, Overstall et al. (2018a).

Algorithm 2 Sequential Laplace algorithm

1: Draw θ
j
m,0 from prior p(θm |M = m) and set W j

m,0 = 1/N for
j = 1, 2, . . . , N and for m = 1, 2, . . . , K

2: for i = 1 to n do
3: Find the i th optimal design point di , by maximising the utility

U (d| y1:i−1, d1:i−1)

4: Collect data yi at design point di
5: for m = 1 to K do
6: Find the posterior mode θ∗

m and Hessian matrix H(θ∗
m) at this

mode using Eqs. (6) and (7)
7: Approximate p(θm |M = m, y1:i , d1:i ) via the Laplace

approximation (Eq. 8)
8: Approximate the model evidence, p( y1:i |d1:i , M = m)

(Eq. 9)
9: Sample θ

j
m,i ∼ MV N (θ∗

m ,Σ(θ∗
m)) and set W j

m,i = 1/N , for
j = 1, 2, . . . , N

10: end for
11: end for

Algorithm 2 provides pseudo-code for the SLP approach
to adaptive design. Initially, a sample of N particles is drawn
from the prior for eachmodelm (line 1). Then, for each itera-
tion, the next optimal design is found by maximising a utility
function based on the current information about each model
and the parameter values (line 3). Given this design, data are
simulated from a supposed model with assumed parameter
values (line 4). For eachmodel, the Laplace approximation is
used to approximate the posterior distribution of the param-
eters and to update the model evidence (lines 6–7). A sample
of N particles is then drawn from each of these posterior dis-
tributions such that they can be used to approximate the utility
for finding the next design point (line 8). This process contin-
ues until a fixed number of data points have been observed.

2.2 Sequential Monte Carlo

SMC methods are a collection of techniques that approxi-
mate a sequence of distributions known up to a normalising
constant. The approach combines importance sampling (re-
weighting), resampling and MCMC techniques (move step)
to approximate a sequence of target distributions.When there
exists uncertainty about the model, SMC also provides an
estimate of the marginal likelihood which can be used for
model choice.

In SMC, particles are propagated through a sequence of
target distributions rather than re-generating a whole new set
of particles within each iteration of the design process as in
the SLP algorithm. Consequently, as more data are observed,
the particle weights become more variable and skewed;
hence, the effective sample size (ESSm) will decrease and
is therefore monitored throughout the algorithm. In SMC,
ESSm can be estimated as follows (Doucet et al. 2000):

ESSm ≈ 1
∑N

j=1(W
j
m,i )

2
,
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where W j
m,i for j = 1, 2, . . . , N are the normalised impor-

tance weights of the particle set for model m at the i th
iteration.

When the ESSm drops below a defined threshold, parti-
cles are resampled and moved. The resampling step is used
to increase the ESSm back up to (approximately) the initial
number of samples N . This is achieved by sampling the par-
ticles with replacement with probability equal to the particle
weights. Such resampling will most likely select particles
with high weight and remove particles with low weight thus
yielding duplicate particles. To diversify each particle set,
the move step is used where an MCMC kernel with invari-
ant distribution is used to propose new particles. Here, a
random walk Metropolis–Hastings algorithm is used, where
the variance–covariance of the current particle set is used
to form efficient proposals. That is, given the particle set
{θ j

m,i ,W
j
m,i }Nj=1, the proposal distribution ηm,i (·|·) is mul-

tivariate normal with the mean being the value of a given
particle and variance–covariance based on the current par-
ticle set. Upon completion of this step, each particle set
should contain (approximately) independent draws from the
required posterior distribution which are then used for design
selection in the next iteration of the adaptive design.

To approximate the model evidence within this SMC
framework, we note that the ratio of normalising constants
Zm,i/Zm,i−1 is equivalent to the predictive distribution of yi
given the current data yi−1 (Del Moral et al. 2006). Thus,
in the SMC framework, this ratio can be approximated as
follows:

Zm,i/Zm,i−1 =
∫

Θm

p(yi |di , θm, M = m)

× p(θm |M = m, y1:i−1, d1:i−1)dθm

≈
N∑

j=1

w
j
m,i ,

(10)

where w
j
m,i for j = 1, 2, . . . , N are the unnormalised

importance weights of the particle set for model m at the
i th iteration.

Given that log Zm,i = ∑i−1
t=0 log

(
Zm,i−t/Zm,i−1−t

)
and

Zm,0 = 1, the log model evidence of model m at the i th
iteration can be approximated as follows:

log Zm,i = log Zm,i−1 + log
(
Zm,i/Zm,i−1

)
. (11)

After approximating the model evidence of each model, they
can be normalised to estimate the posteriormodel probability
of the mth model for m = 1, 2, . . . , K as given in Eq. (1).

A major disadvantage of the SMC algorithm is the move
step where it is required to traverse the particle set through an
MCMC kernel many times (Rm). As proposed by Drovandi
and Pettitt (2011), Rm should satisfy the condition:

Rm = log c

log(1 − p)
,

where p is the acceptance probability of the MCMC kernel
and (1 − c) is a pre-specified probability that the particle is
moved by the MCMC kernel at least once. This acceptance
probability p can be estimated by traversing the particle set
through the MCMC kernel one time and determining the
proportion of particles which move. According to the above
condition, the number of times that the particle set should
move through the MCMC kernel will increase as the accep-
tance probability decreases. Further, as the number of data
points increases, the MCMCmove step becomes more com-
putationally expensive as the likelihood for all observations
needs to be evaluated a large number of times. As such, these
issues will increase the computational time of this algorithm,
potentially limiting the general applicability of this approach
in adaptive design.

