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Abstract
Aweighted likelihood approach for robust fitting of a mixture of multivariate Gaussian components is developed in this work.
Two approaches have been proposed that are driven by a suitable modification of the standard EM and CEM algorithms,
respectively. In both techniques, the M-step is enhanced by the computation of weights aimed at downweighting outliers. The
weights are based on Pearson residuals stemming from robust Mahalanobis-type distances. Formal rules for robust clustering
and outlier detection can be also defined based on the fitted mixture model. The behavior of the proposed methodologies has
been investigated by numerical studies and real data examples in terms of both fitting and classification accuracy and outlier
detection.

Keywords Classification · EM · Mixture · Multivariate normal · Outlier detection · Pearson residuals · Robustness · Weighted
likelihood

Mathematics Subject Classification 62F35 · 62G35 · 62H25 · 62H30

1 Introduction

Multivariate normal mixturemodels represent a very popular
tool for both density estimation and clustering (McLachlan
and Peel 41). The parameters of a mixture model are com-
monly estimated by maximum likelihood by resorting to the
EM algorithm (Dempster et al. 19). Let
y = (y1, y2, . . . , yn)

�
be a random sample of size n. The

mixture likelihood can be expressed as

L(y; τ) =
n∏

i=1

K∑

k=1

πkφp(yi ;μk,Σk) , (1)

where τ = (π, μ1, . . . , μK ,Σ1, . . . , ΣK ), φp(·; ·) is the p-
dimensional multivariate normal density, π = (π1, . . . , πK )

denotes the vector of prior membership probabilities and
(μk,Σk) are themean vector and variance-covariancematrix
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of the kth component, respectively. Rather than using the
likelihood in (1), the EM algorithm works with the complete
likelihood function

Lc(y; τ) =
n∏

i=1

K∏

k=1

[
πkφp(yi ;μk,Σk)

]uik , (2)

where uik is an indicator of the i th unit belonging to the kth
component. The EM algorithm iteratively alternates between
two steps: expectation (E) and maximization (M). In the E-
step, the posterior expectation of (2) is evaluated by setting
uik equal to the posterior probability that yi belongs to the
kth component, i.e.

uik ∝ πkφp(yi ;μk,Σk) ,

whereas at theM-step π ,μk andΣk are estimated condition-
ally on uik .

An alternative strategy is given by the penalized classifi-
cation EM (CEM) algorithm (Symon 46; Bryant 9; Celeux
and Govaert 11): the substantial difference is that the E-step
is followed by a C-step (where C stands for classification) in
which uik is estimated as either 0 or 1, meaning that each unit
is assigned to themost likely component, conditionally on the
current parameters’ values, i.e. ki = argmaxkuik , uiki = 1
and uik = 0 for k �= ki . The classification approach is aimed
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at maximizing the corresponding classification likelihood (2)
over both the mixture parameters and the individual compo-
nents’ labels. In the case πk = 1/K , then the standard CEM
algorithm is recovered. A detailed comparison of the EM and
CEM algorithms can be found in [11].

When the sample data are prone to contamination and
several unexpected outliers occur with respect to (w.r.t.) the
assumed mixture model, maximum likelihood is likely to
lead to unrealistic estimates and to fail in recovering the
underlying clustering structure of the data (see Farcomeni
and Greco 23, for a recent account). In the presence of noisy
data that depart from the underlying mixture model, there
is the need to replace maximum likelihood with a suitable
robust procedure, leading to estimates and clustering rules
that are not badly affected by contamination.

The need for robust tools in the estimation of mixture
models has been first addressed in [10], who suggested to
replace standard maximum likelihood with M-estimation. In
amore general fashion, [24] proposed to resort tomultivariate
S-estimation of location and scatter in the M-step. Actu-
ally, the authors focused their attention on hidden Markov
models, but their approach can be adapted from dynamic
to static finite mixtures. According to such strategies, each
data point is attached a weight lying in [0, 1] (a strat-
egy commonly addressed as soft trimming). An alternative
approach to robust fitting and clustering is based on hard
trimming procedures, i.e. a crispy weight {0, 1} is attached
to each observation: atypical observations are expected to
be trimmed, and the model is fitted by using a subset of the
original data. The tclust methodology (Garcia-Escudero
et al. 29; Fritz et al. 28) is particularly appealing: model
parameters are estimated by developing a penalized CEM
algorithm augmented with an impartial trimming step. Very
recent extensions have been discussed in [21], who proposed
a reweighted trimming procedure (rtclust) and [20], in
which trimming has been introduced in parsimoniousmodel-
based clustering (mtclust). A related proposal has been
presented in [43] based on the so-called trimmed likelihood
methodology. Furthermore, it is worth to mention that mix-
turemodel estimation and clustering canbe also implemented
by using the adaptive hard trimming strategy characterizing
the Forward Search (Atkinson et al. 6).

There are also different proposals aimed at being robust
that are not based on soft or hard trimming procedures. Some
of themare characterized by the use of flexible components in
the mixture. The idea is that of embedding the Gaussian mix-
ture in a supermodel: [41] introduced a mixture of Student’s
t distributions, a mixture of skewed Student’s t distributions
has been proposed in [37] and [36], whereas [25;26] consid-
ered an additional component modeled as a Poisson process
to handle noisy data (the method is available from package
mclust (Fraley et al. 27) in R (R Core Team 44). A robust
approach, named otrimle, has been proposed recently by

[16;17], who considered the addition of an improper uniform
mixture component to accommodate outliers.

We propose a robust version of both the EM and the penal-
izedCEMalgorithms tofit amixture ofmultivariateGaussian
components based on soft trimming, in which weights are
evaluated according to the weighted likelihood methodology
(Markatou et al. 39). A first attempt in this direction has been
pursued by [38]. Here, that approach has been developed
further and made more general leading to a newly estab-
lished technique, in which weights are based on the recent
results stated in [5]. The methodology leads to a robust fit
and is aimed at providing both cluster assignment of genuine
data points and outlier detection rules. Data points flagged
as anomalous are not meant to be classified into any of the
clusters. Furthermore, a relevant aspect of our proposal is
represented by the introduction of constraints, not consid-
ered in [38], aimed at avoiding local or spurious solutions
(Fritz et al. 28).

Some necessary preliminaries on weighted likelihood
estimation are given in Sect. 2. The weighted EM and
penalized CEM algorithms are introduced in Sect. 3: some
computational details are discussed concerning constraints,
initialization issues, the tuning of the methods and classifica-
tion and outlier detection rules are outlined. Section 4 states
asymptotic results, whereas Sect. 5 is devoted tomodel selec-
tion. Numerical studies are presented in Sect. 6, and real data
examples are discussed in Sect. 7.

2 Background

Let us assume a mixture model composed by K heteroge-
neous multivariate Gaussian components, where K is fixed
in advance, with density function denoted by m(y; τ) =∑K

j=1 π jφp(yi ;μ j ,Σ j ). [38] suggested to work with the
following weighted likelihood estimating equation (WLEE)
in the M-step of the EM algorithm:

n∑

i=1

wi

k∑

j=1

ui j
∂

∂ν

[
logπ j + logφp(yi ;μ j ,Σ j )

] = 0 . (3)

Wenotice thatmaximumlikelihoodequations are replaced
by weighted equations. The weights are defined as

wi = w(δ(yi )) = [A(δ(yi )) + 1]+

δ(yi ) + 1
, (4)

where [·]+ denotes the positive part, δ(y) is the Pearson
residual function and A(δ) is the residual adjustment func-
tion (RAF, Basu and Lindsay 7). The Pearson residual gives
a measure of the agreement between the assumed model
m(y; τ) and the data that are summarized by a nonparametric
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density estimate m̂n(y) = n−1 ∑n
i=1 k(y; yi , h), based on a

kernel k(y; t, h) indexed by a bandwidth h, that is

δ(y) = m̂n(y)

m(y; τ)
− 1 , (5)

with δ ∈ [−1,∞). In the construction of Pearson resid-
uals, [38] suggested to use a smoothed model density in
the continuous case, by using the same kernel involved in
nonparametric density estimation (see Basu and Lindsay
7; Markatou et al. 39, for general results), i.e.

m∗(y; τ) =
∫

k(y; t, h)m(t; τ)dt .

When the model is correctly specified, the Pearson residual
function (5) evaluated at the true parameter value converges
almost surely to zero, whereas, otherwise, for each value of
the parameters, large Pearson residuals detect regions where
the observation is unlikely to occur under the assumedmodel.
The weight function (4) can be chosen to be unimodal so that
it declines smoothly as the residual δ(y) departs from zero.
Hence, those observations lying in such regions are attached a
weight that decreaseswith increasingPearson residual. Large
Pearson residuals and small weights will correspond to data
points that are likely to be outliers. The RAF plays the role to
bound the effect of large residuals on the fitting procedure,
as well as the Huber and Tukey bisquare function bound
large distances in M-estimation and we assume is such that
|A(δ)| < |δ|. Here, we consider the families of RAF based
on the Power Divergence Measure

Apdm(δ) =
{

ν
(
(δ + 1)1/ν − 1

)
ν < ∞

log(δ + 1) ν → ∞

Special cases are maximum likelihood (ν = 1, as the
weights become all equal to one), Hellinger distance (ν =
2), Kullback–Leibler divergence (ν → ∞) and Neyman’s
Chi-square (ν = −1). Another example is given by the gen-
eralized Kullback–Leibler divergence (GKL) defined as

Agkl(δ) = log(νδ + 1)/ν, 0 ≤ ν ≤ 1.

Maximum likelihood is a special case when ν → 0 and
Kullback–Leibler divergence is obtained for ν = 1.

The shape of the kernel function has a very limited
effect on weighted likelihood estimation. On the contrary,
the smoothing parameter h directly affects the robust-
ness/efficiency trade-off of the methodology in finite sam-
ples. Actually, large values of h lead to Pearson residuals
all close to zero and weights all close to one and, hence,
large efficiency, since the kernel density estimate is stochasti-
cally close to the postulated (smoothed) model. On the other
hand, small values of h make the kernel density estimate

more sensitive to the occurrence of outliers and the Pearson
residuals become large for those data points that are in dis-
agreement with the model. In other words, in finite samples
more smoothing will lead to higher efficiency but larger bias
under contamination.

