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Abstract
Recent work on overfitting Bayesian mixtures of distributions offers a powerful framework for clustering multivariate data
using a latentGaussianmodelwhich resembles the factor analysismodel. Theflexibility providedbyoverfittingmixturemodels
yields a simple and efficient way in order to estimate the unknown number of clusters and model parameters by Markov chain
Monte Carlo sampling. The present study extends this approach by considering a set of eight parameterizations, giving rise to
parsimonious representations of the covariance matrix per cluster. A Gibbs sampler combined with a prior parallel tempering
scheme is implemented in order to approximately sample from the posterior distribution of the overfitting mixture. The
parameterization and number of factors are selected according to the Bayesian information criterion. Identifiability issues
related to label switching are dealt by post-processing the simulated output with the Equivalence Classes Representatives
algorithm. The contributed method and software are demonstrated and compared to similar models estimated using the
expectation–maximization algorithm on simulated and real datasets. The software is available online at https://CRAN.R-
project.org/package=fabMix.
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1 Introduction

Factor analysis (FA) explains relationships among a set of
observed variables using a set of latent variables. This is
typically achieved by expressing the observed multivariate
data as a linear combination of a smaller set of unob-
served and uncorrelated variables known as factors. Let
x = (x1, . . . , xn) denote a random sample of p-dimensional
observations with xi ∈ R

p; i = 1, . . . , n. Let Np(μ,Σ)

denote the p-dimensional normal distribution with mean μ

and covariance matrix Σ and also denote by Ip the p × p
identity matrix. The following equations summarize the typ-
ical FA model.

xi = μ + Λ yi + εi , i = 1, . . . , n (1)

( yi , εi ) ∼ Nq(0, Iq)Np(0,Σ), iid for i = 1, . . . , n (2)

Σ = diag(σ 2
1 , . . . , σ 2

p) (3)

xi | yi ∼ Np(μ + Λ yi ,Σ), ind. for i = 1, . . . , n (4)
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Before proceeding, note that we are not differentiating the
notation between random variables and their corresponding
realizations. Bold uppercase letters are used for matrices;
bold lowercase letters are used for vectors and normal text
for scalars.

In Eq. (1), we assume that xi is expressed as a linear com-
bination of a latent vector of factors yi ∈ R

q . The p × q
dimensional matrix Λ = (λr j ) contains the factor loadings,
while μ = (μ1, . . . , μp) contains the marginal mean of
xi . The unobserved vector yi lies on a lower-dimensional
space, that is, q < p, and it consists of uncorrelated features
yi1, . . . , yiq as shown in Eq. (2), where 0 denotes a vector of
zeros. Note that the error terms εi are independent from yi .
Furthermore, the errors are consisting of independent random
variables εi1, . . . , εi p, as implied by the diagonal covariance
matrix Σ in Eq. (3). As shown in Eq. (4), the knowledge
of the missing data ( yi ) implies that the conditional distri-
bution of xi has a diagonal covariance matrix. The previous
assumptions lead to

xi ∼ Np(μ,ΛΛT + Σ), iid for i = 1, . . . , n. (5)
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According to Eq. (5), the covariance matrix of the marginal
distribution of xi is equal to ΛΛT + Σ . This is the crucial
characteristic of factor analytic models, where they aim to
explain high-dimensional dependencies using a set of lower-
dimensional uncorrelated factors (Kim and Mueller 1978;
Bartholomew et al. 2011).

Mixtures of Factor Analyzers (MFA) are generalizations
of the typical FA model, by assuming that Eq. (5) becomes

xi ∼
K∑

k=1

wkNp(μk,ΛkΛ
T
k + Σk), iid i = 1, . . . , n (6)

where K denotes the number of mixture components. The
vector of mixing proportions w := (w1, . . . , wK ) con-
tains the weight of each component, with 0 � wk � 1;
k = 1, . . . , K and

∑K
k=1 wk = 1. Note that the mix-

ture components are characterized by different parameters
μk,Λk,Σk , k = 1, . . . , K . Thus,MFAs are particularly use-
ful when the observed data exhibit unusual characteristics
such as heterogeneity. That being said, this approach aims
to capture the behavior of each cluster within a component
of the mixture model. A comprehensive perspective on the
history and development of MFA models is given in Chapter
3 of the monograph by McNicholas (2016).

Earlyworks applying the expectation–maximization (EM)
algorithm (Dempster et al. 1977) for estimating MFA are the
ones from Ghahramani et al. (1996), Tipping and Bishop
(1999), McLachlan and Peel (2000). McNicholas and Mur-
phy (2008), McNicholas and Murphy (2010) introduced the
family of parsimonious Gaussian mixture models (PGMMs)
by considering the case where the factor loadings and/or
error variance may be shared or not between the mixture
components. These models are estimated by the alternating
expectation–conditional maximization algorithm (Meng and
Van Dyk 1997) and have superior performance compared
to other approaches (McNicholas and Murphy 2008). Under
a Bayesian setup, Fokoué and Titterington (2003) estimate
the number of mixture components and factors by simulat-
ing a continuous-time stochastic birth–death point process
using a birth–deathMCMCalgorithm (Stephens 2000).More
recently, Papastamoulis (2018b) estimated Bayesian MFA
models with an unknown number of components using over-
fitting mixtures.

In recent years, there is a growing progress on the usage of
overfitting mixture models in Bayesian analysis (Rousseau
and Mengersen 2011; van Havre et al. 2015; Malsiner Walli
et al. 2016, 2017; Frühwirth-Schnatter and Malsiner-Walli
2019). An overfitting mixture model consists of a number of
componentswhich ismuch larger than its true (and unknown)
value. Under suitable prior assumptions (see “Appendix A”)
introduced by Rousseau and Mengersen (2011), it has been
shown that asymptotically the redundant components will

have zero posteriorweight and force the posterior distribution
to put all its mass in the sparsest way to approximate the true
density. Therefore, the inference on the number of mixture
components can be based on the posterior distribution of
the “alive” components of the overfitted model, that is, the
components which contain at least one allocated observation.

Other Bayesian approaches to estimate the number of
components in a mixture model include the reversible jump
MCMC (RJMCMC) (Green 1995; Richardson and Green
1997; Dellaportas and Papageorgiou 2006; Papastamoulis
and Iliopoulos 2009), birth–death MCMC (BDMCMC)
(Stephens 2000) and allocation sampling (Nobile and Fearn-
side 2007; Papastamoulis and Rattray 2017) algorithms.
However, overfitting mixture models are straightforward to
implement, while the rest of the approaches require either
careful design of various move types that bridge models
with different number of clusters, or analytical integration
of parameters.

The overall message is that there is a need for devel-
oping an efficient Bayesian method that will combine the
previously mentioned frequentist advances on parsimonious
representations of MFAs and the flexibility provided by
the Bayesian viewpoint. This study aims at filling this
gap by extending the Bayesian method of Papastamoulis
(2018b) to the family of parsimonious Gaussian mixtures
of McNicholas and Murphy (2008). Furthermore, we illus-
trate the proposed method using the R (Ihaka and Gentleman
1996; R Core Team 2016) package fabMix (Papastamoulis
2018a) available as a contributed package from the Com-
prehensive R Archive Network at https://CRAN.R-project.
org/package=fabMix. The proposed method efficiently deals
with many inferential problems (see, e.g., Celeux et al.
(2000a)) related to mixture posterior distributions, such as
(i) inferring the number of non-empty clusters using overfit-
ting models, (ii) efficient exploration of the posterior surface
by running parallel heated chains and (iii) incorporating
advanced techniques that successfully deal with the label
switching issue (Papastamoulis 2016).

The rest of the paper is organized as follows: Section 2
reviews the basic concepts of parsimonious MFAs. Identifia-
bility problems and corresponding treatments are detailed in
Sect. 2.1. The Bayesianmodel is introduced in Sect. 2.2. Sec-
tion 3 presents the full conditional posterior distributions of
the model. TheMCMC algorithm is described in Sect. 3.2. A
detailed presentation of the main function of the contributed
R package is given in Sect. 4. Our method is illustrated and
compared to similar models estimated by the EM algorithm
in Sects. 5.1 and 5.2 using an extended simulation study and
four publicly available datasets, respectively. We conclude
in Sect. 6 with a summary of our findings and directions
for further research. Appendix contains further discussion
on overfitting mixture models (“Appendix A”), details of the

123

https://CRAN.R-project.org/package=fabMix
https://CRAN.R-project.org/package=fabMix


Statistics and Computing (2020) 30:485–506 487

MCMC sampler (“Appendix B”) and additional simulation
results (“Appendix C”).