Algorithm 3 SMC algorithm

1: Draw θ
j
m,0 from prior p(θm |M = m) and set W j

m,0 = 1/N for
j = 1, 2, . . . , N and for m = 1, 2, . . . , K

2: Set log Ẑm,0 = 0 for m = 1, 2, . . . , K
3: for i = 1 to n do
4: Find the i th optimal design point, di , by maximising the utility

U (d| y1:i−1, d1:i−1)

5: Collect data yi at design point di
6: for m = 1 to K do
7: Re-weight w

j
m,i = W j

m,i−1 p(yi |di , θ j
m,i , M = m) for j =

1, 2, . . . , N
8: Update log evidence log Ẑm,i = log Ẑm,i−1 + log

∑N
j=1 w

j
m,i

9: Normalise the weights W j
m,i = w

j
m,i/

∑N
k=1 wk

m,i for i =
1, 2, . . . , N

10: Calculate ESSm = 1/
∑N

j=1(W
j
m,i )

2

11: if ESSm < E then
12: Resample particle set m yielding {θ j

m,i ,W
j
m,i }Nj=1

13: Compute the parameters of the MCMC proposal ηm,i (·|·)
using the particles {θ j

m,i ,W
j
m,i }Nj=1

14: for i = 1 to N do
15: Move particle θ

j
m,i with an MCMC kernel of invariant

distribution πi (θ
j
m,i |M = m, y1:i , d1:i ) iterated Rm times

16: end for
17: Reset W j

m,i = 1/N for j = 1, 2, . . . , N
18: else
19: Set θ j

m,i = θ
j
m,i−1 for j = 1, 2, . . . , N

20: end if
21: end for
22: end for

Pseudo-code for the SMC algorithm is given in Algo-
rithm 3. To initialise the algorithm, a sample of N particles
{θ im,0,W

i
m,0}Ni=1 is drawn from the prior distribution for each

model m. Then, at each iteration, a design point is selected
bymaximising a utility function based on the available infor-
mation about each model and the parameter (line 4). As in
the SLP algorithm, importance sampling is used here to effi-
ciently approximate the expectation of the utility function.
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Next, in our simulation study, a new data point is generated
from an assumed model using the design obtained in the
previous step (line 5). Once a data point is collected (or gen-
erated), the weights of the particle set and model evidence
for each model are updated (lines 7 to 9), and the ESSm is
approximated for each model (line 10). If the ESSm is less
than a predefined threshold E (for a given model), then the
resample andmove steps are undertaken (lines 12 to 15). This
process continues until a fixed number of data points have
been observed.

3 New algorithm for Bayesian adaptive
design

In this section, a novel adaptive design algorithm is intro-
duced. Further, we explain how the model evidence and
the posterior distribution are approximated within this new
design algorithm.

3.1 Adaptive design using Laplace-based SMC
algorithm

In this section, we describe our new algorithm for Bayesian
adaptive design. The algorithm is constructed through adopt-
ing the re-weight step as given in the SMC algorithm but
replacing the resample and move steps of this algorithmwith
Laplace importance sampling. We thus term this new algo-
rithm the Laplace-based SMC (LP-SMC) algorithm. Given
this, the algorithm initially proceeds as described above for
the SMC algorithm. However, when the ESSm for a given
model becomes undesirably small, instead of running the
resample andmove steps, Laplace importance sampling (Kuk
1999; Beck et al. 2018) is used to approximate the posterior
distribution. Such an importance sampling method has been
previously used to reduce the computational complexity of
double-loop MC for estimating expected utility functions in
Bayesian design (Beck et al. 2018). For a similar purpose,
Feng andMarzouk (2019) propose a layered multiple impor-
tance sampling scheme. In contrast, we propose Laplace
importance sampling within SMC to improve the compu-
tational efficiency of the SMC algorithm and thus sequential
Bayesian design. In our proposed algorithm, for each can-
didate model, this will yield a weighted particle set which
approximates the appropriate posterior distribution. Given
these particleswill not generally have equalweight, theESSm
of each particle set will not be N but should be close to N
(and much larger than E) if the importance distribution is
effective. Thus, within this algorithm, it is important that the
importance distribution is effectively constructed and can be
assessed accordingly. Ifwe are able to do so, then this replace-
ment avoids the computational cost associated with the move
step in the SMC algorithm. Of course, the likelihood of all

observations still needs to be evaluated within each iteration
of our adaptive design algorithm, but this evaluation will be
performed much fewer times than in the move step; thus,
there will be significant computational savings in general,
but particularly so when the likelihood is expensive to eval-
uate. Further, adopting Laplace importance sampling allows
us to more precisely capture some departures from normal-
ity such as heavy-tailed posterior distributions and nonlinear
posterior dependence between parameters when compared
to the standard SLP algorithm.

To use Laplace importance sampling effectively in our
LP-SMC algorithm, Pareto smoothing is adopted (Vehtari
et al. 2017). Such smoothing has the effect of stabilising
the importance weights and thus provides a more efficient
approximation to the target distribution and estimates of
quantities based on this distribution. More specifically, we
fit the generalised Pareto distribution to the upper tail of the
distribution of the importance weights derived from Laplace
importance sampling and re-evaluate these weights based on
this fitted distribution. This re-evaluation will smooth these
more extreme weights, resulting in a more stable approx-
imation to the target distribution. Additionally, in fitting
the generalised Pareto distribution to these weights, we are
provided with a diagnostic measure to determine whether
the importance distribution appropriately captures the tar-
get distribution. This diagnostic measure is obtained through
inspecting the estimated value of the shape parameter of the
generalised Pareto distribution (denote as ξ ) and thus can
be inspected automatically throughout our algorithm. If this
value is undesirably large, then it suggests that the Pareto-
smoothed importance weights still have a heavy right tail.
This indicates that the proposed importance distribution does
not suitably capture the target distribution. In such cases, we
can revert to a different importance distribution, for example,
a proposal distribution based on the multivariate t distribu-
tion (as opposed to the multivariate normal distribution). The
same Pareto smoothing approach can then be adopted to
assess the appropriateness of this importance distribution.
If this is again found to not be appropriate, then we can even
revert to the move step from the SMC algorithm. This is
indeed the sequence of steps that we adopt within our algo-
rithm. Collectively, this ensures we obtain efficient particle
approximations to the posterior distribution (of each model)
within each iteration of our adaptive design algorithm.

