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Abstract
We provide a method for fast and exact simulation of Gaussian random fields on the sphere having isotropic covariance
functions. The method proposed is then extended to Gaussian random fields defined over the sphere cross time and having
covariance functions that depend on geodesic distance in space and on temporal separation. The crux of the method is in the
use of block circulant matrices obtained working on regular grids defined over longitude and latitude.
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1 Introduction

Simulation of Gaussian random fields (GRFs) is important
for the use ofMonteCarlo techniques.Considerablework has
been done to simulate GRFs defined over the d-dimensional
Euclidean space, Rd , with isotropic covariance functions.
The reader is referred to Wood and Chan (1994), Diet-
rich and Newsam (1997), Gneiting et al. (2006) and Park
and Tretyakov (2015) with the references therein. See also
Emery et al. (2016) for extensions to the anisotropic and non-
stationary cases. Yet, the literature on GRFs defined over the
two-dimensional sphere or the sphere cross time has been
sparse. Indeed, only few simulation methods for random
fields on the sphere can be found in the literature. Among
them are Cholesky decomposition and Karhunen–Loève
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expansion (Lang and Schwab 2015). More recently, Creasey
and Lang (2018) proposed an algorithm that decomposes a
random field into one-dimensional GRFs. Simulations of the
1d process are performed along with their derivatives, which
are then transformed to an isotropic Gaussian random field
on the sphere by Fast Fourier Transform (FFT). Following
Wood and Chan (1994), Cholesky decomposition is consid-
ered as an exact method, that is, the simulated GRF follows
an exactmultivariateGaussian distribution. Simulation based
on Karhunen–Loève expansion or Markov random fields is
considered as approximated methods, because the simulated
GRF follows an approximation of the multivariate Gaus-
sian distribution (see Lang and Schwab 2015; Møller et al.
2015). Extensions to the spatially isotropic and temporally
stationary GRF on the sphere cross time using space-time
Karhunen–Loève expansion were considered in Clarke et al.
(2018).

It is well known that the computational cost to simulate a
random vector at n space-time locations using the Cholesky
decomposition isO(n3),which is prohibitively expensive for
large values of n. Karhunen–Loève expansion requires the
computation of Mercer coefficients of the covariance func-
tion (Lang and Schwab 2015; Clarke et al. 2018) which are
rarely known. Finally, the method proposed by Creasey and
Lang (2018) is restricted to a special case of spectral decom-
position, which makes the method lacking generality.

Oneway to reduce the computational burden is through the
relationship between torus-wrapping, block circulant matri-
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ces and FFT. The use of this relationship has been introduced
by Wood and Chan (1994) and Dietrich and Newsam (1997)
when developing circulant embedding methods to simulate
isotropic GRFs over regular grids of Rd . Regular polyhedra
are good candidates to be used asmeshes for the sphere.How-
ever, on the sphere there exist only five regular polyhedra, the
Platonic solids. The regular polyhedron with most edges and
faces is the icosahedron with 12 vertices, 20 faces and 30
edges (Coxeter 1973), from which we can draw at most 30
regular points on the spheres, defined as the intersections of
the lines joining the midpoints of two opposite edges.

For a GRF on the sphere, using spherical coordinates,
Jun and Stein (2008) make use of circulant matrices to
compute the exact likelihood of non-stationary covariance
functions when the GRF is observed on a regular grid over
(0, π) × (0, 2π).

In this paper, we revisit the circulant structure obtained
by Jun and Stein (2008) and we use it to develop a fast and
exact simulation method for isotropic GRFs on the sphere.
Moreover, such simulation method is extended to simulate
spatially isotropic and temporally stationary GRFs on the
sphere cross time. The proposedmethod requires an isotropic
covariance function on the sphere or a spatially isotropic
and temporally stationary covariance function on the sphere
cross time. One of the advantages of this method is the huge
reduction in the computational cost to O(n log(n)).

