
Statistics and Computing (2020) 30:731–748
https://doi.org/10.1007/s11222-019-09919-4

Mini-batch learning of exponential family finite mixture models

Hien D. Nguyen1 · Florence Forbes2,3 · Geoffrey J. McLachlan4

Received: 9 February 2019 / Accepted: 27 December 2019 / Published online: 10 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Mini-batch algorithms have become increasingly popular due to the requirement for solving optimization problems, based on
large-scale data sets. Using an existing online expectation–maximization (EM) algorithm framework, we demonstrate how
mini-batch (MB) algorithms may be constructed, and propose a scheme for the stochastic stabilization of the constructed
mini-batch algorithms. Theoretical results regarding the convergence of the mini-batch EM algorithms are presented. We then
demonstrate how the mini-batch framework may be applied to conduct maximum likelihood (ML) estimation of mixtures
of exponential family distributions, with emphasis on ML estimation for mixtures of normal distributions. Via a simulation
study, we demonstrate that the mini-batch algorithm for mixtures of normal distributions can outperform the standard EM
algorithm. Further evidence of the performance of the mini-batch framework is provided via an application to the famous
MNIST data set.

Keywords Expectation–maximization algorithm · Exponential family distributions · Finite mixture models · Mini-batch
algorithm · Normal mixture models · Online algorithm

1 Introduction

The exponential family of distributions is an important
class of probabilistic models with numerous applications
in statistics and machine learning. The exponential fam-
ily contains many of the most commonly used univariate
distributions, including theBernoulli, binomial, gamma, geo-
metric, inverse Gaussian, logarithmic normal, Poisson, and
Rayleigh distributions, as well as multivariate distributions
such as the Dirichlet, multinomial, multivariate normal, von
Mises, and Wishart distributions. See Forbes et al. (2011,
Ch. 18), DasGupta (2011, Ch. 18), and Amari (2016, Ch. 2).

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11222-019-09919-4) contains
supplementary material, which is available to authorized users.

B Hien D. Nguyen
h.nguyen5@latrobe.edu.au

1 Department of Mathematics and Statistics, La Trobe
University, Melbourne, VIC, Australia

2 Inria, CNRS, Grenoble INP, LJK, Univ. Grenoble Alpes,
38000 Grenoble, France

3 Institute of Engineering Univ. Grenoble Alpes, Grenoble,
France

4 School of Mathematics and Physics, University of
Queensland, St. Lucia, Brisbane, Australia

Let Y� = (Y1, . . . , Yd) be a random variable (with real-
ization y) on the support Y ⊆ R

d (d ∈ N) , arising from a
data generating process (DGP)with probability density/mass
function (PDF/PMF) f (y; θ) that is characterized by some
parameter vector θ ∈ � ⊆ R

p (p ∈ N). We say that the
distribution that characterizes the DGP of Y is in the expo-
nential family class, if the PDF/PMF can be written in the
form

f (y; θ) = h (y) exp
{[
s (y)

]�
φ (θ) − ψ (θ)

}
, (1)

where s (·) and φ (·) are p-dimensional vector functions, and
h (·) andψ (·) are 1-dimensional functions of y and θ , respec-
tively. If the dimensionality of s (·) and φ (·) is less than p,
then we say that the distribution that characterizes the DGP
of Y is in the curved exponential class.

Let Z ∈ [g] ([g] = {1, . . . , g}; g ∈ N) be a latent ran-
dom variable, and write X� = (

Y�, Z
)
. Suppose that the

PDF/PMF of {Y = y|Z = z} can be written as f (y;ωz), for
each z ∈ [g]. If we assume that P (Z = z) = πz > 0, such
that

∑g
z=1 πz = 1, then we can write the marginal PDF/PMF

of Y in the form

f (y; θ) =
g∑

z=1

πz f (y;ωz) , (2)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-019-09919-4&domain=pdf
http://orcid.org/0000-0002-9958-432X
https://doi.org/10.1007/s11222-019-09919-4

732 Statistics and Computing (2020) 30:731–748

where we put the unique elements of πz and ωz into θ . We
call f (y; θ) the g-component finite mixture PDF, and we
call f (y;ωz) the zth component PDF, characterized by the
parameter vector ωz ∈ �, where � is some subset of a real
product space. We also say that the elements πz are prior
probabilities, corresponding to the respective component.

The most common finite mixtures models are mixtures
of normal distributions, which were popularized by Pearson
(1894), and have been prolifically used by numerous prior
authors (cf. McLachlan et al. 2019). The g-component d-
dimensional normal mixture model has PDF of the form

f (y; θ) =
g∑

z=1

πzϕ
(
y;μz,�z

)
, (3)

where the normal PDFs

ϕ
(
y;μz,�z

) = |2π�z |−1/2 exp[
−1

2

(
y − μz

)�
�−1

z

(
y − μz

)]
, (4)

replace the component densities f (y;ωz), in (2). Each com-
ponent PDF (4) is parameterized by a mean vector μz ∈ R

d

and a positive-definite symmetric covariance matrix �z ∈
R

d×d . We then put each πz , μz , and �z into the vector θ .
As earlier noted, the normal distribution is a member of

the exponential family and thus (4) can be written in form
(1). This can be observed by putting the unique elements of
μz and �z into ωz , and writing ϕ

(
y;μz,�z

) = f (y;ωz)

in form (1), with mappings

h (y) = (2π)−d/2 , s (y) =
[

y
vec(y y�)

]
,

φ (ωz) =
[

�−1
z μz

− 1
2vec(�

−1
z)

]
, and (5)

ψ (ωz) = 1

2
μ�

z �−1
z μz + 1

2
log |�z | . (6)

When conducting data analysis using a normal mixture
model, one generally observes an independent and identi-
cally (IID) sequence of n ∈ N observations {Y i }n

i=1, arising
from aDGP that is hypothesized to be characterized by a PDF
of the form (3), with unknown parameter vector θ = θ0. The
inferential task is to estimate θ0 via some estimator that is
computed from {Y i }n

i=1. The most common computational
approach to obtaining an estimator of θ0 is viamaximum like-
lihood (ML) estimation, using the expectation–maximization
algorithm (EM; Dempster et al. 1977). See McLachlan and
Peel (2000, Ch. 3.2) for a description of the normal mixture
EM algorithm. Generally, when g, d, and n are of small to
moderate size, the conventional EM approach is feasible and
is able to perform the task of ML estimation in a timely man-
ner. Unfortunately, due to its high memory demands, costly

matrix operations (Nguyen and McLachlan 2015), and slow
convergence rates (Sec. 3.9 McLachlan and Krishnan 2008),
the conventional EM algorithm is not suited for the compu-
tational demands of analyzing increasingly large data sets,
such as those that could be considered as big data in vol-
umes such as Buhlmann et al. (2016), Han et al. (2017), and
Hardle et al. (2018).

Over the years, numerous algorithms have been proposed
as means to alleviate the computational demands of the
EM algorithm for normal mixture models. Some of such
approaches include the component-wise algorithm of Celeux
et al. (2001), the greedy algorithm of Vlassis and Likas
(2002), the sparse and incremental kd-tree algorithm of Ng
and McLachlan (2004), the subspace projection algorithm
of Bouveyron et al. (2007), and the matrix operations-free
algorithm of Nguyen and McLachlan (2015).

There has been a recent resurgence in stochastic approx-
imation algorithms, of the Robbins and Monro (1951) and
Kiefer andWolfowitz (1952) type, developed for the purpose
of solving computationally challenging optimization prob-
lems, such as the ML estimation of normal mixture models.
A good review of the current literature can be found in Chau
and Fu (2015). Nave and direct applications of the stochastic
approximation approach to mixture model estimation can be
found in Liang and Zhang (2008), Zhang and Liang (2008),
and Nguyen and Jones (2018).

Following a remark from Cappé and Moulines (2009)
regarding the possible extensions of the onlineEMalgorithm,
we propose mini-batch EM algorithms for the ML estima-
tion of exponential family mixture models. These algorithms
include a number of variants, among which are update trun-
cation variants that had not beenmade explicit, before. Using
the theorems from Cappé and Moulines (2009), we state
results regarding the convergence of our algorithms.We then
specialize our attention to the important case of normal mix-
ture models, and demonstrate that the required assumptions
for convergence are met in such a scenario.

A thorough numerical study is conducted in order to assess
the performance of our normal mixture mini-batch algo-
rithms. Comparisons are drawn between our algorithms and
the usual batch EM algorithm for ML estimation of normal
mixturemodels.We show that our mini-batch algorithms can
be applied to very large data sets by demonstrating its appli-
cability to the ML estimation of normal mixture models on
the famous MNIST data of LeCun et al. (1998).

References regarding mixtures of exponential family dis-
tributions andEM-type stochastic approximation algorithms,
and comments regarding some recent related literature are
relegated to the Supplementary Materials, in the inter-
est of brevity. Additional remarks, numerical results, and
derivations are also included in these Supplementary Mate-
rials in order to provide extra context and further demon-
strate the capabilities of the described framework. These

123

Statistics and Computing (2020) 30:731–748 733

demonstrations include the derivation of mini-batch EM
algorithms for mixtures of exponential and Poisson dis-
tributions. The Supplementary Materials can be found at
https://github.com/hiendn/StoEMMIX/blob/master/Manus
cript_files/SupplementaryMaterials.pdf.

