
Statistics and Computing (2020) 30:93–112
https://doi.org/10.1007/s11222-019-09867-z

Optimal exact designs of experiments via Mixed Integer Nonlinear
Programming

Belmiro P. M. Duarte1,2 · José F. O. Granjo2 ·Weng Kee Wong3

Received: 19 January 2018 / Accepted: 6 March 2019 / Published online: 13 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Optimal exact designs are problematic to find and study because there is no unified theory for determining them and studying
their properties. Each has its own challenges and when a method exists to confirm the design optimality, it is invariably
applicable to the particular problemonly.Wepropose a systematic approach to construct optimal exact designs by incorporating
the Cholesky decomposition of the Fisher Information Matrix in a Mixed Integer Nonlinear Programming formulation. As
examples, we apply the methodology to find D- and A-optimal exact designs for linear and nonlinear models using global or
local optimizers. Our examples include design problems with constraints on the locations or the number of replicates at the
optimal design points.

Keywords Model-based optimal designs · Exact designs · Constrained designs · Mixed Integer Nonlinear Programming ·
Global Optimization

Mathematics Subject Classification 62K05 · 90C47

1 Motivation

Optimal design of experiments (DoE) is an old yet increas-
ingly important subfield of statistics. Running experiments is
costly, and users want to rein in cost without sacrificing sta-

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11222-019-09867-z) contains
supplementary material, which is available to authorized users.

B Belmiro P. M. Duarte
bduarte@isec.pt

José F. O. Granjo
josegranjo@eq.uc.pt

Weng Kee Wong
wkwong@ucla.edu

1 Department of Chemical and Biological Engineering,
Instituto Politécnico de Coimbra, Instituto Superior de
Engenharia de Coimbra, Rua Pedro Nunes, Quinta da Nora,
3030–199 Coimbra, Portugal

2 Department of Chemical Engineering, CIEPQPF, University
of Coimbra, Rua Sílvio Lima – Pólo II, 3030-790 Coimbra,
Portugal

3 Department of Biostatistics, Fielding School of Public Health,
UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095–1772,
USA

tistical efficiency in their inference. Finding a formula or an
analytic description of an optimal exact design for a nonlinear
model is usually impossible due to technical difficulties. A
practical approach is to develop efficient algorithms for find-
ing optimal exact designs. In DoE, given a statistical model,
a fixed total number of observations N and an optimality
criterion, we seek the optimal number of design points, k,
their locations from a pre-specified compact design space X
and the number of replicates at each design point subject to
the constraint that the number of replicates sum to N . Such
an optimal design provides maximal precision for statistical
inference at minimum cost (Fedorov and Leonov 2014).

There are two types of designs: large sample or approxi-
mate designs and small sample or exact designs. The former
are essentially probability measures on the design space and
are easier to find. In particular, when the optimality criterion
is convex over the design space, we have a convex opti-
mization problem (Kiefer 1974) and there are algorithms
for searching the optimal approximate designs, including
analytical tools for studying their properties and confirm-
ing optimality of the design. In practice, each of the weights
at an optimal design point in an approximate design has to
be multiplied by N and rounded to an integer such that they
all sum to N before such an optimal approximate design can

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-019-09867-z&domain=pdf
http://orcid.org/0000-0003-2550-4320
https://doi.org/10.1007/s11222-019-09867-z

94 Statistics and Computing (2020) 30:93–112

be implemented; Kiefer (1974), Pukelsheim (1993), Vanden-
berghe and Boyd (1999) provide details.

In optimal exact design problems, the numbers of obser-
vations at design points are integers and they sum to N .
Consequently, we do not have a convex optimization problem
in general and, so, finding optimal exact designs are computa-
tionally more challenging than finding approximate optimal
designs (Boer and Hendrix 2000). Each optimal exact design
problem has its own unique technical features that depend
on the model, design criterion and N ; analytic solutions are
available only for some simple models, and there are no gen-
eral algorithms for finding optimal exact designs (Gribik
and Kortanek 1977). However, optimal exact designs are
important in their own right because (i) simply rounding the
approximate number of observations to take at each point
from an optimal approximate design to obtain an optimal
exact design may result in an inefficient design when N is
small (Imhof et al. 2001); and (ii) even with a moderate sam-
ple size, a rounded optimal approximate design may not be
implementablewhen someof the optimal proportions at some
design points are very small.

There are various numerical algorithms for finding opti-
mal exact designs based on exchange methods. They were
initially proposed for the D-optimality criterion (Mitchell
and Miller 1970; Wynn 1970; Fedorov 1972) and mainly
for linear models. An appropriate starting design is required
to initialize these algorithms and afterward, at each iter-
ation, they delete points from the current design and add
new points from a specified grid until a user specified stop-
ping rule is met. The algorithms do not guarantee global
optimality, and so they are run a few times using different
starting designs to ascertain that they converge to the same
optimal design. Refinements to these algorithmswere contin-
ually made and include the DETMAX algorithm (Mitchell
1974), the modified Fedorov algorithm (Cook and Nacht-
sheim 1980) and the KL-exchange algorithm (Atkinson and
Donev 1989). These are generally referred to as point-
exchange algorithms, and they have been used to construct
response surface designs involving random blocks (Goos
and Vandebroek 2001; Goos and Donev 2006), D-optimal
split-plot designs (Goos and Vandebroek 2003) or crossover
designs (Donev 1998). The coordinate-exchange algorithm
proposed by Meyer and Nachtsheim (1995) tackled some of
the problems the point-exchange algorithms have by avoid-
ing the explicit enumeration of candidate points where this
problem occurred for both continuous and discrete and con-
tinuous factors. However, like other exchange algorithms, it
still has the tendency that it gets trapped in a locally optimal
design (Mandal et al. 2015; Palhazi Cuervo et al. 2016).

Mathematical programming methods provide alternative
approaches to generate optimal exact designs and have been
successfully applied to search for both approximate and
factorial designs. Some examples for finding approximate

designs include Linear Programming (Harman and Jurík
2008), Second-Order Cone Programming (Sagnol 2011),
Semidefinite Programming (Vandenberghe and Boyd 1999;
Duarte andWong 2015), Semi-Infinite Programming (Duarte
et al. 2015) and Nonlinear Programming (NLP) (Molchanov
andZuyev 2002). Recently,Mixed Integer Programmingwas
also used to find mixed-level and two-level orthogonally
blocked designs (Sartono et al. 2015b), orthogonal fractional
factorial split-plot designs (Sartono et al. 2015a; Vo-Thanh
et al. 2018) and trend robust run-order designs (Nuñez Ares
and Goos 2008).

Applications of mathematical programming methods to
find optimal exact designs in a general regression setting
are less numerous due to the additional complexity. InWelch
(1982), the design space is discretized and a convex optimiza-
tion algorithm based on branch and bound is used to ensure
that the optimal numbers of replicates of the D-optimal exact
designs are integers. Similarly, Harman and Filová (2014)
and Sagnol and Harman (2015) used, respectively, Mixed
Integer Quadratic Programming (MIQP) and Mixed Inte-
ger Second-OrderConeProgramming techniques (MISOCP)
to find D-optimal exact designs. Both methods also require
discretizing the design space, ensuring that the global opti-
mal design is found on the discretized space. The resulting
optimization problem can be solved efficiently using state-
of-the-art solvers employing branch-and-bound techniques.
Potential issueswith the aforementionedmethods include the
exponential increase in the size of the optimization problem
when the number of factors and the size of the candidate
set of design points increase. Although coarser grids could
reduce the size of the optimization problem, the resulting
design may not be supported at the correct design points and
can become inefficient.

Esteban-Bravo et al. (2017) showed that NLP formula-
tions can be used to find unconstrained and constrained exact
designs, and that Newton-based methods using Interior Point
or Filter techniques performed well for the problem. Their
formulation for finding optimal exact designs is that for find-
ing approximate designs with the caveat that the weights are
rational numbers so that all replicates are integers that sum
to N , see also Leszkiewicz (2014). A general drawback of
the NLP formulations is that the numerical calculation of the
design criteria, such as those involving the determinant or
trace of the inverse of a matrix, may suffer from numerical
instabilities that result in multiple optima.

Our aim in this paper is to provide a general mathematical
programming framework based on Mixed Integer Nonlinear
Programming (MINLP) to find various types of optimal exact
designs for a broad class of models. Some key advantages of
our approach are: (i) unlike the MIQP and MISOCP formu-
lations, our method does not require the design space to be
discretized before optimization; (ii) the design points and the
replicates are optimized simultaneously which leads to glob-

123

Statistics and Computing (2020) 30:93–112 95

ally optimal designs in the original design space; and (iii)
the method is flexible in that it can readily include additional
user-defined constraints, such as restrictions on the distribu-
tion of the locations or the number of replicates at the design
points. Moreover, the Cholesky decomposition to compute
the determinant of the Fisher Information Matrix (FIM) is
directly embedded into the optimization problem. From our
knowledge, this is also new and, as it will be shown, improves
the numerical stability and accuracy of the algorithm.

Section 2 presents the statistical background and reviews
the general MINLP problem. In Sect. 3, we provide the for-
mulations for D- and A-optimal exact design problems and
extend them to find constrained optimal exact designs with
various types of constraints. Section 4 implements the algo-
rithm to generate optimal exact designs for linear models and
locally optimal exact designs for several nonlinear models.
Section 5 concludes with a summary.

2 Background

All our regression models addressed have a univariate
response with nx independent variables x ∈ X ⊂ R

nx , and
the mean response at x is

E[y|x, p] = f (x, p). (1)

Here, f (x, p) is a known differentiable function, apart from
a vector of unknown model parameters p ∈ P ⊂ R

nθ where
nθ is number of parameters in the model, and E[•] is the
expectation operator with respect to the error distribution.
The design space X is a known compact domain from which
the design points are selected to observe the N outcomes.

Let ξ be a k-point exact design supported at x1, . . . , xi , . . . , xk
inXwith ni replicates at xi subject to

∑k
i=1 ni = N . Hence-

forth, we assume the number k of support points in the design
sought is user specified, and an initial estimate for k is the
number of parameters in the model, nθ . In what follows, let n
be the vector of all possible replicates at the design points, let
ΩN

k = {ni : 0 ≤ ni < N ,
∑k

i=1 ni = N , 1 ≤ i ≤ k} and
let Ξ N

k ≡ Xk ×ΩN
k be the set of all k-point feasible designs

on X. We assume k ≥ nθ ; otherwise, there are not enough
support points to estimate all the parameters in themodel. The
assumption that the number of support points is pre-specified
by the user is a limitation, but it is sometimes not the case in
practice. For instance, it can be expensive to take observa-
tions at a new design point and so it is desirable to limit the
number of design points in the study; at other times, this fixed
number of design points is naturally restricted. In biomedical
studies, examples include the number of times blood samples
can be drawn from an infant or an experimental drug is only
available in a fixed number of dosages. Alternatively, since
running the algorithm with various values of k presents no

new technical difficulties, one may run the algorithm using
different values of k and compare properties of the different
optimal designs before implementation.

