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Abstract
This paper proposes an extension of Periodic AutoRegressive (PAR) modelling for time series with evolving features. The
large scale of modern datasets, in fact, implies that the time span may subtend several evolving patterns of the underlying
series, affecting also seasonality. The proposed model allows several regimes in time and a possibly different PAR process
with a trend term in each regime. The means, autocorrelations and residual variances may change both with the regime and
the season, resulting in a very large number of parameters. Therefore as a second step we propose a grouping procedure on
the PAR parameters, in order to obtain a more parsimonious and concise model. The model selection procedure is a complex
combinatorial problem, and it is solved basing on genetic algorithms that optimize an information criterion. The model is
tested in both simulation studies and real data analysis from different fields, proving to be effective for a wide range of series
with evolving features, and competitive with respect to more specific models.

Keywords Genetic algorithms · Multiregime models · Information criteria · Structural change

1 Introduction

In modern times an increasing amount of data is avail-
able. For time series this implies that both the observation
period increases, and the time interval between observations
decreases. But series observed over a very large time span
are usually subject to changes of their structure and fea-
tures, concerning both the first order (means) and the second
order (variance and autocorrelations) properties. Moreover,
due to the usually infra-annual observation rate, seasonal-
ity is present and cannot be disregarded. To analyse such a
complex scenario, sufficiently simple models are needed for
describing, and following in their evolution, both first and
second order behaviour of the time series.
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The present research is concerned with time series with
trend and seasonality, and an evolving structure. We shall
consider a framework for which the seasonality has a com-
plex structure, and has an effect on means, variances and
autocorrelations of the underlying process.We shall base our
procedures on periodic modelling (Gladyshev 1961). Such
methods have been introduced because standard linear fil-
tering techniques have been proven to be not adequate for
dealing with seasonality in the autocorrelation structure (see
Franses 1995), so periodicmodelling is suitable for our goals.
We shall focus on Periodic AutoRegressive (PAR) models,
for which each season of the year follows a possibly dif-
ferent AR process, with season-varying means and residual
variances (for an account see Franses and Paap 2004; Hipel
and McLeod 1994).

The evolving structure will be analysed in the framework
of structural changes specifications (Bai and Perron 1998;
Zeileis et al. 2003; Davis et al. 2006; Caporale et al. 2012).
Therefore, we will assume the possible presence of several
regimes in time, where the trend slope, the means, the auto-
correlations and the residual variances can have a different
behaviour. The resulting model will naturally require a very
large number of parameters, so its specification is a com-
plex combinatorial problem. We shall adopt a strategy based
on genetic algorithms (GAs) (Holland 1992) for optimiz-
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ing an information criterion, a choice that has been often
used for analysing both independent data (Kapetanios 2007)
and time series (e.g. Baragona et al. 2004). Use of a GA for
identifying a PAR model was first introduced by Ursu and
Turkman (2012). An alternative, if extensive parallel com-
puting facilities are available, is complete enumeration (e.g.
Kontoghiorghes 2005).

Themain contribution of this paper is to develop a flexible
procedure that allows to deal with evolving seasonal varia-
tions in the most concise way. In fact, the model outlined
above is composed by many parameters, referred to both
the regimes and the seasonal patterns, but may be not all of
them are necessary. The proposed procedure allows to build
more parsimonious representations of the model, in order
to facilitate the interpretation of results. We employ subset
selection to decrease the number of AR parameters, but a
more decisive gain in parsimony can be achieved by group-
ing the seasonal parameters. For example, if we observe a
monthly hydrological time series we may find out that the
hottest and the coldest months share, respectively, a simi-
lar behaviour as the mean level is considered: in that case we
could consider only two seasonal means in the model instead
of twelve, and the same may not hold true for the autocor-
relation structure. Another example would be the so-called
Monday effect in daily stock exchange data: that specific day,
as the stock market re-opens, may require a set of parame-
ters completely differentwith respect to the other days. These
kind of problems have been generally accounted for in lit-
erature by means of hypothesis testing: in Franses and Paap
(2004) a test of equality among all the autoregressive parame-
ters is conducted to compare the PARwith a non periodic AR
process; a test proposed in Thompstone et al. (1985) allows to
group together the seasonal means andAR parameters of two
adjacent months basing on the equality of residual variances.
Instead, our proposal allows to compare all possible arrange-
ments of the seasonal positions (e.g. months) into groups and
to select the best according to a specific criterion.

The paper is structured as follows: Sect. 2 introduces the
models; Sect. 3 details the implementation of the computa-
tional method; Sect. 4 is concerned with a simulation study;
Sect. 5 presents some applications and Sect. 6 concludes.