The remainder of the paper is organized as follows. In
Sect. 2, we present the general results of Cappé andMoulines
(2009) and demonstrate how they can be used for mini-batch
ML estimation of exponential family mixture models. In
Sect. 3, we derive the mini-batch EM algorithms for the ML
estimation of normal mixtures, as well as verify the con-
vergence of the algorithms using the results of Cappé and
Moulines (2009). Via numerical simulations, we compare
the performance of our mini-batch algorithms to the usual
EM algorithm for ML estimation of normal mixture models,
in Sect. 4. A set of real data study on a very large data set
is presented in Sect. 5. Conclusions are drawn in Sect. 6.
Additional material, such as mini-batch EM algorithms for
exponential and Poisson mixture models, can be found in the
Supplementary Materials.

2 Themini-batch EM algorithm

Suppose that we observe a single pair of random variables
X� = (

Y�, Z�), where Y ∈ Y is observed but Z ∈ L is
latent, where Y and L are subsets of multivariate real-valued
spaces. Furthermore, suppose that the marginal PDF/PMF
of Y is hypothesized to be of the form f (y; θ0), for some
unknown parameter vector θ0 ∈ � ⊆ R

p. A good estimator
for θ0 is the ML estimator θ̂ that can be defined as:

θ̂ ∈
{
θ̂ : log f

(
Y ; θ̂

)
= max

θ∈�
log f (Y ; θ)

}
. (7)

When the problem (7) cannot be solved in a simplemanner
(e.g., when the solution does not exist in closed form), one
may seek to employ an iterative scheme in order to obtain
an ML estimator. If the joint PDF/PMF of X is known, then
one can often construct an EM algorithm in order to solve
the problem in the bracket of (7).

Start with some initial guess for θ0 and call it the zeroth
iterate of the EM algorithm θ (0) and suppose that we can
write the point PDF/PMFof X as f (y, z; θ), for any θ . At the
r th iterate of the EM algorithm, we perform an expectation
(E-) step, followed by a maximization (M-) step. The r th E-
step consists of obtaining the conditional expectation of the
complete-data log-likelihood (i.e., log f (y, z; θ)) given the
observed data, using the current estimate of the parameter
vector

Q
(
θ; θ (r−1)

)
= Eθ (r−1)

[
log f (y, Z; θ) |Y = y

]
,

which we will call the conditional expected complete-data
log-likelihood.

Upon obtaining the conditional expectation of the
complete-data log-likelihood, one then conducts the r th M-
step by solving the problem

θ (r) = argmax
θ∈�

Q
(
θ; θ (r−1)

)
.

TheE- andM-steps are repeated until some stopping criterion
is met. Upon termination, the final iterate of the algorithm
is taken as a solution for problem (7). See McLachlan and
Krishnan (2008) for a thorough exposition regarding the EM
algorithm.

2.1 The online EM algorithm

Suppose that we observe a sequence of n IID replicates of the
variable Y , {Y i }n

i=1, where each Y i is the visible component
of the pair X i = (

Y�
i , Z�

i

)
(i ∈ [n]). In the online learning

context, each of the observations from {Y i }n
i=1 is observed

one at a time, in sequential order.
Using the sequentially obtained sequence {Y i }n

i=1, we
wish to obtain an ML estimator for the parameter vector θ0,
in the same sense as in (7). In order to construct an online EM
algorithm framework with provable convergence, Cappé and
Moulines (2009) assume the following restrictions regarding
the nature of the hypothesized DGP of {Y i }n

i=1.

A1 The complete-data likelihood corresponding to the pair
X is of exponential family form. That is,

f (x; θ) = h (x) exp
{
[s (x)]� φ (θ) − ψ (θ)

}
, (8)

where h (·), ψ (·), s (·), and φ (·) are as defined for (1).
A2 The function

s̄ (y; θ) = Eθ

[
s (X) |Y = y

]
(9)

is well defined for all y ∈ Y and θ ∈ �.
A3 There exists a convex open subset S ⊆ R

p, which satis-
fies the properties that:

(i) for all s ∈ S, y ∈ Y, θ ∈ �, (1 − γ) s+γ s̄ (y; θ) ∈ S

for any γ ∈ (0, 1), and
(ii) for any s ∈ S, the function

q (s; θ) = s�φ (θ) − ψ (θ)

has a unique global maximum over �, which will be
denoted by

θ̄ (s) = argmax
θ∈�

q (s; θ) .

123

https://github.com/hiendn/StoEMMIX/blob/master/Manuscript_files/SupplementaryMaterials.pdf
https://github.com/hiendn/StoEMMIX/blob/master/Manuscript_files/SupplementaryMaterials.pdf

734 Statistics and Computing (2020) 30:731–748

Let Qn

(
θ; θ (r−1)

)
be the expected complete-data log-

likelihood over data {Y i }n
i=1, at the r th E-step of an EM

algorithm for solving the problem:

θ̂n ∈
{

θ̂ : n−1
n∑

i=1

log f
(
Y i ; θ̂

)
= max

θ∈�
n−1

×
n∑

i=1

log f (Y i ; θ)

}
,

where we say that θ̂n is the ML estimator, based on the data
{Y i }n

i=1. When, A1–A3 are satisfied, we can write

Qn

(
θ; θ (r−1)

)
= nq

(
n−1

n∑
i=1

s̄
(
Y i ; θ (r−1)

)
; θ

)
+ Constant,

which can then be maximized, with respect to θ , in order to
yield an M-step update of the form:

θ (r) = θ̄

(
n−1

n∑
i=1

s̄
(
Y i ; θ (r−1)

))
, (10)

where θ (r) is a function that depends only on the average

n−1∑n
i=1 s̄

(
Y i ; θ (r−1)

)
.

Now we suppose that we sample the individual observa-
tions of {Y i }n

i=1, one at a time and sequentially. Furthermore,
upon observation of Y i , we wish to compute an online
estimate of θ0, which we denote as θ (i). Based on the sim-
plification of the EM algorithm under A1–A3, as described
above, Cappé and Moulines (2009) proposed the following
online EM algorithm.

UponobservationofY i , compute the intermediate updated
sufficient statistic

s(i) = s(i−1) + γi

[
s̄
(
Y i ; θ (i−1)

)
− s(i−1)

]
, (11)

with s(0) = s̄
(
Y i ; θ (0)

)
. Here, γi is the i th term of the learn-

ing rate sequence that we will discuss in further details in the
sequel. Observe that we can also write

s(i) = γi s̄
(
Y i ; θ (i−1)

)
+ (1 − γi) s(i−1),

which makes it clear that for γi ∈ (0, 1), s(i) is a weighted

average between s̄
(
Y i ; θ (i−1)

)
and s(i−1). Using s(i) and the

function θ̄ , we can then express the i th iteration online EM
estimate of θ0 as

θ (i) = θ̄
(
s(i)
)
. (12)

Next, we state a consistency theorem that strongly moti-
vates the use of the online EM algorithm, defined by (11)

and (12). Suppose that the true DGP that generates each Y i

of {Y i }n
i=1 is characterized by the probability measure F0.

Write the expectation operator with respect to this measure
as EF0 . In order to state the consistency result of Cappé and
Moulines (2009), we require the following additional set of
assumptions.

B1 The parameter space � is a convex and open subset of
a real product space, and the functions φ and ψ , in (8),
are both twice continuously differentiable with respect
to θ ∈ �.

B2 The function θ̄ , as defined in (10), is a continuously dif-
ferentiable function with respect to s ∈ S, where S is as
defined in A3.

B3 For some p > 2, and all compact K ⊂ S,

sup
s∈K

EF0

[∣∣s̄ (Y ; θ̄ (s)
)∣∣p] < ∞. (13)

As the algorithm defined by (11) and (12) is of the Robbins–
Monro type, establishment of convergence of the algorithm
requires the definition of a mean field (see Chen 2003 and
Kushner and Yin 2003 for comprehensive treatments regard-
ing such algorithms). In the case of the online EM algorithm,
we write the mean field as

h (s) = EF0

[
s̄
(
Y ; θ̄ (s)

)]− s

and define the set of its roots as � = {s ∈ S : h (s) = 0}.
Define the log-likelihood of the hypothesized PDF f (·; θ)

with respect to the measure F0, as

	 (f (·; θ)) = EF0

[
log f (Y ; θ)

]
.

Let ∇θ denote the gradient with respect to θ , and define
the sets

W� = {	 (f (·; θ)) : θ = θ̄ (s) , s ∈ �
}

and

M� =
{
θ̂ ∈ � : ∇θ 	 (f (·; θ))|

θ=θ̂
= 0
}
.

Note that M� is the set of stationary points of the log-
likelihood function. Further, define the distance between a
real vector a and a set B by

dist (a,B) = inf
b∈B

‖a − b‖ ,

where ‖·‖ is the usual Euclidean metric, and denote the com-
plement of a subset A of a real product space by Ac. Finally,
make the following assumptions.