The quality of the design ξ is measured by a convex func-
tion of its FIM, which is the matrix with elements equal to
the negative of the expectation of the second-order deriva-
tives of the log-likelihood of all observed data with respect to
the parameters. When responses are independent, the global
FIM of design ξ is

M (ξ, p) = −E

[
∂

∂ p

(
∂L (ξ, p)

∂ pT

)]

=
k∑

i=1

ni
N

M(δxi , p)

=
k∑

i=1

ni
N
h(xi , p) hᵀ(xi , p) (2)

whereL (ξ, p) is the log-likelihood function of the observed
responses using design ξ , δx is the degenerate design that puts
all its mass at x, M(δxi , p) is the elemental FIM at xi and
h(xi , p) is the vector of first-order derivatives of the log-
likelihood with respect to the parameters p at xi .

2.1 Optimality criteria

Here, we describe the design criteria and, when applicable,
the theoretical tools to confirm the optimality of a design.

When errors are identically and normally distributed with
independent errors, the volume of the confidence region for p
is inversely proportional to det[M 1/2(ξ, p)]. Consequently,
minimizing the determinant of the inverse of the FIM by
choice of a design leads to the most accurate estimates for
the parameters. If the interest is in finding the best k-point
D-optimal exact design, the optimization problem is

ξD = arg min
ξ∈Ξ N

k

log
{
det[M (ξ, p)−1]

}
, (3)

which is equivalent to maximizing the determinant of the
FIM,

ξD = arg max
ξ∈Ξ N

k

log {det[M (ξ, p)]} . (4)

Another common design criterion is A-optimality that
minimizes the sum of the variances of all the estimated
parameters in the mean function. Such a design ξA satisfies

ξA = arg min
ξ∈Ξ N

k

{
tr[M (ξ, p)−1]

}
. (5)

For a linear model, the FIM does not depend on the
unknown parameters and so the optimal design does not
depend on p. If it does, as when the model is nonlinear, nom-
inal values based on experts’ opinion, previous or similar

123

96 Statistics and Computing (2020) 30:93–112

studies are used to replace p before the criterion is opti-
mized. The resulting design is called a locally optimal design
because it depends on the nominal values (Chernoff 1953).

Approximate designs are similar to exact designs except
that each ni is replaced bywi , the proportion of observations
to be taken at xi . They are implemented by taking N × wi

observations at xi subject to each N × wi is an integer, and
they sum to N . When an optimal design is sought among
all approximate designs on the design space and the design
criterion is convex, the optimality of an approximate design
ξ can be verified using an equivalence theorem based on
directional derivative considerations (Fedorov 1972; Kiefer
1974; Pukelsheim1993). Ifwe let δx be the degenerate design
at the point x ∈ X, the equivalence theorem says ξD is a D-
optimal approximate design among all designs on X if and
only if

Ψ (x|ξD, p) = tr
{[M (ξD, p)]−1 M(δx, p)

} ≤ nθ , ∀x ∈ X,

(6)

with equality at every design point of ξD . The function
Ψ (x|ξ, p) is the dispersion function of the design ξ . In
Sect. 4.2,we display selected dispersion functions of the opti-
mal exact designs we found and show that they are equivalent
to optimal approximate designs when N is a multiple of nθ .

To compare two designs ξ1 and ξ2, we use their relative
efficiencies. For the D-optimality criterion, the D-efficiency
of ξ1 relative to ξ2 is defined by

EffD(ξ1, ξ2) =
(
exp

[
log(det[M (ξ1, p)])

]

exp
[
log(det[M (ξ2, p)])

]

) 1
nθ

, (7)

and, similarly, for A-optimality criterion, the efficiency of ξ1
relative to ξ2 is defined by

EffA(ξ1, ξ2) = tr[M−1(ξ2, p)]
tr[M−1(ξ1, p)] . (8)

If ξ2 is the optimal design sought, the above ratios become
the D-efficiency and A-efficiency of ξ1, respectively. The
interpretation of an efficiency is that if a design has an effi-
ciency of 50%, it needs to be replicated twice to do as well
as the optimal design (Fedorov 1972; Pukelsheim 1993). In
practice, designs with high efficiencies are desired.

2.2 Mixed Integer Nonlinear Programming

MINLP is a class of tools to optimize a nonlinear objec-
tive function ψ(x, y) with possibly nonlinear constraints
where some decision variables are integer. MINLPs arise in a
wide range of applications, including chemical engineering,
finance andmanagement. If there are nx continuous variables

and ny discrete variables to optimize, the general form of a
MINLP is

min
x, y

ψ(x, y) (9a)

s.t. vi (x, y) = 0, ∀i ∈ E (9b)

gi (x, y) ≤ 0, ∀i ∈ I (9c)

x ∈ X, y ∈ Y. (9d)

Here, the functions vi (x, y) and gi (x, y) map R
nx+ny to R,

E is the set of equality constraints,I the set of inequalities,
X is a compact set containing continuous variables x, and Y
is the set containing discrete variables y.

Some common algorithms to solve Mixed Integer Non-
linear Programs are the outer-approximation method (Duran
andGrossmann1986), the branch-and-boundmethod (Fletcher
and Leyffer 1998) and the extended cutting plane method
(Westerlund and Pettersson 1995). Floudas (2002) reviews
the fundamentals of using MINLP to solve optimization
problems and note that traditional MINLP algorithms guar-
antee the global optima under certain convexity assumptions.

Our design problems may have multiple local optima
and to guarantee that a global optimum is found, a global
solver must be employed. An example of a global solver
is BARON. It implements deterministic global optimization
algorithms that combine spatial branch-and-bound proce-
dures and bound tightening methods via constraint propaga-
tion and interval analysis in a branch-and-reduce technique
(Tawarlamani and Sahinidis 2002). Sahinidis (2014) showed
that these techniques work quite well under fairly general
assumptions. In our formulations, those assumptions are sat-
isfied by construction as all decision variables are bounded.
However, global optimization solvers still require a long
computational time compared to local solvers (Lastusilta
et al. 2007) and this may limit their utilization to small and
average-sized problems.

A potential way to shorten the CPU time is to use a local
MINLP solver, such as,SBB (GAMSDevelopment Corpora-
tion 2013b), for handling several design problems addressed
in the paper, see Sect. 4.2. In Sect. 4.1, we compare opti-
mal designs obtained with local and global MINLP solvers,
where BARON represents the latter class and SBB the former.
Both MINLP tools use CONOPT as a NLP solver to handle
the relaxed nonlinear programs (Drud 1985) and CPLEX to
solve the Mixed Integer Linear Programs (GAMS Develop-
ment Corporation 2013b).

3 Optimal designMINLP formulations

We introduce MINLP formulations for finding a k-point D-
and A-optimal exact design inSects. 3.1 and3.2, respectively.
We first focus on solving unconstrained optimal designs

123

Statistics and Computing (2020) 30:93–112 97

before we demonstrate how MINLP formulations can solve
constrainedoptimizationproblemswith user-selected restric-
tions. In Sect. 3.3, we review a common approach to initialize
consistently the MINLP problems, tools for solving the
optimization problems and discuss limitations of the formu-
lations.

3.1 D-optimal designs

Given a statistical model and values for k and N , letM (ξ, p)
be the FIM in (2). The formulation for finding a k-point D-
optimal exact designs onΞ N

k maybe equivalently formulated
as an optimization problem as follows:

max
ξ∈Ξ N

k

log (det[M (ξ, p)]) (10a)

s.t.
k∑

l=1

nl = N

x ∈ X, n ∈ ΩN
k . (10b)

To maximize log (det[M (ξ, p)]), we apply the Cholesky
decomposition to the FIM and write

M (ξ, p) = U ᵀ(ξ, p) U (ξ, p) (11)

where U (ξ, p) is an upper triangular matrix and has posi-
tive diagonal elements ui,i when FIM is positive definite. It
follows that

det(M (ξ, p)) =
nθ∏

i=1

u2i,i , (12)

log[det(M (ξ, p))] = 2
∑nθ

i=1 log(ui,i) and maximizing
det(M (ξ, p)) is equivalent to maximizing the sum of the
logarithm of the diagonal elements of U (ξ, p).

Hereafter, we write i, j ∈ �nθ � to represent indices i, j
running from 1 to nθ . Similarly, the notation i ∈ �nθ � means
the single index i runs from 1 to nθ . If ui, j is the (i, j)th
element of U (ξ, p), i, j ∈ �nθ �, our MINLP formulation
for finding an D-optimal exact design is

max
x,n

nθ∑

i=1

log(ui,i) (13a)

s.t. mi, j =
k∑

l=1

nl
N
hl,i (x, p) hl, j (x, p), i, j ∈ �nθ �

(13b)

mi, j =
k∑

l=1

ul,i ul, j , i, j ∈ �nθ �, i ≤ j (13c)

ui,i ≥ ε, i ∈ �nθ � (13d)

ui, j = 0, i, j ∈ �nθ �, i ≥ j + 1 (13e)

mi,i ≥ u2i, j , i, j ∈ �nθ � (13f)

k∑

l=1

nl = N

x ∈ X, n ∈ ΩN
k . (13g)

Here, ε is a small positive constant to ensure that the FIM
is positive definite. For all examples in Sect. 4, ε = 1 ×
10−5. Equation (13b) follows from (2), (13c) represents the
Cholesky decomposition, (13d) guarantees that all diago-
nal elements of U (ξ, p) are positive and (13e) assures that
U (ξ, p) is upper triangular. Equation (13f) is a numerical
stability condition imposed on the Cholesky factorization of
positive semidefinite matrices (Golub and van Loan 2013,
Theorem 4.2.8) and constraint (13g) restricts the total num-
ber of observations to be N and ensures that the design points
belong to design space X.