To show how the LP-SMC algorithm works, we need to
showhowposterior distributions are approximatedbyPareto-
smoothed Laplace importance sampling within our adaptive
design algorithm. To do this, we start by defining Laplace
importance sampling. In such an approach, a Laplace approx-
imation (i.e. a normal distribution) is used as the importance
distribution in importance sampling.As such, the expectation
in Eq. (4) is estimated as follows:
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E[h(X)] =
∫

X

h(x)p(x)

qLP (x)
qLP (x)dx ≈

N∑

j=1

h(x j )p(x j )

qLP (x j )
,

(12)

where qLP (x) is a normal density based on a Laplace approx-
imation to the target distribution.

However, in general, the above normal distribution may
not be an appropriate importance distribution in itself because
the tails of this distribution may not capture the tails of the
target distribution. To mitigate against this, the variance of
the normal distribution is inflated. To do so in our algorithm,
we multiple the variances by a factor of two (Brinch 2008).
Adopting this approach leads to the following importance
distribution in the LP-SMC algorithm:

θm |M = m, y1:i , d1:i ∼ MV N (θ∗
m,Σ(θ∗

m)), (13)

where Σ(θ∗
m) = [−H(θ∗

m)]−1 + diag([−H(θ∗
m)]−1), and

θ∗
m and H(θ∗

m) are obtained as shown in Eqs. (6) and (7),
respectively.

Here, the target distribution is the posterior distribution
p(θm |M = m, y1:i , d1:i ) at the i th iteration. Thus, it can be
approximated by drawing a sample of N particles {θ j

m,i }Nj=1,
from the importance distribution given in Eq. (13) and giving
them equal weight. Then, these particle weights are updated
as follows:

w
j
m,i = p(θ j

m,i |M = m, y1:i , d1:i )

pLIS(θ
j
m,i |M = m, y1:i , d1:i )

, (14)

where pLIS(·|·) is the density function of the importance dis-
tribution given in Eq. (13).

In some instances, the above importance weights can be
highly variable and thus lead to an inefficient approximation
to the target distribution. In such cases, these weights can be
smoothed using Pareto smoothing as detailed in Vehtari et al.
(2017). In our algorithm, this is achieved by replacing the
L = min(N/5, 3

√
N ) largest weights above the threshold

u with the expected value of the order statistics of the fitted
generalised Pareto distribution as follows:

ws′
m,i = F−1

u,σ,ξ

( s − 0.5

L

)
, s = 1, . . . , L,

where F−1
u,σ,ξ is the inverse cumulative distribution function

of the generalised Pareto distribution with the lower bound
parameter u, scale parameter σ and the shape parameter ξ .
Here, the estimated values of the parameters of the gen-
eralised Pareto distribution were obtained as described in
Vehtari et al. (2019). We then replace the corresponding par-
ticle weights with the Pareto-smoothed weights.

In practice,weonly evaluate densities that are proportional
to the above posterior distribution, so the resulting weights

should be normalised to obtain W j
m,i , as shown in Eq. (5).

Then, the weighted particle set, {W j
m,i , θ

j
m,i }Nj=1, represents

the current posterior distribution for model m at the i th iter-
ation.

In adopting our LP-SMC algorithm, we can also obtain
computationally efficient estimates of the model evidences
for each model. Here, we follow the same procedure as
described for the SMC algorithm, see Eq. (11).

Algorithm 4 LP-SMC algorithm

1: Draw θ
j
m,0 from prior p(θm |M = m) and set W j

m,0 = 1/N for
j = 1, 2, . . . , N and for m = 1, 2, . . . , K

2: Set log Ẑm,0 = 0 for m = 1, 2, . . . , K
3: for i = 1 to n do
4: Find the i th optimal design point, di , by maximising the utility

U (d| y1:i−1, d1:i−1)

5: Collect data yi at design point di
6: for m = 1 to K do
7: Re-weight w

j
m,i = W j

m,i−1 p(yi |di , θ j
m,i−1, M = m) for j =

1, 2, . . . , N
8: Update log evidence log Ẑm,i = log Ẑm,i−1 + log

∑N
j=1 w

j
m,i

9: Normalise the weights W j
m,i = w

j
m,i/

∑N
k=1 wk

m,i for j =
1, 2, . . . , N

10: Calculate ESSm = 1/
∑N

j=1(W
j
m,i )

2

11: if ESSm < E then
12: Find the importance distributionMV N (θ∗

m ,Σ(θ∗
m)) using

Eqs. (8) and (13)
13: Draw θ

j
m,i from the importance distribution for j =

1, 2, . . . , N
14: Calculate the importance weights w

j
m,i using Eq. (14)

15: Estimate the Pareto-smoothed importance weights w
j ′
m,i

and the shape parameter ξm,i
16: if ξm,i < 0.7 then

17: Normalise the weights W j
m,i = w

j ′
m,i/

∑N
k=1 wk′

m,i
18: else
19: Repeat the steps 12–15 by using themultivariate t distri-

bution tp(θ∗
m ,Σ(θ∗

m)) with p degrees of freedom as the importance
distribution.

20: if ξm,i < 0.7 then
21: Repeat step 17
22: else
23: Use theMCMCmove step in SMC algorithm (Algo-

rithm 3, lines 13–15)
24: end if
25: end if
26: else
27: Set θ j

m,i = θ
j
m,i−1 for j = 1, 2, . . . , N

28: end if
29: end for
30: end for

Pseudo-code for the LP-SMC algorithm is provided in
Algorithm 4. Steps 1–10 of the LP-SMC algorithm are the
same as the corresponding steps of the SMC algorithm.
Otherwise, when the ESSm drops below E (for a given
model), LP-SMC algorithm uses a Laplace approximation to
find an efficient importance distribution for importance sam-
pling (line 12). Next, Pareto-smoothed Laplace importance
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sampling is carried out to obtain the unnormalised impor-
tance weights (lines 13–15). Then, as suggested by Vehtari
et al. (2017), we consider a threshold value of 0.7 for the
shape parameter ξm,i to check the stability of the importance
weights (line 16) and thus determine whether the importance
distribution is efficient with respect to the target distribu-
tion. If so (i.e. ξm,i < 0.7), then the weights are normalised
(line 17). If not, then Pareto-smoothed Laplace importance
sampling is carried out using the t distribution as the impor-
tance distribution (line 19). Again, stability of these weights
is checked and normalised if they are stable (line 21). If not,
then the move step from the SMC algorithm is implemented
(line 22).