2 Model

We outline the model employed in the paper, which gener-
alizes some procedures introduced in Cucina et al. (2018)
and Battaglia et al. (2018). It concerns a seasonal time
series Xt , (t = 1, . . . , N ) observed S times a year, whose
behaviour is not homogeneous during the observation period.
Thus m change times τ1, . . . , τm specify the existence of
m + 1 regimes, in which the model may change its structure.

In each regime j ( j = 1, . . . ,m + 1) the model also
allows pooling the seasonal parameters, that regulate both
the first and the second order properties of the underlying
process. According to this parsimonious strategy, the same
parameters may be adopted for describing a number of adja-
cent seasonal positions, avoiding a possible excess of detail.
Let us consider the case of monthly data, for which S = 12
and we label January as month 1, February as month 2, and
so on. We could provide a description of the mean function
using only two parameters, for example the months from
11 to 3 and from 4 to 10: in that case the number of sea-
sons is decreased to s( j)

M = 2. The labels of the months, to be
grouped, are taken relative to the seasonal position of the first
observation. But since we allow arbitrary season grouping,
an additional parameter is needed to determine the starting
months of each season. We indicate with f ( j)

M the first month
of the first completely observed season for regime j . These
parameters have an influence on how the seasons will be
grouped. The resulting arrangement is unconstrained in terms
of number (between 1 and S) and size of the groups, and will
be independently derived for the seasonal means and the AR
models, these latter including the autoregressive parameters
and the residual variances (for the season arrangement of the
AR models we use the notation s( j)

AR for the number of sea-

sons and f ( j)
AR for the first observation of the first completely

observed season of regime j).
For each regime j ( j = 1, . . . ,m + 1) we denote by τ j−1

the starting time and by τ j − 1 the last time, with:

1 ≡ τ0 < τ1 < · · · < τm < τm+1 ≡ N + 1.

In order to ensure reliable AR estimates, we require at least
L observations in each regime. The model for regime j is
defined by:

Xt = a( j) + b( j)t + μ( j)(k∗) + Wt , τ j−1 ≤ t < τ j ,

Wt =
p∑

i=1

φ
( j)
k (i)Wt−i + εt , τ j−1 ≤ t < τ j ,

where a( j) and b( j) are trend parameters, μ( j)(k∗) are the
seasonal means, Wt is a PAR model, for which φ

( j)
k (i) (i =

1, . . . , p) are the AR parameters and εt is a periodic white
noisewith varianceσ 2

jk . Indices k
∗ and k denote, respectively,

the season for the mean and the AR model at time t , and the
number of seasonal groups s( j)

M and s( j)
AR are possibly different

for each regime j .
Our model is an extension of that introduced in Franses

and Paap (2004) because considers regime changes, and an
extension of the model proposed in Lu et al. (2010) because
allows regime-varying trend and PAR structures. A similar
model, but without regime changes, was considered by So
and Chung (2014): they assume a non periodic AR model
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but allow each seasonal mean to be stochastically varying
around a long-term stationary level, rather than deterministic
as in our case.

The proposed model is composed by three kind of param-
eters: the external parameters, which are chosen by the user
or are implicitly derived from the available data; the struc-
tural parameters, which include the change times that specify
the regime structure, the seasonal arrangements features and
the indicators of subset models; the regression and autore-
gression parameters.

The seasonal arrangement is specified by a vector v( j)
M (k∗)

(v( j)
AR(k) for the AR models) that indicates the starting sea-

sonal position of each group. The subsetmodels specification
is indicated by binary vectors δ

( j)
k of size p that denote pres-

ence (zero) or absence (one) of the parameter at each lag.
In summary, considering regime j = 1, . . . ,m + 1, sea-
son of the mean k∗ = 1 . . . s( j)

M , season of the AR model

k = 1 . . . s( j)
AR , lag i = 1, . . . , p, the parameters may be

listed as follows:

– External parameters

N Number of observations
S Number of observations per year
p Maximum AR order
C Maximum number of regimes
L Minimum number of observations per regime

– Structural parameters

m Number of change times
τ j Change times

δ
( j)
k Subset PAR indicators

s( j)
M , s( j)

AR Number of groups for the
means and the AR models
v

( j)
M (k∗), v( j)

AR(k) Seasonal arrang. structure
for means and AR models
f ( j)
M , f ( j)

AR Starting observation for
means and AR models

– Regression parameters

a( j), b( j) Trend parameters
μ( j)(k∗) Seasonal means
φ

( j)
k (i) AR parameters

σ 2
jk Residual variances

The main difficulty in building the model is the specification
of structural parameters, because it is a complex combinato-
rial problem.We base our procedure on information theoretic
ideas for which, informally, a model dominates another if
it has a better fit while not being much more complex. It
is a popular approach to model selection and requires the
adoption of the model that optimizes a form of penalized

likelihood, often called information criterion (e.g. Sin and
White 1996). Such criteria are widely employed in linear
and time series model building: most frequent is Akaike’s
AIC, but also others (e.g. Schwarz, Hannan and Quinn) are
adopted. A generic form of information criterion (IC) for
dealing with a multi-regime model with seasonality like the
present one may be written:

IC =
m+1∑

j=1

s( j)AR∑

k=1

[n jk log σ̂ 2
jk + π jk · Pjk], (1)

where n jk is the length of the subseries corresponding to
regime j and season k, σ̂ 2

jk is the average of the squared
estimated residuals of that subseries, Pjk is the number of
parameters of regime j and season k, and π jk is the related
penalization.