The paper is organized as follows. Section 2 details how to
obtain circulant matrices on the sphere for isotropic covari-
ance functions. In Sect. 3, we extend the simulation method
to the case of the sphere cross time for spatially isotropic and
temporally stationary covariance functions. The algorithms
are detailed in Sect. 4, and in Sect. 5 we provide a simulation
study. Finally, Sect. 6 contains some concluding remarks.

2 Circulant matrices over two-dimensional
spheres

Let S2 = {s ∈ R
3 : ‖s‖ = 1} ⊂ R

3 be the unit sphere
centered at the origin, equipped with the geodesic distance
θ(s1, s2) := arccos(〈s1, s2〉), for s1, s2 ∈ S

2. We propose
a new approach to simulate a finite-dimensional realization
from a real-valued and zero mean, stationary, geodesically
isotropic GRF X = {X(s) : s ∈ S

2} with a given covariance
function

R(s1, s2) = E [X(s1)X(s2)] = r(θ(s1, s2)), s1, s2 ∈ S
2.

Through the paper, we equivalently refer to R or r as the
covariance function ofX. A list of isotropic covariance func-
tions is provided in Gneiting (2013). In what follows, we use
the shortcut θ for θ(s1, s2) whenever there is no confusion.

For a stationary isotropic random field on S
2, the covari-

ance functions and variograms are uniquely determined
through the relation (Huang et al. 2011)

Fig. 1 Example of the grid with N = 24 and M = 9

γ (θ) = σ 2
(
1 − r(θ)

)
, 0 ≤ θ ≤ π, (1)

where σ 2 = r(0). The basic requirements to simulate a
GRF with the proposed method are a grid, being regu-
lar over both longitude and latitude, and the computation
of the covariance function over this grid. For two integers
M, N ≥ 2 let I = {1, . . . , N } J = {1, . . . , M}, and define
λi = 2π i/N and φ j = π j/M for i ∈ I and j ∈ J ,
respectively. In the following, si j = (λi , φ j ) will denote
the longitude–latitude coordinates of the point si j ∈ S

2 and
the set ΩMN = {(λi , φ j ) : i ∈ I , j ∈ J } defines a regular
grid over S2 (see Fig. 1). The Cartesian coordinates of si j ,
expressed in R3, are

si j = (xi j , yi j , zi j ) = (cos λi sin φ j , sin λi sin φ j , cosφ j ).

(2)

Let us now define the random vector

Xi = [X(si1), X(si2), . . . , X(siM )],
and the random field restricted to ΩMN by XΩ = [X1,X2,

. . . ,XN ]. The matrixΣΣΣ = Var[XΩ ] has a block structure

ΣΣΣ =

⎡
⎢⎢⎢⎣

ΣΣΣ1,1 ΣΣΣ1,2 . . . ΣΣΣ1,N

ΣΣΣ1,2 ΣΣΣ2,2 . . . ΣΣΣ2,N
...

...
. . .

...

ΣΣΣ1,N ΣΣΣ2,N · · · ΣΣΣN ,N

⎤
⎥⎥⎥⎦ ,

where ΣΣΣ i, j = cov(Xi ,X j ) = ΣΣΣ j,i . Notice that the grid
ΩMN assumes that the north pole eN = (0, 0, 1). However,
under isotropy assumption, the elements ofΣΣΣ depend only on
the geodesic distance, and so, the north pole does not play any
role here. Moreover, the geodesic distance can be written as

θ(sik, s jl) = arccos(xik x jl + yik y jl + zik z jl)

= arccos(sin φk sin φl(cos λi cos λ j
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+ sin λi sin λ j ) + cosφk cosφl)

= arccos(sin φk sin φl cos(λ j − λi )

+ cosφk cosφl). (3)

Equation (3) implies ΣΣΣ i, j = ΣΣΣ1,| j−i |+1 = ΣΣΣ1,N−(|i− j |+1).
Thus, writingΣΣΣ i = ΣΣΣ1,i , we get

ΣΣΣ =

⎡
⎢⎢⎢⎣

ΣΣΣ1 ΣΣΣ2 . . . ΣΣΣN

ΣΣΣN ΣΣΣ1 . . . ΣΣΣN−1
...