4 Simulation study

In this simulation study, three examples are considered to
investigate the performance of the adaptive design algo-
rithm discussed in Sect. 3. In each of the three examples
considered, the three design algorithms (SMC, SLP and LP-
SMC) using the total entropy utility (Borth 1975; McGree
2017) were used to sequentially select designs for the dual
experimental goals of parameter estimation and model dis-
crimination.

The total entropy utility proposed by Borth (1975) com-
bines the parameter estimation utility, UP, and the model
discrimination utility, UM, via the additivity property of
entropy as follows:

UT(d, z,m| y1:i , d1:i )
= UP(d, z,m| y1:i , d1:i ) +UM(d, z,m| y1:i , d1:i ),

whereUM(d, z,m| y1:i , d1:i )= log p(M = m| y1:i , z, d1:i , d)

and UP(d, z,m| y1:i , d1:i ) = ∫
Θm

p(θm |m, z, y1:i , d1:i , d) log
(
p(z|d, θm , M = m)

)
dθm − log

(
Zm,i (d,z)

Zm,i

)
. For the outcome z

at the design point d, the normalising constant based on
additionally observing z from design d (Zm,i (d, z)) can be
estimated using Eq. (11) as shown in Sect. 2.2.

Here, the parameter estimation utility is defined based on
the Kullback–Leibler divergence between the prior and the
posterior distributionof the parameters (Kullback andLeibler
1951). Therefore, this utility evaluates how much has been
learned about θm . Themodel discrimination utility is defined
based on themutual information between themodel indicator
m and the predicted outcome z. Using the approximation in
Eq. (10) and a particle approximation to the integral in the
parameter estimation utility, we can approximate the utility
UP(d, z,m| y1:i , d1:i ) within each of the design algorithms
as follows:

ÛP(d, z,m| y1:i , d1:i )

=
N∑

j=1

W j
m,i log

(
p(z|d, θ

j
m,i , M = m)

) − log
N∑

j=1

w
j
m,i .

(15)

It should be noted that when using the SLP algorithm
for design selection, a posterior sample with equal weights
(W j

m,i = 1/N for j = 1, 2, . . . , N ) is used, whereas
a weighted sample (i.e. unequal weights) can be used in
the other two algorithms. Further, when approximating the
expected utility function within the three design algorithms,
we used B MC samples, where B < N . These B samples are
randomly drawnwith replacement from the weighted sample
{θ j

m,i ,W
j
m,i }Nj=1 at each iteration of the sequential design.

In Sects. 2 and 3, we have shown how to approximate
the posterior model probability within each of the design
algorithm (see Eqs. (9) and (11)). As such, with the approxi-
mation given in Eq. (15) for the parameter estimation utility,
we can approximate the total entropy utility within each of
the design algorithms presented in this paper.

In the first motivating example, we consider a logistic
regression example from McGree (2017) where binary out-
comes were observed. Then, we consider an example from
Senarathne et al. (2019)where bivariate binarydatawere con-
sidered for estimating and discriminating between different
Copulamodels. Finally, a biological application (Moffat et al.
2019) is consideredwhere optimal designswere selected for a
predator–prey functional response experiment with the same
experimental goals of parameter estimation and model dis-
crimination. For all three examples, binary and count data are
considered. However, it is worth noting that ourmethodology
is not limited to such data types. Further, in each example,
the M-closed perspective of Bernardo and Smith (2000) is
considered for each set of candidate models. Within each
simulation study, data were generated from a particular can-
didatemodel with specific parameter values. These data were
then used to update the posterior model probabilities and the
posterior distributions of all candidate models. All models
were considered equally likely a priori.

For Examples 1 and 2, the approximate coordinate
exchange algorithm (Overstall andWoods 2017)was used for
optimising the total entropy utility over a continuous design
space, with the default settings as detailed in Overstall et al.
(2018b). As Example 3 considers a one-dimensional discrete
design space, an exhaustive search was used to determine the
next optimal design point. For the three examples considered
in this manuscript, the optimisation algorithm proposed in
Byrd et al. (1995) was used to find the mode of the posterior
distribution (for use within the Laplace approximation).

When using the SMC algorithm for design selection, the
tuning parameters N and E need to be specified. As such,
we set N = 5000 and E = 75% for all examples consid-
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ered in this paper. The same tuning parameter values were
considered for the other two algorithms, as appropriate. The
values for these tuning parameters were chosen based on
trading off computational efficiency and accuracy. That is, in
SMC, the parameter N can be chosen based onmaintaining a
reasonably high effective sample size and number of unique
particle values throughout the algorithm (Liu 2008). This
generally means that the value of N will increase with the
number of estimable parameters and covariates. For design,
there are similar considerations but we also need to con-
sider the computational cost in finding Bayesian designs,
and we note that computation will generally increase with
N . As such, N = 5000 was found to be a reasonable
trade-off between computational efficiency and maintain-
ing reasonable effective sample sizes and unique particles.
Further, as the results are subject to variability through the
simulated data, all simulated studies were repeated a large
number of times to explore the range of outcomes that could
be observed. All simulations were run using R 3.4.2, and
code to reproduce our results can be found in the follow-
ing GitHub repository, https://github.com/SenarathneSGJ
/Laplace_based_sequential_design_algorithms.