123

Statistics and Computing (2020) 30:731–748 735

C1 The sequence of learning rates {γi }∞i=1 fulfills the condi-
tions that 0 < γi < 1, for each i ,

∞∑
i=1

γi = ∞, and
∞∑

i=1

γ 2
i < ∞.

C2 At initialization s(0) ∈ S and, with probability 1,

lim sup
i→∞

∣∣∣s(i)
∣∣∣ < ∞, and lim inf

i→∞ dist
(
s(i),Sc

)
= 0.

C3 The set W� is nowhere dense.

Theorem 1 (Cappé and Moulines 2009) Assume that A1–
A3, B1–B3, and C1–C3 are satisfied, and let {Y i }∞i=1 be an
IID sample with DGP characterized by the PDF f0, which
is hypothesized to have the form f (·; θ), as in (8). Further,

let
{
s(i)
}∞

i=1 and
{
θ (i)
}∞

i=1
be sequences generated by the

online EM algorithm, defined by (11) and (12). Then, with
probability 1,

lim
i→∞ dist

(
s(i), �

)
= 0, and lim

i→∞ dist
(
θ (i),M�

)
= 0.

Notice that this result allows for a mismatch between the true
probability measure F0 and the assumed pseudo-true family
f (·; θ) from which {Y i }∞i=1 is hypothesized to arise. This
therefore allows for misspecification, in the sense of White
(1982), which is almost certain to occur in the modeling of
any sufficiently complex data. In any case, the online EM
algorithm will converge toward an estimate of the parameter
vector θ , which is in the setM�. When the DGP can be char-
acterized by a density in the family of the form f (·; θ), we
observe that M� contains not only the global maximizer of
the log-likelihood function, but also local maximizers, mini-
mizers, and saddle points. Thus, the online algorithm suffers
from the same lack of strong convergence guarantees, as the
batch EM algorithm (cf. Wu 1983).

In the case of misspecification the set M� will include
the parameter vector θ0 that maximizes the log-likelihood
function, with respect to the true probability measure F0.
However, as with the well-specified case, it will also include
stationary points of other types, as well. We further pro-
vide characterizations of the sets W� and M� in terms of
the Kullback–Leibler divergence (KL; Kullback and Leibler
1951) in the Supplementary Materials.

Assumption C1 can be fulfilled by taking sequences
{γi }∞i=1 of form γi = γ0iα , for some α ∈ (0, 1] and
γ0 ∈ (0, 1). We shall discuss this point further, in the sequel.
Although the majority of the assumptions can be verified or
are fulfilled by construction, the two limits in C2 stand out as
being particularly difficult to verify. In Cappé and Moulines
(2009), the authors suggest that one method for enforcing C2

is to use the method of update truncation, but they did not
provide an explicit scheme for conducting such truncation.

A truncation version of the algorithm defined by (11) and
(12) can be specified via the method of Delyon et al. (1999).
That is, let {Km}∞m=0 be a sequence of compact sets, such that

Km ⊂ interior (Km+1) , and
∞⋃

m=0

Km = S. (14)

We then replace (11) and (12) by the following scheme. At
the i th iteration, firstly compute

s̃(i) = s(i−1) + γi

[
s̄
(
Y i ; θ (i−1)

)
− s(i−1)

]
. (15)

Secondly,

if s̃(i) ∈ Kmi−1 , then set s(i) = s̃(i), θ (i) = θ̄
(
s(i)
)

,

and mi = mi−1, (16)

else

if s̃(i) /∈ Kmi−1 , then set s(i) = Si , θ
(i) = θ̄ (Si) ,

and mi = mi−1 + 1, (17)

where {Si }∞i=1 is an arbitrary random sequence, such that
Si ∈ K0, for each i ∈ N. We have the following result
regarding the algorithm defined by (15)–(17).

Proposition 1 Assume that A1–A3, B1–B3, C1 and C3 are
satisfied, and let {Y i }∞i=1 be an IID sample with DGP char-
acterized by the PDF f0, which is hypothesized to have the

form f (·; θ), as in (8). Further, let
{
s(i)
}∞

i=1 and
{
θ (i)
}∞

i=1
be

sequences generated by the truncated online EM algorithm,
defined by (15)–(17). Then, with probability 1,

lim
i→∞ dist

(
s(i), �

)
= 0, and lim

i→∞ dist
(
θ (i),M�

)
= 0.

The proof of Proposition 1 requires the establishment of
equivalence between A1–A3, B1–B3, C1, and C3, and the
many assumptions of Theorem 3 and 6 of Delyon et al.
(1999). Thus, the proof is simple and mechanical, but long
and tedious. We omit it for the sake of brevity.

2.2 Themini-batch algorithm

At the most elementary level, a mini-batch algorithm for

computation of a sequence of estimators
{
θ (r)
}R

r=1
for some

parameter θ0, from some sample {Y i }n
i=1, where R ∈ N, has

the following property. The algorithm is iterative, and at the
r th iteration of the algorithm, the estimator θ (r) only depends
on the previous iterate θ (r−1) and some subsample, possibly

123

736 Statistics and Computing (2020) 30:731–748

with replacement, of {Y i }n
i=1. Typical examples of mini-

batch algorithms include the many variants of the stochastic
gradient descent-class of algorithms; see, for example, Cotter
et al. (2011), Li et al. (2014), Zhao et al. (2014), and Ghadimi
et al. (2016).

Suppose thatwe observe a fixed size realization
{
yi

}n
i=1 of

some IID randomsample {Y}n
i=1. Furthermore, fix a so-called

batch size N ≤ n and a learning rate sequence {γr }R
r=1, and

select someappropriate initial values s(0) and θ (0) fromwhich

the sequences
{
s(r)
}R

r=1 and
{
θ (r)
}R

r=1
can be constructed.

A mini-batch version of the online EM algorithm, specified
by (11) and (12) can be specified as follows. For each r ∈
[R], sample N observations from

{
yi

}n
i=1 uniformly, with

replacement, and denote the subsample by
{
Y r

i

}N
i=1. Then,

using
{
Y r

i

}N
i=1, compute

s(r) = s(r−1) + γr

[
N−1

N∑
i=1

s̄
(
Y r

i ; θ (r−1)
)

− s(r−1)

]
,

and θ (r) = θ̄
(
s(r)
)
. (18)

In order to justify the mini-batch algorithm, we make the
following observation. The online EM algorithm, defined by
(11) and (12), is designed to obtain a root in the set M�,
which is a vector θ̂ ∈ � such that

∇θ 	 (f (·; θ))|
θ=θ̂

= 0.

If N = 1 (i.e., the case proposed in Cappé and Moulines
2009, Sec. 2.5), then the DGP for generating subsamples is
simply a single draw from the empirical measure:

FEmp (y) =
n∑

i=1

1

n
δ
(
y − yi

)
,

where δ is the Dirac delta function (see, for details, Pros-
peretti 2011, Ch. 2). We can write

	 (f (·; θ)) = EF0

[
log f (Y ; θ)

]

= EFEmp

[
log f (Y ; θ)

]

= 1

n

n∑
i=1

log f
(
yi ; θ

)
, (19)

which is the log-likelihood function, with respect to the real-
ization

{
yi

}n
i=1, under the density function of form f (·; θ).

Thus, in the N = 1 case, the algorithm defined by (18) solves
for log-likelihood roots θ̂ of the form

1

n

n∑
i=1

∇θ log f
(
yi ; θ

)∣∣
θ=θ̂

= 0,

or equivalently, solving for an element in the set

M
Emp
� =

{
θ̂ ∈ � :

n∑
i=1

∇θ log f
(
yi ; θ

)∣∣
θ=θ̂

= 0

}
.

The N > 1 case follows the same argument and is described
in the Supplementary Materials (Section 2.2). Let F N

Emp
denote the probability measure corresponding to the DGP
of N independent random samples from FEmp. We have the
following result, based on Theorem 1.

Corollary 1 For any N ∈ N, assume that A1–A3, B1–B3, and
C1–C3 are satisfied (replacing i by r , and F0 by F N

Emp, where

appropriate), and let
{
yi

}n
i=1 be a realization of some IID

random sequence {Y i }n
i=1, where each Y i is hypothesized to

arise from a DGP having PDF of the form f (·; θ), as in (8).

Let
{
s(r)
}∞

i=1 and
{
θ (r)
}∞

i=1
be sequences generated by the

mini-batch EM algorithm, defined by (11) and (12). Then,
with probability 1,

lim
r→∞ dist

(
s(r), �

)
= 0, and lim

r→∞ dist
(
θ (r),M

Emp
�

)
= 0.

That is, as we take R → ∞, the algorithm defined by (11)
and (12) will identify elements in the sets � andMEmp

� , with
probability 1.Aswith the case ofTheorem1,C2 is again diffi-
cult to verify. Let {Km}∞m=0 be as per (14). Then, we replace
the algorithm defined via (18), by the following truncated
version.