...
. . .

...

ΣΣΣ2 ΣΣΣ3 · · · ΣΣΣ1

⎤
⎥⎥⎥⎦ . (4)

Equation (4) shows that ΣΣΣ is a symmetric block circulant
matrix (Davis 1979) related to the discrete Fourier transform
as follows. Let IM be the identity matrix of order M and
FN be the Fourier matrix of order N , that is, [FN ]i,k =
w(i−1)(k−1) for 1 ≤ i, k ≤ N where w = e−2π ı/N and
ı = √−1. Following Zhihao (1990), the matrixΣΣΣ is unitary
block diagonalizable by FN ⊗ IM , where⊗ is the Kronecker
product. Then, there exist N matricesΛΛΛi , with i ∈ I , having
dimension M × M, such that

ΣΣΣ = 1

N
(FN ⊗ IM )ΛΛΛ(FN ⊗ IM )∗, (5)

with

ΛΛΛ =

⎡
⎢⎢⎢⎣

ΛΛΛ1 0 . . . 0
0 ΛΛΛ2 . . . 0
...

...
. . .

...

0 0 . . . ΛΛΛN

⎤
⎥⎥⎥⎦ ,

where B∗ denotes the conjugate transpose of the matrix B
and0 is amatrix of zeros of adequate size. The decomposition
(5) implies that the block matrixΛΛΛ can be computed through
the discrete Fourier transform of its first block row, that is,

[
ΣΣΣ1 ΣΣΣ2 · · · ΣΣΣN

]
(FN ⊗ IM ) = [

ΛΛΛ1 ΛΛΛ2 · · · ΛΛΛN
]
. (6)

Componentwise, (6) becomes

[
ΣΣΣ

jl
1 ΣΣΣ

jl
2 · · · ΣΣΣ

jl
N

]
FN =

[
ΛΛΛ

jl
1 ΛΛΛ

jl
2 · · · ΛΛΛ

jl
N

]
, (7)

where j, l ∈ J . SinceΣΣΣ is positive definite (semi-definite), it
is straightforward from the decomposition (5) that the matrix
ΛΛΛ is positive definite (semi-definite) and thus that eachmatrix
ΛΛΛi is also positive definite (semi-definite), for i ∈ I . Hence,
we get

ΣΣΣ1/2 = 1√
N

(FN ⊗ IM )ΛΛΛ1/2, (8)

which is what is needed for simulation. A simulation algo-
rithm based on Eq. (8) is provided in Sect. 4.

3 Circulant embedding on the sphere cross
time

We now generalize this approach on the sphere cross time
for a spatially isotropic and temporally stationary GRF X =
{X(s, t) : (s, t) ∈ S

2 × R} with zero mean and a given
covariance function, R, defined as

R
(
(s1, t1), (s2, t2)

)
:= r(θ(s1, s2), |t1 − t2|),

(si , ti ) ∈ S
2 × R, i = 1, 2. We analogously define the

space-time stationary variogram γ : [0, π ] × R �→ R as

γ (θ, u) = σ 2(1 − r(θ, u)), θ ∈ [0, π ], u ∈ R. (9)

Let H > 0 be the time horizon at which we wish to simulate.
In addition, let T be a positive integer and define the regular
time grid tτ = τH/T with τ ∈ {0, . . . , T }. Define the set
ΩNMT = {(λi , φ j , tτ ) : i ∈ I , j ∈ J , τ ∈ {0, . . . , T }}, and
the random vectors

Xi,τ = [X(si1, tτ ), X(si2, tτ ), . . . , X(siM , tτ )],
XΩ,τ = [X1,τ , X2,τ , . . . , XN ,τ ],
XΩ = [XΩ,0, XΩ,1, . . . , XΩ,T ].