3.2 A-optimal design

A-optimal exact experimental plans may be formulated as
follows:

min
ξ∈Ξ N

k

tr[M−1(ξ, p)] (14a)

s.t.
k∑

l=1

nl = N

x ∈ X, n ∈ ΩN
k . (14b)

The optimization problem (14) requires inverting
M−1(ξ, p)which is a potentially numerically unstable oper-
ation when the FIM is ill-conditioned. To avoid explicit
computation of the inverse matrix, we apply the Cholesky
decomposition to invert the resulting upper diagonal matrix
U (ξ, p) that results from the decomposition of M (ξ, p);
the rationale is that inverting an upper triangular matrix
obtained by Cholesky factorization is numerically more
stable than inverting the original matrix (Du Croz and
Higham 1992). The procedure has three steps that are han-
dled simultaneously within the optimization problem: (i)
apply the Cholesky decomposition to the FIM, cf. Sect. 3.1;
(ii) invert the upper triangular matrix U (ξ, p) using the
relation U (ξ, p) U −1(ξ, p) = Inθ , where Inθ is the nθ -
dimensional identity matrix; and (iii) compute M−1(ξ, p)
via U −1(ξ, p), i.e., M−1(ξ, p) = U −1(ξ, p) ×
[U −1(ξ, p)]ᵀ (Du Croz and Higham 1992), and, finally,
compute tr[M−1(ξ, p)].

Let mi, j be the (i, j)th entry of M−1(ξ, p) and ui, j be
the (i, j)th entry of U −1(ξ, p) where i, j ∈ �nθ �. By con-
struction, U (ξ, p) is positive definite and invertible if all

123

98 Statistics and Computing (2020) 30:93–112

the diagonal elements are positive. The same also holds for
U −1(ξ, p). Step (i) is the Cholesky decomposition of the
FIM represented by (13c), and the second step corresponds
to inverting U (ξ, p):

{∑k
l=1 ui,l ul, j = 1 if i = j

∑k
l=1 ui,l ul, j = 0 if i �= j,

(15)

with step (iii) represented by

mi, j =
k∑

l=1

ui,lul, j , i, j ∈ �nθ �, i ≤ j . (16)

A-optimal designs minimize tr(M−1(ξ, p)) or equiva-
lently, minimizes the sum of allmi,i , i ∈ �nθ �. The complete
MINLP for computing the A-optimal designs is

min
x,n

nθ∑

i=1

mi,i (17a)

s.t. mi, j =
k∑

l=1

nl
N
hl,i (x, p) hl, j (x, p), i, j ∈ �nθ �

(17b)

mi, j =
nθ∑

l=1

ul,i ul, j , i, j ∈ �nθ �, i ≤ j (17c)

k∑

l=1

ul,i ul, j = 1, i, j ∈ �nθ �, i = j (17d)

k∑

l=1

ui,l ul, j = 0, i, j ∈ �nθ �, i �= j (17e)

mi, j =
k∑

l=1

ui,lul, j , i, j ∈ �nθ �, i ≤ j (17f)

ui,i ≥ ε, i ∈ �nθ � (17g)

ui,i ≥ ε, i ∈ �nθ � (17h)

ui, j = 0, i, j ∈ �nθ �, i ≥ j + 1 (17i)

ui, j = 0, i, j ∈ �nθ �, i ≥ j + 1 (17j)

mi, j = m j,i , i, j ∈ �nθ �, i ≤ j − 1 (17k)

mi,i ≥ u2i, j , i, j ∈ �nθ � (17l)

mi,i ≥ u2i, j , i, j ∈ �nθ � (17m)

k∑

l=1

nl = N

x ∈ X, n ∈ ΩN
k . (17n)

Equations (17b, 17c, 17g, 17i, 17l) and (17n) are similar to
those in the D-optimal design formulation. Equations (17d–
17e) reflect relationship (15) and generateU −1(ξ, p), equa-

tion (17k) captures constraint (16) to produce M−1(ξ, p)
and equations (17i) and (17j), respectively, impose the lower
triangular structure of U (ξ, p) and U −1(ξ, p). Equation
(17k) imposes the symmetry on M−1(ξ, p) and both equa-
tions (17g) and (17h) ensure that the diagonal elements
of U −1(ξ, p) and M−1(ξ, p) are positive, respectively.
Condition (17m) is the numerical stability insurance for
the Cholesky factorization of M−1(ξ, p). We impose the
symmetry of M−1(ξ, p) in Equation (17k) to reduce the
feasibility region which may then help to improve the con-
vergence rate of the solver. The symmetry of the FIM and its
inverse are guaranteed by (17b) and (17k), respectively.

An advantage of our approach is that when there are
additional constraints, such as restrictions on the number
of replicates at each design point, they can be incorporated
into our design formulation problem as linear or nonlinear
inequalities or equalities. Specifically, we apply formulations
(13) and (17) to search for k-point unconstrained optimal
designs inΞ N

k , the set of feasible designs onX. By including
additional constraints in problems (13) and (17), our method
can also find a constrained optimal exact designs from the
set Ξ N

k ∩ {(x, n) : γ (x, n) ≤ 0, φ(x, n) = 0}. Here, γ and
φ are user-selected differentiable functions in the inequality
and equality constraints, respectively, on the design space X
or on the replicates space ΩN

k , or both.

3.3 Initialization and limitations

To reduce CPU time, we provide consistent initial guesses
to the MINLP solver. This means that the initial solution
ξ (0) has to be consistent and satisfy all constraints of the
problem (Pantelides 1988). To construct ξ (0), we first choose
a point centrally located in X and then select the other grid
points using the relation xi = xi−1 + Δx where Δx =
(max x − min x)/(k − 1) and k is the number of support
points selected by the user. The replicates are then distributed
so that the values of ni are equal while ensuring that their sum
is N . Next, we compute the elemental and the global FIMs
for ξ (0), U ᵀ(ξ (0), p) and M−1(ξ (0), p) and let the solver
iterate until it converges to the optimum.

The formulations in Sect. 3 are coded in the GAMS envi-
ronment (GAMSDevelopment Corporation 2013a).GAMS is
a general modeling system that supports mathematical pro-
gramming applications in several areas. Upon execution, the
code describing the mathematical program is automatically
compiled, symbolically transcribed into a set of numerical
structures, and all the information regarding the gradient and
matrix Hessian is generated using the automatic differenti-
ation tool and made available to the solver. We provide a
sample of such a code in the Supplementary Material.

A drawback of the proposed formulations is their limited
ability to find a global optimum in highly nonlinear prob-
lems, specifically. Typically, global optimizers can guarantee

123

Statistics and Computing (2020) 30:93–112 99

global optimality, but the computational burden required for
finding optimal designs for models with several covariates
can be massive or may not even converge within a realistic
time frame. Using local optimizers lowers the computational
effort but does not guarantee that the solution found is a
global optimum. Therefore, the choice of using a global or
a local optimizer involves a trade-off. One common strategy
to further reduce the CPU time is to tighten the bounds for
all the decision variables in the MINLP problem and provide
an accurate initial solution. This is a particularly useful step
when global optimizers are used.

Generally, our formulations (13) and (17) work well even
when N or k are large unless the FIM becomes nearly singu-
lar and the model parameters have sensitivities [see Eq. (2)]
of very different magnitude or the design space is multi-
dimensional and the matrix inversion procedure becomes
numerically unstable. However, even in these cases, we can
scale properly the variables and equations to handle the prob-
lems. From our experiments in Sect. 4, the main limitations
are related with the MINLP solvers currently available, and
we were not able to identify a cutoff point, either on the
size of the optimization problem or the FIM condition num-
ber, where the formulations fail. In this study, local solvers
work surprisingly well to find a optimum for all problems
addressed.

4 Numerical results

We now report D- and A-optimal exact designs for linear and
nonlinearmodels found fromour formulations. Somemodels
were chosen for comparison with published results obtained
using different numerical approaches. All computationswere
done using an Intel Core i7 machine running a 64 bits Win-
dows 10 operating system with 2.80 GHz processor. In all
problems, the relative and absolute tolerances used to solve
the MINLP problems were set to 1 × 10−5 and the absolute
tolerance is set equal to ε, the minimum value allowed for the
diagonal entries in the FIM or its inverse so that they are posi-
tive definite matrices. The optima reported for each design in
all the tables are for log[det(U (ξ, p))] and tr[M−1(ξ (0), p)]
for D- and A-optimality criteria, respectively (note the first
is a maximizer and the last a minimizer). The efficiency of
D-optimal designs is determined from (7) using the relation
log[det(M (ξ, p))] = 2 log[det(U (ξ, p))].

We employ the formulations in Sect. 3 to find optimal
designs for the models in Table 1. Models 1–2 are linear,
and the design space is X = [−1, 1] and X = [0.5, 2.5],
respectively. Some of the Models 3–8 have the same design
spaces as in the original problems discussed in the litera-
ture, and the set of parameters used for constructing local
designs was also preserved whenever possible. Models 3–
8 are nonlinear, and we report locally optimal designs for

the set of parameters listed below each model. The mean
responses inModels 6 and 7 are structurally the same, except
for the nominal value of the parameterm. Models 9–14 have
multiple regressors and so they allow us to test our algo-
rithm for multi-factor experiments. Model 14 is a four-factor
second-order response surface model with pairwise interac-
tions. We note that Gotwalt et al. (2009) obtained Bayesian
optimal designs for models subsumed in Model 10. Specifi-
cally, they addressed optimal exact design problems by first
setting ni = 1, ∀i ∈ �N�, and allowing that, in result of
the optimization, certain rows of the model matrix are iden-
tical. Consequently, here, the replication will become visible
when multiple rows of the design are identical. Further, they
set N but do not impose constraints on the number of dis-
tinct support points of the optimal design. Our framework is
different as we set first set both N and the number of sup-
port points, k, and then optimize the design points and the
replication, ni ∈ ΩN

k , ∀i ∈ �k�. Rasch et al. (1997) found
replication-free D-optimal designs for models 3–4, and we
compare some of their optimal exact designs with ours.

We applied our algorithm to find optimal exact designs
for a battery of models with one or more factors. We select
these models to test our algorithms either because they are
widely used in practice or their optimal designs have been
analytically or numerically determined and available for
comparison. Tables 7 and 8 show that models with more
factors (i.e., higher dimension) may not necessarily pose
additional numerical difficulty; the crucial issue usually lies
in the nonlinearity of the MINLP problem. Smaller dimen-
sional models such as Models 3 and 4 below can be more
challenging for our methods to solve than models with more
factors involving, for example, linear polynomial terms.That,
combined with the existence of reference optimal designs, is
the rationale for using Models 3–4 for comparison in next
sections.

We first discuss minimally supported optimal designs
where k = nθ without constraints. Minimally supported
designs are desirable when taking observations at a new loca-
tion is expensive. Designs that have equal masses nθ /N at
every design point are called uniform designs (Pukelsheim
1993, Chap. 4). They are popular because of their simplicity
and when appropriate, we compare our optimal designs with
uniform designs. In Sect. 4.1, we first compare the optimal
designs obtained with our formulations for Models 3 and 4
and use different N values to analyze the effect of differ-
ent sample sizes on the design. We compare optimal designs
obtained from a locally optimal MINLP solver (SBB) with
those generated from a global optimization solver (BARON).
In addition, we compare designs obtained fromour algorithm
with analytical solutions in the literature when the latter are
available.