2 Parsimonious mixtures of factor analyzers

Consider the latent allocation variables zi which assign
observation xi to a component k = 1, . . . , K for i =
1, . . . , n. A priori each observation is generated from com-
ponent k with probability equal to wk , that is,

P(zi = k) = wk, k = 1, . . . , K , (7)

independent for i = 1, . . . , n. Note that the allocation vector
z := (z1, . . . , zn) is not observed, so it should be treated
as missing data. We assume that zi and yi are independent;
thus, Eq. (2) is now written as:

( yi , εi |zi = k) ∼ Nq(0, Iq)Np(0,Σk), (8)

and conditional on the cluster membership and latent factors,
we obtain that

(xi |zi = k, yi ) ∼ Np(μk + Λk yi ,Σk). (9)

Consequently,

(xi |zi = k) ∼ Np(μk,ΛkΛ
T
k + Σk), (10)

independent for i = 1, . . . , n. From Eqs. (7) and (10), we
derive that themarginal distribution of xi is the finite mixture
model in Eq. (6).

Following McNicholas and Murphy (2008), the factor
loadings and error variance per component may be common
or not among the K components in Eq. (6). If the factor is
constrained, then:

Λ1 = · · · = ΛK = Λ. (11)

If the error variance is constrained, then:

Σ1 = · · · = Σ K = Σ . (12)

Furthermore, the error variance may be isotropic (i.e., pro-
portional to the identity matrix) or not and depending on
whether constraint (12) is disabled or enabled:

Σk = σ 2
k Ip; k = 1, . . . , K or (13)

Σk = σ 2Ip; k = 1, . . . , K . (14)

We note that under constraint (13), the model is referred to
as a mixture of probabilistic principal component analyzers
(Tipping and Bishop 1999).

Depending on whether a particular constraint is present or
not, the following set of eight parameterizations arises.

UUU: xi ∼
K∑

k=1

wkNp(μk,ΛkΛ
T
k + Σk)

UCU: xi ∼
K∑

k=1

wkNp(μk,ΛkΛ
T
k + Σ)

UUC: xi ∼
K∑

k=1

wkNp(μk,ΛkΛ
T
k + σ 2

k Ip)

UCC: xi ∼
K∑

k=1

wkNp(μk,ΛkΛ
T
k + σ 2Ip)

CUU: xi ∼
K∑

k=1

wkNp(μk,ΛΛT + Σk)

CCU: xi ∼
K∑

k=1

wkNp(μk,ΛΛT + Σ)

CUC: xi ∼
K∑

k=1

wkNp(μk,ΛΛT + σ 2
k Ip)

CCC: xi ∼
K∑

k=1

wkNp(μk,ΛΛT + σ 2Ip)

independent for i = 1, . . . , n. Following the pgmm nomen-
clature (McNicholas andMurphy 2008): the first, second and
third letters denote whether Λk , Σk = diag(σ 2

k1, . . . , σ
2
kp)

and σ 2
k j , k = 1, . . . , K ; j = 1, . . . , p, are constrained (C)

or unconstrained (U), respectively. A novelty of the present
study is to offer a Bayesian framework for estimating the
whole family of the previous parameterizations (note that
Papastamoulis (2018b) estimated the UUU and UCU param-
eterizations).

2.1 Label switching and other identifiability
problems

Let L(w, θ ,φ|x) = ∏n
i=1

∑K
k=1 wk f (xi |θk,φ), (w, θ ,φ) ∈

PK−1×ΘK ×Φ denote the likelihood function of a mixture
of K densities, where PK−1 denotes the parameter space
of the mixing proportions w, θ = (θ1, . . . , θ K ) are the
component-specific parameters and φ denotes a (possibly
empty) collection of parameters that are common between
all components. For instance, consider the UCU parameter-
ization where θk = (μk,Λk) for k = 1, . . . , K and φ = Σ .
For any permutation τ = (τ1, . . . , τK ) of the set {1, . . . , K },
the likelihood of mixture models is invariant to permutations
of the component labels: L(w, θ ,φ|x) = L(τw, τθ ,φ|x).
Thus, the likelihood surface of a mixture model with K
components will exhibit K ! symmetric areas. If (w∗, θ∗,φ∗)
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corresponds to a mode of the likelihood, the same will hold
for any permutation (τw∗, τθ∗,φ∗).

Label switching (Redner and Walker 1984) is the com-
monly used term to describe this phenomenon. Under a
Bayesian point of view, in the case that the prior distribution
is also invariant to permutations (which is typically the case,
see, e.g., Marin et al. (2005), Papastamoulis and Iliopou-
los (2013)), the same invariance property will also hold
for the posterior distribution f (w, θ ,φ|x). Consequently,
the marginal posterior distributions of mixing proportions
and component-specific parameters will be coinciding, i.e.,
f (w1|x) = · · · = f (wK |x) and f (θ1|x) = · · · = f (θK |x).
Thus, when approximating the posterior distribution via
MCMC sampling, the standard practice of ergodic aver-
ages for estimating quantities of interest (such as the mean
of the marginal posterior distribution for each parameter)
becomes meaningless. In order to deal with this identi-
fiability problem, we post-process the simulated MCMC
output using a deterministic relabeling algorithm, that is
the Equivalence Classes Representatives (ECR) algorithm
(Papastamoulis and Iliopoulos 2010; Papastamoulis 2014),
as implemented in the R package label.switching
(Papastamoulis 2016).

A second source of identifiability problems is related to
orthogonal transformations of the matrix of factor loadings.
A popular practice (Geweke and Zhou 1996; Fokoué and Tit-
terington 2003;Mavridis andNtzoufras 2014; Papastamoulis
2018b) to overcome this issue is to pre-assign values to some
entries of Λ; in particular, we set the entries of the upper
diagonal of the first q × q block matrix of Λ equal to zero:

Λ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ11 0 · · · 0
λ21 λ22 · · · 0
...

...
. . .

...

λq1 λq2 · · · λqq
...

...
. . .

...

λp1 λp2 · · · λpq

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Another problem is related to the so-called sign switching
phenomenon, see, e.g., Conti et al. (2014). Simultaneously
switching the signs of a given row r of Λ; r = 1, . . . , p
and yi does not alter the likelihood. Thus, Λ and yi ; i =
1, . . . , n are not marginally identifiable due to sign switching
across theMCMC trace. However, this is not a problem in our
implementation, since all parameters of the marginal density
of xi in (6) are identified (see also the discussion for sign-
invariant parametric functions in Papastamoulis (2018b)).

Parameter-expanded approaches are preferred in the recent
literature (Bhattacharya and Dunson 2011; McParland et al.
2017), because the mixing of the MCMC sampler is
improved. In our implementation, we are able to obtain
excellent mixing using the popular approach of restricting

elements of Λ: the reader is referred to Figure 2 of Papasta-
moulis (2018b), where it is obvious that our MCMC sampler
has the ability to rapidly move between the multiple modes
of the target posterior distribution of Λ (more details on con-
vergence diagnostics are also presented in “Appendix A.4”
of Papastamoulis (2018b)).

2.2 Prior assumptions

We assume that the number of mixture components (K ) has
a sufficiently large value so that it overestimates the “true”
number of clusters. Unless otherwise stated, the default
choice is K = 20. All prior assumptions of the overfit-
ting mixture models are discussed in detail in Papastamoulis
(2018b). For ease of presentation, we repeat them in this
section. Let D(· · · ) denote the Dirichlet distribution, and
G(α, β) denote the Gamma distribution with mean α/β. Let
also Λkr · denote the r -th row of the matrix of factor load-
ings Λk ; k = 1, . . . , K ; r = 1, . . . , p. The following prior
assumptions are imposed on the model parameters:

w ∼ D (γ, . . . , γ ) , γ = 1

K
(15)

μk ∼ Np(ξ ,Ψ ), iid for k = 1, . . . , K (16)

Λkr · ∼ Nνr (0,Ω), iid. for r = 1, . . . , p (17)

σ−2
kr ∼ G(α, β), iid for k = 1, . . . , K ; r = 1, . . . , p (18)

ω−2
� ∼ G(g, h), iid for � = 1, . . . , q (19)

where all variables are assumed mutually independent and
νr = min{r , q}; r = 1, . . . , p; � = 1, . . . , q; j = 1, . . . , K .
In Eq. (17),Ω = diag(ω2

1, . . . , ω
2
q) denotes a q ×q diagonal

matrix, where the diagonal entries are distributed indepen-
dently according to Eq. (19). A graphical representation of
the hierarchical model is given in Figure 1 of Papastamoulis
(2018b). The default values of the remaining fixed hyper-
parameters are given in “Appendix B”.