2.1 Multivariate estimation

The computation of weights based on the Pearson residuals
given in (5) becomes troublesome with growing dimensions
since the data aremore sparse andmultivariate kernel density
estimation may become unfeasible. In order to circumvent
this curse of dimensionality, [5] proposed a novel technique
which is based on the Mahalanobis distances

d = d(y;μ,Σ) = [(y − μ)
�
Σ−1(y − μ)]1/2 .

Then, Pearson residuals can be evaluated by comparing a uni-
variate kernel density estimate based on squared distances
and their underlying χ2

p distribution at the assumed multi-
variate normal model, rather than working with multivariate
data and multivariate kernel density estimates, that is

δ(y) = m̂n
(
d2

)

mχ2
p

(
d2

) − 1 , (6)

where

m̂n(t) = n−1
n∑

i=1

k(t; d2, h)

is an unbiased at the boundary univariate kernel density esti-
mate over (0,∞) andmχ2

p
(t)denotes theχ2

p density function.
It is worth noting that Pearson residuals can be evaluated
w.r.t. the original χ2

p density, so avoiding model smoothing
(see also Kuchibhotla and Basu 34,35). Assumptions and
proofs concerning existence, convergence and asymptotic
normality of the WLE of multivariate location and scatter
have been also established (see the Supplementary material
of Agostinelli and Greco 5).

3 Weighted likelihoodmixture modeling

The technique forweighted likelihoodmixturemodeling pro-
posed by [38] exhibits the same limitations that have been
highlighted in [5] in the case of weighted likelihood estima-
tion of multivariate location and scatter. Themain drawbacks
are driven by the employ of multivariate kernels.

The availability of consistent estimators of multivariate
location and scatter based on the Pearson residuals (6) is the
starting point to build a weighted likelihood methodology to
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fit robustly the mixture model (5) that is also capable to han-
dle situations inwhich the number of features is large enough.
Therefore, by exploiting the approach developed in [5], we
propose both aweightedEMalgorithm and aweighted penal-
ized CEM algorithm whose M-steps are characterized by a
WLEE based on the Pearson residuals (6).

It is worth to notice that the method is expected to work in
large dimensions, even if it is still over-parameterized in high-
dimensional spaces. The technique is meant for and confined
to the n > p case and to dimensions that still allow evalua-
tion ofMahalanobis distances. The development of weighted
likelihood methodologies for model-based clustering in very
large dimensions and in the n < p situation is beyond the
scope of the present work.

The weighted EM algorithm (WEM) is structured as fol-
lows:

1. Initialization

τ (0) = (π(0), μ
(0)
1 , . . . , μ

(0)
K ,Σ

(0)
1 , . . . , Σ

(K )
1 ) .

Details on the sensitivity of the results to different ini-
tializations and the selection of the best solution will be
given in Sect. 3.5.

2. E-step the standard E-step is left unchanged, with

u(s)
ik =

π
(s−1)
k φp

(
yi ;μ

(s−1)
k ,Σ

(s−1)
k

)

∑K
k=1 π

(s−1)
k φp

(
yi ;μ

(s−1)
k ,Σ

(s−1)
k

)

3. Weighted M-step based on current parameter estimates,

(a) Soft trimming let us evaluate component-wise Maha-
lanobis-type distances

d(s)
ik = d

(
yi ;μ

(s−1)
k ,Σ

(s−1)
k

)
.

Then, for each group, compute Pearson residuals and
weights as

δ
(s)
ik =

m̂n

(
d(s)2

ik

)

mχ2
p

(
d(s)2

ik

) − 1

and

w
(s)
ik =

[
A

(
δ
(s)
ik

)
+ 1

]+

δ
(s)
ik + 1

respectively.

(b) Update membership probabilities and component-
specific parameter estimates

π
(s+1)
k =

∑n
i=1 u

(s)
ik w

(s)
ik∑n

i=1
∑K

k=1 u
(s)
ik w

(s)
ik

μ
(s+1)
k =

∑n
i=1 yiw

(s)
ik u

(s)
ik∑n

i=1 w
(s)
ik u

(s)
ik

Σ
(s+1)
k =

∑n
i=1

(
yi −μ

(s+1)
k

)(
yi −μ

(s+1)
k

)�
w

(s)
ik u

(s)
ik

∑n
i=1 w

(s)
ik u

(s)
ik

(c) Set τ (s+1) =
(
π(s+1), μ

(s+1)
1 , . . . , μ

(s+1)
K ,Σ

(s+1)
1 ,

. . . , Σ
(s+1)
K

)
.

It is worth noting that at the M-step it is proposed to solve
the following WLEE

n∑

i=1

k∑

j=1

ui j
∂

∂τ

[
logπ j + logφp(yi ;μ j ,Σ j )

]
wi j = 0, (7)

that is characterized by the evaluation of K component-wise
sets of weights, rather than one weight for each observation,
as in equation (3).

The weighted penalized CEM algorithm (WCEM) is
obtained by introducing a standardC-step between the E-step
and the weighted M-step. The main feature of the WCEM
algorithm is that one single weight is attached to each unit,
based on its current assignment after the C-step, rather than
component-wise weights. Then, the resulting WLEE shows
the same structure as in (3) but with the difference that
ui j = 1 or ui j = 0. The WCEM is described as follows:

1. Initialization

τ (0) = (π(0), μ
(0)
1 , . . . , μ

(0)
K ,Σ

(0)
1 , . . . , Σ

(0)
K ) .

2. E-step

u(s)
ik =

π
(s−1)
k φp

(
yi ;μ

(s−1)
k ,Σ

(s−1)
k

)

∑K
k=1 π

(s−1)
k φp

(
yi ;μ

(s−1)
k ,Σ

(s−1)
k

)

3. C-step let k(s)
i = argmaxku

(s)
ik identify the cluster assign-

ment for the i th unit at the sth iteration. Then

ũ(s)
ik =

{
1 if k = ki ,
0 if k �= ki .

4. Weighted M-step based on current parameter estimates
τ (s) and cluster assignments ki ,
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(a) Soft trimming evaluate the Mahalanobis-type dis-
tances of each point w.r.t. the component it belongs
in

d(s)
iki

= d
(
yi ;μ

(s−1)
ki

,Σ
(s−1)
ki

)
.

Then, compute the corresponding Pearson residuals
and weights as

δ
(s)
iki

=
m̂n

(
d(s)2

iki

)

mχ2
p

(
d(s)2

iki

) − 1

and

w
(s)
i = w

(s)
iki

=
[
A

(
δ
(s)
iki

)
+ 1

]+

δ
(s)
iki

+ 1

respectively, where

m̂n(d
2) = 1∑n

i=1 ũiki

n∑

i=1

k(d2; d2iki , h) ,

= 1∑n
i=1 ũik

n∑

i=1

k(d2; d2ik, h)ũik .

Hence, component-wise kernel density estimates
only involvedistances conditionally on cluster assign-
ment.

(b) Update membership probabilities and component-
specific parameter estimates

π
(s+1)
k =

∑n
i=1 ũ

(s)
ik w

(s)
iki∑n

i=1 w
(s)
iki

,

μ
(s+1)
k =

∑n
i=1 yiw

(s)
iki
ũ(s)
ik

∑n
i=1 w

(s)
iki
ũ(s)
ik

,

Σ
(s+1)
k =

∑n
i=1

(
yi−μ

(s+1)
k

)(
yi−μ

(s+1)
k

)�
w

(s)
iki
ũ(s)
ik

∑n
i=1w

(s)
iki
ũ(s)
ik

.

(c) Set τ (s+1) =
(
π(s+1), μ

(s+1)
1 , . . . , μ

(s+1)
K ,Σ

(s+1)
1 ,

. . . , Σ
(s+1)
K

)

It is worth noting that both weighted algorithms return
weighted estimates of covariance. The final output can be
suitably modified in order to provide unbiased weighted esti-
mates.

3.1 Eigen-ratio constraint

It is well known that maximization of the mixture likelihood
(1) or the classification likelihood (2) is an ill-posed prob-
lem since the objective function may be unbounded (Day
18; Maronna and Jacovkis 40). Therefore, in order to avoid
such problems, the optimization is performed under suitable
constraints. In particular, we employed the eigen-ratio con-
straint defined as

max j maxk λ j (Σk)

min j mink λ j (Σk)
≤ c, j = 1, 2 . . . , p,

k = 1, 2, . . . , K (8)

where λ j (Σk) denoted the j th eigenvalue of the covariance
matrixΣk and c is a fixed constant not smaller than one aimed
at tuning the strength of the constraint. For c = 1 spherical
clusters are imposed, while as c increases varying shaped
clusters are allowed. The eigen-ratio constraint (8) can be
satisfied at each iteration by adjusting the eigenvalues of each
Σ

(s)
k . This is achieved by replacing them with a truncated

version

λ∗
j (Σk) =

⎧
⎨

⎩

c if λ j (Σk) < c
λ j (Σk) if c ≤ λ j (Σk) ≤ cθc
cθc if λ j (Σk) > cθc

where θc is an unknown bound depending on c. The reader
is pointed to [28;31] for a feasible solution to the problem of
finding θc.

3.2 Classification and outlier detection

The WCEM automatically provides a classification of the
sample units, since the value of ũik at convergence is either
zero or one. With the WEM, by paralleling a common
approach, a maximum a posteriori criterion can be used for
cluster assignment, that is, a C-step is applied after the last E-
step. Such criteria lead to classify all the observations, both
genuine and contaminated data, meaning that also outliers
are assigned to a cluster. Actually, we are not interested in
classifying outliers and for purely clustering purposes out-
liers have to be discarded.