Following the famous Box’s dictum (Box 1976) All mod-
els are wrong but some are useful we do not assume an
underlying data generating process, but rather assign a score
to each possible model, and the best one according to such
score shall be selected. A wide discussion on this topic is
provided in Kapetanios (2007).

3 Implementation

A model is specified by external, structural and regression
parameters and is evaluated by an information criterion of the
form (1). Given the structural parameters, the best values of
the regression parameters a( j), b( j),μ( j)(k∗) andφ

( j)
k (i)may

be estimated by least squares and the residual variance esti-
mate σ̂ 2

jk is obtained by the average of the estimated squared

residuals {ε̂2t } with t belonging to regime j and season k.
One referee suggested to model the mean functions μ( j)(·)
(that are periodic functions with period s( j)

M ) by trigonomet-
ric polynomials. This may be done without difficulty by a
simple modification in the design matrix of the least squares
estimation, and may provide additional parsimony, since not
all the harmonic cycles may be necessary, when the number
of seasons for the mean s( j)

M is large.
The specification of structural parameters, on the other

hand, will be tackled bymeans of a Genetic Algorithm (GA).
TheGAwas introduced originally byHolland (1992) as a for-
mal imitation of the evolution of biological systems towards
adaptation to the environment. It revealed soon its potential
in solving statistical problems (Chatterjee et al. 1996) and
has been successfully employed for problems similar to the
present one (e.g. Baragona et al. 2004; Davis et al. 2006;
Lu et al. 2010). A GA is a population-based evolutionary
algorithm and proceeds iteratively in rounds (called gener-
ations) through stochastic rules (called genetic operators).
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Each possible solution is codified into a numeric (generally
binary) vector called chromosome, and the goodness of that
solution is expressed by a numerical function of the chro-
mosome, called fitness function. The population includes
several chromosomes and evolves through generations by
reproduction of selected chromosomes (a stochastic mecha-
nismcalled selection), better chromosomes in terms of fitness
having a larger probability to survive in the next generation.
Moreover, new chromosomes appear in the new population,
originated by genetic operators: mutation (random changes
of any binary digit) and recombination of genetic mate-
rial (crossover operator: exchange of binary code portions
between two chromosomes).

The GA, like manymetaheuristic algorithms, is a stochas-
tic search device for exploring a large discrete space of
solutions, instead of an exhaustive enumeration. Under some
assumptions the sequence of the best chromosomes at each
generation converges in probability to the optimum (assumed
unique), but the GA does not guarantee to reach the best
solution in every instance. However in some cases, like the
present one, the choice of some structural parameters, whose
possible different values are not too many, may be done by
complete enumeration, reaching the best result surely. This is
possible for the subset indicators δ

( j)
k : they will not be coded

in the chromosome, but all the possible 2p subset models,
for any given arrangement of the other structural parameters,
will be estimated inside the fitness function, and the most fit
retained. It is suitable because we consider relatively small
orders p and the least squares estimation of subset AR mod-
els is fast, and it reduces the solution space by a factor 2p.

A further considerable simplification of the search process
may be achieved by observing that our structural parameters
are related to two different structures: the trend and change
times on one side, and the seasons arrangement and the PAR
models on the other. These two sets of parameters may be
evolved by different GAs, thus we shall adopt a procedure in
two stages.

In the first stage a GA will be run to select the number of
change timesm, the change times τ j and the trend parameters
a( j) and b( j). To avoid interactions, in this stage we consider
full PAR models, different for each seasonal position (e.g.
months), i.e. with s( j)

M = s( j)
AR = S for any j . This proce-

dure is more effective than the simpler sequential addition
of change points like forward or stepwise methods (as dis-
cussed e.g. by Davis et al. 2006; Li and Lund 2012) because
it approaches the global optimum examining a much bigger
portion of the search space.

In the second stage, given the number of regimes and the
change times, a second GA runs for selecting the optimal
values of the remaining structural parameters: the number of
different seasons in each regime, the length of each season,
the subset indicators, the first observations f ( j)

M and f ( j)
AR . For

these two last kinds of parameters we shall adopt complete
enumeration as it will be explained in the next subsection.
Thus our proposed procedure uses partly a GA and partly
complete enumeration, so itmay be considered a hybrid algo-
rithm.