Again, suppose that we observe a fixed size realization{
yi

}n
i=1 of some IID random sample {Y}n

i=1. Furthermore,
fix a so-called batch size N ≤ n and a learning rate sequence
{γr }R

r=1, and select some appropriate initial values s(0) and

θ (0) from which the sequences
{
s(r)
}R

r=1 and
{
θ (r)
}R

r=1
can

be constructed. For each r ∈ [R], sample N observations
from

{
yi

}n
i=1 uniformly, with replacement, and denote the

subsample by
{
Y r

i

}N
i=1. Using

{
Y r

i

}N
i=1, compute

s̃(r) = s(r−1) + γr

[
N−1

N∑
i=1

s̄
(
Y r

i ; θ (r−1)
)

− s(r−1)

]
.

(20)

Then, with i being appropriately replaced by r , use (16) and
(17) to compute s(r) and θ (r). We obtain the following result
via an application of Proposition 1.

Corollary 2 For any N ∈ N, assume that A1–A3, B1–B3, and
C1–C3 are satisfied (replacing i by r , and F0 by F N

Emp, where

appropriate), and let
{
yi

}n
i=1 be a realization of some IID

random sequence {Y i }n
i=1, where each Y i is hypothesized to

arise from a DGP having PDF of the form f (·; θ), as in (8).

123

Statistics and Computing (2020) 30:731–748 737

Let
{
s(r)
}∞

i=1 and
{
θ (r)
}∞

i=1
be sequences generated by the

truncated mini-batch EM algorithm, defined by (20), (16),
and (17). Then, with probability 1,

lim
r→∞ dist

(
s(r), �

)
= 0, and lim

r→∞ dist
(
θ (r),M

Emp
�

)
= 0.

2.3 The learning rate sequence

As previously stated, a good choice for the learning rate
sequence {γi }∞i=1 is to take γi = γ0iα , for each i ∈ N,
such that α ∈ (1/2, 1] and γ0 ∈ (0, 1). Under the assump-
tions of Theorem 1, Cappé and Moulines (2009, Thm. 2)
showed that the learning rate choice leads to the conver-

gence of the sequence γ
1/2
0 iα/2

(
θ (i) − θ0

)
, in distribution,

to a normal distribution with mean 0 and covariance matrix

depending on θ0, for some θ0 ∈ M�. Here
{
θ (i)
}∞

i=1
is a sequence of online EM algorithm iterates, generated
by (11) and (12). A similar result can be stated for the
truncated online EM, mini-batch EM, and truncated mini-
batch EM algorithms, by replacing the relevant indices and
quantities in the previous statements by their respective coun-
terparts.

The result above implies that the convergence rate is
θ (i) − θ0 = op

(
iα/2

)
, for any valid α, where op is the

usual order in probability notation (see White 2001, Defn.
2.33). Thus, it would be tempting to take α = 1 in
order to obtain a rate with optimal order of n1/2. How-
ever, as shown in Cappé and Moulines (2009, Thm. 2), the
α = 1 case requires constraints on γ0 in order to fulfill a
stability assumption that is impossible to validate, in prac-
tice.

It is, however, still possible to obtain a sequence of esti-
mators that converges to some θ0 at a rate with optimal order
n1/2. We can do this via the famous so-called Polyak averag-
ing scheme of Polyak (1990) and Polyak and Juditsky (1992).
In the current context, one takes as an input the sequence of

online EM iterates
{
θ (i)
}∞

i=1
, and output the running average

sequence
{
θ

(i)
A

}∞
i=1

, where

θ
(i)
A = i−1

i∑
j=1

θ (j), (21)

for each i ∈ N. For any α ∈ (1/2, 1), it is provable that
θ

(i)
A − θ0 = op

(
n1/2

)
. As before, this result generalizes to

the cases of the truncated online EM, mini-batch EM, and
truncated mini-batch EM algorithms, also.

We note that the computation of the i th running average
term (21) does not require the storage of the entire sequence

of iterates
{
θ (i)
}∞

i=1
, as one would anticipate by applying

(21) navely. One can instead write (21) in the iterative form

θ
(i)
A = i−1

[
(i − 1) θ

(i−1)
A + θ (i)

]
.

3 Normal mixture models

3.1 Finite mixtures of exponential family
distributions

We recall from Sect. 1 that the random variable Y is said
to arise from a DGP characterized by a g component finite
mixture of component PDFs of form f (y;ωz), if it has a
PDF of the form (2). Furthermore, if the component PDFs
are of the exponential family form (1), then we further write
the PDF of Y as

f (y; θ) =
g∑

z=1

πzh (y) exp
{[
s (y)

]�
φ (ωz) − ψ (ωz)

}
.

(22)

From the construction of the finitemixturemodel, we have
the fact that (22) is the marginalization of the joint density
of the random variable X� = (Y�, Z

)
:

f (x; θ) =
g∏

ζ=1

×
[
πζ h (y) exp

{[
s (y)

]�
φ
(
ωζ

)− ψ
(
ωζ

)}]�z=ζ�
(23)

over the random variable Z ∈ [g], recalling that Z is a cat-
egorical random variable with g categories (cf. McLachlan
and Peel 2000, Ch. 2). Here, �c� is the Iverson bracket nota-
tion that takes value 1 if condition c is true, and 0 otherwise
(Ch. 1 Iverson 1967). We rewrite (23) as follows:

f (x; θ) = h (y) exp

⎧⎨
⎩

g∑
ζ=1

�z = ζ �
[
logπζ + [s (y)

]�

φ
(
ωζ

)− ψ
(
ωζ

)]
⎫
⎬
⎭

= h (x) exp
{
[s (x)]� φ (θ) − ψ (θ)

}
,

where h (x) = h (y), ψ (θ) = 0,

s (x) =

⎡
⎢⎢⎢⎢⎢⎣

�z = 1�
�z = 1�s (y)

...

�z = g�

�z = g�s (y)

⎤
⎥⎥⎥⎥⎥⎦
, and φ (θ) =

⎡
⎢⎢⎢⎢⎢⎣

logπ1 − ψ (ω1)

φ (ω1)
...

logπg − ψ
(
ωg
)

φ
(
ωg
)

⎤
⎥⎥⎥⎥⎥⎦

,

123

738 Statistics and Computing (2020) 30:731–748

and thus obtain the following general result regarding finite
mixtures of exponential family distributions.

Proposition 2 The complete-data likelihood of any finite
mixture of exponential family distributions with PDF of the
form (22) can also be written in the exponential family form
(8).

With Proposition 2, we have proved that when applying the
online EM or the mini-batch EM algorithm to the problem
of conducting ML estimation for any finite mixture model of
exponential family distributions, A1 is automatically satis-
fied.

3.2 Finite mixtures of normal distributions

Recall from Sect. 1 that the random variable Y is said to
be distributed according to a g-component finite mixture of
normal distributions, if it characterized by a PDF of the form
(3).Using the exponential family decomposition from (5) and
(6), we write the complete-data likelihood of X� = (Y�, Z

)
in the form (8) by setting h (x) = (2π)−d/2, ψ (θ) = 0,

s (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�z = 1�
�z = 1� y

�z = 1�vec(y y�)
...

�z = g�

�z = g� y
�z = g�vec(y y�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

φ (θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

logπ1 − 1
2μ

�
1 �−1

1 μ1 + 1
2 log |�1|

�−1
1 μ1

− 1
2vec(�

−1
1)

...

logπg − 1
2μ

�
g �−1

g μg + 1
2 log

∣∣�g
∣∣

�−1
g μg

− 1
2vec(�

−1
g)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

where vec(·) is the matrix vectorization operator.
Using the results fromMcLachlan and Peel (2000, Ch. 3),

we write the conditional expectation (9) in the form

[s̄ (y; θ)]� =
(
τ1 (y; θ) , τ1 (y; θ) y, τ1 (y; θ) vec(y y�), . . . ,

τg (y; θ) , τg (y; θ) y, τg (y; θ) vec(y y�)
)

,

where

τz (y; θ) = πzϕ
(
y;μz,�z

)
∑g

ζ=1 πζ ϕ
(
y;μζ ,�ζ

) ,

is the usual a posteriori probability that Z = z (z ∈ [g]),
given observation of Y = y. Again, via the results from

McLachlan and Peel (2000, Ch. 3), we write the update func-
tion θ̄ in the following form. Define θ̄ to have the elements
π̄z and ω̄z , for each z ∈ [g], where each ω̄z subsequently
has elements μ̄z and �̄z . Furthermore, for convenience, we
define for s the following notation

s� = (s11, s21, vec(S31), . . . , s1g, s2g, vec(S3g)),

and

[
s̄ (y; θ)

]� = (s̄11 (y; θ) , s̄21 (y; θ) , vec(S̄31 (y; θ)), . . . ,

s̄1g (y; θ) , s̄2g (y; θ) , vec(S̄3g (y; θ))),

with

s̄1z (y; θ) = τz (y; θ) , s̄2z (y; θ) = τz (y; θ) y, and

S̄3z (y; θ) = τz (y; θ) y y�.