We distinguish two main approaches to outlier detection.
According to thefirst, outlier detection should be based on the
robust fittedmodel and performed separately by using formal
rules. The key ingredients in multivariate outlier detection
are the robust distances (Rousseeuw and Van Zomeren 45;
Cerioli 12). The reader is pointed to [13] for a recent account
on outlier detection. An observation is flagged as an outlier
when its squared robust distance exceeds a fixed threshold,
corresponding to the (1 − α)-level quantile of the reference
(asymptotic) distribution of the squared robust distances. A
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common solution is represented by the use of the χ2
p, and

popular choices are α = 0.025 and α = 0.01. In the case
of finite mixtures, the main idea is that the outlyingness of
each data point should bemeasured conditionally on the final
assignment. Hence, according to a proper testing strategy, an
observation is declared as outlying when

d2iki > χ2
p;1−α , d2iki = (yi − μ̂ki )

�
Σ̂ki (yi − μ̂ki ) . (9)

The second approach stems from hard trimming procedures,
such as tclust, rtclust and otrimle. These tech-
niques are not meant to provide simultaneous robust fit and
outlier detection based on formal testing rules, but outliers
are identified with those data points falling in the trimmed set
or assigned to the improper density component, respectively.
Therefore, by paralleling what happens with hard trimming,
one could flag as outliers those data points whose weight,
conditionally on the final cluster assignment, is below a
fixed (small) threshold. Values as 0.10 or 0.20 seem rea-
sonable choices. Furthermore, the empirical downweighting
level represents a natural upper bound for the cutoff value
that would give an indication of the largest tolerable swamp-
ing and of the minimum feasible masking for the given level
of smoothing. This approach is motivated by the fact that
the multivariate WLE shares important features with hard
trimming procedures, even if it is based on soft trimming, as
claimed in [4].

The process of outlier detection may result in type I and
type II errors. In the former case, a genuine observation is
wrongly flagged as outlier (swamping); in the latter case, a
true outlier is not identified (masking). Swamped genuine
observations are false positives, whereas masked outliers are
false negatives.According to the first strategy, the largerα the
more swamping and the lessmasking. In a similar fashion, the
higher the threshold themore swamping and the lessmasking
will characterize the second approach to outlier detection.

In the following, both approaches to outlier detection will
be taken into account and critically compared.

3.3 The selection of h

The selection of h is a crucial task. According to authors’
experience (see Agostinelli and Greco 5, 4; Greco 32, for
instance), but also as already suggested by [39], a safe
selection of h can be achieved by monitoring the empir-
ical downweighting level (1 − ˆ̄ω) as h varies, with ˆ̄ω =
n−1 ∑n

i=1 ŵi , where the weights at convergence ŵi = ŵiki
are evaluated at the fitted parameter value and conditionally
on the final cluster assignment, both for WEM and WCEM,
along the lines outlined in Sect. 3.2. The monitoring of WLE
analyses has been applied successfully in [4] to the case of
robust estimation of multivariate location and scatter. The
reader is pointed to [14] for an account on the benefits of

monitoring. A good strategy in the tuning of the smoothing
parameter would be to monitor several quantities of inter-
est stemming from the fitted mixture model in addition to
the empirical downweighting level. One could monitor the
weighted log-likelihood at convergence, unit-specific robust
distances conditionally on the final cluster assignment, unit-
specificweights, amisclassification error if a training setwith
known labels is available. For instance, an abrupt change in
themonitored empirical downweighting level or in the robust
distances may indicate the transition from a robust to a non-
robust fit and aid in the selection of a value of h that gives
an appropriate compromise between efficiency and robust-
ness. Values beyond this threshold would lead to at least
one arbitrarily biased fitted component that can compromise
the accuracy of clustering. It is worth to note that, the trim-
ming level in tclust or the improper density constant in
otrimle is selected in a monitoring fashion, as well.

3.4 Synthetic data

Let us consider a three component mixture model with
π = (0.2, 0.3, 0.5), μ1 = (−5, 0)

�
, μ2 = (0,−5)

�
,

μ3 = (5, 0)
�
and

Σ1 =
(
1 −0.5
−0.5 1

)
, Σ2 =

(
2 1.25
1.25 2

)
,

Σ3 =
(
3 −1.75
−1.75 3

)
.

and a simulated sample of size n = 1000, with 40% of back-
ground noise. Outliers have been generated uniformly within
an hypercube whose dimensions include the range of the data
and are such that the distance to the closest component is
larger than the 0.99-level quantile of a χ2

2 distribution.WEM
and WCEM have been run by setting the eigen-ratio restric-
tion constant to c = 15. (The true value is 9.5.) The weights
are based on the generalized Kullback–Leibler divergence
and a folded normal kernel. Initialization has been provided
by running tclust with a 50% level of trimming. The
smoothing parameter h has been selected by monitoring the
empirical downweighting level and unit-specific clustering-
conditioned distances over a grid of h values (Agostinelli and
Greco 4). Figure 1 displays the monitoring analyses of the
empirical downweighting level, the robust distances and the
misclassification error for the WEM. In all panels an abrupt
change is detected, meaning that for h values on the right side
of the vertical line the procedure is no more able to iden-
tify the outliers, hence being not robust w.r.t. the presence
of contamination. Similar trajectories are observed for the
WCEM and not reported here. In the monitoring of robust
distances, a color map has been used that goes from light
gray to dark gray in order to highlight those trajectories cor-
responding to observations that are flagged as outlying for
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Fig. 1 Simulated data. Monitoring the empirical downweighting level (left), robust distances (middle), misclassification error (right) based on
WEM. The vertical lines give the selected h. The horizontal line in the middle panel gives the χ2

2;0.99 quantile

Table 1 Simulated data

ε swamp. mask.

WEM

α = 0.010 0.388 0.013 0.050

α = 0.025 0.408 0.027 0.020

ŵ < 0.1 0.353 0.003 0.123

ŵ < 0.2 0.386 0.013 0.055

ŵ < 1 − ˆ̄w 0.429 0.052 0.005

WCEM

α = 0.010 0.378 0.017 0.080

α = 0.025 0.408 0.027 0.020

ŵ < 0.1 0.333 0.003 0.173

ŵ < 0.2 0.366 0.017 0.105

ŵ < 1 − ˆ̄w 0.417 0.038 0.015

Outlier detection from different rules for WEM and WCEM. Boldface
indicates the best performance

most of the monitoring. Figure 2 displays the result of apply-
ing both the WEM and WCEM algorithm to the sample at
hand with an outlier detection rule based on the 0.99-level
quantile of the χ2

2 distribution and on a threshold for weights
set at 0.2. Component-specific tolerance ellipses are based on
the 0.95-level quantile of the χ2

2 distribution. We notice that
both methods succeed in recovering the underlying structure
of the clean data despite the challenging contamination rate
and that the outliers detection rules provide quite similar and
satisfactory outcomes. The entries in Table 1 give the rate of
detected outliers ε, swamping and masking stemming from
the alternative strategies.

3.5 Sensitivity to initialization and root selection

In order to initialize WEM and WCEM, tclust based on
a large rate of trimming is an appealing solution. Other can-
didate solutions can be used to initialize the algorithm. For

instance, one approach has been discussed in [17] that is
based on a combination of nearest neighbor denoising and
agglomerative hierarchical clustering. Given the initial par-
tition, starting values for component-specific parameters are
obtained by the sample mean and covariance matrix of the
points belonging to each cluster. Here, we also consider a
safer strategy that is based on the evaluation of clusterwise
robust estimates (for instance, by using the OGK estimator),
since the initial denoising may still include dangerous out-
liers, especially with a large rate of contamination.

In order to check the extent to which results change by
varying the initialization, we ran a numerical study based
on 500 Monte Carlo trials according to the data configura-
tion of the example in Sect. 3.4. In each trial, for a fixed h,
theWEMstarts iterating fromtclust (with 50% trimming,
tclust50), the initial values from [17] (InitClust) and
its robust counterpart described above (InitClustOGK).
The same numerical study has been also performed when
the level of contamination is set to null, 10% and 20%. In
the former scenario, with 40% of noisy points, InitClust
leads to one inflated estimate of covariance and a smaller
empirical downweighting level. On the contrary, the other
two starting values give solutions with negligible differences
in parameters estimates, depending on the chosen stopping
rule and tolerance (here the stopping rule is based on the
absolute value of the maximum difference between consec-
utive estimates of the centroids matrix and the tolerance is
10−4) and the same final classification and detected outliers.
In the latter cases, the algorithm was less dependent on the
initial values in the sense that the all three alternatives led to
practically indistinguishable fitted models.

When, for several initial values and a fixed value of the
bandwidth h, the algorithm ends with different estimates, but
still characterized by close empirical downweighting levels,
by paralleling the classical approach, one could select the
solution leading to the largest value of the weighted like-
lihood. The likelihood evaluated at the WLE, in general,
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Fig. 2 Simulated data. Fitted components, cluster assignments and outlier detection by WEM (left) and WCEM (right). Top row: outlier detection
based on d2ki < χ2

p;0.99. Bottom row: outlier detection based on wki < 0.2, 95% tolerance ellipses overimposed

could be misleading, as also discussed in Sect. 5. In the
numerical studies, the solutions characterized by a smaller
empirical downweighting level for ε = 40% showed lower
weighted likelihood values at convergence but larger like-
lihoods. At least in this example, tclust50 provides the
largest value of the weighted likelihood on average but the
three initializations leads to the largest weighted likelihood
value with almost equal frequencies, but for ε = 40%,
wheretclust50 gives the selected root slightlymore often
than InitClustOGK. Figure 3 gives the distributions of
the weighted likelihood values at convergence for the case
ε = 20%. We do not observe significant differences. These
findings give evidence supporting the convergence of the pro-
posed algorithm. Similar results are also valid for theWCEM.

A simple and common strategy to check the stability of
the results is to run the algorithm for a number (say, 20 to 50)

of starting values. For instance, different initial solutions can
be obtained by randomly perturbing the deterministic starting
solution and/or the final one obtained from it (Farcomeni and
Greco 24).

The empirical downweighting level provides oneguidance
to assess the reliability of the fitted model. Actually, if the
sum of the estimated weights is approximately 1 then the
WLE is close to the MLE, whereas if it is too small, then the
corresponding WLE is a degenerate solution, indicating that
it only represents a small subset of the data. In the case of
excess of downweighting, the criterion based on theweighted
likelihood can fail.