An implementation of GAs requires three kinds of critical
choices: the coding procedure, the fitness function and the
genetic operators. Moreover, the complexity of the present
model selection problem suggests to derive some alternative,
faster though sub-optimal, computational strategies.

3.1 Coding

The task of encoding the values of the structural parameters
into a binary vector (chromosome) is often the most critical
step in the implementation of a GA. Ideally, there should
be a one-to-one correspondence between chromosomes and
admissible solutions, but this is rarely possiblewhen the solu-
tion space is not a cartesian product, or the values of the
structural parameters interact with each other (this is espe-
cially true in grouping problems, see Falkenauer 1998). In
particular, an efficient coding should avoid:

– Illegality: existence of chromosomes that do not corre-
spond to feasible sets of structural parameters

– Redundancy: existence of different chromosomes that
correspond to the same model.

In the GA of the first stage we encode the number of regime
changes m and the change times τ j . For m we can simply
use the base 2 representation of its decimal value, and if
the maximum number of regimes C is a multiple of 2 this
solution is efficient and legal. On the contrary, coding the
change times τ j is not so simple, because of the ordering
constraints and the lower limitation imposed by theminimum
number of observations per regime L , that implies, given m,
the following inequalities:

τ1 ≥ L + 1 ; τ2 ≥ τ1 + L ; . . .

τm ≥ τm−1 + L ; N + 1 ≥ τm + L.

We adopt the encoding method introduced by Battaglia and
Protopapas (2012) based on m real values between zero and
one that determine the length of each regime as a portion
of its maximum possible length. Through this procedure
any m-tuple of numbers between zero and one (h1, . . . , hm)

may be converted in a valid arrangement of change times
(τ1, . . . , τm). Therefore the chromosome encodes the thresh-
olds h1, . . . , hm , using for each of them a n-bit sequence. The
size n should be large enough to allow that all integer val-
ues in the admissible range are possible for each τ j , but not
too large for avoiding excessive redundance. However redun-
dance cannot be completely avoided here, because in general
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it cannot be avoided that two contiguously coded values of
h j result in an identical integer value for τ j , but no illegal-
ity problem arises. The total number of binary digits of the
chromosome in the first stage is therefore log2 C+n(C−1).

For the second stage we have a known number of regimes
and the subseries belonging to each regime are given, so we
must evolve the arrangement of the observations into seasons,
both for the mean and for the AR structures. In each given
regime j the S seasonal positions should be grouped into
s( j)
M different seasons for the mean and s( j)

AR different seasons
for the PAR structure. We shall explain the coding procedure
of the possible season groupings only for the mean, for the
PAR structure the method is similar; for ease of exposition
we consider monthly data (S = 12) starting in January and
label the months from the first observation: 1 = January, 2 =
February, . . ., 12 =December. For any seasonal arrangement,
we label with 1 the first season that is completely observed.
Suppose for the moment that the first season starts at Jan-
uary (and is therefore labeled as season 1). In this case the
arrangements may be described by the labels of the month
of the first observation of each season, through the vector
vM = [vM (1), vM (2), . . . , vM (s( j)

M )] with

1 = vM (1) < vM (2) < · · · < vM (s( j)
M ) ≤ S.

These vectors are in a one-to-one correspondence with the
combinations of the objects {2, 3, . . . , S} taken s( j)

M at a time.
It follows that the total number of different season arrange-
ments is 2S−1, and they may be coded directly and efficiently
by a binary vector of S − 1 bits. In such a vector the k-th
bit equal to one denotes that a season starts at the (k + 1)-
th month. Decoding the binary vector is immediate because
vM (1) = 1 and vM (2), . . . , vM (s( j)

M ) are taken equal to one
plus the positions of the binary vector where the bit equals
one.

As an example, let us consider the following seasonal
arrangement: first season includes months from January to
March (1–3), second season months from April to July (4–
7), third season months from August to October (8–10) and
the fourth season includes November and December (11–
12). Here sM = 4, vM = [1, 4, 8, 11] and the corresponding
binary vector is (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0).

This procedure should be repeated for the seasonal
arrangements related to the means and to the PAR struc-
tures, and for each regime. Therefore the overall length of
the chromosome in the second stage is 2(S − 1)(m + 1).
There is no need to code the number of seasons s( j)

M and s( j)
AR

because their values are implicit, and no illegal chromosomes
nor redundancy arise.