The associated covariance matrices are

ΨΨΨ i,k(τ, τ
′) = cov(Xi,τ ,Xk,τ ′),

ΨΨΨ (τ, τ ′) = cov(XΩ,τ ,XΩ,τ ′),

ΨΨΨ = Var(XΩ),

with i, k ∈ I and 0 ≤ τ, τ ′ ≤ T . The assumption of tem-
poral stationarity implies that ΨΨΨ i,k(τ, τ

′) = ΨΨΨ i,k(|τ ′ − τ |).
Therefore, ΨΨΨ (τ, τ ′) = ΨΨΨ (τ ′, τ ) = ΨΨΨ (|τ ′ − τ |). As a con-
sequence, for fixed τ, τ ′ the matrix ΨΨΨ (|τ ′ − τ |) is a block
circulant matrix with dimension NM × NM , however,ΨΨΨ is
not. To tackle this problem, we consider the torus-wrapped
extension of the grid ΩMNT over the time variable which is
detailed as follows. First, let κ be a positive integer and let
g : R �→ R be defined as

g(t) =
⎧⎨
⎩

t H
T if 0 ≤ t ≤ κT ,

(2κT−t)H
T if κT < t ≤ (2κT − 1).

(10)

Then, the matrix

Ψ̃ΨΨ =

⎡
⎢⎢⎢⎢⎢⎣

ΨΨΨ (g(0)) ΨΨΨ (g(1)) . . . ΨΨΨ (g(κT )) . . . ΨΨΨ (g(2κT − 1))

ΨΨΨ (g(1)) ΨΨΨ (g(0))
. . . ΨΨΨ (g(κT − 1)) . . . ΨΨΨ (g(2κT − 2))

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ΨΨΨ (g(1)) ΨΨΨ (g(2)) · · · ΨΨΨ (g(κT + 1)) . . . ΨΨΨ (g(0))

⎤
⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

ΨΨΨ (0) ΨΨΨ (1) . . . ΨΨΨ (κT ) . . . ΨΨΨ (1)

ΨΨΨ (1) ΨΨΨ (0)
. . . ΨΨΨ (κT − 1) . . . ΨΨΨ (2)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

ΨΨΨ (1) ΨΨΨ (2) · · · ΨΨΨ (κT − 1) . . . ΨΨΨ (0)

⎤
⎥⎥⎥⎥⎥⎦

(11)

is a (NM(2κT − 1)) × (NM(2κT − 1)) block circulant
matrix. Considering that each ΨΨΨ (g(t)) is a block circulant
matrix for 0 ≤ t ≤ (2κT − 1) and using decomposition (5),
we get

Ψ̃ΨΨ = [I2κL−1 ⊗ (FN ⊗ IM )][F2κL−1 ⊗ IMN ]ϒϒϒ
×[I2κL−1 ⊗ (FN ⊗ IM )]∗[F2κL−1 ⊗ IMN ]∗, (12)

with

ϒϒϒ =

⎡
⎢⎢⎢⎣

ϒϒϒ0 0 · · · 0
0 ϒϒϒ1 · · · 0
...

...
. . .

...

0 0 · · · ϒϒϒ(2κT−1)N

⎤
⎥⎥⎥⎦ ,

whereϒϒϒ i is aM×Mmatrix for all i ∈ I .WhenΨ̃ΨΨ is a positive
definite matrix, this decomposition allows to compute the
square root of Ψ̃ΨΨ using the FFT algorithm twice.