After the designs and the corresponding observed data
were obtained from theSLPandLP-SMCalgorithms for each
example, they were re-evaluated within the SMC framework.
This re-evaluation step was carried out so that the designs
selected by each algorithm could be assessed (with respect
to the utility) under the same procedure and thus not subject
to different approximations. In doing so, wewere then able to
directly compare parameter estimation and model discrimi-
nation performance of designs found under each algorithm.
Further, we also evaluated the computational time required
to run each algorithm. This was simply the time required to
run each algorithm for selecting a design with a fixed number
of design points.

4.1 Example 1

Following the work of McGree (2017), consider an example
with a binary response modelled by a 4-factor main effect
logistic model (Model 1) as follows:

log

(
p

1 − p

)
= β0 + β1X1 + β2X2 + β3X3 + β4X4,

(16)

where p is the probability of success, β0, β1, β2, β3 and
β4 are the parameters of the model, and the covariates
X1, X2, X3, X4 ∈ [−1, 1].

In this experiment, the goal is both parameter estima-
tion and determining whether X3 is needed in the model.
Therefore, the discrimination problem is to determine model
preference between the abovemodel and the followingmodel

(Model 2):

log

(
p

1 − p

)
= β0 + β1X1 + β2X2 + β4X4. (17)

For data generation, parameter values were taken as β =
[0,−3, 3,−3, 3], seeMcGree (2017). The prior distributions
of the model parameters were assumed to be independent
normal distributions with mean 0 and variance 100.

ResultsFigure 1 compares the distribution of designs selected
from each of the design algorithms whenModel 1 and 2 were
responsible for data generation. This figure shows that for
both models, the designs obtained from SMC and LP-SMC
algorithms have similar distributions. However, the distri-
bution of the designs obtained from the SLP algorithm is
significantly different than those of the other two algorithms.
For Model 1, the designs obtained from SMC and LP-SMC
preferred points on the boundary, while the designs obtained
from SLP preferred points near the boundary. When data
were generated from Model 2, the majority of the design
points selected from SMC and LP-SMC algorithms were
again on the boundary. In contrast, the points selected by
the SLP algorithm were rather varied and often away from
the boundaries. In Fig. 2, the posterior model probabilities
of the true model over each iteration of the experiment are
shown so that the model discrimination performance of the
designs could be assessed. Here, for both models, the opti-
mal designs obtained from SMC and LP-SMC algorithms
perform well for discrimination compared to the optimal
designs obtained from the SLP algorithm. As such, fewer
design points were required to discriminate between these
two models when designs were obtained from the SMC or
LP-SMC algorithms when compared to the SLP algorithm.

Next, we assessed the estimation performance of designs
obtained from each of the algorithms. For this purpose, the
log-determinant of the variance–covariance matrix of the
each intermediate posterior distribution was considered. Fig-
ure 3 shows the inter-quartile range of the distribution of these
log-determinant values across all simulations.As canbe seen,
for bothmodels, the posterior distributions obtained from the
SMC and LP-SMC algorithms had lower log-determinant
values, and hence higher precision, when compared to the
SLP algorithm.

Finally, we evaluated the computational time of each of
the design algorithms. For the comparison, the inter-quartile
ranges of the distributions of cumulative time required to run
each algorithm were plotted (Fig. 4). These results show that
the LP-SMC algorithm was the fastest, and SMC was the
slowest algorithm of the three. For a more direct comparison
of run times, the reader is referred to Fig. 15. For the LP-
SMC algorithm, it is worth noting that the MCMC step (line
23) was not needed throughout any of the simulations. This
suggests that our approach to forming an efficient proposal
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Fig. 1 The selected optimal design points over 100 simulations when data were generated from the first model (rows 1–3) and the second model
(rows 4–6) from Example 1

distribution for the Laplace importance sampling step was
effective for this example. That is, for this example, the tails
of the proposal distribution obtained at each iteration of the
adaptive design had sufficient coverage to capture the target
distribution appropriately.

4.2 Example 2

Motivated by the work of Denman et al. (2011) and
Senarathne et al. (2019), consider the following two binary
responses (Y1 and Y2) where each response was modelled by
a 3-factor main effect logistic model as follows:

log

(
p1

1 − p1

)
= α0 + α1X1 + α2X2 + α3X3, (18)

log

(
p2

1 − p2

)
= β0 + β1X1 + β2X2 + β3X3. (19)

In this example, Copulamodels are considered to describe
the dependence between the two binary responses. To define
the Copula model, we consider the joint probability distri-
bution of the bivariate binary response py1,y2 = prob(Y1 =
y1,Y2 = y2), y1, y2 = 0, 1.This has four possible outcomes
{(0,0),(0,1),(1,0),(1,1)} where ‘1’ represents a success and

‘0’ a failure. The Copula representation (Denman et al. 2011)
of the bivariate distribution can be expressed as:

p11 = C(π1, π2;α), p10 = π1 − p11,
p01 = π2 − p11, p00 = 1 − π1 − π2 + p11,

where π1 and π2 are the marginal probabilities of success of
the responses Y1 and Y2, respectively, and α is the Copula
parameter.

Motivated by the work of Senarathne et al. (2019), we
selected the following two Copula models for this example.
In the first Copula model, it is assumed that there is a pos-
itive association between the two responses, and hence, the
Frank Copula is considered to construct the joint distribution
as follows:

C(π1, π2;α)

= − α−1 log

(
1+ (e−απ1 − 1)(e−απ2−1)

e−α−1

)
, α 	=0. (20)

In the second Copula model, it is assumed that the two
responses are independent, and hence, the Product Copula
is considered to construct the joint distribution as follows:
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(a) SLP, Model 1
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(b) LP−SMC, Model 1
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(c) SMC, Model 1
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(d) SLP, Model 2
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(e) LP−SMC, Model 2
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(f) SMC, Model 2

Fig. 2 The distribution of the posterior model probabilities of the true model over 100 simulations for 250 observations from Example 1 under
each design algorithm

C(π1, π2) = π1π2. (21)