We now release the assumption that there is a season start-
ing in January. Then any grouping associated to a vector vM
may be associated to more than one actual season arrange-

ment, because the first position of the first season, indicated
by vM (1) = 1, could now be associated to a month that is
not the first of the observed data (i.e. January). Our conven-
tion is to label with 1 the first season which is completely
observed, and to denote by fM the starting month of that
season. It follows that the month of the first observation for
the first season, in the arrangement described by the vector
vM , equals fM and not 1. Consequently, each season labeled
k starts at month vM (k) + fM − 1 (always assuming that the
first observation of the series relates to month 1). The pos-
sible values of fM are determined by the arrangement vM .
First of all, if the number of seasons is S or 1, the only pos-
sible value for fM is 1. On the contrary, when 1 < sM < S,
more cases are possible. However, since the first completely
observed season starts at fM rather than at 1, it follows that
the preceding season (whose label is sM ) was not completely
observed, thus its starting month was earlier than month 1, or
vM (sM ) + fM − 1 ≤ S that implies fM ≤ S − vM (sM ) + 1.
We conclude that for a given season arrangement vM , the
possible values for the first observation fM are contained in
the range [1 , S − vM (sM ) + 1]. Note further that there is
a first observation fM for the means and one, f AR , for the
PAR structure, and they may be different in each regime. In
order to avoid excessive complexity in the GA, we decided
to completely enumerate all possible configurations of fM
and f AR into the fitness computation step, and to retain the
fittest solution.

In the second stage the trend parameters a( j) and b( j) are
estimated again by least squares together with the seasonally
grouped means (see next subsection).

3.2 Fitness function

The fitness function measures adaptation to the environment
of each chromosome and has to be maximized, therefore it
is natural to take a monotonically decreasing transformation
of the information criterion IC. Our choice is simply

fitness = exp{−IC/β}. (2)

The convergence speed of a GA usually depends on the
behaviour of the fitness function near the optimum, and the
constant β may be used for avoiding an excessive flatness
(for further details on this issue, also known as fitness scal-
ing, see e.g. Baragona et al. 2011, p. 53). However, the most
serious differences in the GA results are determined by the
choice of the information criterion itself.

First of all, the value of IC, and consequently of the fit-
ness, is extremely sensible to the choice of the penalizing
constants. The values corresponding to the original Akaike
criterion (constant equal to 2) may result in a relatively large
number of structural parameters; an alternative may be link-
ing the penalizing constant to the sample size, in a similar
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way to the Schwarz criterion (log N ) or the Hannan–Quinn
criterion (2c log log N ). Several implementations of model
selection related to structural breaks adopted the minimum
description length (MDL) criterion (e.g. Davis et al. 2006,
2008; Lu et al. 2010; Li and Lund 2012). A further option is
selecting the penalizing constant in such a way that the infor-
mation criterion behaves asymptotically like a hypothesis test
where the null model is nested into the alternative model (for
example testing the absence of seasonality, or testing that
seasonality is constant across regimes), see Appendix.

For evaluating a model with m regime changes, s( j)
M sea-

sons for the mean and s( j)
AR for the PAR models in the j−th

regime, and the subset indicators δ
( j)
k , we use the negative

exponential transformation (2) of the following criterion:

IC =
m+1∑

j=1

s( j)AR∑

k=1

[n jk log(σ̂
2
jk) + π jk(p − |δ( j)

k |)]

+π

⎛

⎝
m+1∑

j=1

s( j)
M + m + 1

⎞

⎠ , (3)

where the last term of the right hand side accounts for the
seasonal means and the slopes.

In the first stage the chromosome includes only the num-
ber of regimes and the change times, the number of seasons is
assumed equal to S (no season grouping considered) and the
PAR models are estimated without subset constraints, thus
we apply (3) with s( j)

M = s( j)
AR = S and |δ( j)

k | = 0, ∀ j, k. In
order to simplify computations, we regress the data on a lin-
ear homogeneous trend with coefficient b( j) and S monthly
averages c( j)

k , then we give to the seasonal meansμ( j)(k) the
meaning of deviations from the general regime trend letting
a( j) = (c( j)

1 +c( j)
2 +· · ·+c( j)

S )/S andμ( j)(k) = c( j)
k −a( j).

In the second stage we assume the number of regimes
and the change times as given; the chromosome includes
only coding for the season arrangement, while the optimal
values of the subset indicators are obtained by complete
enumeration. Complete enumeration is also used for com-
puting the optimal values of the first observations f ( j)

M and

f ( j)
AR , as illustrated previously. For the second stage also

only a homogeneous trend and s( j)
M seasonal averages c( j)

k
are estimated for each regime, the intercept a( j) and the
seasonal means μ( j)(k) are obtained from the constraint
μ( j)(1) + μ( j)(2) + · · · + μ( j)(s( j)

M ) = 0. Lastly, simple
linear constraints may be added in the least squares estima-
tion of a( j), b( j), μ( j)(k) to ensure that the piecewise linear
trend is continuous, though allowing discontinuity may help
to identify possible level changes in the series.