The previous assumptions refer to the case of the uncon-
strained parameter space, that is the UUU parameterization.
Clearly, they should be modified accordingly when a con-
strained model is used. Under constraint (11), the prior
distribution in Eq. (17) becomes Λr · ∼ Nνr (0,Ω), inde-
pendent for r = 1, . . . , p. Under constraints (12) and (13),
the prior distribution in Eq. (18) becomes σ−2

r ∼ G(α, β),
independent for r = 1, . . . , p. Finally, under constraints
(12) and (14), the prior distribution in Eq. (18) becomes
σ−2 ∼ G(α, β).

3 Inference

This section describes the full conditional posterior distri-
butions of model parameters and the corresponding MCMC

123



Statistics and Computing (2020) 30:485–506 489

sampler. Due to conjugacy, all full conditional posterior dis-
tributions are available in closed forms.

3.1 Full conditional posterior distributions

Let us define the following quantities:

nk =
K∑

k=1

I (zi = k)

Ak = nkΣ
−1
k + Ψ −1

Bk = Σ−1
k

K∑

k=1

I (zi = k)
(
xi − Λk yi

) + ξΨ −1

τ kr =
∑n

i=1 I (zi = k)(xir − μkr ) yT
i

σ 2
kr

Δkr =
∑n

i=1 I (zi = k) yi y
T
i

σ 2
kr

skr =
n∑

i=1

I (zi = k)
(
xir − μkr − Λkr · yi

)2

T =
K∑

k=1

p∑

r=1

Λkr ·ΛT
kr ·

Mk = Iq + ΛT
k Σ−1

k ΛT
k

for k = 1, . . . , K ; r = 1, . . . , p. For a generic sequence of
the form {Grc; r ∈ R, c ∈ C}, we also define G•c = ∑

r Grc

and Gr• = ∑
c Grc. Finally, (x | · · · ) denotes the conditional

distribution of x given the value of all remaining variables.
From Eqs. (6) and (7), it immediately follows that for

k = 1, . . . , K

P(zi = k| · · · ) ∝ wk f
(
xi ;μk,ΛkΛ

T
k + Σk

)
, (20)

independent for i = 1, . . . , n, where f (·;μ,Σ) denotes
the probability density function of the multivariate normal
distribution with mean μ and covariance matrix Σ . Note
that in order to compute the right-hand side of the last
equation, inversion of the p × p matrix ΛkΛ

T
k + Σk is

required. Using the Sherman–Morrison–Woodbury formula
(see, e.g., Hager (1989)), the inverse matrix is equal to
Σ−1

k − Σ−1
k ΛkM

−1
k ΛT

k Σ−1
k , for k = 1, . . . , K . The full

conditional posterior distribution of mixing proportions is a
Dirichlet distribution with parameters

w| · · · ∼ D(γ + n1, . . . , γ + nK ). (21)

The full conditional posterior distribution of the marginal
mean per component is

μk | · · · ∼ Np

(
A−1

k Bk, A
−1
k

)
, (22)

independent for k = 1 . . . , K .
The full conditional posterior distribution of the factor

loadings without any restriction is

Λkr ·| · · · ∼ Nνr

([
Ω−1+Δkr

]−1
τ kr ,

[
Ω−1+Δkr

]−1
)

,

(23)

independent for k = 1, . . . , K ; r = 1, . . . , p. Under con-
straint (11), we obtain that

Λr ·| · · · ∼ Nνr

([
Ω−1 + Δ•r

]−1
τ •r ,

[
Ω−1 + Δ•r

]−1
)

,

(24)

independent for r = 1, . . . , p.
The full conditional distribution of error variance without

any restriction is

σ−2
kr | · · · ∼ G (α + nk/2, β + skr/2) , (25)

independent for k = 1, . . . , K ; r = 1, . . . , p. Under con-
straint (12), we obtain that

σ−2
r | · · · ∼ G(α + n/2, β + s•r/2), (26)

independent for r = 1, . . . , p. Under constraints (12) and
(13), we obtain that

σ−2
k | · · · ∼ G(α + nk p/2, β + sk•/2), (27)

independent for k = 1, . . . , K . Under constraints (12) and
(14), we obtain that

σ−2| · · · ∼ G(α + np/2, β + s••/2). (28)

The full conditional distribution of latent factors is given by

yi | · · · ∼ Nq

(
M−1

zi
ΛT

zi
Σ−1

zi
(xi − μzi

), M−1
zi

)
, (29)

independent for i = 1, . . . , n. Finally, the full conditional
distribution for ω� is

ω−2
� | · · · ∼ G (g + K p/2, h + T��/2) , (30)

while under constraint (11) we obtain that

ω−2
� | · · · ∼ G (g + p/2, h + T��/2K ) , (31)

independent for � = 1, . . . , q.
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3.2 MCMC sampler

Given the number of factors (q) and a model parameteriza-
tion, a Gibbs sampler (Geman and Geman 1984; Gelfand
and Smith 1990) coupled with a prior parallel tempering
scheme (Geyer 1991; Geyer and Thompson 1995; Altekar
et al. 2004) is used in order to produce a MCMC sam-
ple from the joint posterior distribution. Each heated chain
( j = 1, . . . ,nChains) corresponds to a model with iden-
tical likelihood as the original, but with a different prior
distribution. Although the prior tempering can be imposed
on any subset of parameters, it is only applied to the Dirich-
let prior distribution of mixing proportions (van Havre et al.
2015). The inference is based on the output of the first chain
( j = 1) of the prior parallel tempering scheme (van Havre
et al. 2015). The number of factors and model parameter-
ization is selected according to the Bayesian information
criterion (BIC) (Schwarz 1978), conditional on the most
probable number of alive clusters per model (see Papasta-
moulis (2018b) for a detailed comparison of BIC with other
alternatives).

Let M and Q denote the set of model parameteriza-
tions and number of factors. In the following pseudocode,
x ← [y|z] denotes that x is updated from a draw from the
distribution f (y|z) and θ

(t)
j denotes the value of θ at the t-th

iteration of the j-th chain.

1. For (m, q) ∈ M × Q
(a) Obtain initial values (Ω

(0)
j , Λ

(0)
m; j , μ

(0)
j , z(0)j , Σ

(0)
m; j ,

w
(0)
j , y(0)

j ) by running the overfitting initialization
scheme, for j = 1, . . . ,nChains.

(b) For MCMC iteration t = 1, 2, . . . update
i. For chain j = 1, . . . ,nChains

A. Ω
(t)
j ←

[
Ω|Λ(t−1)

mj

]
.

If m ∈ {UUU,UCU,UUC, UCC} use (30)

else use (31).

B. Λ
(t)
m; j ←

[
Λ|Ω(t)

j ,μ
(t−1)
j ,

Σ
(t−1)
m; j , x, y(t−1)

j , z(t−1)
j

]

If m ∈ {UUU,UCU,UUC, UCC} use (23)

else use (24).

C. μ
(t)
j ←

[
μ|Λ(t)

m ,Σ
(t−1)
m , x, y(t−1), z(t−1)

j

]

according to (22).

D. z(t)j ←
[
z|w(t−1)

j ,μ
(t)
j ,Λ

(t)
m; j ,Σ

(t−1)
m; j , x

]

according to (20).

E. w
(t)
j ←

[
w|z(t)j

]
according to (21) with

prior parameter γ = γ( j).

F. Σ
(t)
m; j ←

[
Σ |x, z(t)j ,μ

(t)
j ,Λ

(t)
m; j , y

(t−1)
j

]

If m ∈ {UUU,CUU} use (25)

else if m ∈ {UCU,CCU} use (26)

else if m ∈ {UUC,CUC} use (27)

else use (28).

G. y(t)
j ←

[
y|x, z(t)j ,μ

(t)
j ,Σ

(t)
m; j ,Λ

(t)
m; j

]

according to (29).
ii. Select randomly 1 � j∗ � nChains − 1 and

propose to swap the states of chains j∗ and j∗+1.
(c) For chain j = 1 compute BIC conditionally on the

most probable number of alive clusters.

2. Select the best (m, q) model corresponding to chain j =
1 according toBICand reorder the simulated output of the
selected model according to ECR algorithm, conditional
on the most probable number of alive clusters.