Section4.2presents unconstrainedoptimal designs obtained
for the models in Table 1. Here, SBB was used to solve the

123

100 Statistics and Computing (2020) 30:93–112

Table 1 Battery of statistical
models used for testing the
MINLP formulations

Model Regression function Design space (X)

1 β0 + β1 x + β2 x2 + β3 x3 + β4 x4 [−1, 1]
2 β0 + β1 x + β2 x−1 + β3 exp(−x) [0.5, 2.5]
3a α + β exp(γ x) [0, 25]

α = 1, β = −1.4, γ = −0.2

4b α exp[β exp(γ x)] [0, 150]
α = 1, β = −1.4, γ = −0.2

5c V x
k+x + F x [0.001, 2]
V = 2.0, k = 0.5, F = 10

6d E0 + (E∞−E0) xm

kmd +xm [1 × 10−5, 10]
E∞ = 1.70, E0 = 0.137, kmd = 1, m = 1.5

7d E0 + (E∞−E0) xm

kmd +xm [1 × 10−5, 10]
E∞ = 1.70, E0 = 0.137, kmd = 1, m = −1.5

8e γ exp[−α (x − θ) − exp(−λ (x − θ))] [0, 30]
γ = 1.946, θ = 6.06, α = 0.174, λ = 0.288

9f β0 + β1 x1 + β1 x2 + β3 x21 + β4 x22 + β5 x1 x2 [−1, 1]2
10g 1

1+exp(β0+β1 x1+β2 x2+β3 x1 x2)
[0, 5] × [0, 1]

β0 = −2, β1 = 0.5, β2 = 0.5, β3 = 0.1

11h θ1 θ3 x1
1+θ1 x1+θ2 x2

[0, 3]2
θ1 = 2.9, θ2 = 12.2, θ3 = 0.69

12i β0 + β1 x1 + β1 x2 + β3 x3 + β4 x21 + β5 x22 + β6 x23 +
β7 x1 x2 + β8 x1 x3 + β9 x2 x3

[−1, 1]3

13j β1 x1 + β2 x2 + β3 x3 + β4 x1 x2 + β5 x1 x3 + β6 x2 x3 +
β7/x1 + β8/x2 + β9/x3

[0.5, 2.0]3

14k β0+β1 x1+β2 x2+β3 x3+β4 x4 x2+β5 x1 x2+β6 x1 x3+β7 x1 x4+
β8 x2 x3 + β9 x2 x4 + β10 x3 x4 + β11 x21 + β12 x22 + β13 x23 + β14 x24

[−1, 1]4

aThree parameter exponential function.
bGompertz model (Laird 1964)
cModified Michaelis–Menten model (López-Fidalgo et al. 2008)
dFour-parameter Hill model (Hill 1910)
eCoale–McNeil model (Coale and McNeil 1972)
fSecond-order response surface model with two factors (Atkinson et al. 2007, p. 170)
gLogistic model with two factors and all pairwise interactions
hKinetics of the catalytic dehydrogenation of n-hexyl alcohol model (Box and Hunter 1965)
iThree-factor quadratic polynomial mixture model
jJohnson and Nachtsheim (1983) model including nonlinear terms (on covariates)
kFour-factor surface response model

MINLP optimization problems, where N = 3 × nθ for all
cases. In Sect. 4.3,wefind constrained optimal designswhere
the design space and/or the number of replicates are subject
to restrictions. These constraints can be linear or nonlinear,
and k is at least as large as nθ . For designs with k > nθ , we
also set the value of k as in the minimally supported designs
and then include an additional constraint in problems (13)
and (17) imposing that all support points have at least one
observation (i.e., ni ≥ 1). Practically, in our formulation
these are constrained designs as they include additional con-
straints and will be addressed in Sect. 4.3. The D-optimal
exact designs for most of the cases in Table 1 are new and so
are all the A-optimal exact designs.

4.1 Comparison of results

In this subsection, we compare optimal exact designs found
from our algorithm in a variety of ways: in Sect. 4.1.1,
we study them using different sample sizes; in Sect. 4.1.2,
we compare them with those found using a global optimal
MINLP solver, and in Sect. 4.1.3, we compare them with
analytical results when they are available.

4.1.1 Impact of the sample size

Table 2 presents optimal exact designs of different sizes for
Models 3 and 4 found by BARON. For Model 3, N = 3 ×

123

Statistics and Computing (2020) 30:93–112 101

Table 2 D- and A-optimal
exact designs for Models 3 and
4 in Table 1 obtained using a
global MINLP solver

Model Criterion N Design Optimum value CPU (s)

3 D 9

(
0.0000 4.8304 25.0000

3 3 3

)

− 0.7682 2.9

10

(
0.0000 4.8396 25.0000

4 3 3

)

− 0.7824 2.8

11

(
0.0000 4.8364 25.0000

4 3 4

)

− 0.7815 2.4

A 9

(
0.0000 4.3005 25.0000

3 1 5

)

8.7943 3.5

10

(
0.0000 3.9398 25.0000

3 2 5

)

8.8053 4.7

11

(
0.0000 3.9756 25.0000

4 2 5

)

8.8035 5.2

4 D 15

(
0.0000 7.3638 150.0000

5 5 5

)

− 2.5086 26.5

16

(
0.0000 7.2868 84.0576

5 5 6

)

− 2.5143 21.0

17

(
0.0000 7.3418 86.7134

5 6 6

)

− 2.5140 21.4

A 15

(
0.0000 7.2623 150.0000
10 1 4

)

37.8972 103.1

16

(
0.0000 7.2028 117.9004
10 2 4

)

37.7017 105.8

17

(
0.0000 7.1710 85.2452
11 2 4

)

37.5276 160.2

nθ +q, q ∈ {0, 1, 2}, and for Model 4, N = 4×nθ +q, q ∈
{0, 1, 2}. The generated optimal exact designs are presented
as 2× k matrices where the first line shows the design points
and the second line shows their replicates.

The D-optimal exact designs found for N = 9 and
N = 15 for Model 3 and 4 in Table 2, respectively, are sim-
ilar to those of Rasch et al. (1997) found from an exchange
algorithm. The exact D-optimal designs are uniform when
N is a multiple of nθ , which is a general observation already
made by others (Yang et al. 2012, 2016). When N is a
multiple of nθ , the values of the optimum suggest that D-
optimal designs are slightly more efficient than those found
for other sample sizes. Both examples in Table 2 show that
the optimum has slightly larger values of N that lead to exact
designs equal to those obtained by rounding optimal approxi-
mate designs and the weights are equal for all support points.
Practically, exact k-point optimal designs with unequal ratios
ni/N can be slightly poorer than those where ni/N is equal
∀i ∈ �nθ �. This finding is consistentwith earlier observations
for N -point D-optimal designs (Pukelsheim 1993, Chap. 4).
Table 2 shows that changes in the support points of the D-
optimal designs are marginal for small changes in the value
of N .

The A-optimal exact designs are not uniform even when
N is multiple of nθ and so finding an optimal approximate
design first and rounding it to obtain an exact design may
result in a non-optimal exact design.

Figure 1 shows the plots of the dispersion functions of the
D-optimal exact designs for Model 3 when N = 9, 10, 11.
It shows that the D-optimal exact design ξ for N = 9 has 3
support points and the functionΨ (x|ξD, p) is bounded from
above by nθ with equality at the support points. The maxima
of the dispersion functions for N = 10 and N = 11 are not
nθ implying that the D-optimal exact designs do not match
the D-optimal approximate designs.

We report optimal design points to four decimal places
for accuracy. In scenarios where the design variables cannot
be controlled with this level of certainty, the optimal design
will serve as a reference design for the implemented design,
which will have a slightly lower efficiency.

4.1.2 Impact of the MINLP solver

In this section, we determine optimal designs for Models
3–4 using formulations in Sect. 3 with a local optimiza-
tion MINLP solver (SBB). Table 3 displays the D- and

123

102 Statistics and Computing (2020) 30:93–112

0 5 10 15 20 25
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

x

D
is

pe
rs

io
n

fu
nc

ti
on

np = 3

N
N
N

= 9
= 10
= 11

Fig. 1 Dispersion functions of the D-optimal designs for Model 3 in
Table 2 when k = nθ = 3 for different values of N

A-optimal exact designs. When we compare them with the
optimal exact designs in Table 2 found with a global opti-
mization solver, we observe that (i) the CPU time required
by the local optimization MINLP solver is on average 382
times shorter than that required by the global optimization
MINLP solver; (ii) both solvers produce very similar A- and
D-optimal exact designswith almost identical optimality val-
ues; (iii) both solvers produce D-optimal exact designs with
replicates as equally distributed as possible and A-optimal
exact designs with very different numbers of replicates at
the design points; (iv) D- and A-optimal exact designs are
supported at the extreme ends of the design space when the
design space is small (e.g., Model 3), but this is no longer the
case when the design space is large (Model 4); and (v) the
largest support points of the A-optimal exact designs found
by local and global optimization solvers are noticeably dif-
ferent.

We calculated the D- and A-efficiencies of the optimal
exact designs obtained with the locally optimal MINLP
solver relative to those obtained with the global optimiza-
tion solver using Eqs. (7) and (8), and they are all close to
1.0000. That implies that for this set of problems, the local
optimization solver is able to find designs very close to those
obtained by a global optimization solver in a small fraction of
time. We therefore use the local optimization MINLP solver
SBB to generate all the optimal exact designs in the rest of
ourwork. Typically, the optimal designs obtainedwith global
optimizers are equally or more efficient than those obtained
with local optimizers, an exception is the A-optimal design
for Model 4 and N = 17 in Table 3 where the design found
by the global solver has an efficiency slightly below 100
%.

4.1.3 Models with analytically derived optimal designs

This section compares D-optimal designs obtained from
our formulations with known D-optimal designs for some
models, which are presented in Table 4. The first selected
model with known D-optimal exact designs is the one with
mean function equal to the first-order trigonometric regres-
sion model on a partial circle of different size and different
values of N (Models 15–19 in Table 4). The D-optimal exact
designs were reported in Chang et al. (2013, Theorem 4.1).
Table 5 shows D-optimal exact designs found for Models
15–19 with formulation (13). Our results agree with the ana-
lytical D-optimal designs for the first-order trigonometric
regression model. There are two optimal designs for Model
17, and our algorithm is able to find one of them. Further
numerical experiences revealed that the other optimum can
be obtained with a different starting point.