For data generation, parameter values were taken as β =
[1, 4, 1,−1] and γ = [1,−0.5, 1,−1], see Denman et al.
(2011). It should be noted that there is a direct relationship
between the Frank Copula parameter α and the Kendall’s tau
(τ ) value (Nelsen 2006). As such, it is convenient to use τ

for comparing dependence between bivariate responses as
this parameter has the same interpretation under different
Copula models. In Senarathne et al. (2019), different τ val-
ues were considered to generate data, and the corresponding
dual-purpose designs were compared to evaluate the impact
of the strength of the dependence on design selection. How-
ever, here we select designs to benchmark the new adaptive
design algorithm and the SLP algorithm against the SMC
algorithm. As such, a single τ value (0.75) was considered
to generate data from the Frank Copula model. The prior
distributions of the model parameters were assumed to be
independent normal distributions with mean 0 and variance
16 as given inSenarathne et al. (2019). Since apositive depen-

dence between the responses was assumed, a normal prior on
log

(
τ

1−τ

)
with mean 0 and variance 2.25 was placed for τ .

Results Figures 5 and 6 show the distribution of the designs
selected from each of the design algorithmswhen FrankCop-
ula model and Product Copula model were responsible for
data generation, respectively. Similar to the first example,
optimal designs selected from SMC and LP-SMC algorithms
had similar distributions when each Copula model was gen-
erating the data. The distribution of designs selected from
the SLP algorithm is slightly different, with this being most
noticeable in the pairwise plot of x2 versus x3.

When data were generated from the Frank Copula, covari-
ates x2 and x3 preferred points on the boundaries, while the
covariate x1 preferred points around 0. When the Product
Copula was responsible for data generation, covariate x1 of
the designs obtained fromSMCandLP-SMCalgorithms pre-
ferred the range of values from − 0.5 to 0.5, while x2 and
x3 preferred boundary points similar to the Frank Copula.
As such, when using these two algorithms for design selec-
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Fig. 3 The inter-quartile range of the distribution of the log-determinant of the posterior variance–covariance matrix for each design point over
100 simulations for 250 observations from Example 1

tion, there was a significant difference between the optimal
designs when Product Copula was generating data compared
to the Frank Copula. However, there was not a significant dif-
ference between the designs selected from the SLP algorithm
when each Copula model was responsible for data genera-
tion.

The distribution of the posterior model probabilities for
the true Copula model over each iteration of the adaptive
design algorithms is displayed in Fig. 7. For this example,
the designs obtained from each of the three design algorithms
perform equally well for discriminating between the Copula
models. However, when data were generated from the Frank
Copulamodel, a fewer number of design pointswere required
to discriminate between the two Copula models.

Figure 8 displays the parameter estimation results of each
Copula model when using the adaptive design algorithms
for design selection. According to Fig. 8, for both Copula
models, the optimal designs obtained from each algorithm
performed similarly well for parameter estimation.

Figure 9 shows the inter-quartile range of the distribu-
tions of cumulative time required to run each algorithm. As
can be seen, LP-SMC was the fastest algorithm when data
were generated based on the Frank Copula, while it was the
second fastest algorithm when data were generated based

on the Product Copula. Again, the SMC algorithm was the
least computationally efficient algorithm when either Cop-
ula model was responsible for data generation. For further
comparison of run times, the reader is referred to Fig. 15. Of
note, for this example, the MCMC step (line 23) of the LP-
SMC algorithm was required in 443 out of 25,000 iterations
(i.e. 100 simulated studies each with 250 observations) when
the Frank Copula was responsible for generating data. When
the Product Copula was responsible for data generation, this
MCMC step was required in 1494 out of 25,000. Again, this
suggests that efficient importance distributions are being for-
mulated for the Laplace importance sampling step.

4.3 Example 3

Following the work of Moffat et al. (2019), consider a func-
tional response experiment where predator–prey interaction
is modelled by twomechanistic models developed in Holling
(1959). The first model is the Holling’s type II functional
response model which is also referred as the disc equation.
The Holling’s type II functional response model is given by
the ordinary differential equation:
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Fig. 4 The inter-quartile ranges of the distributions of the cumulative time required to run each algorithm over 100 simulated studies in Example 1

Fig. 5 The selected optimal
design points over 100
simulations when data were
generated from the Frank
Copula model from Example 2
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Fig. 6 The selected optimal
design points over 100
simulations when data were
generated from the Product
Copula model from Example 2
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Fig. 7 The distribution of the posterior model probabilities of the true model over 100 simulations for 250 observations from Example 2 under
each design algorithm
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Fig. 8 The inter-quartile range of the distribution of the log-determinant of the posterior variance–covariance matrix for each design point over
100 simulations for 250 observations from Example 2

dN

dt
= aN

1 + aThN
, (22)

where N denotes the prey density in a given area, a represents
the per capita prey consumption in low prey densities, and
Th is the handling time per prey attacked. Here, we assumed
that initially the system contained N0 prey in the given area.

By extending the disc equation, Holling (1959) developed
another functional response model known as Holling’s type
III functional response model. The Holling’s type III func-
tional response model is given by:

dN

dt
= aN 2

1 + aThN 2 . (23)

The primary objective of this experiment is to efficiently
estimate the parameters a and Th in Eqs. (22) and (23). As
such, this experiment should be conducted with different ini-
tial prey densities. We denote the initial prey density for each
observation, t , as N0,t for t = 1, 2, . . . , T . Here, T repre-
sents the total number of observations of the predator–prey
system. The number of prey consumed, ne,t (τ ), in a fixed
time period, τ , is the response variable of this experiment.
To account for the uncertainty in the data, it is convenient
to link the Holling’s type II and type III models to proba-

bilistic models. Therefore, the binomial and beta-binomial
distributions are considered to model the response, ne,t (τ ),
as detailed in Moffat et al. (2019).

Let us consider a single experiment where the number of
prey consumed in a fixed time period τ can be defined as
ne(τ ). For the case where ne(τ ) follows a binomial distri-
bution, the probability of a success, p(τ ), can be defined as
follows:

ne(τ ) ∼ Binom(N0, p(τ )) and

p(τ |a, Th) = N0 − N (τ |a, Th)

N0
,

where p(τ ) is the probability that single prey has been
consumed in a fixed time period, τ . The number of prey pop-
ulation, N (τ |a, Th), after the time period τ can be obtained
by solving the differential equation in Holling’s type II or
type III model.