Then, the application of the M-step is equivalent to apply
function θ̄ as a function of s, containing the unique elements
of π̄z , μ̄z , and �̄z , for z ∈ [g], defined by

π̄z(s) = s1z∑g
j=1 s1 j

, μ̄z(s) = s2z

s1z
, and

�̄z(s) = S3z

s1z
− s2z s�2z

s21z

. (25)

This implies that the mini-batch EM and truncated mini-
batch EM algorithms proceed via update rule θ̄

(
s(r)
)
, where

θ̄ and s(r) are as given in (18). We start from θ (0) and s(1) =
N−1∑N

i=1 s̄(Y i , θ
(0)). Then, θ (1)� = [θ̄(s(1))]�, which has

elements

π̄z

(
s(1)
)

= N−1
N∑

i=1

τz

(
Y i ; θ (0)

)
,

μ̄z

(
s(1)
)

=
∑N

i=1 τz

(
Y i ; θ (0)

)
Y i

∑N
i=1 τz

(
Y i ; θ (0)

) , (26)

and

�̄z

(
s(1)
)

=
∑N

i=1 øz

(
Y i ; θ (0)

)
Y iY�

i
∑N

i=1 τz

(
Y i ; θ (0)

)

−
[∑N

i=1 τz

(
Y i ; θ (0)

)
Y i

] [∑N
i=1 τz

(
Y i ; θ (0)

)
Y i

]�
[∑N

i=1 τz

(
Y i ; θ (0)

)]2 . (27)

123

Statistics and Computing (2020) 30:731–748 739

3.3 Convergence analysis of themini-batch
algorithm

In addition to Assumptions A1–A3, B1–B3, and C1–C3,
make the additional assumption

D1 The Hessian matrix of
∑n

i=1 log f
(
yi ; θ

)
, evaluated at

any θ0 ∈ M
Emp
� , is non-singular with respect to θ ∈ �.

Assumption D1 is generally satisfied for all but pathologi-
cal samples

{
yi

}n
i=1. The following result is proved in the

Supplementary Materials.

Proposition 3 Let
{
yi

}n
i=1 be a realization of some IID ran-

dom sequence {Y i }n
i=1, where each Y i is hypothesized to

arise from a DGP having PDF of the form (3). If
{
s(r)
}∞

i=1

and
{
θ (r)
}∞

i=1
are sequences generated by the mini-batch

EM algorithm, defined by (18) and (25), then for any N ∈ N,
if C1, C2, and D1 are satisfied (replacing i by r , and F0 by∏N

j=1 FEmp, where appropriate), then, with probability 1,

lim
r→∞ dist

(
s(r), �

)
= 0, and lim

r→∞ dist
(
θ (r),M

Emp
�

)
= 0.

Alternatively, if
{
s(r)
}∞

i=1 and
{
θ (r)
}∞

i=1
are sequences gen-

erated by the truncated mini-batch EM algorithm, defined by
(16) , (17), (20) and (25), then for any N ∈ N, if C1 and D1
are satisfied (replacing i by r , and F0 by

∏N
j=1 FEmp, where

appropriate), then, with probability 1,

lim
r→∞ dist

(
s(r), �

)
= 0, and lim

r→∞ dist
(
θ (r),M

Emp
�

)
= 0.

3.4 A truncation sequence

In order to apply the truncated version of the mini-batch EM
algorithm, we require an appropriate sequence {Km}∞m=0 that
satisfies condition (14). This can be constructed in parts. Let
us write

Km = D
m
g−1 ×

g∏
i=1

(
B

m
d × H

m
d

)
, (28)

where we shall let c1, c2, c3 ≥ 1,

D
m
g−1 =

{(
π1, . . . , πg

) ∈ R
g :

g∑
z=1

πz = 1, and

πz ≥ 1

c1 + m
, for each z ∈ [g]

}
,

B
m
d = [− (c2 + m) , c2 + m]d ,

and

H
m
d =

{
H ∈ Hd : λ1 (H) ≥ 1

c3 + m
λd , (H) ≤ c3 + m

}
,

using the notation λ1 (H) and λd (H) to denote the small-
est and largest eigenvalues of the matrix H. A justification
regarding this truncation scheme can be found in the Supple-
mentary Materials.

We make a final note that the construction (28) is not a
unique method for satisfying the conditions of (14). One can
instead, for example, replace c j +m, by c j (1 + m) (j ∈ [3])
in the definitions of the sets that constitute (28).

4 Simulation studies

We present a pair of simulation studies, based upon the
famous Iris data set of Fisher (1936) and the Wreath data of
Fraley et al. (2005), in themain text.A further four simulation
scenarios are presented in the Supplementary Materials. In
each case, we utilize the initial small data sets, obtained from
the base R package (R Core Team 2018) and the mclust
package for R (Scrucca et al. 2016), respectively, and use
them as templates to generate much larger data sets. All com-
putations are conducted in the R programming environment,
although much of the bespoke programs are programmed in
C and integrated in R via the Rcpp and RcppArmadillo
packages of (Eddelbuettel 2013). Furthermore, timings of
programs were conducted on aMacBook Pro with a 2.2 GHz
Intel Core i7 processor, 16 GB of 1600 MHz DDR3 RAM,
and a 500 GB SSD hard drive. We note that all of the code
used to conduct the simulations and computations for this
manuscript can be accessed from https://github.com/hiendn/
StoEMMIX.

In the sequel, in all instances, we shall use the learning rate
sequence {γr }∞r=1, where γr = (

1 − 10−10
) × r6/10, which

follows from the choicemade byCappé andMoulines (2009)
in their experiments. In all computations, a fixed number of
epochs (or epoch equivalence) of 10 is allotted to each algo-
rithm. Here, recall that the number of epochs is equal to the
number of sweeps through the data set

{
yi

}n
i=1 that an algo-

rithm is allowed. Thus, drawing 10n observations from the
data

{
yi

}n
i=1, with replacement, is equivalent to 10 epochs.

Thus, each iteration of the standard EM algorithm counts as a
single epoch, whereas, for a mini-batch algorithmwith batch
size N , every n/N iterations counts as an epoch.

Next, in both of our studies, we consider batch sizes of
N = n/10 and N = n/5, we further consider Polyak averag-
ing as well as truncation. Thus, for each study, a total of eight
variants of the mini-batch EM algorithm is considered. In the
truncate case, we set c1, c2, c3 = 1000. Finally, the variants
of themini-batch EM algorithm are compared to the standard

123

https://github.com/hiendn/StoEMMIX
https://github.com/hiendn/StoEMMIX

740 Statistics and Computing (2020) 30:731–748

(batch) EMalgorithm for fitting finitemixtures of normal dis-
tributions. In the interest of fairness, each of the algorithms
is initialized at the same starting value of θ (0), using the ran-
domized initialization scheme suggested in McLachlan and
Peel (McLachlan and Peel (2000), Sec. 3.9.3). That is, the
same randomized starting instance is used for the EM algo-
rithm and each of the mini-batch variants.

To the best of our knowledge, the most efficient and reli-
able implementation of the EM algorithm for finite mixtures
of normal distributions, in R, is the em function from the
mclust package. Thus, this will be used for all of our
comparisons. Data generation from the template data sets is
handled using thesimdataset function from theMixSim
package (Melnykov et al. 2012), in the Iris study, and the
simVVV function from mclust in the Wreath study. Tim-
ing was conducted using the proc.time function.

4.1 Iris data

The Iris data (accessed in R via the data(iris) com-
mand) contain measurements of d = 4 dimensions from 150
iris flowers, 50 of each are of the species Setosa, Versicolor,
and Virginica, respectively. The 4 dimensions of each flower
that are measured are petal length, petal width, sepal length,
and sepal width. To each of the subpopulations of species, we
fit a single multivariate normal distribution to the 50 observa-
tions (i.e., we estimate a mean vector and covariance matrix,
for each species). Then, using the three mean vectors and
covariance matrices, we construct a template g = 3 compo-
nent normal mixture model with equal mixing proportions
πz = 1/3 (z ∈ [3]), of form (3). This template distribution
is then used to generate synthetic data sets of any size n.

Two experiments are performed using this simulation
scheme. In the first experiment, we generate n = 106 obser-
vations

{
yi

}n
i=1 from the template. We then utilize

{
yi

}n
i=1

and each of the truncatedEMalgorithmvariants aswell as the
batchEMalgorithm to computeMLestimates.Weuse a num-
ber of measures of performance for each algorithm variant.
These include the computation time, the log-likelihood, the
squared error of the parameter estimates (SE; the Euclidean
distance as compared to the generative parameter vector),
and the adjusted-Rand index (ARI; Hubert and Arabie 1985)
between themaximum a posteriori clustering labels obtained
from the fitted mixture model and the true generative data
labels.

The ARI measures whether or not two sets of labels are
in concordance or not. Here, a value of 1 indicates perfect
similarity, and 0 indicates discordance. Since the ARI allows
for randomness in the labelling process, it is possible to have
negative ARI values, which are rare and also indicates dis-
cordance in the data. Each variant is repeated Rep = 100
times, and each performance measurement is recorded in
order to obtain a measure of the overall performance of each

−15 −10 −5 0 5 10 15

−1
0

0
10

y1

y 2

Fig. 1 Plot of the 1000 observations of the Wreath data set, colored by
subpopulation with subpopulation means indicated by crosses

algorithm. For future reference, we name this study Iris1. In
the second study, which we name Iris2, we repeat the setup
of Iris1 but with the number of observations increased to
n = 107.