There is no way to guarantee that Ψ̃ΨΨ is a positive definite
matrix; however,Møller et al. (1998) andDavies et al. (2013)
remark that this has rarely been a problem in practice. In the
case that Ψ̃ΨΨ is not a positive definite matrix, we adopt the two
methods proposed by Wood and Chan (1994):

1. Let assume that κ = 2ζ for ζ > 0. Then, we find the
minimum value of ζ such that Ψ̃ΨΨ is a positive definite
matrix.

2. If the resulting κ is a very large number to be computable,
then we approximate the square root of Ψ̃ΨΨ by computing
the generalized square root of ϒ .

In practice, κ depends on the covariance function model and
the grid (Gneiting et al. 2006). Even though κ increases the
computational burden, the simulation procedure is still exact.
The use of generalized square roots solves the problem, at
expenses of a not exact simulation method (see Wood and
Chan 1994).

4 Simulation algorithms

Sections 2 and 3 provide the mathematical background for
simulating GRFs on a regular (longitude, latitude) grid based
on circulant embedding matrices. Algorithms 1 and 2 pre-
sented in this section detail the procedures to be implemented

for simulation on S2 and S2×R, respectively. The suggested
procedure is fast to compute and requires moderate memory
storage since only blocks ΣΣΣ i (resp. ΨΨΨ (i)) and their square
roots, of size M × M each, need to be stored and computed.
FFT algorithm is used to compute the matrices ΛΛΛ and ϒϒϒ by
Eq. (12). The last step of both Algorithms can be calculated
using FFT, generating a complex-valued vector Y where the
real and imaginary parts are independent. In addition, both
algorithms can be parallelized.Also, a small value of κ means
that less memory is required to compute Algorithm 2.

Some comments about the computation ofΛΛΛ1/2 andϒϒϒ1/2

are worth to mention. For a random field over S2 or S2 ×R,

the matrices ΛΛΛ and ϒϒϒ can be obtained through Cholesky
decomposition if the underlying covariance function r is
strictly positive definite on the appropriate space. In the case
of a positive semi-definite covariance function, both matri-
ces become ill-conditioned and thus generalized square roots
must be used.

Algorithm 1 Circulant embedding algorithm to simulate a
GRF on S2
Require: Integers M, N ; stationary, isotropic, covariance function r(·)
1: Generate space locations {(si j ), i ∈ I , j ∈ J } using (2);
2: for i ∈ I do
3: Build the matrices ΣΣΣ i = cov(X1, X i ) with elements [ΣΣΣ i ] j,� =

r(arccos(〈s1 j , si�〉)), 1 ≤ j, � ≤ M
4: Compute the matricesΛΛΛi using (7)
5: end for
6: ComputeΛΛΛ1/2 = diag(ΛΛΛ1/2

1 , . . . ,ΛΛΛ
1/2
N )

7: Generate a sample from Z ∼ N (0, IMN )

8: Compute X = 1√
N

(FN ⊗ IM )ΛΛΛ1/2Z
9: return X

Algorithm 2 Circulant embedding algorithm to simulate a
GRF on S2 × S

2 × R

Require: IntegersM, N , T , ζmax , stationary and isotropic in space and
stationary in time covariance function r(·, ·)

1: Generate space-time locations {(si j , tτ ), i ∈ I , j ∈ J , τ ∈
{1, . . . , T }} detailed in Section 3;

2: Set ζ = 0 and κ = 2ζ

3: for τ ∈ {1, . . . , (2κT − 1)N } do
4: Compute the matricesΨΨΨ (g(τ ))with block matrices [ΨΨΨ i, j (g(τ ))]

with elements [ΨΨΨ i, j (g(τ ))]k,l = r(arccos(〈sik , s jl 〉), g(τ ))

5: Compute the matricesϒϒϒτ using (12)
6: end for
7: if ϒϒϒ is not possitive definite and ζ ≤ ζmax then
8: Set ζ = ζ + 1 and go to line 3
9: else if ϒϒϒ is not possitive definite and ζ ≤ ζmax then
10: Set ζ = 0 and use generalized square root
11: end if
12: Computeϒϒϒ1/2 = diag(ϒϒϒ1/2