A strategy to root selection in the WLE framework has
been introduced by [2] and extended to the multivariate
framework in [5]. The main idea is that the probability
of observing a very small value of the Pearson residual is
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Fig. 3 Distribution of weighted likelihood values at convergence when
theWEMalgorithm is initialized bytclust50,InitClustOGK and
InitClust, with ε = 20% and the data configuration of example in
Sect. 3.4

expected to be as small as the fitted model is close to the
model underlying the majority of the data. Then, the selected
root is that with the lowest fitted probability

Pr
τ̂

[
δ(d̂2; τ̂ , M̂n) < −q

]
, (10)

with q = 0.9, 0.95. The probability in (10) is obtained by
drawing a large number of instances (say N = 10, 000) from
the fitted model. In the example of Sect. 3.4, the criterion
in (10) correctly discards the biased root with the lowest
weighted likelihood value, whereas it is not able to discrim-
inate between the other two set of estimates, since they are
very close and essentially lead to the same results.

4 Properties

The WEM and WCEM algorithms have been obtained by
introducing adifferent set of estimating equations that defines
a WLEE as in (7) or (3), in place of the likelihood equations.
In particular, in the M-step K separate WLE of multivariate
location and scatter are obtained. The proposed algorithms
are a special case of the algorithm first introduced by [22],
where an EM-type algorithm has been established for very
general estimating equations. Here, solving the WLEE, for
each separate problem, corresponds to solve a complete data
estimating equation of the form

Ψ (y; τ) = (Ψπ(y; τ), Ψμ(y; τ), ΨΣ(y; τ))
� = 0 (11)

Very general conditions for consistency and asymptotic nor-
mality of the solution to (11) are given in [22]. The main
requirements are that

1. Ψ (y; τ) defines an unbiased estimating equation at the
assumed model, i.e. Eτ [Ψ (Y ; x, τ )] = 0;

2. Eτ [Ψ (Y ; x, τ )Ψ (Y ; x, τ )
�] exists and is positive defi-

nite;
3. Eτ [∂Ψ (Y ; x, τ )/∂τ ] exists and is negative definite, ∀τ .

This conditions are satisfied by the proposed WLEE that are
characterized by weighted score functions stemming from
(2). The reader is pointed to the Supplementary material in
[5] for detailed assumptions and proofs.

5 Model selection

In model-based clustering, formal approaches to choose the
number of components are based on the value of the log-
likelihood function at convergence. Criteria such as the BIC
or the AIC are commonly used to select K when running
the classical EM algorithm. In a robust setting, in tclust
the number of clusters is chosen by monitoring the changes
in the trimmed classification likelihood over different val-
ues of K and contamination levels. A formal approach has
not been investigated yet in the case of the otrimle, even
if the authors conjecture that a monitoring approach or the
development of information criteria can be pursued as well.

Here, when the robust fit is achieved by the WEM algo-
rithm, we suggest to resort to a weighted counterparts of the
classical AIC or BIC criteria. Then, the proposed strategy is
based on minimizing

Qw(K ) = −2�w(y; τ̂ ) + m(K ) (12)

where �w(y; τ̂ ) = ∑n
i=1 ŵiki �(yi ; τ) and m(K ) is a penalty

term reflecting model complexity. The rationale behind the
use of a weighted criterion is that we want to implement a
model selection device leading to results close to those one
would obtain by using the standard criteria on the genuine
part of the data only. Actually, if one uses the standard criteria
based on the log-likelihood function evaluated at the WLE,
outliers still contribute to its value and, even if these individ-
ual contributions are the smallest, the overall behavior of the
corresponding BIC and AIC may be badly affected. Let us
consider the set of simulated data of Sect. 3.4. The two panels
in Figure 4 display, respectively, the behavior of theweighted
BIC and the classical BIC evaluated at theWLE for different
choices of K over a grid of values for the smoothing param-
eter h. The unpleasant behavior of the BIC is evident from
the inspection of the right panel of Figure 4. On the contrary,
the weighted BIC, shown in the left panel of Figure 4, allows
selection of the correct clustering complexity. We notice that
a similar trajectory is observed for both K = 2 and K = 3.
The abrupt change is detected at the same value of h but the
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Fig. 4 Example 1. Monitoring the weighted BIC (left) and the classical BIC evaluated at the WLE (right). The vertical line in the left panel gives
the selected h

choice K = 3 is preferred since it leads to a smaller weighted
BIC before the robust fit turns into a non-robust one.

It is well known that the BIC approximate the twice log-
Bayes factor for model comparison. One could extend the
same relationship to the weighted BIC (12) and the weighted
Bayes factor defined in [3]. Furthermore, for what concerns
the WCEM algorithm, one could mimic the approach used
in tclust and monitor the weighted conditional likelihood
at convergence for varying K and h. Then, the number of
clusters should be set equal to the minimum K for which
there is no substantial improvement in the objective function
when adding one group more.

It can be proved that the robust criterion in (12) is
asymptotically equivalent to its classical counterparts at the
assumed model, i.e. when the data are not prone to contam-
ination. The proof is based on some regularity conditions
about the kernel and the model that are required to assess the
asymptotic behavior of the WLE (Agostinelli 1; Agostinelli
and Greco 3, 5). In the case of finite mixture models, it is
assumed further that an ideal clustering setting holds under
the postulated mixture model, that is, data are assumed to be
well clustered. The following result holds.

Proposition Let Y j be the set of points belonging to the j th
component, whose cardinality is n j . The full data is defined
as∪K

j=1Y j with
∑K

j=1 n j = n and limn j→∞
n j
n = 0. Assume

that (i) the model is correctly specified, (ii) the WLE τ̂ is a

consistent estimator of τ , (iii) supy∈Y j
|w(δ(y)) − 1| p−→ 0.

Then, |Qw(k) − Q(k)| p→ 0.

Proof Let τ̃ denote the maximum likelihood estimate.

1

2
|Qw(k) − Q(k)| =

∣∣∣∣∣
∑

i

wi�(yi ; τ̂ ) −
∑

i

�(yi ; τ̃ )

∣∣∣∣∣

≤
{∣∣∣∣∣

∑

i

(wi − 1)�(yi ; τ̂ )

∣∣∣∣∣

}

+
{∣∣∣∣∣

∑

i

[
�(yi ; τ̂ ) − �(yi ; τ̃ )

]
∣∣∣∣∣

}

≤
∑

i

|(wi − 1)�(yi ; τ̂ )|

≤ sup
y

|wi − 1|
∑

i

�(yi ; τ̂ )

p→ 0as n j → ∞

�

6 Numerical studies

We investigate the finite sample behavior of the proposed
WEMandWCEMalgorithms.Both algorithms are still based
on non-optimized R code. Nevertheless, the results that fol-
low are satisfactory and computational time always lays in a
feasible range. We set n = 1000, K = 3 and simulate data
according to the M5 scheme as introduced in [29]. Clusters
have been generated by p-variate Gaussian distributionswith
parameters
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Table 2 Average measures of
fitting accuracy for WEM,
WCEM, EM, CEM and
otrimle with
p = 2, 5, 10, 25, ε = 0,
β = 10, 8, 6

p β = 10 β = 8 β = 6

μ Σ π μ Σ π μ Σ π

WEM

2 0.600 0.186 0.022 0.641 0.203 0.023 0.8550 0.248 0.034

5 0.651 0.802 0.025 0.767 0.822 0.035 0.867 0.886 0.032

10 0.664 1.158 0.022 0.703 1.183 0.024 0.921 1.254 0.036

25 0.778 1.807 0.027 1.191 1.881 0.044 3.039 2.075 0.131

WCEM

2 0.614 0.193 0.030 0.687 0.208 0.029 1.273 0.261 0.056

5 0.653 0.795 0.033 0.767 0.822 0.035 1.422 0.904 0.064

10 0.681 1.156 0.028 0.829 1.194 0.031 1.715 1.305 0.074

25 0.867 1.816 0.030 2.242 1.941 0.074 6.543 2.336 0.165

EM

2 0.551 0.154 0.022 0.597 0.169 0.023 0.765 0.184 0.029

5 0.622 0.764 0.025 0.651 0.713 0.025 0.816 0.832 0.029

10 0.659 1.113 0.022 0.697 1.137 0.023 0.933 1.214 0.033

25 0.773 1.772 0.025 1.126 1.833 0.038 3.387 2.045 0.140

CEM

2 0.603 0.160 0.022 0.803 0.182 0.030 1.760 0.274 0.056

5 0.650 0.770 0.028 0.834 0.790 0.033 1.698 0.874 0.073

10 0.687 1.122 0.022 0.875 1.158 0.030 1.915 1.270 0.081

25 0.894 1.784 0.028 2.548 1.923 0.084 7.226 2.376 0.141

otrimle

2 0.594 0.170 0.053 0.622 0.187 0.047 0.773 0.204 0.050

5 0.636 0.770 0.028 0.666 0.787 0.031 0.834 0.851 0.039

10 0.660 1.117 0.023 0.699 1.141 0.024 0.914 1.215 0.033

25 0.772 1.774 0.025 1.185 1.838 0.040 3.343 2.037 0.141

μ1 = (−β,−β, 0, . . . , 0),

μ2 = (0, β, 0, . . . , 0),

μ3 = (β, 0, 0, . . . , 0)

and

Σ1 =
⎛

⎜⎝
15 −10 0p−2

−10 15 0p−2

0
�
p−2 0

�
p−2 Ip−2

⎞

⎟⎠ ,

Σ2 = Ip, Σ3 =
⎛

⎜⎝
45 0 0p−2

0 30 0p−2

0
�
p−2 0

�
p−2 Ip−2

⎞

⎟⎠ ,

where 0d is a null row vector of dimension d and Id is the
d×d identitymatrix. Dimensions p = 2, 5, 10, 25 have been
taken into account. The parameter β regulates the degree
of overlapping among clusters: smaller values yield severe
overlapping whereas larger values give a better separation.
Here, we set β = 6, 8, 10. Theoretical cluster weights are
fixed as π = (0.2, 0.4, 0.4). Outliers have been generated
uniformly within an hypercube whose dimensions include