TheMCMC algorithm is initialized using random starting
values arising from the “overfitting initialization” procedure
introduced by Papastamoulis (2018b). For further details on
steps 1.(a) (MCMC initialization) and 1.(b).ii (prior parallel
tempering scheme), the reader is referred to “Appendix B”
(see also Sections 2.6, 2.7 and 2.9 of Papastamoulis (2018b)).

4 Using the fabMix package

The main function of the fabMix package is fabMix(),
with its arguments shown in Table 1. This function takes
as input a matrix rawData of observed data where rows
and columns correspond to observations and variables of the
dataset, respectively. The parameters of the Dirichlet prior
distribution (γ( j); j = 1, . . . , nChains) of the mixing pro-
portions are controlled by dirPriorAlphas. The range
for the number of factors is specified in theq argument. Valid
input for q is any positive integer vector between 1 and the
Ledermann bound (Ledermann 1937) implied by the number
of variables in the dataset. By default, all eight parameteriza-
tions are fitted; however, the user can specify in model any
non-empty subset of them.

The fabMix() function simulates a total number of
nChains × length(models) × length(q) MCMC
chains. For each parameterization and number of factors,
the (nChains) heated chains are processed in parallel,
while swaps between pairs of chains are proposed. Paral-
lelization is possible in the parameterization level as well,
using the argument parallelModels. This means that
parallelModels are running in parallel where each
one of them runs nChains chains in parallel, provided
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Table 1 Arguments of the fabMix() function

Argument Description

model Any non-empty subset of c("UUU", "CUU", "UCU", "CCU", "UCC", "UUC",
"CUC", "CCC"), indicating the fitted models. By default, all models are fitted

Kmax Number of components in the overfitted mixture (integer, at least equal to two). Default: 20

nChains Number of parallel (heated) chains. When dirPriorAlphas is supplied, this argument can be
ignored

dirPriorAlphas vector of length nChains in the form of an increasing sequence of positive scalars. Each entry
contains the (common) prior Dirichlet parameter for the corresponding chain. Default:
dirPriorAlphas = c(1, 1 + dN*(2:nChains - 1))/Kmax, where dN = 1, for
nChains > 1. Otherwise, dirPriorAlphas = 1/Kmax

rawData The observed data in the form of an n × p matrix. Clustering is performed on the rows of the matrix

outDir Name of the output folder. An error is thrown if the directory already exists inside the current
working directory. Note: it should not correspond to an absolute path, e.g., outDir =
‘example‘ is acceptable, but outDir = ‘C:\User\Documents\example‘ is not

mCycles Number of MCMC cycles. Each cycle consists of nIterPerCycleMCMC iterations. At the
end of each cycle a swap of the state of two randomly chosen adjacent chains is attempted

burnCycles Number of cycles that will be discarded as burn-in period

g Prior parameter g. Default value: g = 0.5

h Prior parameter h. Default value: g = 0.5

alpha_sigma Prior parameter α. Default value: alpha_sigma = 0.5

beta_sigma Prior parameter β. Default value: beta_sigma = 0.5

q A vector of strictly positive integers, containing the number of factors to be fitted

normalize Logical value indicating whether the observed data will be normalized. Default value: TRUE
(recommended)

nIterPerCycle Number of iterations per MCMC cycle. Default value: 10

warm_up_overfitting Number of iterations for the overfitting initialization scheme. Default value: 500

warm_up Number of iterations that will be used to initialize the models before starting proposing switchings.
Default value: 5000

overfittingInitialization Logical value indicating whether the chains are initialized via the overfitting initialization scheme.
Default: TRUE (recommended)

rmDir Logical value indicating whether to delete the outDir directory. Default: TRUE

parallelModels Model-level parallelization: An optional integer specifying the number of cores that will be used in
order to fit in parallel each member of model. Default: NULL (no model-level parallelization)

that the number of available threads is at least equal to
nChains×parallelModels. In order to parallelize our
code, the doParallel (Revolution Analytics and Steve
Weston 2015), foreach (Revolution Analytics and Steve
Weston 2014) and doRNG (Gaujoux 2018) packages are
imported.

The prior parameters g, h, α, β in Eqs. (18) and (19)
correspond to g, h,alpha_sigma and beta_sigma,
respectively, with a (common) default value equal to 0.5.
It is suggested to run the algorithm using normalize =
TRUE, in order to standardize the data before running the
MCMC sampler. The default behavior of our method is
to normalize the data; thus, all reported estimates refer to
the standardized dataset. In the case that the most probable
number of mixture components is larger than 1, the ECR
algorithm is applied in order to undo the label switching
problem. Otherwise, the output is post-processed so that the

generated parameters of the (single) alive component are
switched to the first component of the overfitting mixture.

The sampler will first run for warm_up iterations before
starting to propose swaps between pairs of chain. By default,
this stage consists of 5000 iterations. After that, each chain
will run for a series of mCycles MCMC cycles, each one
consisting of nIterPerCycle MCMC iterations (steps
A, B, . . ., G of the pseudocode). The updates of factor load-
ings according to (23) and (24) at step B of the pseudocode
are implemented using object-oriented programming using
theRcpp andRcppArmadillo libraries (Eddelbuettel and
François 2011; Eddelbuettel and Sanderson 2014). At the end
of each cycle, a swap between a pair of chains is proposed.

Obviously, the total number of MCMC iterations is
equal to warm_up + mCycles × nIterPerCycle, and
the first warm_up + burnCycles × nIterPerCycle
iterations are discarded as burn-in. Given the default val-
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Table 2 Output returned to the user of the fabMix() function

Object Description

bic Bayesian information criterion per model and number of factors

class The estimated single best clustering of the observations according to the selected model

n_Clusters_per_model The most probable number of clusters (number of non-empty components of the overfitting
mixture) per model and number of factors

posterior_probability The posterior probability of the estimated allocations according to the selected model

covariance_matrix The estimated posterior mean of the covariance matrix per cluster according to the selected model

mu The estimated posterior mean of the mean per cluster according to the selected model

weights The estimated posterior mean of the mixing proportions according to the selected model

mcmc A list containing the MCMC draws for the parameters of the selected model

Kmap_prob The posterior probability of the Maximum A Posteriori number of alive clusters for each
parameterization and factor level

ues of nIterPerCycle, warm_up and overfitting
Initialization, choices between 50 � burnCycles
� 500 < mCycles � 1500 are typical in our implemen-
tation (see also the convergence analysis in Papastamoulis
(2018b)).

While the function runs, some basic information is printed
either on the screen (if parallelModels is not enabled)
or in separate text files inside the output folder (in the oppo-
site case), such as the progress of the sampler as well as
the acceptance rate of proposed swaps between chains. The
output which is returned to the user is detailed in Table 2.
The full MCMC output of the selected model is returned as
a list (named as mcmc) consisting of mcmc objects, a class
imported from the coda package (Plummer et al. 2006). In
particular, mcmc consists of the following:

• y: object of class mcmc containing the simulated factors.
• w: object of class mcmc containing the simulated mixing

proportions of the alive components, reordered according
to ECR algorithm.

• Lambda: list containing objects of class mcmc with
the simulated factor loadings of the alive components,
reordered according to ECRalgorithm.Note that this par-
ticular parameter is not identifiable due to sign switching
across the MCMC trace.

• mu: list containing objects of class mcmc with the simu-
lated marginal means of the alive components, reordered
according to ECR algorithm.

• z: matrix of the simulated latent allocation variables of
the mixture model, reordered according to ECR algo-
rithm.

• Sigma: list containing objects of class mcmc with the
simulated variance of errors of the alive components,
reordered according to ECR algorithm.

• K_all_chains: matrix of the simulated values of the
number of alive components per chain.

The user can call the print, summary and plotmeth-
ods of the package in order to easily retrieve and visualize
various summaries of the output, as exemplified in the next
section.

5 Examples

This section illustrates our method. At first, we demonstrate
a typical implementation on two single simulated datasets
and explain in detail the workflow. Then we perform an
extensive simulation study for assessing the ability of the pro-
posed method to recover the correct clustering and compare
our findings to the pgmm package (McNicholas and Murphy
2008, 2010; McNicholas et al. 2010, 2015). Application to
four publicly available datasets is provided next.

5.1 Simulation study

We simulated synthetic data of p = 30 variables consisting
of n = 300 observations and K = 6 clusters (dataset 1) and
n = 200, K = 2 (dataset 2), as shown in Fig. 1. Both of
them were generated usingMFAmodels with q = 2 (dataset
1) and q = 3 (dataset 2) factors. The two datasets exhibit
different characteristics: The variance of errors per cluster
(Σk) is significantly larger in dataset 2 compared to dataset
1. In addition, the selection of factor loadings in dataset 2
results inmore complex covariance structure. The generating
mechanism, described in detail in Papastamoulis (2018b), is
available in the fabMix package via the simData() and
simData2() functions, as shown below.