0 , . . . ,ϒϒϒ
1/2
(2κT−1)N )

13: Generate a sample from Z ∼ N (0, IMN (2κL−1))

14: ComputeX = 1√
N

[I2κL−1⊗(FN ⊗ IM )][F2κL−1⊗ IMN ]ϒϒϒ1/2Z
15: return X
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5 Simulations

Through this section, we assume that r(0) = 1 and r(0, 0) =
1 for covariance functions in S2 and S2×R, respectively. For
the caseS2,we use the following covariance functionmodels:

1. The exponential covariance function defined by

r0(θ) = exp

(
− θ

φ0

)
, θ ∈ [0, π ], (13)

where φ0 > 0.
2. The generalized Cauchy model defined by

r1(θ) =
(
1 +

(
θ

φ1

)α)− β
α

,

where α ∈ (0, 1] and φ1, β > 0.
3. The Matérn model defined as

r2(θ) = 21−ν

Γ (ν)

(
θ

φ2

)ν

Kν

(
θ

φ2

)
,

where ν ∈ (0, 1/2], φ2 > 0, Kν(·) is the Bessel function
of second kind of order ν and Γ (·) is the Gamma function.
In this simulation study, we use φ0 = 0.5243, α = 0.75,
β = 2.5626, φ1 = 1, ν = 0.25 and φ2 = 0.7079. Such
setting ensures that ri (π/2) = 0.05 for i = 0, 1, 2. Note that
the regularity parameter is restricted to the interval (0, 1/2]
to ensure positive definiteness on S

2 (Gneiting 2013).
To illustrate the speed and accuracy of Algorithm 1, we

compare it with Cholesky and eigenvalue decompositions, to
obtain a square root of the covariance matrix (Davies et al.
2013). Because Algorithm 1 only needs the first block row of
the covariance matrix, a fair comparison is made by measur-
ing the time of the calculation after the covariance matrix
was calculated. To reduce time variations, we repeat, for
each grid, 25 simulations and we report the average time.
Reported times are based on a server with 32 cores 2x Intel
Xeon e52630v3, 2.4 GHz processor and 32GBRAM. Tables
1, 2, and 3 show the computational time (in seconds) needed
for each method to generate the GRF on each grid using the
exponential, generalized Cauchy and the Matérn covariance
function models, respectively. Except for the smallest grid
Algorithm 1 is always faster. For the largest mesh, the eigen-
value and the Cholesky decomposition methods do not work
because of storage problems. An example of a realization of
the GRF using an exponential covariance function is shown
in Fig. 2.

To study the simulation accuracy, we make use of vari-
ograms as defined through (1). Specifically, we estimate the
variogram nonparametrically through

Table 1 Average time (in seconds) needed for each algorithm to be
completed using an exponential covariance function model

Parameters Circ. embed. Cholesky Eigen

N = 18, M = 6 0.00304 0.00200 0.00208

N = 40, M = 13 0.01276 0.35272 0.34460

N = 60, M = 20 0.02860 3.15028 3.13572

N = 120, M = 40 0.17992 158.49964 158.42064

N = 360, M = 180 16.433 – –

When N = 360 andM = 180, the Cholesky and the eigenvalue decom-
positions do not work because the computer is not able to store the
covariance matrix. Results were based in a server with 32 cores 2x Intel
Xeon e52630v3, 2.4 GHz processor and 32 GB RAM

Table 2 Same as in Table 1when simulating from a generalizedCauchy
covariance function model

Parameters Circ. embed. Cholesky Eigen

N = 18, M = 6 0.00312 0.00324 0.00320

N = 40, M = 13 0.01460 0.50788 0.46812

N = 60, M = 20 0.03288 3.80888 3.71296

N = 120, M = 40 0.19988 167.34920 167.35348

N = 360, M = 180 4.76644 – –

Table 3 Same as in Table 1 when simulating from aMatérn covariance
function model