The second selected model to compare optimal designs
obtained from our algorithm and the theoretical designs is
the one with a quadratic mean response function on [−1, 1]
for N = 11, 12 and N = 13 (Models 20–22). The theoreti-
cal D-optimal exact designs were reported in Gaffke (1987).
In particular, they showed that the D-optimal designs are
all minimally supported with k = 3. The D-optimal designs
obtained by our algorithm forModels 20–22 in Table 5 agree
with their theoretical results. Chang and Yeh (1998) and
Imhof (1998) provided corresponding results for A-optimal
exact designs, and we used them to verify the accuracy of the
results from our formulations. Table 6 displays the A-optimal
designs obtained from (17) forModels 20–22.Our A-optimal
exact designs also agree with those obtained analytically by
Chang and Yeh (1998, Theorem 2.1).

4.2 Unconstrained optimal exact designs

In this section, we determine minimally supported optimal
designs for all the models in Table 1 assuming that N =
3 × nθ . Other design setups are considered in Sect. 4.3.

Tables 7 and 8 list D- and A-optimal exact designs
obtained from our algorithm, respectively. The D-optimal
designs are uniform in all cases, and the CPU time required
to solve the MINLP problems is generally short in part due
to our initialization strategy, see Sect. 3.2, and because of the
locally optimal MINLP solver. This shows that our formula-
tion herein is effective for the problems we have tackled. We
recall thatModels 6 and 7 are structurally the same, except for
the parameter value in the power exponent m, and the opti-
mal designs obtained for both are equal. Our optimal designs
for Model 9 are similar to those obtained using an exchange
algorithm in Atkinson et al. (2007, Chap. 12). Unlike the
D-optimal exact designs, our A-optimal designs are not uni-
form.

123

Statistics and Computing (2020) 30:93–112 103

Table 3 D- and A-optimal
exact designs for Models 3–4 in
Table 1 obtained using a locally
optimal MINLP solver

Model Criterion N Design Optimum value CPU (s)

3 D 9

(
0.0000 4.8304 25.0000

3 3 3

)

− 0.7682 0.03

10

(
0.0000 4.8304 25.0000

4 3 3

)

− 0.7824 0.03

11

(
0.0000 4.8304 25.0000

4 4 3

)

− 0.7815 0.14

A 9

(
0.0000 4.3024 25.0000

3 1 5

)

8.7943 0.14

10

(
0.0000 3.9613 25.0000

3 2 5

)

8.8053 0.14

11

(
0.0000 3.9765 25.0000

4 2 5

)

8.8035 0.14

4 D 15

(
0.0000 7.3638 118.578

5 5 5

)

− 2.5086 0.03

16

(
0.0000 7.3638 150.0000

6 5 5

)

− 2.5143 0.05

17

(
0.0000 7.3638 150.0000

6 6 5

)

− 2.5141 0.05

A 15

(
0.0000 7.1472 150.000
10 1 4

)

37.8972 0.14

16

(
0.0000 7.1991 150.0000
10 2 4

)

37.7017 0.13

17

(
0.0000 7.1710 150.0000
11 2 4

)

37.4915 0.16

Table 4 Battery of statistical
models with known D-optimal
exact designs used for testing
the MINLP formulations

Model Regression function Design space (X) N

15j β1 cos(x) + β2 sin(x) [−π/4, π/4] 4

16j β1 cos(x) + β2 sin(x) [−2π/3, 2π/3] 4

17j β1 cos(x) + β2 sin(x) [−π/4, π/4] 5

18j β1 cos(x) + β2 sin(x) [−1/2 arccos(−1/10), 1/2 arccos(−1/10)] 5

19j β1 cos(x) + β2 sin(x) [−2π/3, 2π/3] 5

20k β0 + β1x + β2x2 [−1, 1] 11

21k β0 + β1x + β2x2 [−1, 1] 12

22k β0 + β1x + β2x2 [−1, 1] 13

jFirst-order trigonometric regression model on a partial circle.
kQuadratic regression model

The designs obtained are in good agreement with the
optimal approximate designs found in Duarte et al. (2018)
using an adaptive semidefinite programming (ASP)-based
algorithm. We observe that the exact designs are equally or
slightlymore efficient than those in Duarte et al. (2018) when
N = 3 × nθ partly because they first discretized the design
space and the optimum is found from this finite set of can-
didate points; in contrast, we work with continuous design
spaces. In practice, the trend observed in Sect. 4.1.1 extends
to models in Table 1 when different values of N are tested.

The exact optimal designs for Model 14 were also deter-
mined by the global solver BARON, and the results obtained
are similar to those in Table 7 and 8 (last line) except that the
CPU time has increased to 3.12 s for D-optimal designs and
to 138.35 s for A-optimal designs.

To further validate the formulations in Sect. 3, we com-
pared the optimal designs found for surface responsemodels,
such as, Models 1, 9, 12 and 14 in Table 1 with those
obtained from the commercial software JMP� 14.0.0 (64
bit) (SAS Institute Inc. 2017). This software implements

123

104 Statistics and Computing (2020) 30:93–112

Table 5 D-optimal exact
designs for Models 15–22 in
Table 4 obtained using a locally
optimal MINLP solver

Model N Design Optimum value CPU (s)

15 4

(−0.7854 0.7854
2 2

)

−0.6931 0.09

16 4

(−0.8365 0.7343
2 2

)

−0.6931 0.02

17 5

(−0.7854 0.7854
2 3

)

−0.7136 0.05

18 5

(−0.8355 0.0000 0.8355
2 1 2

)

−0.7004 0.04

19 5

(−1.1780 0.1401 1.0518
2 2 1

)

−0.6931 0.03

20 11

(−1.0000 0.0000 1.0000
3 4 4

)

−0.9681 0.05

21 12

(−1.0000 0.0000 1.0000
4 4 4

)

−0.9548 0.03

22 13

(−1.0000 0.0000 1.0000
4 5 4

)

−0.9633 0.03

Table 6 A-optimal exact
designs for Models 19–21 in
Table 4 obtained using a locally
optimal MINLP solver

Model N Design Optimum value CPU (s)

20 11

(−1.0000 0.0000 1.0000
3 5 3

)

8.0667 0.03

21 12

(−1.0000 0.0000 1.0000
3 6 3

)

8.0000 0.02

22 13

(−1.0000 0.0000 1.0000
3 7 3

)

8.0476 0.13

the coordinate-exchange algorithm (CEA) using an initial
design to iterate from multiple initial points and keeping the
best solution found. Tables S1 and S2 in the Supplemen-
tary Material report the D- and A-optimal designs obtained
from CEA, respectively. They were obtained using 1 × 106

re-initializations of the algorithm, and we limit the analy-
sis to linear (on covariates and parameters) surface response
models and minimally supported designs so that they are
equivalent to those found with MINLP formulations and can
be compared. We note that CPU time required by JMP�

14.0.0 (64 bit) for the examples addressed was of 8 min to
15 min and our formulations with a locally optimal solver
require a few seconds. If a global optimizer were used
with our formulations, we expect the CPU time would have
increased 2 to 3 orders of magnitude even though in some
cases the CPU times are still competitive.

Table 9 lists the D-optimal values found from the MINLP
formulation and those found from the CEA along with the
efficiencies of the latter relative to the former. We note that
the optimal designs obtained with the formulations proposed
herein have about the same efficiencies as those from the
CEA. For a fair comparison between our algorithm andCEA,

we set the number of re-initializations of the latest to 1×103

which allows reducing the CPU time needed to about 1 s
for all the examples addressed. We note that the optimal
designs obtainedwithCEA for this setup are close to the opti-
mum having efficiencies higher than 0.94 (relative to optimal
designs obtained with MINLP formulation).

4.3 Constrained optimal exact designs

Here, we test the algorithm to find D- and A-optimal designs
when there are linear or nonlinear constraints compactly
represented by inequalities γ (x, n) ≤ 0 and equalities
φ(x, n) = 0 where γ ∈ R

ni and φ ∈ R
ne , ni standing

for the number inequality constraints and ne for the number
of equality constraints. To fix ideas, in Sect. 4.3.1 we impose
constraints only on the support points and search for opti-
mal designs in the constrained space Ξ

N ,x
k ≡ Ξ N

k ∩ {x :
γ (x) ≤ 0, φ(x) = 0}. In Sect. 4.3.2, we impose constraints
only on the number of replicates and search for k-point opti-
mal designs in the space Ξ

N ,n
k ≡ Ξ N

k ∩ {n : γ (n) ≤
0, φ(n) = 0}. Finally, Sect. 4.3.3 allows constraints on
both the support points and the number of replicates and

123

Statistics and Computing (2020) 30:93–112 105

Table 7 D-optimal exact designs for Models 1–14 in Table 1 with N = 3 × nθ

Model N Design Optimum value CPU (s)

1 15

(−1.0000 −0.6547 0.0000 0.6547 1.0000
3 3 3 3 3

)

−5.0275 0.06

2 12

(
0.5000 0.7852 1.6148 2.5000
3 3 3 3

)

−5.9706 0.02

3 9

(
0.0000 4.8304 25.0000
3 3 3

)

−0.7682 2.1

4 9

(
0.0000 7.3638 118.578
3 3 3

)

−2.5086 0.11

5 9

(
0.2142 0.9780 2.0000
3 3 3

)

−3.4333 0.03

6 12

(
1.0 × 10−5 0.4535 1.7253 10.0000
3 3 3 3

)

−5.0864 0.45

7 12

(
1.0 × 10−5 0.4535 1.7253 10.0000
3 3 3 3

)

−6.08644 0.05

8 12

(
2.3129 5.5988 10.1971 18.3971
3 3 3 3

)

−5.1976 0.11

9 18

⎛

⎝
−1.0000 −1.0000 −0.1315 0.3945 1.0000 1.0000
1.0000 −1.0000 −0.1315 1.0000 0.3945 −1.0000
3 3 3 3 3 3

⎞

⎠ −2.5803 0.13

10 12

⎛

⎝
0.1412 2.8208 2.8208 5.0000
0.0000 0.0000 1.0000 1.0000
3 3 3 3

⎞

⎠ −7.9789 0.09

11 9

⎛

⎝
0.2804 3.0000 3.0000
0.0000 0.0000 0.7951
3 3 3

⎞

⎠ −9.1640 0.03

12 30

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.0000 −1.0000 −1.0000 −1.0000 0.0387
−1.0000 −1.0000 0.2878 1.0000 0.1262
1.0000 −1.0000 0.2711 −1.0000 −1.0000
3 3 3 3 3
0.0387 0.1965 1.0000 1.0000 1.0000
1.0000 −1.0000 −0.3415 1.0000 −1.0000
1.0000 0.1658 1.0000 −0.4429 −1.0000
3 3 3 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−4.3187 0.19