> library(’fabMix’)
# dataset 1
> set.seed(1)
> n = sample(100*(1:10), 1) # sample
size
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(a) Dataset 1 (b) Dataset 2

Fig. 1 Simulated datasets of p = 30 variables consisting of n = 300 observations and K = 6 clusters (dataset 1) and n = 200, K = 2 (dataset 2).
The colors display the ground-truth classification of the data. (Color figure online)

> q = sample(1:3, 1) # number of
factors
> K = sample(1:10, 1) # number of
clusters
# results to n = 300, q = 2, K = 6
> p = 30 # number of variables
# inverse variance of errors
> sINV <- array(data = NA, dim = c(K,p))
> for(k in 1:K){sINV[k,]
<- 1/(1+20*log(k+1))}
> dataset1 <- simData(sameSigma=FALSE,
K.true=K,
+ n = n, q = q, p = p, sINV_values=sINV)
# synthetic dataset 2
> set.seed(30)
> n = 200; q = 3; K = 2; p = 30
# inverse variance of errors
> sINV <- array(data = NA, dim = c(K,p))
> for(k in 1:K){sINV[k,]
<- 1/(1+1000*log(k+1))}
> dataset2 <- simData2(sameSigma=FALSE,
K.true=K,
+ n = n, q = q, p = p, sINV_values
= sINV)

Next we estimate the eight overfitting Bayesian MFA mod-
els with Kmax = 20 mixture components, assuming that
the number of factors ranges in the set 1 � q � 5.
The MCMC sampler runs nChains = 4 heated chains,
each one consisting of mCycles = 700 cycles, while the
first burnCycles = 100 are discarded. Recall that each
MCMC cycle consists of nIterPerCycle = 10 usual
MCMC iterations and that there is an additional warm-up
period of the MCMC sampler (before starting to propose
chain swaps) corresponding to 5000 usualMCMC iterations.

> Kmax <- 20 # number of components
> nChains <- 4 # number of chains
> qRange <- 1:5 # number of factors
# Run fabMix() for dataset 1
set.seed(1)
> fm1 <- fabMix(nChains = nChains,
+ rawData = dataset1$data, outDir
= "tmp1",
+ Kmax = Kmax, mCycles = 700, burnCycles
= 100,
+ q = qRange, parallelModels = 4)
# Run fabMix() for dataset 2
set.seed(1)
> fm2 <- fabMix(nChains = nChains,
+ rawData = dataset2$data, outDir
= "tmp2",
+ Kmax = Kmax, mCycles = 700, burnCycles
= 100,
+ q = qRange, parallelModels = 4)

The argument parallelModels = 4 implies that four
parameterizations will be processed in parallel. In addition,
eachmodelwill usenChains = 4 threads to run in parallel
the specified number of chains. Our job script used 16 threads
so in this case the parallelModels × nChains = 16
jobs are efficiently allocated.

5.1.1 Methods for printing, summarizing and plotting the
output

The printmethod for a fabMix.object displays some
basic information for a given run of the fabMix function.
The following output corresponds to the first dataset.

> print(fm1)
* Run information:
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Number of fitted models:
(5 factor levels) x
(8 parameterizations)
= 40 models.

Selected model: UUC model with
K = 6
clusters and q = 2 factors.

* Maximum A Posteriori (MAP) number of
‘alive’ clusters and selected number of
factors (BIC) per model:

model K_MAP K_MAP_prob q BIC_q
chain_swap

1 UUU 4 1.00 3 4295.0 8.43%
2 CUU 5 0.70 3 4248.9 13.29%
3 UCU 7 0.71 2 3345.8 25.86%
4 CCU 13 0.70 2 3410.5 93.71%
5 UCC 7 0.55 2 3270.7 22.71%
6 UUC 6 1.00 2 2274.5 19.43%
7 CUC 10 0.41 3 2868.3 78.43%
8 CCC 13 0.52 2 3378.3 92.43%

* Estimated number of observations per
cluster (selected model):
label
4 7 13 14 15 17

60 55 41 72 50 22

The following output corresponds to the print method for
the fabMix function for the second dataset.

> print(fm2)
* Run information:

Number of fitted models:
(5 factor levels) x
(8 parameterizations)
= 40 models.

Selected model: UUC model with
K = 2 clusters and q = 2 factors.

* Maximum A Posteriori (MAP) number of
‘alive’ clusters and selected number of
factors (BIC) per model:

model K_MAP K_MAP_prob q BIC_q chain_
swaps

1 UUU 2 1.00 2 14776.6 4.86%
2 CUU 2 1.00 2 14676.0 3%
3 UCU 2 0.64 3 15043.1 4.57%
4 CCU 3 0.48 3 14836.2 12.71%
5 UCC 3 0.64 2 15141.9 4.29%
6 UUC 2 0.95 2 14558.5 3.14%
7 CUC 3 0.85 3 14598.7 4.14%
8 CCC 4 0.44 3 14851.6 11.14%

* Estimated number of observations per
cluster (selected model):
label

6 20
113 87

We conclude that the selected models correspond to the
UUC parameterization with K = 6 clusters and q = 2
factors for dataset 1 and K = 2, q = 2 for dataset 2.
The selected number of clusters and factors for the whole
range of eight models is displayed next, along with the esti-
mated posterior probability of the number of alive clusters per
model (K_MAP_prob), the value of the BIC for the selected
number of factors (BIC_q) as well as the proportion of the
accepted swaps between the heated MCMC chains in the
last column. The frequency table of the estimated single best
clustering of the datasets is displayed in the last field.We note
that the labels of the frequency table correspond to the labels
of the alive components of the overfitting mixture model,
that is, components 4, 7, 13, 14, 15, and 17 for dataset 1 and
components 6 and 20 for dataset 2. Clearly, these labels can
be renamed to 1, 2, 3, 4, 5, 6 and 1, 2 respectively, but we
prefer to retain the raw output of the sampler as a reminder
of the fact that it corresponds to the alive components of the
overfitted mixture model.

The summary method of the fabMix package sum-
marizes the MCMC output for the selected model by
calculating posterior means and quantiles for the mixing
proportions, marginal means and the covariance matrix per
(alive) cluster. A snippet of the output for dataset 2 is shown
below.

> s <- summary(fm2)
* ‘Alive’ cluster labels:
[1] "6" "20"

* Posterior mean of the mixing
proportions:

6 20
0.58 0.42

* Posterior mean of the marginal means:
Cluster label

Variable 6 20
V1 -0.06 0.08
V2 -0.02 0.02
...............
V30 -0.01 0.00

* Posterior mean of the covariance
matrix:

Covariance matrix for cluster ‘6’:
V1 V2 ... V30

V1 1.12 0.53 ... -0.18
V2 0.53 1.11 ... -0.14
..........................
V30 -0.18 -0.14 ... 1.27
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Covariance matrix for cluster ‘20’:
V1 V2 ... V30

V1 0.66 0.39 ... -0.05
V2 0.39 0.88 ... -0.03
..........................
V30 -0.05 -0.03 ... 0.57

Quantiles for each parameter:
quantile

parameter 2.5% 25% 50% 75% 97.5%
weight_6 0.51 0.55 0.58 0.51 0.65
weight_20 0.35 0.40 0.42 0.45 0.50
mean_6_V1 -0.27 -0.13 -0.06 0.01 0.13
mean_20_V1 -0.09 0.03 0.08 0.14 0.25
mean_6_V2 -0.22 -0.09 -0.02 0.04 0.15
mean_20_V2 -0.17 -0.05 0.02 0.08 0.19
...........................................
mean_6_V30 -0.21 -0.08 -0.01 0.07 0.20
mean_20_V30 -0.16 -0.06 0.00 0.06 0.17
cov_6_V1_V1 0.89 1.03 1.10 1.19 1.46
cov_20_V1_V1 0.50 0.59 0.64 0.72 0.85
cov_6_V1_V2 0.37 0.46 0.52 0.59 0.78
cov_20_V1_V2 0.24 0.32 0.38 0.44 0.56
...........................................
cov_6_V1_V30 -0.37 -0.24 -0.18 -0.12 0.01
cov_20_V1_V30 -0.16 -0.08 -0.05 -0.01 0.06
...........................................
cov_6_V2_V30 -0.34 -0.21 -0.13 -0.08 0.04
cov_20_V2_V30 -0.17 -0.07 -0.03 0.03 0.12
...........................................
cov_6_V30_V30 1.03 1.18 1.26 1.37 1.62
cov_20_V30_V30 0.45 0.51 0.56 0.61 0.73

The printed output is also returned to the user via
s$posterior_means and s$quantiles.