Parameters Circ. embed. Cholesky Eigen

N = 18, M = 6 0.00364 0.00816 0.00808

N = 40, M = 13 0.02028 1.06920 0.96172

N = 60, M = 20 0.05324 6.40660 6.39356

N = 120, M = 40 0.36664 211.02576 210.88076

N = 360, M = 180 10.23648 – –

γ̂ (θ)= 1

2|Nl(θ)|
∑

i, j,i ′, j ′
(X(si j ) − X(si ′ j ′))

2
INl (θ)(si j , si ′ j ′),

(14)

where IA(x) is the indicator function of the set A, l is a
bandwidth parameter and

Nl(θ) = {(s1, s2) ∈ S
2 : |θ(s1, s2) − θ | ≤ l}.

We perform our simulations, using M = 30, N = 60 (that
is, n = 1800), corresponding to a 6 × 6 degree regular
longitude-latitude grid on the sphere, under the three covari-
ance models described above.

For each simulation, Cholesky decomposition is used
to compute Λ1/2 and the variogram estimates in Eq. (14)
are computed. 100 simulations have been performed for
each covariance model using Algorithm 1 and using direct
Cholesky decomposition for comparison. Figure 3a–c shows
the estimated variogram for each simulation and the average
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Fig. 2 Realization of aGRFwith covariance function given byEq. (13).
The parameters of the simulations are M = 180, N = 360
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Fig. 3 Variogram estimates for 100 simulations of different random
fields with different models using circulant embedding. a–c Each
realization, and d–f envelopes for simulations using Cholesky (blue
envelope) and circulant embedding (red envelope). The black line is the
true variogram function, gray lines are the estimated functions, while
dot-dashed and dashed lines are the mean of the simulations obtained
using Cholesky and Circulant Embedding, respectively. (Color figure
online)

variogram as well. Also, global rank envelopes (Myllymäki
et al. 2017) were computed for the variogram under each
simulation algorithms. The theoretical variogram matches
the average variogram perfectly. The superimposition of the
envelopes shows that our approach generates the same vari-
ability as the Cholesky decomposition.

A similar simulation study is provided for a temporal sta-
tionary and spatially isotropic random field on S

2 × R. We
provide a nonparametric estimate of (9) through

γ̂ (θ, u)= 1

2|Nl,l ′(θ, u)|
∑

i, j,k,i ′, j ′,k′

(
X(si j , tk)−X(si ′ j ′ , tk′)

)2

INl,l′ (θ,u)

(
(si j , tk), (si ′ j ′, tk′)

)
,

where θ ∈ [0, π ], u ∈ R and

Nl,l ′(θ, u) = {(si , ti ) ∈ S
2 × R, i = 1, 2

such that |θ(s1, s2) − θ | ≤ l, ||t1 − t2| − u| ≤ l ′}.

We simulate using the spherical grid M = 30, N = 60
and the temporal grid τ = {1, 3/2, . . . , T − 1/2, T } where
T = 8, that is, n = 28,800 and κ = 1. We use the following
family of covariance functions (Porcu et al. 2016):

Ci (θ, u) =
(

1 − δ

1 − δgi (u) cos(θ)

)τ

,

θ ∈ [0, π ], u ∈ R, i = 0, 1 (15)

where δ ∈ (0, 1), τ > 0 and gi (u) is any temporal covari-
ance function. In this case, we consider g0(u) = exp(−u/c0)
and g1(u) = (1 + (u/c1)2)−1. We set δ = 0.95, τ = 1/4,
c0 = 1.8951 and c1 = 1.5250. Such setting ensures that
0.0470 < C0(θ, 3) = C1(θ, 3) < 0.0520 for θ ∈ [0, π ].
Following Porcu et al. (2016), Equation (15) is a posi-
tive semi-definite covariance function, and so we use SVD
decomposition to compute Λ1/2. In addition to Tables 1, 2,
and 3, the number of points used in this experiment does
not allow to use Cholesky decomposition, and so envelopes
were not computed this time. Figure 4 shows the empirical
variogram for 100 simulations. Some amount of variations
is to be expected since each realization is different. Their
magnitude depends on the space and timescale parameters
of the covariance compared to the dimension of the simu-
lation grid. As a proxy to the measure of variations on the
empirical variograms, we will use