For the case where ne(τ ) follows a beta-binomial dis-
tribution, we consider a re-parameterised version of the
beta-binomial distribution as detailed in Fenlon and Faddy
(2006). Thus, the expected proportion, p(τ ), and the over-
dispersion parameter, λ, of the beta-binomial distribution are
given by:
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Fig. 9 The inter-quartile ranges of the distributions of the cumulative time required to run each algorithm over 100 simulated studies in Example 2

ne(τ ) ∼ BetaBinom(N0, p(τ ), λ),

p(τ |a, Th) = α

α + β
= N0 − N (τ |a, Th)

N0
and λ = 1

α + β
,

where α and β are the parameters of the beta function.
As each probabilistic model links to a particular mechanistic
model, four different models can be obtained to model the
response ne(τ ) as follows.

For our simulation study, we consider the four different
models in Table 1 with the following true parameter val-
ues: a = 0.5, Th = 0.7 and λ = 0.5, where relevant.
The total number of observations collected in the experi-
ment is T = 40, and the total exposure time is τ = 24 h.
This study was undertaken in a restricted design space with
only a fixed number of design points being available. That
is, N0,t ∈ {1, 2, . . . , 300} for t = 1, 2, . . . , T . The response
ne,t (τ ) can take any value from the set {0, 1, . . . , N0,t } for
t = 1, 2, . . . , T . The prior distributions of the model param-
eters are given by log(a) ∼ N (−1.4, 1.352), log(Th) ∼
N (−1.4, 1.352) and log(λ) ∼ N (−1.4, 1.352). Moffat et al.
(2019) considered adaptive design for these predator–prey
experiments based on the SMC algorithm and the total
entropy utility as given in McGree (2017). We consider this

Table 1 Models used for the experiment in Example 3

Distribution of ne(τ ) Mechanistic model

Holling’s type II Holling’s type III

Beta-binomial Model 1 Model 2

Binomial Model 3 Model 4

approach as well as that based on employing the SLP and
LP-SMC algorithms.

Results Figure 10 compares the distribution of designs
selected from each of the three design algorithms when each
of the fourmodelswas responsible for data generation. In this
example, the designs obtained from SMC and LP-SMC algo-
rithms had similar distributions for all fourmodels. However,
the distribution of designs obtained from the SLP algorithm
was substantially different. That is, when Model 1 or Model
2 was responsible for data generation, the designs obtained
fromSLPpreferred values close to 0 or 200,while the designs
obtained from SMC and LP-SMC preferred the range of val-
ues from 0 to 100.WhenModel 3 orModel 4was responsible
for data generation, the designs obtained from SLP preferred
the value of 300, while the designs obtained from the other
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Fig. 10 The proportion of the selected optimal design points over 50 simulations when data were generated from Model 1 (first row), Model 2
(second row), Model 3 (third row) and Model 4 (fourth row) from Example 3
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Fig. 11 The distribution of the posterior model probabilities of the true model over 50 simulations for 40 observations from Example 3 under each
design algorithm
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Fig. 12 The inter-quartile range of the distribution of the log-determinant of the posterior variance–covariance matrix for each design point over
50 simulations for 40 observations from Example 3

two algorithms preferred the range of values from 0 to 100
and close to 300.

In Fig. 11, the distribution of posterior model probabilities
of the truemodel over each iteration of the selected algorithm

123



Statistics and Computing (2020) 30:1183–1208 1203

0 10 20 30 40

0
10

00
00

25
00

00

Observation number

T
im

e(
s)

(a) SLP, Model 1

0 10 20 30 40

0
10

00
00

25
00

00

Observation number

T
im

e(
s)

(b) LP−SMC, Model 1

0 10 20 30 40

0
10

00
00

25
00

00

Observation number

T
im

e(
s)

(c) SMC, Model 1

0 10 20 30 40

0
10

00
00

25
00

00

Observation number

T
im

e(
s)

(d) SLP, Model 2

0 10 20 30 40

0
10

00
00

25
00

00

Observation number

T
im

e(
s)

(e) LP−SMC, Model 2

0 10 20 30 40

0
10

00
00

25
00

00

Observation number

T
im

e(
s)

(f) SMC, Model 2

0 10 20 30 400e
+

00
4e

+
04

8e
+

04

Observation number

T
im

e(
s)

(g) SLP, Model 3

0 10 20 30 400e
+

00
4e

+
04

8e
+

04

Observation number

T
im

e(
s)

(h) LP−SMC, Model 3

0 10 20 30 400e
+

00
4e

+
04

8e
+

04

Observation number

T
im

e(
s)

(i) SMC, Model 3

0 10 20 30 400e
+

00
4e

+
04

8e
+

04

Observation number

T
im

e(
s)

(j) SLP, Model 4

0 10 20 30 400e
+

00
4e

+
04

8e
+

04

Observation number

T
im

e(
s)

(k) LP−SMC, Model 4

0 10 20 30 400e
+

00
4e

+
04

8e
+

04

Observation number

T
im

e(
s)

(l) SMC, Model 4

Fig. 13 The inter-quartile ranges of the distributions of the cumulative time required to run each algorithm over 50 simulated studies in Example 3

is shown. As can be seen, for all four models, the designs
obtained from SMC and LP-SMC algorithms perform well

for model discrimination compared to the designs obtained
from the SLP algorithm. A possible reason for this is the poor
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approximation to the posterior distribution (of which utility
evaluation and therefore design choice are based on) given
within theSLPalgorithm, see Fig. 16 for an example.Of note,
it appears to be difficult to discriminate between the models
when datawere generated based on the designs obtained from
SLP algorithm. Overall, it appears to be relatively difficult
to determine a preferred model when data were generated
from either Model 1 or Model 2. This is highlighted by no
algorithm yielding amedian posteriormodel probability of 1.