The plot() method of the package generates the fol-
lowing types of graphics output:

(1) Plot of the BIC values per factor level and parameteri-
zation.

(2) Plot of the posterior means of marginal means (μk) per
(alive) cluster and highest density intervals of the cor-
responding normal distribution along with its assigned
data.

(3) The coordinate projection plot of the mclust package
(Fraley and Raftery 2002; Scrucca et al. 2017), that is, a
scatterplot of the assigned data per cluster for each pair
of variables.

(4) Visualization of the posterior mean of the correlation
matrix per cluster using the corrplot package.

(5) TheMAPestimate of the factor loadings (Λk) per (alive)
cluster.

The following commands produce plot (1) for datasets 1
and 2.

> plot(fm1, what = ’BIC’)
> plot(fm2, what = ’BIC’)
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Fig. 2 BIC values per parameterization and factor level using the
plot(fabMix.object) method

The produced plots are shown in Fig. 2. Note that each point
in the plot is labeled by an integer, which corresponds to the
MAP number of alive components for the specific combina-
tion of factors and parameterization.

The following commands produce plot (2) for datasets 1
and 2.

> plot(fm1, what = ’classification_matplot’,
+ class_mfrow = c(3,2), confidence = 0.95)
> plot(fm2, what = ’classification_matplot’,
+ class_mfrow = c(2,1), confidence = 0.95)

The created plots are shown inFig. 3. Theclass_mfrow
arguments control the rows and columns of the layout and
it should consist of two integers with their product equal to
the selected number of (alive) clusters. In addition, a leg-
end is placed on the bottom of the layout. The value(s) in
the confidence argument draws the highest density inter-
val(s) of the estimated normal distribution. Note that these
plots display the original and not the scaled dataset which is
used in the MCMC sampler. Therefore, the central curve and
confidence limits displayed in the specific plot correspond to
themean and variance (multiplied by the appropriate quantile
of the standard Normal distribution) of the random variables
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Fig. 3 Marginal mean with 95% highest density interval and
the corresponding assigned data per alive cluster using the
plot(fabMix.object) method
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Fig. 4 Correlation matrix for the first (alive) cluster of each dataset

arising by applying the inverse of the z-transformation on the
MCMC estimates reported by the fabMix function.

Figure 4 visualizes the correlation matrix for the first
cluster of each dataset, using the corrplot package. The
argument sig_correlation = α is used for marking
cases where the equally tailed (1 − α) Bayesian credible
interval contains zero. The following commands generate
the plots in Fig. 4.

> plot(fm1, what = ’correlation’,
+ sig_correlation = 0.05)
> plot(fm2, what = ’correlation’,
+ sig_correlation = 0.05)

5.1.2 Assessing clustering accuracy and comparison with
pgmm

In this section, we compare our findings against the ground
truth in simulated datasets and also compare against the

Table 3 Selected number of clusters, factors, parameterization and
adjusted Rand index for simulated data 1 and 2

Data (K , q) fabMix pgmm

K̂ q̂ Model ARI K̂ q̂ Model ARI

1 (6, 2) 6 2 UUC 1 7 2 UUC .95

2 (2, 3) 2 2 UUC .98 2 2 CUC .88

pgmm package, considering the same range of clusters and
factors per dataset. For each combination of number of
factors, components and parameterization, the pgmmEM()
algorithm was initialized using three random starting values
as well as the K-means clustering algorithm, that is, four dif-
ferent starts in total. Note that the number of different starts
of the EM algorithm is set equal to number of parallel chains
in the MCMC algorithm. The input data are standardized in
both algorithms.

As shown in Table 3, the adjustedRand index (ARI) (Rand
1971) between fabMix and the ground-truth classification
is equal to 1 and 0.98 for simulated datasets 1 and 2, respec-
tively. The corresponding ARI for pgmm is equal to 0.98 and
0.88, respectively. In both cases, our method finds the cor-
rect number of clusters; however, pgmm overestimates K in
dataset 1. Both methods select the UUC parameterization in
dataset 1, but in dataset 2 different models are selected (UUC
by fabMix and CUC by pgmm).

The selected number of factors equals 2; however, in
dataset 2 the “true” number of factors equals 3. The underes-
timation of the number of factors in dataset 2 remains true for
a wide range of similar data: In particular, we generated syn-
thetic datasets with identical parameter values as the ones in
dataset 2 but each time the sample size was increasing by 200
observations. We observed that the correct number of factors
is returned when n � 1600 for fabMix and n � 1800 for
pgmm.

Next we replicate the two distinct simulation procedures
(according to thesimData() andsimData2() functions
of the package) used to generate the previously described
datasets, but considering that 1 � K � 10 (true number of
clusters) and 1 � q � 3 (true number of factors). The num-
ber of variables remains the same as before, that is p = 30,
and the sample size is drawn uniformly at random in the
set {100, 200, . . . , 1000}. We will use the terms ‘scenario 1’
and ’scenario 2’ to label the two different simulation proce-
dures. In scenario 1, the diagonal of the variance of errors
is generated as σ 2

kr = 1 + 20 log(k + 1), r = 1, . . . , p,
whereas in scenario 2: σ 2

kr = 1 + ur log(k + 1), where
ur ∼ Uniform(500, 1000), r = 1, . . . , p; k = 1, . . . , K .
In general, scenario 1 generates datasets with well-separated
clusters. On the other hand, the amount of error variance
in scenario 2 makes the clusters less separated. For a given
simulated dataset with Ktrue clusters and qtrue factors, we
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Fig. 5 Adjusted Rand index (first row), estimated number of clusters
(second row), estimated number of factors (third row) and selected
parameterization (last row) for various replications of scenarios 1 and

2 with varying number of clusters and factors. In all cases, the sample
size is drawn randomly in the set {100, 200, . . . , 1000}
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are considering that the total number of components in the
overfitting mixture model (fabMix) as well as the maxi-
mum number of components fitted from pgmm is set equal
to Kmax = Ktrue + 6 and that the number of factors ranges
between 1 � q � qtrue + 2. These bounds are selected in
order to speed up computation time without introducing any
bias in the resulting inference (as confirmed by a smaller pilot
study). For each scenario, 500 datasets were simulated.

Themain findings of the simulation study are illustrated in
Fig. 5. Note that in scenario 1 fabMix almost always finds
the correct clustering structure: The boxplots of the adjusted
Rand index are centered at 1, and, on the second row, the
boxplots of the estimated number of clusters are centered at
the corresponding true value. On the other hand, observe that
for K � 6pgmmhas the tendency to overestimate the number
of clusters. In the more challenging scenario 2, the estimates
of the number of cluster exhibit larger variability. However,
note that for K = 8, 9, 10 the number of clusters selected by
fabMix is closer to the true value than pgmm, a fact which
is also reflected in the ARI where fabMix tends to have
larger values than pgmm. For both scenarios, the estimation
of the number of factors is in strong agreement between the
two methods, as shown in the third row of Fig. 5. In the last
row, the selected parameterization is shown. Observe that the
results are fairly consistent between the two methods.

Finally, we note that in the presented simulation study, the
generated clusters have equal sizes (on average). The reader
is referred to “Appendix C” for exploring the performance
of the compared methods in the presence of small and large
clusters with respect to the size of the available data (n).

5.2 Publicly available datasets

In this section, we analyze four publicly available datasets:
a subset of the wave dataset (Breiman et al. 1984; Lich-
man 2013) available at the fabMix package, the wine
dataset (Forina et al. 1986) available at the pgmm pack-
age, the coffee dataset (Streuli 1973) available at the pgmm
package, and the standardized yeast cell cycle data (Cho
et al. 1998) available at http://faculty.washington.edu/kayee/
model/. Note that Papastamoulis (2018b) analyzed the first
three datasets but only considering the UUU and UCU
parameterizations for fabMix.

The coffee dataset consists of n = 43 coffee samples of
p = 12 variables, collected from beans corresponding to
the Arabica and Robusta species (thus, K = 2). The wave
dataset consists of a randomly sampled subset of 1500 obser-
vations from thewave dataset (Breiman et al. 1984), available
from the UCI machine learning repository (Lichman 2013).
According to the available ground-truth classification of the
dataset, there are three equally weighted underlying classes
of 21-dimensional continuous data. The wine dataset (Forina
et al. 1986), available at thepgmm package (McNicholas et al.