13 27

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0500 0.0500 0.0500 0.2067 2.0000
2.0000 0.0500 0.2394 2.0000 0.1955
0.0500 0.0500 2.0000 2.0000 0.0500
3 3 3 3 3
2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 0.0500 2.0000
0.3162 2.0000 2.0000 0.0500
3 3 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−5.3790 0.23

14 45

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.0000 −1.0000 −1.0000 −1.0000 −1.0000
1.0000 1.0000 −1.0000 1.0000 −1.0000
−1.0000 1.0000 1.0000 0.6417 −1.0000
−0.5926 −1.0000 0.0308 1.0000 1.0000
3 3 3 3 3
−1.0000 −0.0198 −0.0198 0.1888 1.0000
−0.2514 −1.0000 −0.2389 1.0000 1.0000
−0.0644 −1.0000 1.0000 0.1379 −1.0000
−1.0000 −1.0000 1.0000 −0.1470 −1.0000
3 3 3 3 3
1.0000 1.0000 1.0000 1.0000 1.0000
−1.0000 1.0000 −0.3446 −1.0000 1.0000
0.1008 −1.0000 −1.0000 1.0000 1.0000
1.0000 1.0000 −0.0357 −1.0000 1.0000
3 3 3 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−6.3017 0.52

Designs obtained using a locally optimal MINLP solver

123

106 Statistics and Computing (2020) 30:93–112

Table 8 A-optimal exact designs for Models 1–14 in Table 1 with N = 3 × nθ

Model N Design Optimum value CPU (s)

1 15

(−1.0000 −0.6983 −0.0392 0.6540 1.0000
2 3 4 4 2

)

1.976 × 102 0.50

2 12

(
0.5000 0.7511 1.6680 2.5000
2 4 4 2

)

5.300 × 103 0.16

3 9

(
0.0000 4.3024 25.0000
3 1 5

)

8.7943 0.05

4 9

(
0.0000 7.1472 150.0000
6 1 2

)

37.4322 0.05

5 9

(
0.1505 1.0274 2.0000
3 4 2

)

4.543 × 102 0.16

6 12

(
1.0 × 10−5 0.4693 1.7391 10.0000
2 3 4 3

)

1.373 × 102 0.14

7 12

(
1.0 × 10−5 0.4693 1.7301 10.0000
2 3 4 3

)

1.373 × 102 0.09

8 12

(
1.3817 5.3579 10.7974 22.1334
2 2 3 5

)

4.651 × 103 0.08

9 18

⎛

⎝
−1.0000 −1.0000 0.0000 0.0000 1.0000 1.0000
1.0000 −0.5016 0.1879 −1.0000 −0.5016 1.0000
2 3 5 3 3 2

⎞

⎠ 21.163 0.23

10 12

⎛

⎝
0.0000 2.0033 2.0033 5.0000
0.0000 0.0000 1.0000 1.0000
6 1 3 2

⎞

⎠ 9.520 × 102 0.11

11 9

⎛

⎝
0.2685 3.0000 3.0000
0.0000 0.0000 0.8074
4 1 4

⎞

⎠ 2.994 × 104 0.05

12 30

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.0000 −1.0000 −1.0000 −1.0000 0.0585
0.0577 −1.0000 0.1457 1.0000 −1.0000
1.0000 −0.0284 −1.0000 −0.0256 1.0000
3 3 3 3 3
0.0585 0.4940 1.0000 1.0000 1.0000
0.2141 −1.0000 1.0000 −0.5446 1.0000
−0.0283 −1.0000 1.0000 0.2422 −1.0000
5 2 2 4 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

36.565 3.85

13 27

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0500 0.2513 0.2513 0.3604 2.0000
2.0000 0.2513 2.0000 2.0000 0.2513
2.0000 2.0000 0.2513 2.0000 0.2513
2 5 5 2 5
2.0000 2.0000 2.0000 2.0000
2.0000 0.3604 0.0500 2.0000
0.3604 2.0000 2.0000 0.0500
2 2 2 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

16.468 0.81

14 45

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− − 1.0000 −1.0000 −1.0000 −1.0000 −1.0000
1.0000 0.5863 −1.0000 1.0000 −0.3197
−1.0000 1.0000 1.0000 0.8114 −0.7094
−0.1290 −1.0000 0.3348 1.0000 1.0000
3 2 2 2 3
−1.0000 −0.0636 −0.0269 0.1687 1.0000
−1.0000 −1.0000 0.0464 1.0000 1.0000
−0.3694 −1.0000 0.0545 −1.0000 0.4075
−1.0000 0.3826 0.0905 −1.0000 −0.3641
2 4 8 3 3
1.0000 1.0000 1.0000 1.0000 1.0000
−1.0000 1.0000 −0.1955 −1.0000 0.1943
−0.0435 −1.0000 −1.0000 1.0000 1.0000
1.0000 1.0000 −0.4484 −1.0000 1.0000
3 2 3 2 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

55.496 65.87

Designs obtained using a locally optimal MINLP solver

123

Statistics and Computing (2020) 30:93–112 107

Table 9 D-optimality values of the designs found with MINLP formu-
lations and CEA for selected models

Model Optimuma Optimumb EffD

1 −5.0275 −5.0275 1.0000

9 −2.5803 −2.5818 0.9995

12 −4.3187 −4.4084 0.9822

14 −6.3017 −6.3267 0.9967

aOptimal design obtained from the MINLP formulations using a local
optimizer.
bOptimal design obtained from the CEA using JMP� 14.0.0 (64 bit)

we search for a k-point optimal design among the designs in
space Ξ

N ,n,x
k ≡ Ξ N

k ∩ {(x, n) : γ (x, n) ≤ 0, φ(x, n) =
0}.

In this section, we apply the algorithm to find mini-
mally supported A- and D-optimal exact designs for the
Model 13 in Table 1 defined on the design space X =
[0.5, 2.0] × [0.5, 2.0] × [0.5, 2.0]. We present results only
for this model when N = 3 × nθ = 27 for space consid-
eration and omit results for other models in Table 1. This
model has 9 parameters and so k = nθ = 9. For values of
N not a multiple of nθ , we obtained optimal exact designs
that exhibit a trend similar to that observed for Models 3–4
in Sect. 4.1.1.

4.3.1 Constraints on the design space

We now test our algorithm when the design problem has
equality or inequality constraints on the design space and the
constraints are of linear or nonlinear kind.

Linear constraints arise naturally in some experimental
design problems. For example, in mixture experiments, a
support point represents the proportions from the various
components in the study. Naturally, each support point has
nonnegative components that add to unity, see for example,
Atkinson et al. (2007, Chap.16). At other times, there are
physical and linear constraints on the support points. As an
illustration, suppose that we require that the sum of the com-
ponents in each support point x in the design is 1.0, i.e.,

φ1(x) :=
3∑

j=1

x j,i = 1.0, ∀i ∈ �k�. (18)

The set of candidate designs are found from the given design
space X = [0.05, 1.0] × [0.05, 1.0] × [0.0, 1.0] that incor-
porates the additional constraints.

Nonlinear constraints on the design problem vary and
occur frequently, depending on the problem at hand. For
example,Berman’smodel (Berman1962) is typically defined
on an arc in brain mapping studies; consequently, it is likely
more appropriate that the design space is spherical in which

case the support points are contained inside a sphere of radius
r centered at x = [c1, c2, c3]ᵀ ∈ X, i.e.,

γ1(x) :=
3∑

j=1

(x j,i − c j)
2 ≤ r2, ∀i ∈ �k�. (19)

Another example is requiring aminimumdistancebetween
the support points because it may not be practical or mean-
ingful to take observations from locations too close together.
Such a constraint may take the form

γ1(x) := δ2 ≤
3∑

j=1

(x j,i − x j,l)
2, ∀i, l ∈ �k�, l ≥ i + 1

(20)

where δ is the minimum distance allowed between any two
support points. In our algorithm, we set r = 0.75, c1 = c2 =
c3 = 1.25 in (19) and δ = 0.2 in (20).

Our last example has a discrete design space with three
discrete factors x1, x2 and x3, each with three levels and
coded as 1, 2, and 3. Let y be an integer variable containing
the integer codes for x, andwewant to find D- and A-optimal
exact designs subject to the following constraints in problems
(13) and (17), respectively.

γ1(x) :=x j,i = y j,i + 1, ∀ j ∈ �nx�, i ∈ {1, 2, 3}
(21a)

φ1(y) :=y j,i ≤ 2, ∀ j ∈ �nx�, i ∈ {1, 2, 3}, y j,i ∈ N0.

(21b)

Each of the optimal designs is then obtained by finding
the k most informative points from the 27 candidate design
points. Tables 10 and 11 report the D- and A-optimal designs,
respectively, obtained under constraints (18)–(21). The D-
optimal designs are still uniform, and the CPU times required
to solve the optimization problems are short for the various
constraints. Table 11 shows that A-optimal designs require
noticeably longer time to compute than D-optimal designs.

4.3.2 Constraints on the replicates

This section considers a design problem where the number
of support points in the optimal design sought exceeds the
number parameters in the model. As an example, suppose
that we require 10 support points (k = 10) and the optimal
design must have at least two observations at each support
point:

γ1(n) := ni ≥ 2, ∀i ∈ �k�. (22)

123

108 Statistics and Computing (2020) 30:93–112

Table 10 Constrained D-optimal exact designs for Model 13 in Table 1 with N = 27 and k = 9

Constraints Design Optimum value CPU (s)

(18)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0500 0.0500 0.0500 0.1311 0.1660
0.0500 0.9000 0.4818 0.1408 0.7020
0.9000 0.0500 0.4682 0.7281 0.1320
3 3 3 3 3
0.4239 0.6181 0.6181 0.9000
0.0500 0.1551 0.3319 0.0500
0.5261 0.2268 0.0500 0.0500
3 3 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−8.4728 0.06

(19)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5011 1.0198 1.0198 1.0198 1.0812
1.2223 1.1885 0.8669 1.8714 1.7564
1.2210 0.5389 1.8523 0.8987 1.7768
3 3 3 3 3
1.2174 1.7894 1.7990 1.7990
0.5025 1.7638 0.9367 1.0607
1.1984 1.1627 0.8464 1.7246
3 3 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−10.1176 0.08

(20)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5000 0.5000 0.5000 0.9415 0.9415
0.5000 0.9939 2.0000 0.5000 2.0000
0.5000 2.0000 0.5000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000
0.5000 0.8843 2.0000 1.1075
1.0102 0.5000 0.7835 2.0000
3 3 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−5.6500 0.09

(21)

⎛

⎜
⎜
⎝

1 1 1 1 2 2 3 3 3
1 2 3 1 3 3 1 3 1
1 1 2 3 1 3 1 2 3
3 3 3 3 3 3 3 3 3

⎞

⎟
⎟
⎠ −6.0040 1.38

Designs obtained using a locally optimal MINLP solver

Another setup is a problem where both spaces X and ΩN
k

are constrained independently. Here, in addition to requiring
having 10 support points and at least two replicates from
each support point, a minimum distance between any two
support points is required. The complete set of constraints
is represented by (23), and each constraint depends on the
number of replicates or the location of the support points.
Assuming k = 10, the 10-point optimal designs sought here
satisfies

γ1(n) :=ni ≥ 2, ∀i ∈ �k� (23a)

γ2(x) :=δ2 ≤
3∑

j=1

(x j,i − x j,l)
2, ∀i, l ∈ �k�, l ≥ i + 1

(23b)

where we set δ = 0.2. This design has k distinct sup-
port points, and the number of replicates at each support
point is 2 or more subject to the constraint (23b) that
assures a minimum distance between each pair of support
points.