Among possible choices of the information criterion, we
shall apply that corresponding to the original Akaike’s pro-
posal, setting the penalizing constants π = π jk = 2 ∀ j, k

(labeled AIC) and a version corresponding to the Schwarz
criterion obtained letting π jk = log(n jk) and π = log N
(labeled BIC).

In any case, it is important to stress that different choices of
the penalizing constants (or the information criterion itself)
yield different optimal models (corresponding to the largest
fitness).

Finally we observe that the information criterion in (3) is
the simple average of the values for each sub-series related
to a regime and a season. In some cases (for example when
forecasting future observations is of special interest) it may
be appropriate to assign different weights to the different
regimes and modify the criterion accordingly.

3.3 Genetic operators

Both for the first and the second stage our GA implemen-
tation uses only the three classical operators of selection,
crossover and mutation. Other more elaborated techniques
introduced in the literature (e.g. inversion) were not found
necessary to obtain satisfactory results. Like in all optimiza-
tion applications of GA we adopted the so-called elitism:
the best chromosome in each population survives to the next
generation surely.

Selection is operated using the so-called roulette wheel
rule: each chromosome is assigned a survival probability
equal to the ratio of its fitness to the sum of the fitness on the
entire current population. A simple alternative is using, for
computing survival probabilities, not the fitness itself but its
rank in the population (rank selection).

For crossover we use two alternative types: random
one-cut-point and uniform. Both are applied to pairs of chro-
mosomes. The first one consists in choosing at random one
specific position (bit) in the two chromosomes, and exchang-
ing between them the bits following that position (cut-point).
The uniform crossover, on the contrary, acts on each single
bit position, choosing the bit value of one of the two chromo-
somes at random (with probability 1/2). There is a predefined
probability (Pcross) that each unit of the population undergoes
a crossover.

The mutation operator is also applied in a standard way:
with a predefined probability (Pmut) each bit of each chro-
mosome in the population may be subject to flip from 0 to 1
or from 1 to 0 (bit-flip mutation).

In our experiencewe found that the results are not strongly
influenced by the type of crossover operator, while the
probabilities Pmut and Pcross have a larger effect on the perfor-
mance. By means of a pilot experiment we chose the values
Pcross = 0.7 and Pmut = 0.2.

Two other important decisions concern the number of
chromosomes in the population and the number of gener-
ations before stopping the algorithm. As to the population
size, we follow Reeves (1993) who suggested to consider the
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probability that, in a random population, both values 0 and
1 are represented at each fixed bit position of the chromo-
some. If we want that this probability be at least Q, and the
chromosome length is G, the population size should be at
least 1+ log(−G/ log Q)/ log 2. For a dimension similar to
our problems, and probability Q = 0.99, this rule gives sizes
around 20.

Lastly, the number of generations is also very important.
Few theoretical guidelines are available, except that the num-
ber of generations required for convergence depends on the
dimension of the solution space. Several stopping rules were
proposed, but is important basing on pilot experiments or
preceding experience on problems of a similar nature.

3.4 Computational strategies

The complexity of a GA and the computational time required
to converge depend on the size of the solution space and gen-
erally increase exponentially, therefore it is always advisable,
whenever possible, to decompose the optimization problem
into subproblems with a solution space of lower dimension.

In the algorithm of the first stage we use n = 10 bits for
encoding the real thresholds h j ∈ (0, 1), as they ensure a suf-
ficient precision for series up to a few thousands observations;
with a maximum number of regimes C , the chromosome
length is 10(C −1)+ log2 C bits and the solution space may
be reasonably explored by a standard GA implementation.
Besides, there is no obvious meaningful decomposition of
the solution space.

On the contrary, in the second stage where the chro-
mosome length may be up to 2C(S − 1), especially with
monthly data (S = 12), the solution space is large and
high-dimensional; moreover the fitness function is compu-
tationally heavier, since it includes complete enumeration
of subset models and first observations fM and f AR . Thus,
the derivation of alternative sub-optimal strategies, that may
ensure a faster computation, appears advisable.

A first useful observation is that the information criterion
is additive in the regimes, and the seasonal arrangement for
one regime is independent from those of the other regimes.
Thus the second stage GAmay be applied independently and
sequentially with respect to the regimes. This splits a search
in a 2(m+1)	 space into (m + 1) independent searches in 2	

spaces, and reduces considerably the required overall number
of generations. To be more precise, there is a certain amount
of dependence between the model of one regime and that
of the preceding regime, because the estimation of the AR
parameters involves the detrended observationsWt of p pre-
ceding data: thus in the parameter estimation of themodel for
regime j weuse the last p detrended observationsWt belong-
ing to regime j − 1 (and depending on the model selected
for regime j − 1). However we believe that the influence of
such a feature on the overall results is negligible, therefore

the proposed strategy may be considered essentially optimal
rather than sub-optimal.