the range of the data and are such that the distance to the
closest component is larger than the 0.99-level quantile of
a χ2

p distribution. When p = 25, outliers only occur in the
first ten dimensions. This setting is more challenging and
allows to assess the quality of the proposed model-based
clustering techniques in larger-dimensional problems. The
rate of contamination has been set to ε = 0.10, 0.20.The case
ε = 0 has been used to evaluate the efficiency of the proposed
techniques when applied to clean data. The numerical studies
are based on 500Monte Carlo trials. Theweighted likelihood
algorithms are both based on a folded normal kernel and
a GKL RAF (with τ = 0.9), whereas we set c = 50 as
eigen-ratio constraint. The smoothing parameter h has been
selected in such away that the empirical downweighting level
lies in the range (0.2, 0.35) under contamination, whereas
it is about 10% when no outliers occur. The algorithm is
assumed to reach convergence when max |μ̂(s+1) − μ̂(s)| <

tol, with a tolerance tol set to 10−4, where μ̂(s) is the matrix
of centroids estimates at the sth iteration and the differences
are elementwise.
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Table 3 Swamping rate for WEM, WCEM and otrimle with p =
2, 5, 10, 25, ε = 0, β = 10, 8, 6

p β = 10 β = 8 β = 6

WEM α = 0.01

2 0.024 0.021 0.017

5 0.018 0.017 0.016

10 0.018 0.017 0.017

25 0.020 0.020 0.020

WCEM α = 0.01

2 0.024 0.020 0.020

5 0.017 0.016 0.017

10 0.017 0.017 0.017

25 0.019 0.019 0.018

WEM ŵ < 0.1

2 0.007 0.005 0.005

5 0.004 0.004 0.004

10 0.004 0.004 0.003

25 0.005 0.005 0.005

WCEM ŵ < 0.1

2 0.007 0.005 0.005

5 0.004 0.003 0.004

10 0.003 0.003 0.003

25 0.004 0.005 0.005

WEM ŵ < 0.2

2 0.016 0.012 0.010

5 0.010 0.009 0.008

10 0.009 0.008 0.008

25 0.010 0.010 0.010

WCEM ŵ < 0.2

2 0.016 0.011 0.011

5 0.008 0.008 0.008

10 0.007 0.007 0.008

25 0.008 0.009 0.009

otrimle

2 0.038 0.028 0.031

5 0.014 0.007 0.005

10 0.009 0.002 0.002

25 0.001 0.001 0.001

Fitting accuracy has been evaluated according to the fol-
lowing measures:

1. ||μ̂−μ||, where μ̂ and μ are 3× p matrices with μ̂ j and
μ j in each row, respectively, for j = 1, 2, 3;

2. avej log cond
(
Σ̂ jΣ

−1
j

)
, where cond(A) denotes the

condition number of the matrix A;
3. ||π̂ − π ||.

Table 4 Average measures of classification accuracy for WEM,
WCEM, EM, CEM and otrimle with p = 2, 5, 10, 25, ε = 0,
β = 10, 8, 6

p β = 10 β = 8 β = 6

Rand MCE Rand MCE Rand MCE

WEM

2 0.98 0.01 0.93 0.02 0.83 0.06

5 0.98 0.01 0.93 0.02 0.83 0.06

10 0.97 0.01 0.92 0.03 0.82 0.07

25 0.97 0.01 0.88 0.04 0.67 0.14

WCEM

2 0.98 0.01 0.93 0.02 0.83 0.06

5 0.98 0.01 0.93 0.02 0.83 0.06

10 0.97 0.01 0.93 0.03 0.80 0.07

25 0.96 0.01 0.82 0.07 0.57 0.21

EM

2 0.97 0.01 0.93 0.02 0.83 0.06

5 0.97 0.01 0.93 0.02 0.83 0.06

10 0.97 0.01 0.92 0.03 0.82 0.07

25 0.97 0.01 0.89 0.04 0.66 0.15

CEM

2 0.97 0.01 0.93 0.02 0.82 0.07

5 0.97 0.01 0.93 0.02 0.82 0.07

10 0.97 0.01 0.92 0.03 0.79 0.08

25 0.96 0.01 0.81 0.07 0.55 0.22

otrimle

2 0.97 0.01 0.93 0.02 0.84 0.06

5 0.97 0.01 0.93 0.02 0.83 0.06

10 0.97 0.01 0.92 0.03 0.82 0.07

25 0.96 0.01 0.88 0.04 0.67 0.15

For what concerns the task of outlier detection, several
strategies have been compared: we considered a detection
rule based on the 0.99-level quantile of the χ2

p distribution,
according to (9), but also based on the fitted weights, with
thresholds set at 0.1, 0.2 and 1− ˆ̄ω. For each decision rule, for
the contaminated scenario, we report (a) the rate of detected
outliers ε; (b) the swamping rate; (c) the masking rate. The
first is a measure of the fitted contamination level, whereas
the others give insights on the level and power of the outlier
detection procedure. The comparisons across the different
methods should be considered for close values of ε. Actually,
themore outliers are detected themore likely a genuine obser-
vation can be misclassified, whereas, on the contrary, the
more true outliers are correctly flagged. For ε = 0, swamp-
ing only is taken into account.

Classification accuracy has been measured by (i) the
adjusted Rand index and (ii) the misclassification error rate
(MCE), both evaluated over true negatives for the robust tech-
niques. The results are based on the testing decision rule (9).
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Table 5 Average measures of fitting accuracy for WEM, WCEM,
tclust and otrimlewith p = 2, 5, 10, 25, ε = 0.10, 0.20, β = 10
(well-separated clusters)

p ε = 0.10 ε = 0.20

μ Σ π μ Σ π

WEM

2 0.651 0.219 0.029 0.745 0.249 0.026

5 0.679 0.886 0.025 0.694 0.894 0.026

10 0.685 1.237 0.023 0.741 1.278 0.027

25 0.852 1.885 0.025 0.914 1.987 0.031

WCEM

2 0.629 0.213 0.035 0.761 0.245 0.059

5 0.731 0.944 0.045 0.719 1.128 0.045

10 0.732 1.301 0.035 0.780 1.642 0.040

25 0.944 1.890 0.027 0.993 1.991 0.037

tclust

2 0.619 0.219 0.027 0.774 0.261 0.029

5 0.631 0.796 0.025 0.685 0.834 0.026

10 0.682 1.153 0.023 0.718 1.218 0.028

25 0.888 1.861 0.025 0.869 1.993 0.028

otrimle

2 0.638 0.214 0.110 0.744 0.239 0.177

5 0.629 0.803 0.068 0.664 0.845 0.124

10 0.668 1.163 0.067 0.704 1.233 0.124

25 0.860 1.889 0.065 0.914 1.967 0.125

In order to avoid problems due to label switching issues, clus-
ter labels have been sorted according to the first entry of the
fitted location vectors.

Under the assumed model, WEM and WCEM have been
initialized by tclust with 20% of trimming and their
behavior have been compared with the EM and CEM algo-
rithms and the otrimle, for the same eigen-ratio constraint
and the same initial values. In the presence of contamina-
tion, we do not report the results concerning the non-robust
EM and CEM but only those regarding the WEM, WCEM,
otrimle and oracle tclust, i.e. with trimming level
equal to the actual contamination level (tclust10 and
tclust20, respectively). Under this scenario, starting val-
ues have been driven by tclust with 50% of trimming.

It is worth to stress, here, that the comparison in terms of
outlier detection reliability betweenweighted likelihood esti-
mation, tclust and otrimle can be considered fair only
by looking at the rate of weights below the fixed threshold for
the former methodology and trimmed observation or those
assigned to the improper density group for the latter tech-
niques, since formal testing rules have not been considered
neither for tclust or otrimle.

First, let us consider the behavior of WEM andWCEM at
the assumedmodel. The entries in Table 2 give the considered

Table 6 Average measures of fitting accuracy for WEM, WCEM,
tclust and otrimle with p = 2, 5, 10, 25, ε = 0.10, 0.20, β = 8
(moderate overlapping)

p ε = 0.10 ε = 0.20

μ Σ π μ Σ π

WEM

2 0.684 0.254 0.029 0.821 0.280 0.030

5 0.727 0.883 0.027 0.742 0.900 0.028

10 0.750 1.233 0.028 0.801 1.308 0.030

25 1.435 1.955 0.047 1.725 2.067 0.056

WCEM

2 0.685 0.230 0.041 1.087 0.285 0.081

5 0.806 1.170 0.045 0.826 1.128 0.039

10 0.858 1.616 0.032 0.928 1.774 0.038

25 2.504 2.024 0.075 2.144 2.219 0.076

tclust

2 0.802 0.264 0.034 0.884 0.336 0.039

5 0.829 0.818 0.033 0.876 0.871 0.033

10 0.860 1.187 0.033 0.909 1.258 0.036

25 2.266 1.988 0.067 1.969 2.068 0.067

otrimle

2 0.652 0.238 0.111 0.731 0.276 0.183

5 0.684 0.812 0.068 0.719 0.872 0.126

10 0.731 1.192 0.068 0.782 1.261 0.126

25 1.659 1.962 0.083 1.992 2.044 0.142

average measures of fitting accuracy; Table 3 gives the level
of swamping according to the different strategies for WEM
and WCEM that are based on the χ2

p distribution and the
inspection ofweights; Table 4 reports classification accuracy.
The overall behavior of WEM and WCEM is appreciable:
we observe a tolerable efficiency loss, a negligible swamp-
ing effect and a reliable classification accuracy, indeed, as
compared with the non-robust procedures. Furthermore, the
results are quite similar to those stemming from otrimle
and quite often the inspection of the weights from WEM
and WCEM leads to a smaller number of false positives, on
average.