σ 2
0 = (1TΨΨΨ (0)−11)−1,

which is the variance of the prediction of the mean of the
simulation, at one time step. The values of σ 2

0 are 1/1800 �
0.0006, 0.166 and 0.117 for the independent case, g0 and
g1, respectively. This shows that for the spatial margin we
expect larger variations for simulations with g0 than with
g1, as illustrated in Figure 4a, d. Regarding the temporal
margin, we must consider that in time there is only 16 grid
points, which is considerably smaller than the number of grid
points in space, equal to 30 × 60 = 1800. Variations could
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Fig. 4 Plots of the spatial margin, temporal margin and residuals with
respect to the mean variogram for 100 simulated random fields. a–f The
behavior of the variogramwhen the true covariance function is given by
(15) using g0 = exp(−u/c0) and g1 = (1 + (θ/c1)2)−1, respectively.
The black line is the true variogram function, gray lines are the estimated
variogram function for each simulation, and black dot-dashed points are
the mean of the simulations

be reduced by increasing the number of temporal lags, but
this is not the aim of this simulation experiment.

Finally, we use the method to simulate a spatiotemporal
process with N = 180, M = 360, τ = {0, 0.1, . . . , 7.9, 8.0}
whereT = 8, that is,n = 5, 248, 800, andκ = 1 forC0(θ, u)

and C1(θ, u), respectively. Such realizations are shown in
Movie 1 and Movie 2, respectively (Fig. 5).

6 Discussion

Circulant embedding technique was developed on S
2 and

S
2 × R for an isotropic covariance function and for a

spatially isotropic and temporally stationary covariance func-
tion, respectively. All the calculations were done using the
geodesic distance on the sphere. However, this method can
be used with the chordal distance and axially symmetric
covariance functions (Huang et al. 2012). As shown in our
simulation study, this method allows to simulate seamlessly
up to 5× 106 points in a spatiotemporal context. Traditional
functional summary statistics, like the variogram, require a
high computational cost, which motivates the development
of different functional summary statistics or algorithms that
can deal with a huge number of points.

We have several possibilities if wewish to simulate aGRF,
say X , in some specific area at some specific locations that
are not on the regular grid for both S2 and S2 ×R. For exam-
ple, Dietrich and Newsam (1996) consider the extended grid
Ω = ΩMN ∪ Ω̃,whereΩMN is obtained by (2). The covari-

Fig. 5 Movies 1 and 2 show a realization of a spatiotemporal GRF
with covariance function given by (15) using g0 = exp(−u/c0) and
g1 = (1 + (θ/c1)2)−1, respectively

ancematrix of X overΩ , sayΣΣΣ , can be partitioned. Thus, the
computation ofΣΣΣ1/2 can be done efficiently. Another way to
simulate X on Ω̃ is by performing simulations onΩMN using
the procedure detailed in Sect. 2. Then, perform a local con-
ditional simulation using classical techniques Chiles (1999).

The procedures detailed in Sects. 2 and 3 should be investi-
gated to compute different powers of the covariance function
matrix. That is, for an integer k, Σk can be obtained using
circulant embedding by computingΛΛΛk orϒϒϒk . Such result is
also useful to compute Σk with k = −1 which corresponds
to the inverse of a matrix (Jun and Stein 2008). Indeed, this
case is important for the computation ofmaximum likelihood
estimators and Kriging predictors (Stein 2012).
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