Another possibility of modifying the search is to evolve
separately the seasonal arrangement for the means and that
for the AR structures. More precisely, we may consider in a
first step only chromosomes that encode different seasonal
arrangements for the mean and a full seasonal splitting for
the PAR models, i.e. S different models for the S seasonal
positions. Once obtained the best seasonal grouping for the
means, in a second step a GA is run with chromosomes that
encode the optimal arrangement found for the means, and
evolve the seasonal arrangement for the AR structure. Such
a strategy, that we name conditional, requires the use of two
GAs in sequence, each operating on a solution space whose
dimension is half the original. This ideamaybe applied in two
different ways: evolving simultaneously the season grouping
for the means of all regimes, and then, conditional on the
results, finding the season groupings for the PAR models of
all regimes (we call it a full conditional strategy), or apply-
ing the conditional procedure separately and sequentially for
each regime (we call it a sequential conditional strategy). On
a theoretical ground such strategies are sub-optimal because
in each step the search for new chromosomes is limited to a
linear subspace of the solution space. However in our expe-
rience the sequential conditional strategy seldom missed to
find the optimal solution, and required a considerably smaller
computational time.

4 Simulation studies

We shall conduct five simulation experiments to evaluate
the performance of the proposed procedure. The first three
simulations are designed to evaluate the ability of detecting
change times, while the last two experiments will be devoted
to grouping seasons with similar autocorrelation structure or
seasonal means. A summary of the parameters used to gen-
erate the models can be found in Table 1. In all the scenarios
the {εt } is generated from normal random variables with zero
mean andσ 2

jk = 1,∀ j, k. In thefirst experiment (Model I) the
data are simulated from a PAR(1) model with two regimes:
the seasonal means, indicated with μA(k) in Table 1, are the
same in the two regimes, whereas both the trend and the AR
parameters change at time τ1 = 481. In the first regime there
is no trend and the PAR structure is given by the parameters
φA
1 (k), while in the second the trend slope and intercept are

a(2) = −5 and b(2) = 0.007 and the PAR parameters are
all zero. In the second simulation (Model II) the true model
contains two change times located at τ1 = 481 and τ2 = 841.
The seasonal means and the autocorrelation structures do not
change in the three regimes and are specified by μA(k) and
φA
1 (k) respectively. The trend parameters in the three regimes

are: a = (0,−5, 1) and b = (0, 0.0138, 0.0033). In the third
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Table 1 Summary of the values of monthly means and AR parameters
used in simulations

Month μA(k) φA
1 (k) μB(k) φB

1 (k) μC (k) φC
1 (k)

1 −0.61 0.30 0.0 0.5 0.0 0.7

2 0.99 0.30 0.0 0.5 0.0 0.7

3 2.35 0.50 0.0 0.5 0.0 0.7

4 4.91 0.30 8.0 0.3 0.0 0.3

5 8.74 0.35 8.0 0.3 6.0 0.3

6 12.15 0.30 8.0 0.3 6.0 0.3

7 15.55 0.25 15.0 0.3 6.0 0.3

8 15.47 0.10 15.0 −0.1 6.0 −0.2

9 12.79 0.10 15.0 −0.1 2.0 −0.2

10 7.82 0.10 3.0 −0.1 2.0 −0.2

11 2.32 0.20 3.0 0.2 2.0 0.0

12 −0.25 0.20 3.0 0.2 2.0 0.0

simulation (Model III) the true process contains one change
time located at τ1 = 1801. This model has no trend and a
constant PAR(1) structure with respect to the regimes speci-
fied by φA

1 (k), while the seasonal means are equal to μA(k)
in the first regime and are reduced by a factor of 0.25 in
the second. In the fourth simulation (Model IV) the data is
simulated from a PAR(1) with two regimes without trend:
in the first one there are 11 different seasonal means and 4
different PARmodels denoted byμA(k) and φB

1 (k) (monthly
means of July and August are equal), whereas in the second
there are 4 different seasonal means specified by μB(k) and
a white noise autocorrelation structure. In the last scenario
(Model V) the true process is a single regime PAR without
trend with 3 different seasonal means and 4 different PAR
models specified by μC (k) and φC

1 (k).
From eachmodel we simulate 500 monthly (S = 12) time

series of length N = 1200, except for the Model III in which
we use N = 3600, and apply our method to each series with
two different fitness functions based, respectively, on theAIC
and BIC criteria (see Sect. 3.2).