The performance of WEM and WCEM under contamina-
tion is explored next. The fitting accuracy provided by the
proposed weighted likelihood based strategies is illustrated
in Tables 5, 6, 7. In all considered scenarios, the behavior of
WEMandWCEM is satisfactory and they both comparewell
with the oracle tclust and otrimle. In particular, the
good performance of WEM and WCEM has to be remarked
in the challenging situation of severe overlapping. Further-
more, for all data configurations, we notice the ability of
WEM to combine accurate estimates of component-specific
parameters with those of the cluster weights. The entries in
Tables 8, 9, 10 show the behavior of the testing procedure
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Table 7 Average measures of fitting accuracy for WEM, WCEM,
tclust and otrimle with p = 2, 5, 10, ε = 0.10, 0.20, β = 6
(severe overlapping)

p ε = 0.10 ε = 0.20

μ Σ π μ Σ π

WEM

2 1.043 0.313 0.038 1.131 0.370 0.056

5 0.837 0.946 0.032 0.899 0.977 0.035

10 0.990 1.294 0.040 1.115 1.375 0.046

25 3.203 2.153 0.135 3.608 2.229 0.156

WCEM

2 1.112 0.344 0.058 1.386 0.362 0.081

5 1.121 1.356 0.072 1.465 1.236 0.054

10 1.909 1.756 0.086 1.889 1.951 0.076

25 7.826 2.541 0.198 5.752 2.279 0.244

tclust

2 1.728 0.372 0.082 3.431 0.607 0.133

5 1.477 0.897 0.069 1.685 0.957 0.072

10 1.761 1.301 0.077 1.898 1.348 0.083

25 6.048 2.221 0.206 5.973 2.267 0.203

otrimle

2 0.910 0.293 0.122 0.885 0.295 0.183

5 0.781 0.876 0.072 0.861 0.923 0.127

10 0.991 1.259 0.077 1.086 1.320 0.132

25 3.708 2.131 0.164 3.922 2.199 0.203

based on the χ2
p distribution and the inspection of weights for

all considered scenarios. The empirical level of contamina-
tion is always larger than the nominal one, but it is acceptable
and stable as p and β change. Masking is always negligi-
ble, hence highlighting the appreciable power of the testing
procedure. We remark that one could also consider multiple
testing adjustments in outlier detection as outlined in [13]. To
conclude the analysis, Tables 11, 12, 13 give the considered
measures of classification accuracy as β varies. The results
are quite stable across the four methods and all dimensions.
As well as before, WEM and WCEM lead to a satisfactory
classification, even in the challenging case of severe overlap-
ping. The results obtained for p = 25 deserve some special
remarks. Actually, fitting and classification accuracies dete-
riorate, particularly in the presence of moderate-to-severe
overlapping. Nevertheless, the proposed WEM and WCEM
still behave in a fashion not dissimilar from the other well-
established techniques.

6.1 Computational burden

The numerical studies are enriched by evaluating the compu-
tational demand of the proposed methodology for increasing
sample size and dimension. Time needed for convergence

Table 8 Outlier detection for WEM, WCEM, tclust and otrimle
with p = 2, 5, 10, ε = 0.10, 0.20, β = 10 (well-separated clusters)

p ε = 0.10 ε = 0.20

ε swamp. mask. ε swamp. mask.

WEM α = 0.01

2 0.118 0.021 0.004 0.227 0.034 0.002

5 0.120 0.022 0.000 0.217 0.021 0.000

10 0.119 0.021 0.000 0.218 0.022 0.000

25 0.119 0.021 0.000 0.223 0.028 0.000

WCEM α = 0.01

2 0.118 0.021 0.005 0.223 0.032 0.015

5 0.118 0.020 0.000 0.217 0.017 0.000

10 0.115 0.017 0.000 0.213 0.016 0.000

25 0.114 0.016 0.000 0.215 0.019 0.000

WEM w < 0.1

2 0.096 0.005 0.086 0.211 0.017 0.012

5 0.108 0.009 0.000 0.205 0.006 0.000

10 0.106 0.007 0.000 0.207 0.009 0.000

25 0.109 0.010 0.000 0.209 0.011 0.000

WCEM ŵ < 0.1

2 0.092 0.005 0.125 0.201 0.019 0.069

5 0.107 0.008 0.000 0.205 0.006 0.001

10 0.105 0.006 0.000 0.206 0.007 0.000

25 0.105 0.006 0.000 0.205 0.007 0.000

WEM ŵ < 0.2

2 0.110 0.013 0.016 0.231 0.039 0.001

5 0.118 0.020 0.000 0.213 0.016 0.000

10 0.116 0.018 0.000 0.216 0.020 0.000

25 0.115 0.017 0.000 0.215 0.219 0.000

WCEM ŵ < 0.2

2 0.108 0.013 0.038 0.227 0.039 0.022

5 0.116 0.018 0.000 0.211 0.014 0.000

10 0.114 0.016 0.001 0.213 0.016 0.000

25 0.110 0.011 0.000 0.210 0.012 0.000

WEM ŵ < 1 − ˆ̄w
2 0.109 0.012 0.018 0.263 0.078 0.000

5 0.126 0.031 0.000 0.224 0.031 0.000

10 0.122 0.024 0.000 0.238 0.048 0.000

25 0.117 0.019 0.000 0.223 0.029 0.000

WCEM ŵ < 1 − ˆ̄w
2 0.109 0.013 0.016 0.263 0.080 0.007

5 0.125 0.028 0.000 0.224 0.030 0.000

10 0.120 0.025 0.000 0.232 0.040 0.000

25 0.111 0.012 0.000 0.215 0.019 0.000

tclust

2 0.100 0.005 0.043 0.200 0.008 0.031

5 0.100 0.000 0.000 0.200 0.000 0.000

10 0.100 0.000 0.000 0.200 0.000 0.000

25 0.100 0.000 0.000 0.200 0.000 0.000
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Table 8 continued

p ε = 0.10 ε = 0.20

ε swamp. mask. ε swamp. mask.

otrimle

2 0.135 0.040 0.019 0.254 0.069 0.005

5 0.106 0.003 0.007 0.203 0.003 0.004

10 0.102 0.002 0.001 0.202 0.003 0.000

25 0.101 0.001 0.005 0.200 0.001 0.003

with non-optimizedR code on a 3.4GHz Intel Core i5 proces-
sor is given inTable 14.We report the sample timesneeded for
convergence of the algorithm on a single dataset with K = 3,
ε = 20%, b = 10, c = 50. The smoothing parameter has
been chosen in order to achieve an empirical downweighting
level about equal to 0.25. Initialization has been included in
time evaluation. It can be seen that computing time increases
both with the sample size and the dimension but always at a
reasonable slow rate. We underline that the speed of con-
vergence also depends on the choice of h: values of the
smoothing parameter leading to an excess of downweight-
ing can make it slow down.

7 Real data examples

7.1 Swiss bank note data

Let us consider the well-known Swiss banknote dataset
concerning p = 6 measurements of n = 200 old Swiss
1000-franc banknotes, half of which are counterfeit. The
weighted likelihood strategy is based on a gamma kernel
and a symmetric Chi-square RAF. Our first task is to choose
the number of clusters. To this end, we look at the weighted
BIC (12) on a fixed grid of h values for K = 1, 2, 3, 4 and a
restriction factor c = 12. The inspection of Figure 5 clearly
suggests a two-group structure for all considered values of
the smoothing parameter h. The empirical downweighting
level is fairly stable for a wide range of h values. We decided
to set h = 0.05 leading to an empirical downweighting level
equal to 0.10. The WEM algorithm based on the testing rule
(9) with α = 0.01 leads to identify 21 outliers that include
15 forged and 6 genuine bills.

On the contrary, there are 19 data points whose weight is
lower than 1− ˆ̄w that include 14 forged and 5 genuine bills.
The cluster assignments stemming from the latter approach
are displayed in Figure 6. It is worth to note that the outlying
forged bills coincide with the group that has been recognized
to follow a different forgery pattern and characterized by a
peculiar length of the diagonal (seeGarcía-Escudero et al. 30;
Dotto et al. 21, and references therein). On the other hand, the

Table 9 Outlier detection for WEM, WCEM, tclust and otrimle
with p = 2, 5, 10, ε = 0.10, 0.20, β = 8 (moderate overlapping)

p ε = 0.10 ε = 0.20

ε swamp. mask. ε swamp. mask.

WEM α = 0.01

2 0.120 0.023 0.001 0.218 0.025 0.012

5 0.126 0.029 0.000 0.216 0.021 0.000

10 0.125 0.028 0.000 0.217 0.021 0.000

25 0.119 0.021 0.000 0.222 0.028 0.000

WCEM α = 0.01

2 0.117 0.024 0.048 0.216 0.029 0.038

5 0.127 0.031 0.000 0.214 0.017 0.000

10 0.123 0.026 0.000 0.213 0.016 0.000

25 0.115 0.017 0.000 0.220 0.025 0.000

WEM ŵ < 0.1

2 0.096 0.005 0.086 0.202 0.012 0.038

5 0.108 0.009 0.000 0.205 0.006 0.000

10 0.106 0.007 0.000 0.207 0.009 0.000

25 0.105 0.005 0.000 0.209 0.011 0.000

WCEM ŵ < 0.1

2 0.092 0.005 0.125 0.198 0.019 0.085

5 0.107 0.008 0.000 0.205 0.006 0.001

10 0.105 0.006 0.000 0.205 0.016 0.000

25 0.114 0.015 0.000 0.208 0.010 0.000

WEM ŵ < 0.2

2 0.110 0.013 0.016 0.221 0.028 0.009

5 0.118 0.020 0.000 0.212 0.014 0.000

10 0.116 0.018 0.000 0.215 0.019 0.000

25 0.120 0.020 0.000 0.215 0.019 0.000

WCEM ŵ < 0.2

2 0.108 0.013 0.038 0.225 0.041 0.042

5 0.116 0.018 0.000 0.211 0.013 0.000

10 0.114 0.016 0.001 0.212 0.016 0.000

25 0.120 0.020 0.000 0.215 0.019 0.000

WEM ŵ < 1 − ˆ̄w
2 0.109 0.012 0.018 0.250 0.063 0.002

5 0.126 0.031 0.000 0.223 0.029 0.000

10 0.122 0.024 0.000 0.236 0.046 0.000

25 0.122 0.026 0.000 0.223 0.029 0.000

WCEM ŵ < 1 − ˆ̄w
2 0.109 0.013 0.016 0.272 0.097 0.025

5 0.125 0.028 0.000 0.222 0.028 0.000

10 0.120 0.025 0.000 0.231 0.039 0.000

25 0.122 0.026 0.000 0.227 0.034 0.000

tclust

2 0.100 0.007 0.064 0.200 0.009 0.036

5 0.100 0.000 0.001 0.200 0.000 0.001

10 0.100 0.000 0.000 0.200 0.000 0.000

25 0.100 0.000 0.000 0.200 0.000 0.000
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Table 9 continued

p ε = 0.10 ε = 0.20

ε swamp. mask. ε swamp. mask.

otrimle

2 0.141 0.047 0.005 0.256 0.069 0.000

5 0.101 0.001 0.007 0.206 0.008 0.004

10 0.102 0.002 0.001 0.203 0.004 0.000

25 0.100 0.001 0.004 0.201 0.002 0.002

outlying genuine bills all exhibit some extrememeasures. For
the same value of the eigen-ratio constraint, the otrimle
assigns 19 bills to the improper component density, leading
to the same classification of the WEM, whereas rtclust
includes in the trimming set one counterfeit bill more.