4.2 Wreath data

The Wreath data (accessed in R via the data(wreath)
command) contain 1000 observations of d = 2 dimensional
vectors, each belonging to one of g = 14 distinct but unla-
belled subpopulations. We use the Mclust function from
mclust to fit a 14 component mixture normal distributions
to the data. The data, along with the means of the subpopula-
tion normal distributions, are plotted in Fig. 1. Here, each
observation is colored based upon the subpopulation that
maximizes its a posteriori probability.

As with the Iris data, using the fitted mixture model as a
template, we can then simulate synthetic data sets of any size
n.We perform two experiments using this scheme. In the first
experiment, we simulate n = 106 observations and assess the
different algorithms, based on the computation time, the log-
likelihood, the SE, and the ARI over Rep=100 repetitions,
as per Iris1. We refer to this experiment as Wreath1. In the
second experiment, we repeat the setup of Wreath1, but with
n = 107, instead. We refer to this case as Wreath2.

4.3 Results

Figures 2 and 3 contain box plots that summarize the results
of Iris1 and Iris2, respectively. Similarly, Figs. 4 and5 contain
boxplots that summarize the results ofWreath1 andWreath2,
respectively.

123

Statistics and Computing (2020) 30:731–748 741

EM N=n/10 N=n/5 N=n/10,T N=n/5,T

8.
0

9.
0

10
.0

11
.0

tim
e

(s
)

(a) Timing results, in seconds.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT−2
40

00
00

−1
80

00
00

lo
g−

lik
el

ih
oo

d

(b) Log-likelihood results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

0
5

10
20

30

S
E

(c) Standard error results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

0.
3

0.
5

0.
7

0.
9

A
R

I

(d) Adjusted-Rand index results.

Fig. 2 Results from Rep = 100 replications of the Iris1 simulation
experiment. The ‘EM’ box plot summarizes the performance of the
standard EM algorithm. The other plots are labelled by which variant

of the mini-batch EM algorithm is summarized. The value of the batch
size N is indicated (either N = n/10 or N = n/5), and a ‘P’ or a ‘T’
designates that Polyak averaging or truncation was used, respectively

Firstly, we note that Polyak averaging requires no addi-
tional computational effort, for a given value of N . Thus,
we do not require separate timing data for Polyak averaging
variants of the mini-batch EM algorithms in each of Figs.
2, 3, 4 and 5. From the timing results, we observe that the
standard EM algorithm is faster than the mini-batch ver-
sions, in all scenarios, regardless of the fact that all of the

algorithms were computed using 10 epochs worth of data
access. This is because the mini-batch algorithms require
more additional intermediate steps in each algorithm loop
(e.g., random sampling from the empirical distribution), as
well as a multiplicative factor of n/N more loops. From the
plots, we observe that the larger value of N tends to result in

123

742 Statistics and Computing (2020) 30:731–748

EM N=n/10 N=n/5 N=n/10,T N=n/5,T

80
90

10
0

12
0

tim
e

(s
)

(a) Timing results, in seconds.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

−2
.4

e+
07

−1
.8

e+
07

lo
g−

lik
el

ih
oo

d

(b) Log-likelihood results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

0
5

10
20

30

S
E

(c) Standard error results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

0.
3

0.
5

0.
7

0.
9

A
R

I

(d) Adjusted-Rand index results.

Fig. 3 Results from Rep = 100 replications of the Iris2 simulation
experiment. The ‘EM’ box plot summarizes the performance of the
standard EM algorithm. The other plots are labelled by which variant

of the mini-batch EM algorithm is summarized. The value of the batch
size N is indicated (either N = n/10 or N = n/5), and a ‘P’ or a ‘T’
designates that Polyak averaging or truncation was used, respectively

smaller computing times. There appears to be no difference
in timing between the use of truncation or not.

In the Iris1 and Iris2 studies, we observe that the mini-
batch EM algorithms uniformly outperform the standard EM
algorithm in terms of the log-likelihood, SE, and ARI. In all
three measurements, we observe that N = n/10 performed
better than N = n/5, and also that there were no differences
between truncated versions of the mini-batch algorithms

and equivalent variants without truncation. Polyak averaging
appears to reduce the performance of the mini-batch algo-
rithms, for a given level of N , with respect to each of the
three measurements.

In the Wreath1 and Wreath2 studies, we observe that the
standard and mini-batch EM algorithms perform virtually
the same across the log-likelihood, SE, and ARI metrics.
This is likely due to the high degree of separability of each

123

Statistics and Computing (2020) 30:731–748 743

EM N=n/10 N=n/5 N=n/10,T N=n/5,T

20
22

24
26

28
30

tim
e

(s
)

(a) Timing results, in seconds.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT−7
42

50
00

−7
42

40
00

lo
g−

lik
el

ih
oo

d

(b) Log-likelihood results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

26
56

00
26

62
00

26
68

00

S
E

(c) Standard error results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

0.
1

0.
2

0.
3

0.
4

0.
5

A
R

I

(d) Adjusted-Rand index results.

Fig. 4 Results from Rep = 100 replications of the Wreath1 simulation
experiment. The ‘EM’ box plot summarizes the performance of the
standard EM algorithm. The other plots are labelled by which variant

of the mini-batch EM algorithm is summarized. The value of the batch
size N is indicated (either N = n/10 or N = n/5), and a ‘P’ or a ‘T’
designates that Polyak averaging or truncation was used, respectively

of the g = 12 mixture components of the Wreath data, in
comparison to the overlapping components of the Iris data.
Our observation is true for all of the mini-batch EM variants,
with or without truncation or Polyak averaging. Upon first
impression, this may appear as a weakness of the mini-batch
EM algorithm, since it produces the same performance while
requiring more computational time. However, we must also
remember that the mini-batch EM algorithm does not require

all of the data to be stored in memory at each iteration of
algorithm, whereas the EM algorithm does. Thus, the mini-
batch algorithm is feasible in very large data situations, since
it only requires a fixed memory size, of order N , regardless
of sample size n, whereas the standard EM algorithm has a
memory requirement that increases with n.

To expand upon our currently presented results, we have
also included a further two simulation studies regarding the

123

744 Statistics and Computing (2020) 30:731–748

EM N=n/10 N=n/5 N=n/10,T N=n/5,T

20
0

24
0

28
0

tim
e

(s
)

(a) Timing results, in seconds.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT−7
42

44
00

0
−7

42
40

00
0

lo
g−

lik
el

ih
oo

d

(b) Log-likelihood results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

26
61

00
26

63
00

26
65

00

S
E

(c) Standard error results.

EM N=n/10 N=n/10,P N=n/5 N=n/5,P N=n/10,T N=n/10,PT N=n/5,T N=n/5,PT

0.
1

0.
2

0.
3

0.
4

0.
5

A
R

I

(d) Adjusted-Rand index results.

Fig. 5 Results from Rep = 100 replications of the Wreath2 simulation
experiment. The ‘EM’ box plot summarizes the performance of the
standard EM algorithm. The other plots are labelled by which variant

of the mini-batch EM algorithm is summarized. The value of the batch
size N is indicated (either N = n/10 or N = n/5), and a ‘P’ or a ‘T’
designates that Polyak averaging or truncation was used, respectively

fitting of finite mixtures of normal distributions using mini-
batch EM algorithms. Our two studies are based on the Flea
data of Wickham et al. (2011), a test scenario from the ELKI
project of Schubert et al. (2015), and an original data gen-
erating process. The ELKI scenario is chosen due to its
separability, in order to assesswhether our conclusion regard-
ing Wreath1 and Wreath2 are correct. The Flea data share
similarities with the Iris data but is higher dimensional. In

all cases, we found that the mini-batch algorithms tended to
outperform the EM algorithm in all but timing, on average.
Detailed assessments of these studies can be found in the
Supplementary Materials.

In addition, we have also investigated the use of the mini-
batch EM algorithm for estimation of non-normal mixture
models. Namely, we present a pair of algorithms for the
estimation of exponential and Poisson mixture models. We

123

Statistics and Computing (2020) 30:731–748 745

demonstrate their performance via an additional pair of sim-
ulation studies.

To conclude, we make the following recommendations.
Firstly, smaller batch sizes appear to yield higher likelihood
values. Secondly, averaging appears to slow convergence of
the algorithm to the higher likelihood value and is thus not
recommended. Thirdly, truncation appears to have no effect
on the performance. This is likely due to the fact that trun-
cation may not have been needed in any of the experiments.
In any case, it is always useful to use the truncated version
of the algorithm, in case there are unforeseen instabilities
in the optimization process. And finally, the standard EM
algorithm may be preferred to the mini-batch EM algorithm
when sample sizes are small and when the data are highly
separable. However, even in the face of high separability, for
large n, it may not be feasible to conduct estimation by the
standard EM algorithm and thus the mini-batch algorithms
may be preferred due to feasibility.