Tables 12 and 13 display the constrained optimal designs
found from our algorithm and note that the designs obtained
are not uniform due to the value of k.

4.3.3 Constraints on the design and replicates space

In practice, there may be constraints on both the design space
and the number of replicates allowed at each point. For exam-
ple, there are budget constraints to account for, the unitary
cost of each factor is different and linearly proportional to
the levels chosen in the experiment. An example is

γ1(x, n) := c0+c1

k∑

i=1

ni x1i +c2

k∑

i=1

ni x2i +c3

k∑

i=1

ni x3i ≤ b,

(24)

where c0 = 15 is the fixed experimental cost, c1 = 4, c2 = 5,
c3 = 6 are the variable experimental costs of each factor
in the design, and b = 350 is the budget available for the
complete study. Here, we set k = nθ as in the unconstrained
design problem.

Tables 12 and 13 present D- and A-optimal exact designs
found by our algorithm (third line) and subject to constraint
(24). We notice the D-optimal exact design is not uniform
in this case, and more replicates are allocated to treatment
levels that combine lower levels of factors to satisfy the cost
constraint. This trend is more evident for factors with higher

123

Statistics and Computing (2020) 30:93–112 109

Table 11 Constrained A-optimal exact designs for Model 13 in Table 1 with N = 27 and k = 9

Constraints Design Optimum value CPU (s)

(18)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0500 0.0789 0.0789 0.0789 0.1198
0.4686 0.7939 0.8711 0.0866 0.4159
0.4814 0.1271 0.0500 0.8345 0.4642
3 4 2 3 4
0.4539 0.4539 0.4539 0.8501
0.1321 0.4796 0.0500 0.0718
0.4141 0.0665 0.4961 0.0781
3 3 3 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

4.0689 × 103 13.63

(19)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5011 0.9533 0.9533 0.9533 0.9533
1.2508 1.1358 0.8252 1.8378 1.7413
1.2102 0.5707 1.7922 0.8910 1.7328
2 3 4 4 3
1.2026 1.7577 1.7995 1.8199
0.5120 1.7249 0.7940 1.1122
1.1250 1.5314 1.4793 0.7823
2 3 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

492.7252 2.39

(20)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5000 0.5000 0.5000 0.8924 0.8924
0.5000 2.0000 1.1455 0.6636 2.0000
1.1455 2.0000 0.5000 2.0000 0.6636
3 2 3 4 4
0.9302 2.0000 2.0000 2.0000
0.5000 1.2153 0.5000 2.0000
0.5000 0.5000 1.2153 2.0000
3 3 3 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

135.05121 6.27

(21)

⎛

⎜
⎜
⎝

1 1 2 2 2 3 3 3 3
2 1 3 1 3 1 3 2 2
2 1 1 3 3 2 2 1 3
4 2 3 2 2 4 3 4 3

⎞

⎟
⎟
⎠ 388.7682 12.12

Designs obtained using a locally optimal MINLP solver

Table 12 Constrained D-optimal exact designs for Model 13 in Table 1 with N = 27

Constraints k Design Optimum value CPU (s)

(22) 10

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5000 0.5000 0.6682 1.0196 0.5000
0.8530 2.0000 2.0000 0.5000 0.5000
2.0000 0.5000 2.0000 2.0000 0.5000
3 3 2 3 3
2.0000 2.0000 2.0000 2.0000 2.0000
0.7929 0.8252 2.0000 0.5000 2.0000
2.0000 0.5000 0.6388 1.0170 2.0000
2 3 3 3 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−5.4073 1.16

(23) 10

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5000 0.5000 0.5000 0.5000 0.9024
0.5000 2.0000 2.0000 0.8305 0.5000
0.8853 0.5000 2.0000 2.0000 0.5000
3 3 3 3 2
0.9024 2.0000 2.0000 2.0000 2.0000
0.5000 0.7494 2.0000 0.5000 2.0000
2.0000 0.5000 0.7295 2.0000 2.0000
2 2 3 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−5.4709 0.55

(24) 9

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5000 0.5000 0.5000 0.5000 0.5000
0.7968 2.0000 2.0000 0.5000 0.5000
0.5000 2.0000 0.5000 2.0000 0.7789
5 1 2 2 5
0.8005 2.0000 2.0000 2.0000
0.5000 0.5000 2.0000 0.5000
0.5000 2.0000 0.5000 0.5000
6 1 2 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−7.0964 1.60

Designs obtained using a locally optimal MINLP solver

123

110 Statistics and Computing (2020) 30:93–112

Table 13 Constrained A-optimal exact designs for Model 13 in Table 1 with N = 27

Constraints k Design Optimum value CPU (s)

(22) 10

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2.0000 0.5000 2.0000 0.9813 0.5000
2.0000 0.9993 0.8047 2.0000 2.0000
0.8047 2.0000 2.0000 0.5000 0.9993
2 4 2 3 4
0.5000 0.5000 1.4667 2.0000 0.9813
0.7908 0.5000 2.0000 0.5941 0.5000
0.5000 0.7908 2.0000 0.5941 2.0000
2 2 2 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

130.9651 1.27

(23) 10

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5000 0.5000 0.7802 0.8146 0.8146
1.2342 0.5000 2.0000 2.0000 0.5000
1.2342 0.5000 2.0000 0.5000 2.0000
3 2 2 3 3
2.0000 2.0000 2.0000 2.0000 2.0000
1.0398 0.9062 2.0000 0.5000 2.0000
0.5000 2.0000 0.9062 1.0398 2.0000
4 2 2 4 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

128.6433 0.63

(24) 9

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5000 0.5000 0.5000 0.5000 0.8561
2.0000 2.0000 0.5542 0.5893 1.0431
2.0000 0.7417 2.0000 0.5000 0.5000
1 2 2 8 4
0.8561 2.0000 2.0000 2.0000
0.5000 2.0000 0.6329 0.5000
0.5701 1.2799 0.6543 2.0000
6 1 2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

221.6272 4.47

Designs obtained using a locally optimal MINLP solver

cost in the experimental design. This example shows that
D-optimal exact designs generated by our algorithm are not
necessarily uniform if additional constraints are involved.

5 Summary

Our paper is the first to apply MINLP formulations to find
D- and A-optimal exact designs for linear models and locally
optimal designs for nonlinear models. We use algebra-based
concepts to develop MINLP representations of the optimal
exact design problems. The resulting problemmay havemul-
tiple local optima, and we use global and local optimization
MINLPsolvers to determine theoptimum.Ourwork suggests
that there are numerical advantages of working with global
optimization solvers for solving optimal exact design prob-
lems as they have the ability to assure that globally optimal
designs are found. However, in our examples, local optimiz-
ers inmost of the tests findoptimal exact designs that coincide
with those obtained using global solvers and in shorter time.
Our general recommendation is to try both global and local
solvers and compare results. Practically, one advantage of
our formulations is that the structure of the optimization
problems is transparent to the solver that, through matrix
decomposition techniques, can efficiently solve it.

We tested our problem formulations and algorithm for
finding A- and D-optimal exact designs for a range of linear

and nonlinear models with one or more regressors, and they
all performedwell with a short CPU time.We recall that there
is rarely a theoretical proof that an exact design is optimal for
a nonlinear model and so, for comparison purposes, some of
our models were chosen so that we can confirm our results
with the few theoretical results reported in the literature.

The D-optimal exact designs coincide with optimal
approximate designs when N is a multiple of the number
of design points which is expected. We note that when the
D-optimal exact designs are uniformly supported at their
design points, but the same is not true for A-optimal exact
designs. Using several examples, we also demonstrated that
mathematical programming techniques can easily incorpo-
rate additional constraints in the design problems and as
the number of constraints grow in complexity, the feasibility
region shrinks and the optimum is easier to find, assuming it
exists. However, the performance of the algorithm depends
on the size of the problem and the constraints imposed on the
design and replicates spaces.

Acknowledgements The research of Wong is partially supported by
a grant from the National Institute of General Medical Sciences of the
National Institutes ofHealth underAwardNumberR01GM107639. The
content is solely the responsibility of the authors and does not neces-
sarily represent the official views of the National Institutes of Health.
The authors acknowledge two anonymous reviewers that contributed
undoubtedly to improve the quality of the paper.