A visual comparison between the three results is possi-
ble from Figure 7, whose panels show a scatterplot of the
fourth against the sixth variable with the classification result-
ing fromWEM(with both outlier detection rules),rtclust
and otrimle, respectively. The WCEM has been tuned to
achieve the same empirical downweighting level and leads
to the same results.

7.2 2018 world happiness report data

In this section the weighted likelihood methodology is
applied to a dataset from the2018WorldHappinessReport by
the United Nations Sustainable Development Solutions Net-
work (Helliwell et al. 33) (hereafter denoted by WHR18).
The data give measures about six key variables used to
explain the variation of subjective well-being across coun-
tries: per capitaGrossDomesticProduct (on log scale), Social
Support, i.e. the national average of the binary responses to
the GallupWorld Poll (GWP) question If you were in trouble,
do you have relatives or friends you can count on to help you
whenever you need them, or not?, Health Life Expectancy at
birth, Freedom to make life choices, i.e. the national average
of binary responses to the GWP question Are you satisfied
or not with your freedom to choose what you do with your
life?, Generosity, measured by the residual of regressing the
national average of GWP responses to the question Have
you donated money to a charity in the past month? on GDP
per capita, perception of Corruption, i.e. the national aver-
age of binary responses to the GWP questions Is corruption
widespread throughout the government or not? and Is cor-
ruption widespread within businesses or not?. The dataset
is made of 142 rows, after the removal of some countries
characterized by missing values. The objective is to obtain
groups of countries with a similar behavior, to identify pos-
sible countries with anomalous and unexpected traits and to

Table 10 Outlier detection forWEM,WCEM,tclust andotrimle
with p = 2, 5, 10, ε = 0.10, 0.20, β = 6 (severe overlapping)

p ε = 0.10 ε = 0.20

ε swamp. mask. ε swamp. mask.

WEM α = 0.01

2 0.120 0.023 0.001 0.206 0.020 0.052

5 0.125 0.028 0.000 0.214 0.018 0.000

10 0.123 0.026 0.000 0.216 0.020 0.000

25 0.123 0.026 0.000 0.222 0.027 0.000

WCEM α = 0.01

2 0.145 0.050 0.001 0.253 0.045 0.006

5 0.128 0.031 0.000 0.214 0.018 0.000

10 0.124 0.027 0.000 0.213 0.017 0.000

25 0.119 0.021 0.000 0.219 0.024 0.000

WEM ŵ < 0.1

2 0.096 0.005 0.086 0.209 0.020 0.003

5 0.108 0.009 0.000 0.205 0.006 0.000

10 0.106 0.007 0.000 0.207 0.008 0.000

25 0.111 0.010 0.000 0.210 0.009 0.000

WCEM ŵ < 0.1

2 0.092 0.005 0.125 0.237 0.046 0.001

5 0.107 0.008 0.000 0.206 0.006 0.001

10 0.105 0.006 0.000 0.206 0.007 0.000

25 0.110 0.010 0.000 0.211 0.009 0.000

WEM ŵ < 0.2

2 0.110 0.013 0.016 0.231 0.039 0.001

5 0.118 0.020 0.000 0.211 0.013 0.000

10 0.116 0.018 0.000 0.215 0.019 0.000

25 0.118 0.021 0.000 0.216 0.020 0.000

WCEM ŵ < 0.2

2 0.108 0.013 0.038 0.227 0.039 0.022

5 0.116 0.018 0.000 0.211 0.013 0.001

10 0.114 0.016 0.001 0.213 0.016 0.000

25 0.118 0.019 0.000 0.218 0.018 0.000

WEM ŵ < 1 − ˆ̄w
2 0.109 0.012 0.018 0.209 0.020 0.003

5 0.126 0.031 0.000 0.222 0.027 0.000

10 0.122 0.024 0.000 0.235 0.044 0.000

25 0.127 0.032 0.000 0.238 0.048 0.000

WCEM ŵ < 1 − ˆ̄w
2 0.109 0.013 0.016 0.237 0.046 0.001

5 0.125 0.028 0.000 0.223 0.028 0.000

10 0.120 0.025 0.000 0.232 0.041 0.000

25 0.125 0.027 0.000 0.235 0.042 0.000

tclust

2 0.100 0.007 0.061 0.200 0.024 0.095

5 0.100 0.000 0.002 0.200 0.000 0.001

10 0.100 0.000 0.000 0.200 0.000 0.000

25 0.100 0.000 0.000 0.200 0.000 0.000
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Table 10 continued

p ε = 0.10 ε = 0.20

ε swamp. mask. ε swamp. mask.

otrimle

2 0.145 0.050 0.004 0.251 0.064 0.003

5 0.102 0.003 0.006 0.202 0.003 0.006

10 0.102 0.003 0.001 0.203 0.004 0.000

25 0.101 0.001 0.002 0.201 0.001 0.001

Table 11 Average measures of classification accuracy for WEM,
WCEM, tclust and otrimle with p = 2, 5, 10, ε = 0.10, 0.20,
β = 10 (well-separated clusters)

p ε = 0.10 ε = 0.20

Rand MCE Rand MCE

WEM

2 0.98 0.01 0.98 0.01

5 0.97 0.01 0.97 0.01

10 0.97 0.01 0.97 0.01

25 0.96 0.01 0.96 0.01

WCEM

2 0.98 0.01 0.9 0.01

5 0.97 0.01 0.97 0.01

10 0.97 0.01 0.97 0.01

25 0.95 0.02 0.95 0.02

tclust

2 0.97 0.01 0.97 0.01

5 0.97 0.01 0.97 0.01

10 0.97 0.01 0.97 0.01

25 0.95 0.02 0.95 0.02

otrimle

2 0.98 0.01 0.98 0.01

5 0.97 0.01 0.97 0.01

10 0.97 0.01 0.97 0.01

25 0.96 0.01 0.96 0.01

highlight those features that are themain source of separation
among clusters.

In this example, a GKL RAF has been chosen, the
unbiased at the boundary kernel density estimate has been
obtain by first evaluating a kernel density estimate on the
log-transformed squared distance over the whole real line
and then back-transforming the fitted density to (0,∞)

(Agostinelli and Greco 5), and we set c = 50.
In order to select the number of clusters, we monitored

the weighted BIC stemming from WEM and the classifica-
tion log-likelihood at convergence fromWCEM for different
values of K and h. The corresponding monitoring plots are
given in Figure 8, respectively. Based on the WEM algo-
rithm, K = 3 is to be preferred, even if the gap with the

Table 12 Average measures of classification accuracy for WEM,
WCEM, tclust and otrimle with p = 2, 5, 10, ε = 0.10, 0.20,
β = 8 (moderate overlapping)

p ε = 0.10 ε = 0.20

Rand MCE Rand MCE

WEM

2 0.93 0.02 0.92 0.03

5 0.92 0.03 0.93 0.03

10 0.92 0.03 0.92 0.03

25 0.87 0.05 0.86 0.05

WCEM

2 0.93 0.02 0.91 0.03

5 0.92 0.03 0.93 0.03

10 0.92 0.03 0.92 0.03

25 0.81 0.07 0.81 0.07

tclust

2 0.93 0.02 0.92 0.03

5 0.92 0.03 0.93 0.03

10 0.92 0.03 0.92 0.03

25 0.80 0.08 0.80 0.08

otrimle

2 0.93 0.02 0.93 0.02

5 0.92 0.03 0.93 0.03

10 0.92 0.03 0.92 0.03

25 0.86 0.05 0.84 0.06

case K = 4 is very small for all considered values of the
smoothing parameter. On the other hand, the inspection of the
weighted classification log-likelihood driven by the WCEM
suggests K = 4. Therefore, we have applied our WEM and
WCEM algorithms both based on K = 3 and K = 4. As
with K = 4 two groups are not very separated, we preferred
K = 3 and reported only those results for reasons of space.
Moreover, the results stemming from WEM and WCEM
were very similar both in terms of fitted parameters, cluster
assignments and detected outliers. Then, in the following we
only give the results driven by WEM. The empirical down-
weighting level was found not to depend in a remarkable
fashion on the number of groups. In particular, for K = 3,
in the monitoring process of 1 − ˆ̄w we did not observe any
abrupt change but a smooth decline until a stabilization of the
level of contamination occurred. Then, we decided to use a
h value leading to (1− ˆ̄w) ≈ 0.10. Figure 9 displays the dis-
tance plot stemming fromWEM. According to (9) for a level
α = 0.01, 12 outliers are detected. A closer inspection of
the plot unveils that some of such points are close to the cut-
off value. Therefore, they are not considered as outliers but
correctly assigned to the corresponding cluster. Furthermore,
we notice that all the points leading to the largest distances
are attached a very small weight (< 0.01). The weight cor-
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Table 13 Average measures of classification accuracy for WEM,
WCEM, tclust and otrimle with p = 2, 5, 10x, ε = 0.10, 0.20,
β = 6 (severe overlapping)

p ε = 0.10 ε = 0.20

Rand MCE Rand MCE

WEM

2 0.82 0.07 0.79 0.07

5 0.82 0.06 0.82 0.06

10 0.82 0.07 0.81 0.07

25 0.66 0.15 0.64 0.16

WCEM

2 0.82 0.06 0.79 0.08

5 0.81 0.07 0.81 0.07

10 0.79 0.08 0.79 0.08

25 0.53 0.20 0.52 0.19

tclust

2 0.82 0.07 0.76 0.07

5 0.82 0.07 0.82 0.07

10 0.80 0.08 0.80 0.08

25 0.49 0.23 0.49 0.22

otrimle

2 0.84 0.06 0.83 0.06

5 0.83 0.06 0.83 0.06

10 0.82 0.07 0.81 0.07

25 0.65 0.16 0.64 0.16

Table 14 Time (in s) for convergence of WEM on simulated data sets
of increasing size n = 1000, 2000, 5000, 10, 000 and dimensions p =
2, 5, 10, 25, with ε = 0.20, β = 10, c = 50