It is interesting to observe that Polyak averaging tended to
diminish the performance of the algorithms, in our studied
scenarios. This is in contradiction to the theory that suggests
that Polyak averaging should in fact increase the convergence
rate to stationary solutions.We note, however, that the theory
is asymptotic and the number of epochs thatwere usedmaybe
too short for the advantages of Polyak averaging to manifest,
in practice.

5 Real data study

5.1 MNIST data

The MNIST data of LeCun et al. (1998) consists of n =
70, 000 observations of d = 28× 28 = 784 pixel images of
handwritten digits. These handwritten digits were sampled
nearly uniformly. That is there were 6903, 7877, 6990, 7141,
6824, 6313, 6876, 7293, 6825, and 6958 observations of the
digits 0–9, respectively.

Next, it is notable that not all d pixels are particularly
informative. In fact, there is a great amount of redundancy
in the d dimensions. Out of the d pixels, 65 are always zero,
for every observation. Thus, the dimensions of the data are
approximately 8.3% sparse.

We eliminate the spare pixels across all images to obtain
a dense dimensionality of ddense = 719. Using the ddense
dimensions of the data, we conduct a principal component
analysis (PCA) in order to further reduce the data dimen-
sionality; see Jolliffe 2002 for a comprehensive treatment on
PCA. Using the PCA, we extract the principal components
(PCs) of each observation, and for various number of PCs
dPC ∈ [ddense]. We can then use the data sets of n obser-
vations and dimension dPC, to estimate mixture of normal
distributions for various values of g.

5.2 Experimental setup

In the following study, we utilize only the truncated version
of the mini-batch algorithm, having drawn the conclusions,
from Sect. 4, that there appeared to be no penalty in perfor-
mance due to truncation in practice. Again, drawing upon
our experience from Sect. 4, we set N = n/10 = 7000
as the batch size in all applications. The same learning rate
sequence of {γr }∞r=1, where γr = (1 − 10−10

)×r6/10 is also
used, and c1, c2, c3 = 1000.

We apply the mini-batch algorithm to data with dPC =
10, 20, 50, 100. Initialization of the parameter vector θ (0)

was conducted via the randomization scheme of McLach-
lan and Peel (2000, Sec. 3.9.3). The mini-batch algorithm
was run 100 times for each dPC and the log-likelihood values
were recorded for both the fitted models using the Polyak
averaging and no averaging versions of the algorithm. The
standard EM algorithm, as applied via the em function of the
mclust package is again used for comparison. Each of the
algorithms, including the k-means algorithm, was initialized
from the same initial randomization, in the interest of fair-
ness, for each of the 100 runs. That is, a random partition
of the data is generated once for each of the 100 runs, and
the initial parameters for the EM, mini-batch and k-means
algorithms are all computed from the same initialization.
The log-likelihood values of the standard andmini-batch EM
algorithms are compared along with the ARI values. Algo-
rithms are run for 10 epochs.

We compute the ARI values obtained when comparing
the maximum a posteriori clustering labels, obtained from
each of the algorithms (cf. McLachlan and Peel 2000, Sec.
1.15), and the true digit classes of each of the images. For
a benchmark, we also compare the performance of the three
EM algorithms with the k-means algorithm, as applied via
the kmeans function in R, which implements the algorithm
of Hartigan and Wong (1979). For fairness of comparison,
we also allow the k-means algorithm 10 epochs in each of
100 runs. As in Sect. 4, we note that all codes are avail-
able at https://github.com/hiendn/StoEMMIX, for the sake
of reproducibility and transparency.

5.3 Results

The results from the MNIST experiment are presented in
Table 1. We observe that for dPC ∈ {10, 20, 50}, all three
EMvariants provided betterARI than the k-means algorithm.
The best ARI values for all three EM algorithms occur when
dPC = 20. When dPC = 100, the k-means algorithm pro-
vided a better ARI, which appeared to be somewhat uniform
across the four values of dPC.

Among the EM algorithms, the mini-batch algorithm pro-
vided better ARI values, with the two variants not appearing
to be significantly different from one another, when consid-

123

https://github.com/hiendn/StoEMMIX

746 Statistics and Computing (2020) 30:731–748

Table 1 Tabulation of results
from the 100 runs of the EM
algorithms and the k-means
algorithm, for each value of
dPC ∈ {10, 20, 50, 100}

dPC ARI Log-likelihood
EM Mini Mini Pol k-means EM Mini Mini Pol

10 Mean 0.401 0.443 0.432 0.352 −4.98E+06 −4.96E+06 −5.01E+06

SE 0.004 0.004 0.004 0.002 1.19E+03 6.43E+02 5.90E+02

20 Mean 0.436 0.475 0.480 0.367 −9.46E+06 −9.44E+06 −9.52E+06

SE 0.005 0.005 0.005 0.002 2.20E+03 1.37E+03 1.67E+03

50 Mean 0.394 0.434 0.438 0.369 −2.18E+07 −2.17E+07 −2.20E+07

SE 0.005 0.005 0.006 0.002 8.47E+03 7.01E+03 4.85E+03

100 Mean 0.326 0.356 0.377 0.372 −3.99E+07 −3.97E+07 −4.05E+07

SE 0.004 0.004 0.005 0.002 1.83E+04 1.68E+04 8.72E+03

The columns EM, Mini, and Mini Pol refer to the standard EM, the mini-batch EM, and the mini-batch EM
algorithm with Polyak averaging, respectively. The SE rows contain the standard error over each of the 100
runs (i.e., the standard deviation over 10). Boldface text highlights the best results

ering the standard errors of the ARI values, when dPC ∈
{20, 50}. When dPC = 10, we observe that no averaging
yielded a better ARI, whereas, when dPC = 100, averaging
appeared to be better, on average.

Regarding the log-likelihoods, the mini-batch EM algo-
rithm, when applied without averaging, uniformly and sig-
nificantly outperformed the standard EM algorithm. On the
contrary, when applied with averaging, the EM algorithm
uniformly and significantly outperformed the mini-batch
algorithm. This is also in contrary with what was observed in
Sect. 4. This is an interesting result considering that the ARI
of themini-batch algorithm,with averaging, is still better than
that of the EM algorithm. As in Sect. 4, we can recommend
the use of the mini-batch EM algorithm without averaging,
as it tends to outperform the standard EM algorithm for fit
and also yields better clustering outcomes, when measured
via the ARI.

6 Conclusions

In Sect. 2, we reviewed the online EM algorithm framework
of Cappé and Moulines (2009), and stated the key theo-
rems that guarantee the convergence of algorithms that are
constructed under the online EM framework. We then pre-
sented a novel interpretation of the online EM algorithm that
yielded our framework for constructingmini-batch EM algo-
rithms.We then utilized the theorems of Cappé andMoulines
(2009) in order to produce convergence results for this new
mini-batch EM algorithm framework. Extending upon some
remarks of Cappé and Moulines (2009), we also made rigor-
ous the use of truncation in combination with both the online
EM and mini-batch EM algorithm frameworks, using the
construction and theory of Delyon et al. (1999).

In Sect. 3, we demonstrated how the mini-batch EM algo-
rithm framework could be applied to construct algorithms for
conducting ML estimation of finite mixtures of exponential

family distributions. A specific analysis is made of the partic-
ularly interesting case of the normal mixture models. Here,
we validate the conditions that permit the use of the Theo-
rems from Sect. 2 in order to guarantee the convergence of
the mini-batch EM algorithms for ML estimation of normal
mixture models.

In Sect. 4, we conducted a set of four simulation studies in
order to study the performance of the mini-batch EM algo-
rithms, implemented in eight different variants, as compared
to the standard EM algorithm for ML estimation of normal
mixture models. There, we found that regardless of imple-
mentation, in many cases, the mini-batch EM algorithms
were able to obtain log-likelihood values that were better on
average than the standard EM algorithm. We also found that
the use of larger batch sizes and Polyak averaging tended
to diminish performance of the mini-batch algorithms, but
the use of truncation tended to have no effect. Although the
mini-batch algorithms is generally slower than the standard
EM algorithm, we note that in many cases, the fixed memory
requirement of themini-batch algorithmsmake them feasible
where the standard EM algorithm is not.

A real data study was conducted in Sect. 5. There, we
explored the use of the standard EM algorithm and the trun-
cated mini-batch EM algorithm for cluster analysis of the
famous MNIST data of LeCun et al. (1998). From our study,
we found that the mini-batch EM algorithm was able to
obtain better log-likelihood values than the standard EM
algorithm,when appliedwithout Polyak averaging.However,
with averaging, themini-batch EMalgorithmwasworse than
the standard EM algorithm, on average. However, regardless
of whether averaging was used, or not, the mini-batch EM
algorithm appeared to yield better clustering outcomes, when
measured via the ARI of Hubert and Arabie (1985).