Table 4 Selected number of clusters, factors, parameterization and
adjusted Rand index for the publicly available data

Data (K) fabMix pgmm

K̂ q̂ Model ARI K̂ q̂ Model ARI

Coffee (2) 2 1 CUU 1 4 4 CUU .29

Wave (3) 3 1 UCU .61 3 1 UCU .61

Wine (3) 5 4 CUU .83 3 4 CUU .97

Yeast (5) 5 6 CUU .50 20 10 CUC .20

2015), contains p = 27 variables measuring chemical and
physical properties of n = 178 wines, grouped in three types
(thus, K = 3). The reader is referred to McNicholas and
Murphy (2008), Papastamoulis (2018b) for more detailed
descriptions of the data.

The yeast cell cycle data (Cho et al. 1998) quantify gene
expression levels over two cell cycles (17 time points). The
dataset has previously been used for evaluating the effec-
tiveness of model-based clustering techniques (Yeung et al.
2001). We used the standardized subset of the 5-phase cri-
terion, containing n = 384 genes measured at p = 17 time
points. The expression levels of the n = 384 genes peak at
different time points corresponding to the five phases of cell
cycle, so this five-class partition of the data is used as the
ground-truth classification.

We applied our method using the eight parameterizations
of overfitting mixtures with Kmax = 20 components for
1 � q � qmax factors using nChains = 4 heated chains.
We set qmax = 5 for the coffee, wave and wine datasets,
while qmax = 10 for the yeast cell cycle dataset. The num-
ber of MCMC cycles was set to mCycles = 1100, while
the first burnCycles = 100 were discarded as burn-
in. The eight parameterizations are processed in parallel on
parallelModels = 4 cores, while each heated chain of
a given parameterization is also running in parallel. All other
prior parameters were fixed at their default values.

We have also applied pgmm considering the same range
of clusters and factors per dataset. For each combination of
number of factors, components and parameterization, theEM
algorithm was initialized using five random starting values
as well as the K-means clustering algorithm, that is, six dif-
ferent starts in total. For the coffee dataset, a larger number
of different starts are required as discussed in Papastamoulis
(2018b).

Table 4 summarizes the results for each of the pub-
licly available data. We conclude that fabMix performs
better than pgmm at the coffee and yeast datasets. In the
wine dataset, on the other hand, pgmm performs better than
fabMix, but we underline the improved performance of
our method compared to the one reported by Papastamoulis
(2018b) where only the UUU and UCU parameterizations
were fitted. The two methods are in agreement on the wave
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across five replicates

dataset. The plot command of the fabMix package dis-
plays the estimated clusters according to the CUU model
with six factors for the yeast dataset, as shown in Fig. 6.

6 Discussion and further remarks

This study offered an efficient Bayesian methodology for
model-based clustering of multivariate data using mixtures
of factor analyzers. The proposed model extended the ideas
of Papastamoulis (2018b) building upon the previously
introduced set of parsimonious Gaussian mixture models
(McNicholas and Murphy 2008; McNicholas et al. 2010).
The additional parameterizations improved the performance
of the proposed method compared to Papastamoulis (2018b)
where only twoout of eight parameterizationswere available.
Furthermore, our contributed R package makes the proposed
method available to a wider audience of researchers.

The computational cost of our MCMC method is larger
than the EM algorithm, as shown in Fig. 7. But of course,
when a point estimate is required, the EM algorithm is the

quickest solution. When a point estimate is not sufficient,
our method offers an attractive Bayesian treatment of the
problem. Clearly, the Bayesian approach does show further
advantages (as in the simulated datasets according to Sce-
nario 1, as well as in the coffee and yeast datasets), where
themultimodality of the likelihood potentially causes the EM
to converge to local maxima.

A direction for future research is to generalize the method
in order to automatically detect the number of factors in a
fully Bayesian manner. This is possible by, for example,
treating the number of factors as a randomvariable and imple-
menting a reversible jump mechanism in order to update it
inside the MCMC sampler. Another possibility would be
to incorporate strategies for searching the space of sparse
factor loading matrices allowing posterior inference for fac-
tor selection (Bhattacharya and Dunson 2011; Mavridis and
Ntzoufras 2014; Conti et al. 2014). Recent advances on infi-
nite mixtures of infinite factor models (Murphy et al. 2019)
also allow for direct inference of the number of clusters
and factors and could boost the flexibility of our modeling
approach.
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A Overfittedmixture model

Assume that the observed data have been generated from a
mixture model with K0 components

fK0(x) =
K0∑

k=1

wk fk(x|θk),

where fk ∈ FΘ = { f (·|θ) : θ ∈ Θ}; k = 1, . . . , K0 denotes
a member of a parametric family of distributions. Consider
that an overfitted mixture model fK (x) with K > K0 com-
ponents is fitted to the data. Rousseau andMengersen (2011)
showed that the asymptotic behavior of the posterior distri-
bution of the K − K0 redundant components depends on the
prior distribution of mixing proportions (w). Let d denote
the dimension of free parameters of the distribution fk . For
the case of a Dirichlet prior distribution,

w ∼ D (γ1, . . . , γK ) (A.32)

if

max{γk; k = 1, . . . , K } < d/2

then the posterior weight of the extra components converges
to zero (Theorem 1 of Rousseau and Mengersen (2011)).

Let fK (θ, z|x) denote the joint posterior distribution
of model parameters and latent allocation variables for a
model with K components. When using an overfitted mix-
ture model, the inference on the number of clusters reduces
to (a): choosing a sufficiently large value of mixture compo-
nents (K ), (b): running a typicalMCMC sampler for drawing
samples from the posterior distribution fK (θ , z|x) and (c)
inferring the number of “alive” mixture components. Note
that at MCMC iteration t = 1, 2, . . . (c) reduces to keeping
track of the number of elements in the set K0

(t) = {k =
1, . . . , K : ∑n

i=1 I (z(t)
i = k) > 0}, where z(t)

i denotes the
simulated allocation of observation i at iteration t .

In our case, the dimension of free parameters in the k-
th mixture component is equal to d = 2p + pq − q(q−1)

2 .
Following Papastamoulis (2018b), we set γ1 = · · · = γK =
γ
K ; thus, the distribution of mixing proportions in Eq. (A.32)
becomes

w ∼ D
( γ

K
, . . . ,

γ

K

)
(A.33)

where 0 < γ < d/2 denotes a pre-specified positive num-
ber. Such a value is chosen for two reasons. At first, it
is smaller than d/2 so the asymptotic results of Rousseau
and Mengersen (2011) ensure that extra components will be
emptied as n → ∞. Second, this choice can be related to
standard practice when using Bayesian nonparametric clus-
tering methods where the parameters of a mixture are drawn
from a Dirichlet process (Ferguson 1973), that is, a Dirichlet
process mixture model (Neal 2000).

B Details of theMCMC sampler

Data normalization and prior parameters Before running
the sampler, the raw data are standardized by applying the
z-transformation

xir − x̄r√
s2r

, i = 1, . . . , n; r = 1, . . . , p

where x̄r =
∑n

i=1 xir
n and s2r = 1

n−1

∑n
i=1 (xir − x̄r )

2. The
main reason for using standardized data is that the sampler
mixes better. Furthermore, it is easier to choose prior param-
eters that are not depending on the observed data, that is,
using the data twice. In any other case, one could use empiri-
cal prior distributions as reported in Fokoué and Titterington
(2003), see also Dellaportas and Papageorgiou (2006). For
the case of standardized data, the prior parameters are spec-
ified in Table 5. Standardized data are also used as input to
pgmm.

Prior parallel tempering It is well known that the poste-
rior surface of mixture models can exhibit many local modes
(Celeux et al. 2000b; Marin et al. 2005). In such cases, sim-
ple MCMC algorithms may become trapped in minor modes
and demand a very large number of iterations to sufficiently
explore the posterior distribution. In order to produce a well-
mixing MCMC sample and improve the convergence of our
algorithm, we utilize ideas from parallel tempering schemes
Geyer (1991), Geyer and Thompson (1995), Altekar et al.
(2004), where different chains are running in parallel and
they are allowed to switch states. Each chain corresponds to
a different posterior distribution, and usually each one repre-
sents a “heated” version of the target posterior distribution.
This is achieved by raising the original target to a power T
with 0 � T � 1, which flattens the posterior surface and
thus easier to explore when using an MCMC sampler.