123

Statistics and Computing (2020) 30:93–112 111

References

Atkinson, A., Donev, A.: The construction of exact D-optimum exper-
imental designs with application to blocking response surface
designs. Biometrika 76(3), 515–526 (1989)

Atkinson, A., Donev, A., Tobias, R.: Optimum Experimental Designs,
with SAS. Oxford University Press, Oxford (2007)

Berman, S.: An extension of the arc sine law. Ann. Math. Stat. 33(2),
681–684 (1962)

Boer, E., Hendrix, E.: Global optimization problems in optimal design
of experiments in regression models. J. Glob. Optim. 18, 385–398
(2000)

Box, G., Hunter, W.: The experimental study of physical mechanisms.
Technometrics 7(1), 23–42 (1965)

Chang, F.C., Imhof, L., Sun, Y.Y.: Exact D-optimal designs for first-
order trigonometric regression models on a partial circle. Metrika
Int. J. Theor. Appl. Stat. 76(6), 857–872 (2013)

Chang, F.C., Yeh, Y.R.: Exact A-optimal designs for quadratic regres-
sion. Stat. Sin. 8, 527–534 (1998)

Chernoff, H.: Locally optimal designs for estimating parameters. Ann.
Math. Stat. 24, 586–602 (1953)

Coale, A., McNeil, D.: The distribution by age of the frequency of first
marriage in a female cohort. J. Am. Stat. Assoc. 67(340), 743–749
(1972)

Cook, R., Nachtsheim, C.: Comparison of algorithms for constructing
D-optimal design. Technometrics 22(3), 315–324 (1980)

Donev, A.: Crossover designs with correlated observations. J. Bio-
pharm. Stat. 8(2), 249–262 (1998). PMID: 9598421

Drud, A.: CONOPT: a GRG code for large sparse dynamic nonlinear
optimization problems. Math. Program. 31, 153–191 (1985)

DuCroz, J., Higham,N.: Stability ofmethods formatrix inversion. IMA
J. Numer. Anal. 12, 1–19 (1992)

Duarte, B., Wong, W.: Finding Bayesian optimal designs for nonlin-
ear models: a semidefinite programming-based approach. Int. Stat.
Rev. 83(2), 239–262 (2015)

Duarte, B.,Wong,W.,Atkinson,A.:A semi-infinite programmingbased
algorithm for determining T -optimum designs for model discrim-
ination. J. Multivar. Anal. 135, 11–24 (2015)

Duarte, B., Wong, W., Dette, H.: Adaptive grid semidefinite program-
ming for finding optimal designs. Stat. Comput. 28(2), 441–460
(2018)

Duran,M., Grossmann, I.: An outer-approximation algorithm for a class
of mixed-integer nonlinear programs. Math. Program. 36(3), 307–
339 (1986)

Esteban-Bravo, M., Leszkiewicz, A., Vidal-Sanz, J.: Exact optimal
experimental designs with constraints. Stat. Comput. 27(3), 845–
863 (2017)

Fedorov, V.: Theory of Optimal Experiments. Academic Press, New
York (1972)

Fedorov, V., Leonov, S.: Optimal Design for Nonlinear Response Mod-
els. Chapman and Hall/CRC Press, Boca Raton (2014)

Fletcher, R., Leyffer, S.: Numerical experience with lower bounds for
MIQP branch-and-bound. SIAM J. Optim. 8(2), 604–616 (1998)

Floudas, C.: Mixed-integer nonlinear optimization. In: Pardalos, P.,
Resende, M. (eds.) Handbook of Applied Optimization, pp. 451–
475. Oxford University Press, Oxford (2002)

Gaffke, N.: On D-optimality of exact linear regression designs with
minimum support. J. Stat. Plan. Inference 15, 189–204 (1987)

GAMS Development Corporation: GAMS—a user’s guide, GAMS
release 24.2.1. GAMS Development Corporation, Washington,
DC, USA (2013a)

GAMS Development Corporation: GAMS—the solver manuals,
GAMS release 24.2.1. GAMS Development Corporation, Wash-
ington, DC, USA (2013b)

Golub, G.H., van Loan, C.F.:Matrix Computations, 4th edn. JHUPress,
Baltimore (2013)

Goos, P., Donev, A.: Blocking response surface designs. Comput. Stat.
Data Anal. 51(2), 1075–1088 (2006)

Goos, P., Vandebroek, M.: D-optimal response surface designs in the
presence of random block effects. Comput. Stat. Data Anal. 37(4),
433–453 (2001)

Goos, P., Vandebroek, M.: D-optimal split-plot designs with given
numbers and sizes of whole plots. Technometrics 45(3), 235–245
(2003)

Gotwalt, C., Jones, B., Steinberg,D.: Fast computation of designs robust
to parameter uncertainty for nonlinear settings. Technometrics
51(1), 88–95 (2009)

Gribik, P., Kortanek, K.: Equivalence theorems and cutting plane algo-
rithms for a class of experimental design problems. SIAM J. Appl.
Math. 32, 232–259 (1977)

Harman, R., Filová, L.: Computing efficient exact designs of experi-
ments using integer quadratic programming. Comput. Stat. Data
Anal. 71, 1159–1167 (2014)

Harman, R., Jurík, T.: Computing c-optimal experimental designs using
the simplex method of linear programming. Comput. Stat. Data
Anal. 53(2), 247–254 (2008)

Hill, A.: The possible effects of the aggregation of the molecules of
haemoglobin on its dissociation curves. J. Physiol. 40(Suppl.), 4–
7 (1910)

Imhof, L.: A-optimum exact designs for quadratic regression. J. Math.
Anal. Appl. 228, 157–165 (1998)

Imhof, L., Lopez-Fidalgo, J., Wong, W.K.: Efficiencies of rounded
optimal approximate designs for small samples. Stat. Neerlandica
55(3), 301–318 (2001)

Johnson, M., Nachtsheim, C.: Some guidelines for constructing exact
D-optimal designs on convex design spaces. Technometrics 25,
271–277 (1983)

Kiefer, J.: General equivalence theory for optimumdesign (approximate
theory). Ann. Stat. 2, 849–879 (1974)

Laird, A.: Dynamics of tumor growth. Br. J. Cancer 18(3), 490–502
(1964)

Lastusilta, T., Bussieck, M., Westerlund, T.: Comparison of some high-
performance MINLP solvers. Chem. Eng. Trans. 11, 125–130
(2007)

Leszkiewicz, A.: Three essays on conjoint analysis: optimal design and
estimation of endogenous consideration sets. Ph.D. thesis, Univer-
sidad Carlos III de Madrid (2014)

López-Fidalgo, J., Tommasi, C., Trandafir, P.: Optimal designs for dis-
criminating between some extensions of the Michaelis–Menten
model. J. Stat. Plan. Inference 138(12), 3797–3804 (2008)

Mandal, A., Wong, W.K., Yu, Y.: Algorithmic searches for optimal
designs. In: Dean, A., Morris, M., Stufken, J., Bingham, D. (eds.)
Handbook of Design and Analysis of Experiments, pp. 755–786.
CRC Press, Boca Ratton (2015)

Meyer, R.,Nachtsheim,C.: The coordinate-exchange algorithm for con-
structing exact optimal experimental designs. Technometrics 37,
60–69 (1995)

Mitchell, T.: An algorithm for the construction of D-optimal experi-
mental designs. Technometrics 20, 203–210 (1974)

Mitchell, T., Miller Jr., F.: Use of Design Repair to Construct Designs
for Special Linear Models. Technical Report, pp. 130–131, Oak
Ridge National Laboratory (1970)

Molchanov, I., Zuyev, S.: Steepest descent algorithm in a space of mea-
sures. Stat. Comput. 12, 115–123 (2002)

Nuñez Ares, J., Goos, P.: An integer linear programming approach to
find trend-robust run orders of experimental designs. J. Qual. Tech-
nol. 51(1), 37–50 (2019). https://doi.org/10.1080/00224065.2018.
1545496

123

https://doi.org/10.1080/00224065.2018.1545496
https://doi.org/10.1080/00224065.2018.1545496

112 Statistics and Computing (2020) 30:93–112

Palhazi Cuervo, D., Goos, P., Sörensen, K.: Optimal design of large-
scale screening experiments: a critical look at the coordinate-
exchange algorithm. Stat. Comput. 26(1), 15–28 (2016)

Pantelides, C.: The consistent initialization of differential-algebraic sys-
tems. SIAM J. Sci. Stat. Comput. 9(2), 213–231 (1988)

Pukelsheim, F.: Optimal Design of Experiments. SIAM, Philadelphia
(1993)

Rasch, D., Hendrix, E., Boer, E.: Replication-free optimal designs in
regression analysis. Comput. Stat. 12, 19–52 (1997)

Sagnol, G.: Computing optimal designs of multiresponse experiments
reduces to second-order cone programming. J. Stat. Plan. Inference
141(5), 1684–1708 (2011)

Sagnol, G., Harman, R.: Computing exact D-optimal designs by mixed
integer second order cone programming. Ann. Stat. 43(5), 2198–
2224 (2015)

Sahinidis, N.: BARON 14.3.1: global optimization of mixed-integer
nonlinear programs, user’s manual. The Optimization Firm, LLC,
Pittsburgh (2014)

Sartono, B., Goos, P., Schoen, E.: Constructing general orthogonal frac-
tional factorial split-plot designs. Technometrics 57(4), 488–502
(2015a)

Sartono, B., Schoen, E., Goos, P.: Blocking orthogonal designs with
mixed integer linear programming. Technometrics 57(3), 428–439
(2015b)

SAS Institute Inc.: JMP® 13 User Guide, 2nd edn. SAS Institute Inc,
Cary (2017)

Tawarlamani, M., Sahinidis, N.: Convexification and Global Optimiza-
tion in Continuous andMixed Integer Nonlinear Programming, 1st
edn. Kluwer Academic Publishers, Dordrecht (2002)

Vandenberghe, L., Boyd, S.:Applications of semidefinite programming.
Appl. Numer. Math. 29, 283–299 (1999)

Vo-Thanh, N., Jans, R., Schoen, E., Goos, P.: Symmetry breaking in
mixed integer linear programming formulations for blocking two-
level orthogonal experimental designs. Comput. Oper. Res. 97,
96–110 (2018)

Welch, W.: Branch-and-bound search for experimental designs based
on D-optimality and other criteria. Technometrics 24(1), 41–48
(1982)

Westerlund, T., Pettersson, F.: An extended cutting plane method for
solving convex MINLP problems. Comput. Chem. Eng. 19, 131–
136 (1995)

Wynn, H.: The sequential generation of D-optimum experimental
designs. Ann. Math. Stat. 41(5), 1655–1664 (1970)

Yang, J., Mandal, A., Majumdar, D.: Optimal design for two-level fac-
torial experiments with binary response. Stat. Sin. 22(2), 885–907
(2012)

Yang, J., Mandal, A., Majumdar, D.: Optimal designs for 2k factorial
experiments with binary response. Stat. Sin. 26, 381–411 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Optimal exact designs of experiments via Mixed Integer Nonlinear Programming
	Abstract
	1 Motivation
	2 Background
	2.1 Optimality criteria
	2.2 Mixed Integer Nonlinear Programming

	3 Optimal design MINLP formulations
	3.1 Doptimal designs
	3.2 Aoptimal design
	3.3 Initialization and limitations

	4 Numerical results
	4.1 Comparison of results
	4.1.1 Impact of the sample size
	4.1.2 Impact of the MINLP solver
	4.1.3 Models with analytically derived optimal designs

	4.2 Unconstrained optimal exact designs
	4.3 Constrained optimal exact designs
	4.3.1 Constraints on the design space
	4.3.2 Constraints on the replicates
	4.3.3 Constraints on the design and replicates space

	5 Summary
	Acknowledgements
	References