This research poses numerous interesting directions for
the future. First, we may extend the results to other expo-
nential family distributions that permit the satisfaction of
theorem assumptions from Sect. 2. We make initial steps

123

Statistics and Computing (2020) 30:731–748 747

in this direction via a pair of mini-batch algorithms for
exponential and Poisson distribution mixtures. Secondly, we
may use the framework to construct mini-batch algorithms
for large-scale mixture of regression models (cf. Jones and
McLachlan 1992), following the arguments made by Cappé
and Moulines (2009) that permitted them to construct an
onlineEMalgorithm for theirmixture of regressions example
analysis. Thirdly, this research theme can be extended further
to the construction of mini-batch algorithms for mixture of
experts models (cf. Nguyen and Chamroukhi 2018), which
may be facilitated via the Gaussian gating construction of Xu
et al. (1995).

In addition to the three previous research questions, we
may also ask questions regarding the practical application of
themini-batch algorithms. For instance, wemay consider the
question of optimizing learning rates and batch sizes for par-
ticular application settings. Furthermore, we may consider
whether the theoretical framework still applies to algorithms
where we may have adaptive batch sizes and learning rate
regimes. As these directions fall vastly outside the scope of
the current paper, we shall leave them for future exploration.

Acknowledgements The authors are indebted to theCo-ordinatingEdi-
tor and two Reviewers for their insightful comments that have improved
the exposition of the manuscript. HDN is personally funded by Aus-
tralian Research Council (ARC) Grant DE170101134. GJM and HDN
are also funded underARCGrant DP180101192. Thework is supported
by Inria project LANDER.

References

Amari, S.: Information Geometry and Its Applications. Springer, Japan
(2016)

Bouveyron, C., Girard, S., Schmid, C.: High-dimensional data cluster-
ing. Comput. Stat. Data Anal. 52, 502–519 (2007)

Buhlmann, P., Drineas, P., Kane,M., van der Laan,M. (eds.): Handbook
of Big Data. CRC Press, Boca Raton (2016)

Cappé, O., Moulines, E.: On-line expectation–maximization algorithm
for latent data models. J. R. Stat. Soc. B 71, 593–613 (2009)

Celeux, G., Chretien, S., Forbes, F., Mkhadri, A.: A component-wise
EM algorithm for mixtures. J. Comput. Graph. Stat. 10, 697–712
(2001)

Chau, M., Fu, M.C.: An overview of stochastic approximation. In: Fu,
M.C. (ed.) Handbook of Simulation Optimization, pp. 149–178.
Springer, New York (2015)

Chen, H.-F.: Stochastic Approximiation and Its Applications. Kluwer,
New York (2003)

Cotter,A., Shamir,O., Srebro,N., Sridharan,K.:Bettermini-batch algo-
rithms via accelerated gradient methods. In: Advances in Neural
Information Processing Systems, pp. 1647–1655 (2011)

DasGupta, A.: Probability for Statistics and Machine Learning.
Springer, New York (2011)

Delyon, B., Lavielle, M., Moulines, E.: Counvergence of a stochastic
approximation version of the EM algorithm. Ann. Stat. 27, 94–128
(1999)

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from
incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39,
1–38 (1977)

Eddelbuettel, D.: Seamless R and C++ Integration with Rcpp. Springer,
New York (2013)

Fisher, R.A.: The use ofmultiplemeasurements in taxonomic problems.
Ann. Eugen. 7(2), 179–188 (1936)

Forbes, C., Evans, M., Hastings, N., Peacock, B.: Statistical Distribu-
tions. Wiley, New York (2011)

Fraley, C., Raftery, A., Wehrens, R.: Incremental model-based cluster-
ing for large datasets with small clusters. J. Comput. Graph. Stat.
14, 529–546 (2005)

Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Math.
Program. Ser. A 155, 267–305 (2016)

Han, Z., Hong, M., Wang, D.: Signal Processing and Networking for
Big Data Applications. Cambridge University Press, Cambridge
(2017)

Hardle, W.K., Lu, H.H.-S., Shen, X. (eds.): Handbook of Big Data
Analytics. Springer, Cham (2018)

Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering
algorithm. J. R. Stat. Soc. Ser. C 28, 100–108 (1979)

Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218
(1985)

Iverson, K.E.: A Programming Language. Wiley, New York (1967)
Jolliffe, I.T.: Principal ComponentAnalysis. Springer,NewYork (2002)
Jones, P.N., McLachlan, G.J.: Fitting finite mixture models in a regres-

sion context. Aust. J. Stat. 34, 233–240 (1992)
Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a

regression function. Ann. Math. Stat. 23, 462–466 (1952)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann.Math.

Stat. 22, 79–86 (1951)
Kushner, H.J., Yin, G.G.: Stochastic Approximiation and Recursive

Algorithms and Applications. Springer, New York (2003)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learn-

ing applied to document recognition. Proc. IEEE 86, 2278–2324
(1998)

Li, M., Zhang, T., Chen, Y., Smola, A.J.: Efficient mini-batch train-
ing for stochastic optimization. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (pp. 661–670) (2014)

Liang, F., Zhang, J.: Estimating the false discovery rate using the
stochastic approximation algorithm. Biometrika 95, 961–977
(2008)

McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions.
Wiley, New York (2008)

McLachlan, G.J., Lee, S.X., Rathnayake, S.I.: Finite mixture models.
Ann. Rev. Stat. Appl. 6, 355–378 (2019)

McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York
(2000)

Melnykov, V., Chen, W.-C., Maitra, R.: MixSim: an R package for
simulating data to study performance of clustering algorithms. J.
Stat. Softw. 51, 1–25 (2012)

Ng, S.-K., McLachlan, G.J.: Speeding up the EM algorithm for mixture
model-based segmentation of magnetic resonance images. Pattern
Recognit. 37, 1573–1589 (2004)

Nguyen, H.D., Chamroukhi, F.: Practical and theoretical aspects of
mixture-of-experts modeling: an overview. WIREs Data Min.
Knowl. Discov. 8(4), e1246 (2018)

Nguyen, H.D., Jones, A.T.: BigData-appropriate clustering via stochas-
tic approximation and Gaussian mixture models. In: Ahmed, M.,
Pathan, A.-S.K. (eds.) Data Analytics: Concepts, Techniques, and
Applications. CRC Press, Boca Raton (2018)

Nguyen, H.D., McLachlan, G.J.: Maximum likelihood estimation of
Gaussian mixture models without matrix operations. Adv. Data
Anal. Classif. 9, 371–394 (2015)

Pearson, K.: Contributions to the theory of mathematical evolution.
Philos. Trans. R. Soc. Lond. A 185, 71–110 (1894)

123

748 Statistics and Computing (2020) 30:731–748

Polyak, B.T.: A new method of stochastic approximation type. Autom.
Remote Control 51, 98–107 (1990)

Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation
by averaging. SIAM J. Control Optim. 30, 838–855 (1992)

Prosperetti, A.: Advanced Mathematics for Applications. Cambridge
University Press, Cambridge (2011)

R Core Team: R: a language and environment for statistical computing.
R Foundation for Statistical Computing (2018)

Robbins, H., Monro, S.: A stochastic approximation method. Ann.
Math. Stat. 22, 400–407 (1951)

Schubert, E., Koos, A., Emrich, T., Zufle, A., Schmid, K.A., Zimek, A.:
A framework for clustering uncertain data. Proc. VLDB Endow.
8, 1976–1979 (2015)

Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E.: mclust: clustering,
classification and density estimation using Gaussian finite mixture
models. R J. 8, 289–317 (2016)

Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture
learning. Neural Process. Lett. 15, 77–87 (2002)

White, H.: Maximum likelihood estimation of misspecified models.
Econometrica 50, 1–25 (1982)

White, H.: Asymptotic Theory For Econometricians. Academic Press,
San Diego (2001)

Wickham, H., Cook, D., Hofmann, H., Buja, A.: tourr: an R package
for exploring multivariate data with projections. J. Stat. Softw. 40,
1–18 (2011)

Wu, C.F.J.: On the convergence properties of the EM algorithm. Ann.
Stat. 11, 95–103 (1983)

Xu, L., Jordan, M.I., Hinton, G.E.: An alternative model for mixtures of
experts. In: Advances in Neural Information Processing Systems,
pp. 633–640 (1995)

Zhang, J., Liang, F.: Convergence of stochastic approximation algo-
rithms under irregular conditions. Stat. Neerl. 62, 393–403 (2008)

Zhao, T., Yu, M., Wang, Y., Arora, R., Liu, H.: Accelerated mini-batch
randomized block coordinate descentmethod. InAdvances in Neu-
ral Information Processing Systems (pp. 3329–3337) (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Mini-batch learning of exponential family finite mixture models
	Abstract
	1 Introduction
	2 The mini-batch EM algorithm
	2.1 The online EM algorithm
	2.2 The mini-batch algorithm
	2.3 The learning rate sequence

	3 Normal mixture models
	3.1 Finite mixtures of exponential family distributions
	3.2 Finite mixtures of normal distributions
	3.3 Convergence analysis of the mini-batch algorithm
	3.4 A truncation sequence

	4 Simulation studies
	4.1 Iris data
	4.2 Wreath data
	4.3 Results

	5 Real data study
	5.1 MNIST data
	5.2 Experimental setup
	5.3 Results

	6 Conclusions
	Acknowledgements
	References