Table 5 Prior parameter specification for the case of standardized data

α β γ g h ξ = (ξ1, . . . , ξp)
T Ψ

Value 0.5 0.5 1 0.5 0.5 (0, . . . , 0)T Ip
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In the context of overfitting mixture models, van Havre
et al. (2015) introduced a prior parallel tempering scheme,
which is also applied by Papastamoulis (2018b). Under this
approach, each heated chain corresponds to a model with
identical likelihood as the original, but with a different prior
distribution. Although the prior tempering can be imposed on
any subset of parameters, it is only applied to the Dirichlet
prior distribution of mixing proportions (van Havre et al.
2015). Let us denote by fi (ϕ|x) and fi (ϕ); i = 1, . . . , J , the
posterior and prior distribution of the i-th chain, respectively.
Obviously, fi (ϕ|x) ∝ f (x|ϕ) fi (ϕ). Letϕ(t)

i denote the state
of chain i at iteration t and assume that a swap between chains
i and j is proposed. The proposed move is accepted with
probability min{1, A} where

A = fi (ϕ
(t)
j |x) f j (ϕ

(t)
i |x)

fi (ϕ
(t)
i |x) f j (ϕ

(t)
j |x)

= fi (ϕ
(t)
j ) f j (ϕ

(t)
i )

fi (ϕ
(t)
i ) f j (ϕ

(t)
j )

= f̃i (w
(t)
j ) f̃ j (w

(t)
i )

f̃i (w
(t)
i ) f̃ j (w

(t)
j )

, (B.34)

and f̃i (·) corresponds to the probability density function of
the Dirichlet prior distribution related to chain i = 1, . . . , J .
According to Eq. (A.33), this is

w ∼ D
(γ( j)

K
, . . . ,

γ( j)

K

)
, (B.35)

for a pre-specified set of parameters γ( j) > 0 for j =
1, . . . , J .

In our examples, we used a total of J = 4 parallel chains
where the prior distribution of mixing proportions for chain
j in Eq. (B.35) is selected as

γ( j) = γ + δ( j − 1), j = 1, . . . , J ,

where δ > 0. For example, when the overfitting mix-
ture model uses K = 20 components and γ = 1 (the
default value shown in Table 5), it follows from Eq. (A.33)
that the parameter vector of the Dirichlet prior of mixture
weightswhich corresponds to the target posterior distribution
( j = 1) is equal to (0.05, . . . , 0.05). Also in our examples,
we have used δ = 1, but in general we strongly suggest
to tune this parameter until a reasonable acceptance rate is
achieved. Each chain runs in parallel, and every 10 itera-
tions we randomly select two adjacent chains ( j, j + 1),
j ∈ {1, . . . , J − 1} and propose to swap their current states.
Aproposed swap is acceptedwith probability A inEq. (B.34).

“Overfitting initialization” strategy We briefly describe
the “overfitting initialization”procedure introducedbyPapas-
tamoulis (2018b). We used an initial period of 500 MCMC
iterations where each chain is initialized from totally ran-
dom starting values, but under a Dirichlet prior distribution

with large prior parameter values. These values were cho-
sen in a way that the asymptotic results of Rousseau and
Mengersen (2011) guarantee that the redundantmixture com-
ponents will have non-negligible posterior weights. More
specifically for chain j , we assumew ∼ D(γ ′

j , . . . , γ
′
j )with

γ ′
( j) = d

2 +( j −1) d
2(J−1) , for j = 1, . . . , J . Then, we initial-

ize the actualmodel by this state.According toPapastamoulis
(2018b), this specific scheme was found to outperform other
initialization procedures.

C Additional simulations

In the simulation section of the manuscript, the weights of
the simulated datasets have been randomly generated from a
Dirichlet distributionwithmean equal to 1/K , conditional on
the number of clusters (K ). Thus, on average, the true cluster
sizes are equal. In this section, we examine the performance
of the proposed method in the presence of unequal cluster
sizes with respect to the size (n) of the observed data.

We replicate the simulationmechanism for scenarios 1 and
2 presented in the main text, but now we consider unequal
(true) cluster sizes, as detailed in Table 6. For each case, the
sample size is increasing (as shown in the last column of
Table 6) while keeping all others parameters (that is, the true
values of marginal means and factor loadings) constant. As
shown in Table 6, in scenario 1 there are five clusters and
two factors, whereas in scenario 2 there are two clusters and
three factors. In total, three different examples per scenario
are considered: for a given scenario, the component-specific
parameters are different in each example, but the weights are
the same. An instance of our three examples (per scenario)
using n = 200 simulated observations is shown in Fig. 8.
Observe that in all cases the “true clusters” are not easily
distinguishable, especially in scenario 2 where there is a high
degree of cluster overlapping.

We applied fabMix and pgmm using the same number
(4) of parallel chains (for fabMix) and different starts (for
pgmm) as in the simulations presented in the main paper. The
results are summarized in Figs. 9 and 10 for scenarios 1 and
2, respectively. The adjusted Rand index is displayed in the
first line of each figure, where the horizontal axis denotes the
sample size (n) of the synthetic data. The dotted black line
corresponds to the adjusted Rand index between the ground
truth and the cluster assignments arising when applying the
Maximum A Posteriori rule using the true parameter values
that generated the data, that is,

zi = max
k∈{1,...,K ∗}

{
w∗

k fk(xi |θ∗
k )

∑K ∗
j=1 w∗

j f j (xi |θ∗
j )

}
, i = 1, . . . ,

(C.36)
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Table 6 Setup for our
simulation scenarios with
unequal cluster sizes. In all
cases, the dimensionality of the
multivariate data is equal to
p = 30

Scenario 1 Scenario 2

True number of clusters (K ) 5 2

True number of factors (q) 2 3

True mixing proportions (w)
(

1
15 , 2

15 , 3
15 , 4

15 , 5
15

) ( 1
20 , 19

20

)

Sample size (n) 50, 100, 200, 300, 400, 500 50, 100, 200, 300, . . . , 1500
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Fig. 8 Examples of simulated datasets with unequal cluster sizes according to scenarios 1 and 2 and n = 200. The legend shows the “true” cluster
sizes

where K ∗, (w∗
1, . . . , w

∗
K ∗) and (θ∗

1 , . . . , θ∗
K ∗) denote the

values of number of components, mixing proportions and
parameters of the multivariate normal densities of the mix-
ture model used to generate the data. Observe that in
all three examples of scenario 1 the dotted black line is
always equal to 1, but this is not the case in the more
challengingScenario 2 due to enhanced levels of cluster over-
lapping.

The adjusted Rand index between the ground-truth clus-
tering and the estimated cluster assignments arising from
fabMix and pgmm is shown in the first row of Figs. 9
and 10. Clearly, the compared methods have similar perfor-
mance as the sample size increases, but for smaller values

of n the proposed method outperforms the pgmm pack-
age.

The estimated number of clusters, shown at the second
row of Figs. 9 and 10, agrees (in most cases) with the
true number of clusters, but note that our method is capa-
ble of detecting the right value earlier than pgmm. Two
exceptions occur at n = 200 for example 2 of scenario 1
where fabMix (red line at second row of Fig. 9) inferred
6 alive clusters instead of 5, as well as at n = 800 for
example 1 of scenario 2 where fabMix (red line at sec-
ond row of Fig. 10) inferred 3 alive clusters instead of
2.

Finally, the last row in Figs. 9 and 10 displays the
inferred number of factors for scenarios 1 and 2, respec-
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Fig. 9 Adjusted Rand index (first row), estimated number of clusters
(second row) and estimated number of factors (third row) for simulated
data according to scenario 1 with unequal cluster sizes and increasing
sample size. The dotted line in the first row corresponds to the adjusted

Rand index between the ground truth and the clustering of the datawhen
applying theMaximumAPosteriori rule using the parameter values that
generated the data (C.36). For all examples, the true number of clusters
and factors is equal to 5 and 2, respectively

tively. In every single case, the estimate arising from
fabMix is at least as close as the estimate arising from
pgmm to the corresponding true value. Note, however,
that in example 1 of scenario 2 both methods detect

a smaller number of factors (2 instead of 3 factors).
In all other cases, we observe that as the sample size
increases both methods infer the “true” number of fac-
tors.
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Fig. 10 Adjusted Rand index (1st row), estimated number of clusters
(second row) and estimated number of factors (third row) for simulated
data according to scenario 2 with unequal cluster sizes and increasing
sample size. The dotted line in the first row corresponds to the adjusted

Rand index between the ground truth and the clustering of the datawhen
applying theMaximumAPosteriori rule using the parameter values that
generated the data (C.36). For all examples, the true number of clusters
and factors is equal to 2 and 3, respectively
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