Figure 12 compares the parameter estimation results of
each model when designs were obtained from each of the
three design algorithms. For all four models, the posterior
distributions obtained from the designs of either SMC or LP-
SMC algorithm had lower log-determinant values compared
to those obtained from the designs of the SLP algorithm.

Figure 13 shows the inter-quartile range of the distri-
butions of cumulative time required to run each algorithm
(again, also see Fig. 15). As can be seen, SLP was the
fastest algorithm, with LP-SMC being the second fastest and
SMC being the slowest algorithm among the three. For this
example, the MCMC step of the LP-SMC algorithm was
required in a small number of iterations when each model
was responsible for data generation. More specifically, out
of the total 2000 iterations (i.e. 50 simulations each with 40
observations), theMCMCstep of theLP-SMCalgorithmwas
required in 213, 261, 319 and 332 iterations when Model 1,
2, 3 and 4 were responsible for data generation, respectively.

5 Discussion

In this article, we have presented a novel adaptive design
algorithm to efficiently design experiments in the presence
of parameter and model uncertainty. This design algorithm
was derived by replacing the resample and move steps of
the standard SMCalgorithmwith a Pareto-smoothedLaplace
importance sampling step. This stepwas used to significantly
reduce the computational expense of the standard SMC algo-
rithm. Notably, as in the SMC algorithm, our adaptive design
algorithm provides a computationally efficient approxima-
tion to the posterior distribution and the model evidence at
each iteration of the experiment.

Three adaptive design examples were considered to
benchmark the proposed adaptive design algorithm against
the standard SMC and SLP algorithms, in terms of compu-
tational time and design efficiency. In each example, designs
were selected for the dual experimental goals of parameter
estimation and model discrimination using the total entropy
utility. For all three examples, both LP-SMC and SMC algo-
rithms performed equally well in terms of design efficiency.
However, the designs selected under the SLP algorithm were
less efficient than the designs found by the other two algo-
rithms. In terms of computational time, there was significant

benefit in using either the SLP algorithm or LP-SMC algo-
rithm compared to the SMC algorithm. Therefore, when
comparing the algorithms in terms of both computational
time and design efficiency, the proposed LP-SMC algorithm
appears as the preferred choice among the three. Further,
when LP-SMC algorithm was considered, the MCMC step
was only required within a small number of iterations of
the adaptive design process. This provides evidence that the
Pareto-smoothed Laplace importance sampling method pro-
vides an efficient proposal distribution within our adaptive
design algorithm.

The generic approach to adaptive design outlined in Algo-
rithm 1 is often referred to as a greedy/myopic approach to
adaptive design. This is because optimal designs are found by
only looking one step ahead. Ideally, such a choice would be
made by enumerating all possible decisions into the future,
then selecting the series of decisions that led to the best out-
come. Such an approach is known as backwards induction
and has been considered by Müller et al. (2006) in Bayesian
adaptive design. Unfortunately, this approach is highly com-
putational and thus is generally limited to a small number
of decisions, a small number of outcomes and a small num-
ber of potential designs. Indeed, the work of Müller et al.
(2006) was limited to a discrete design space with only three
possible decisions. Due to such limitations, the pragmatic
myopic approach to adaptive design is generally undertaken.
However, a recent paper of Huan and Marzouk (Huan and
Marzouk 2016) proposed an approximate backwards induc-
tion approach for sequential design. By taking account into
future decisions when selecting designs sequentially (rather
than looking one step ahead), there is potential to obtainmore
efficient designs.Adopting such an approachwithin our algo-
rithm is an avenue of research with which we plan to explore
into the future.

In our proposed algorithm, Pareto-smoothed Laplace
importance sampling is used to approximate the posterior dis-
tribution at each iteration of the sequential design. In the first
several iterations of the sequential design, the posterior dis-
tributions could be multi-modal (see, for example, Fig. 14).
In such situations, it is likely that Pareto smoothing will not
work as intended. Thus, it may be sensible to run an SMC
algorithm in the first few iterations of the adaptive design.

Future development of our algorithm could include exten-
sions to adaptive experiments run in batches (McGree et al.
2016; Prakash and Datta 2013). For such experiments, the
potential for variabilitywithin and between batches should be
taken into account. This can be achieved byfitting a hierarchi-
cal random effects model to the data. Such an approach was
adopted in McGree et al. (2016) who proposed extensions to
the SMC algorithm such that it could be used for estimating
hierarchical models. However, the significant computation
involved in doing so meant high-performance computing
facilities were used to consider motivating examples. Alter-
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natively, a Laplace approximation for hierarchical models
could be considered (see Skaug and Fournier 2006; Rau-
denbush et al. 2000), and this should result in significant
computational savings. We plan to explore such an approach
in future research.

Another possible extension to our work would be to
develop an adaptive design algorithm based on variational
Bayesian (VB)methods. Such an approach allowsmore flex-
ible parametric distributions to be used within importance
sampling. In addition, VB methods provide computationally
efficient approximations to the posterior distributions and
a lower bound on the model evidence for use in Bayesian
design (Jaakkola and Jordan2000;Ormerod andWand2010).
The error of the VB approximations is generally unknown,
and this is potentially a reason that such an approach is rarely
considered within a Bayesian experimental design context

(Foster et al. 2019). However, importance sampling could
be used to correct such an error, and thus, the combination
of these two methods could be used to potentially develop a
more efficient adaptive design algorithm.
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Appendix

See Figs. 14, 15 and 16.
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Fig. 14 The posterior distributions obtained at the sixth iteration of the sequential design from each design algorithm based on the same design
and data from Example 1
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Fig. 15 The 95% credible intervals of the distribution of the cumulative time required to run each algorithm in the simulation studies for each of
the three examples
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Fig. 16 The posterior
distributions of the parameters
of the data generating model
obtained from each design
algorithm using the design and
data gathered from a single
simulation of the SMC
algorithm from Example 3
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