Size Dimension

2 5 10 25

1000 1.58 4.38 7.44 19.94

2000 8.08 11.50 15.24 30.06

5000 24.98 32.54 45.67 61.72

10,000 88.50 90.86 93.76 116.68

responding to Myanmar is about 0.40. The other countries
near the threshold line all show weights about equal to 0.80.

The cluster profiles and rawmeasurements for the detected
outlying countries are reported in Table 15. The three clus-
ters are well separated in terms of all of the items considered,
even if small differences are seen in terms of perception of
Corruption between clusters 1 and 2. Cluster 3 includes all
the countries characterized by the highest level of subjec-
tive well-being. The differences with the other two clusters
concerning GDP, HLE and Corruption are outstanding. On
the opposite, in cluster 1 we find all the countries with the
hardest economic and social conditions. For what concerns
the explanation of the outliers, we notice that the subgroup
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Fig. 5 Swiss banknote data. Monitoring the weighted BIC for WEM,
K = 1, 2, 3, 4

of African countries composed by Central African Republic,
Chad, Ivory Coast, Lesotho, Nigeria and Sierra Leone might
belong to group 1 but is characterized by the six lowest HLE
values. For what concerns Myanmar, it exhibits extremely
large Freedom andGenerosity indexes and a surprising small
value for Corruption. It should belong to cluster 1 but it is
closer to cluster 3 according to the last three measurements,
indeed. For instance, it may be supposed that such measure-
ments are not completely reliable because of problems with
the questionnaires and the sampling or they may revel a sur-
prising positive attitude despite the difficult economic and
life conditions.

A spatial map of cluster assignments is given in Fig-
ure 10 that confirms the goodness and coherence of the results
and the ability of the considered six features to find reason-
able clusters. Cluster 1 is mainly localized in Africa, cluster
2 is composed by developing countries, whereas cluster 3
includes the world leading countries, among which there are
USA, Canada, Australia and the countries in the European
Union.

7.3 Anuran calls

This example concerns the problem of recognition and clas-
sification of anuran (frogs and tods) families through their
calls. The classification task is a very complex problem due
to the large anuran diversity (Colonna et al. 15). The data
gives p = 22normalizedMel-frequency cepstral coefficients
(MFCCs), measures that are commonly used as features
in sound processing and speech recognition, for each of
n = 7195 syllables, extracted after the segmentation of 60
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Fig. 6 Swiss banknote data.
Cluster assignments by WEM.
Observation whose weight is
lower than 1 − w̄ are considered
outliers. Genuine bills are
denoted by a green +, forged
bills by a red �. Outliers are
denoted by a black filled circle.
(Color figure online)
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audio records belonging to k = 4 different families. The data
are publicly available at the UCI Machine Learning
Repository. Despite the challenging nature of the prob-
lem, in particular for model-based clustering techniques, we
want to assess the reliability of the proposedmethodology on
such high-dimensional example and its behavior as an unsu-
pervised learning device. To this end, we decided to split half
the data in a training and test set.

The entries in Table 16 give the adjustedRand index evalu-
ated on both sets, averaged over 100 replicated splits, in order
to honestly estimate the accuracy of classification. We com-
pare the results from mclust, tclust10, tclust20,
WEM and WCEM. WEM and WCEM are characterized by
a GKL RAF and a gamma kernel. On the training set, the
adjusted Rand index is evaluated only on those observations
not flagged as outliers. By looking at the results, one can state
that the robust methods are feasible also in this challenging
settings and lead to improved classification accuracy w.r.t.
the non-robust mclust, indeed.

On the other hand, the robust techniques only succeed
to a limited extent in recovering the actual classification
on the test set, because of the problem complexity, which

comes from the large dimensionality and sample size but
also from the severe overlapping of the groups correspond-
ing to the anuran families. Nevertheless, the behavior of
the weighted likelihood methodologies is satisfactory when
compared with the other competing techniques. The behav-
ior of tclust10 on the training set is a consequence of the
smaller number of detected outliers.

8 Conclusions

We have proposed a robust technique for fitting a finite mix-
ture of multivariate Gaussian components based on recent
developments in weighted likelihood estimation. Actually,
the proposed methodology is meant to provide a step further
with respect to the original proposal in [38]. The method is
based on the idea of using a univariate kernel density esti-
mate based on robust distances rather than a multivariate one
based on the data in order to compute weights. Furthermore,
the proposed technique is characterized by the introduction
of an eigen constraint aimed at avoiding problems connected
with an unbounded likelihood or spurious solutions.
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Fig. 7 Swiss banknote data. Fourth against the sixth variable with cluster assignments by WEM (α = 0.01), WEM (wki < 1 − w̄), rtclust
and otrimle in clockwise fashion. Genuine bills are denoted by a green +, forged bills by a red �. Outliers are denoted by a black filled circle.
(Color figure online)
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Fig. 8 WHR18 data. Monitoring the weighted BIC for WEM (left) and the weighted classification log-likelihood for WCEM, K = 2, 3, 4, 5, 6
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Fig. 9 WHR18 data. Distance plot for WEM with K = 3. The hori-
zontal line gives the χ2

6;0.99 quantile

Based on the robustly fittedmixturemodel, amodel-based
clustering strategy can be built in a standard fashion by look-
ing at the value of posterior membership probabilities. At the
same time, formal rules for outlier detection can be derived,
as well. Then, one could assign units to clusters provided
that the corresponding outlyingness test is not significant
that means that detected outliers have to be discarded and
not assigned to any group. The numerical studies and the
real data examples showed the satisfactory reliability of the
proposed methodology.

There is still room for further work, along a path shared
with tclust, rtclust, mtclust and otrimle. Actu-
ally the proposed method works for a given smoothing
parameter h and a fixed number of clusters K . In addi-
tion, outlier detection depends upon a fixed threshold. At the
moment, the selection of h stemming from the monitoring
of several quantities, such as the empirical downweighting
level, the unit-specific robust distances or even the fitted
parameters, provides an acceptable adaptive solution. Such
a procedure is not different from the implementation of a

Table 15 WHR18 data: cluster
profiles and raw measurements
for the detected outlying
countries

LogGDP HLE Social sup. Freedom Generosity Corruption Size

Cluster 1 7.88 53.68 0.69 0.69 0.19 0.78 38

Cluster 2 9.35 64.46 0.83 0.74 0.26 0.80 60

Cluster 3 10.48 71.63 0.90 0.83 0.44 0.61 37

Cen.Afr.Rep. 6.47 44.31 0.31 0.63 0.17 0.88

Chad 7.55 45.66 0.68 0.53 0.17 0.84

Ivory Coast 8.13 46.52 0.66 0.77 0.16 0.76

Lesotho 7.91 46.48 0.80 0.73 0.10 0.74

Myanmar 8.59 57.51 0.79 0.86 0.90 0.62

Nigeria 8.61 45.50 0.78 0.76 0.28 0.89

Sierra Leone 7.22 43.99 0.64 0.67 0.24 0.85

cluster
0

1

2

3

NA

World Happiness Report 2018

Fig. 10 WHR18 data. Spatial classification from WEM with K = 3
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Table 16 Anuran calls
mclust tclust10 tclust20 WEM WCEM

Training 0.25 0.58 0.65 0.68 0.61

(0.06) (0.03) (0.02) (0.02) (0.03)

Test 0.25 0.53 0.52 0.53 0.53

(0.07) (0.04) (0.02) (0.02) (0.02)

Adjusted Rand index for mclust, tclust10, tclust20, WEM and WCEM, averaged over 100 trials;
standard errors are also given in parenthesis

sequence of refinement steps of an initial robust partition
stemming from a sequence of decreasing values of h. The
selection of K remains a difficult problem to deal with
too, despite the satisfactory behavior of the proposed cri-
teria, i.e. the weighted BIC and the weighted classification
log-likelihood. Outlier detection is a novel aspect in the
framework of robust mixture modeling and model-based
clustering. In the specific context, the outlyingness of each
unit is tested conditionally on the final cluster assignment.
The number of outliers clearly depends on the chosen level α
or the selected threshold for the final weights. A fair choice
of the level of the test is still an open problem in outlier
detection.However, the suggested testing strategieswork sat-
isfactory, at least in those considered scenarios, and provide
a good compromise between swamping and masking that
could be improved further by using multiplicity adjustments
(Cerioli and Farcomeni 13). The extent towhich the proposed
methodology allows to deal with very large-dimensional
problems remains limited, as well as for the other robust
model-based clustering techniques we also considered in this
paper. Nevertheless, the weighted likelihood methodology
looks promising if one is willing to develop robust proce-
dures specifically suited for high-dimensional problems. For
instance, multivariate weighted likelihood estimation could
be considered in model-based subspace clustering methods
and in particular in the framework of mixtures of factor ana-
lyzers (McLachlan et al. 42). The reader is pointed to [8] for
a recent account on high-dimensional clustering.
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