As far as the GA settings are concerned, the population
size is fixed at 50 individuals, the roulette wheel is used as
selection operator, the uniform crossover as recombination
operator with rate 0.7 and the standard bit-flip mutation with
probability set to 0.2. The elitist strategy is also employed,
and the reaching of 500 generations is adopted as stopping
criterion for the algorithm.

We focus on an important aspect before describing the
simulation results. For some replications the best model pro-
vided by the GA can achieve a larger fitness than the one
of the actual data generating process. Such finding will not
be considered an error, because the aim of our proposal is
not to discover the generating process but rather to select the
best parsimonious model both in terms of fit and parsimony
according to a specific criterion. For example Fig. 1 displays
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Fig. 1 Differences between the fitness of the selected model and that
of the actual data generating process for Model IV and BIC criterion
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Fig. 2 Change times detected forModel I (continuous line:BIC; dashed
line: AIC)

the histogram of the observed differences between the best
fitness reached in each replication and fitness of the actual
data generating process for Model IV and BIC criterion.

For the data simulated from Model I, the percentage
of simulations for which the correct number of regimes is
detected is 96.2% for AIC and 100.0% for the BIC. The
estimated change time locations are reported in Fig. 2. This
plot reports the distribution of the detected change times in
the 500 replications. We can observe that both the curve of
AIC and the one related to BIC have a mode around the true
change time location τ = 481 without large differences.

In the second simulation experiment, Model II has three
regimes different only for the trend, while the seasonalmeans
and the PAR structure do not change. With the fitness based
on AIC the number of regimes is correctly specified nearly
always (92.2%). The change times τ1 = 481 and τ2 = 841
are correctly specified (with an error of ±1) in 56.8% and
89.2% of the replications, respectively; it seems that the first
change time was more difficult to detect. With the fitness
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Fig. 3 Change times detected for Model III (continuous line: BIC;
dashed line: AIC)

Table 2 Number of estimated season groups, Models IV and V, fitness
based on AIC

Number of seasons Model IV Model V

s(1)
M s(2)

M s(1)
AR s(2)

AR s(1)
M s(1)

AR

1 – – – 75 – –

2 – – 14 46 – –

3 – – 53 79 – –

4 – 21 104 117 101 38

5 – 88 135 83 158 145

6 – 152 107 60 139 178

7 – 139 63 28 74 102

8 – 60 18 9 21 33

9 – 26 1 3 6 2

10 64 5 – – 1 1

11 173 2 – – – 1

12 263 7 – – – –

based on the more parsimonious BIC criterion the number of
regimes is underestimated: a single regime is found in 67.2%
of the replications, two regimes in 19%, and three regimes in
13.8%.

For the third scenario (Model III) the number of regimes
is always correctly specified for the BIC criterion, and in
87.2% of the replications for AIC. Figure 3 displays a count
plot of the detected change times for the 500 replications
with intervals size equal to 5. We can see that, for example,
approximately in 201 replications a time in the interval 1799–
1803 is detected as change time.

For Model IV the two regimes were nearly always cor-
rectly selected (94% of the replications for AIC, 100% for
BIC) and similar findings for the single regimeModelV (97%
of the replications for AIC, 100% for BIC). The detailed
results on the number of specified seasons for means (sM )
and the PAR structure (sAR) are reported in Table 2 for AIC

Table 3 Number of estimated season groups, Models IV and V, fitness
based on BIC

Number of seasons Model IV Model V

s(1)
M s(2)

M s(1)
AR s(2)

AR s(1)
M s(1)

AR

1 – – 24 470 – –

2 – – 222 25 – –

3 – – 182 4 – 12

4 – 36 66 1 269 240

5 – 194 6 – 216 224

6 – 219 – – 14 22

7 – 50 – – 1 2

8 – 1 – – – –

9 – – – – – –

10 155 – – – – –

11 171 – – – – –

12 174 – – – – –

and Table 3 for BIC. It may be observed that the number of
specified seasons tends to be larger than expected, slightly
with the BIC and more widely with the AIC criterion. Such
over-selection is more evident for the ARmodels than for the
seasonal means.

In order to evaluate the results on season grouping more
synthetically, a measure of agreement between the true
arrangement and the estimated one is needed. We adopt the
Rand index (R) (Rand 1971), which is a standard measure
in the literature of cluster analysis. It ranges from 0 (no pairs
classified in the same way under both arrangements) to 1
(identical groups). The value of R depends on both the num-
ber of clusters and the number of elements. A drawback of
the Rand index is that its expected value does not take a con-
stant value under an appropriate null model. Therefore the
adjusted Rand index (R∗) (Hubert and Arabie 1985) will be
also computed. The expected value of R∗ under a completely
random classification is 0. Such measure will be computed
separately for the means and the PAR structure.

Concerning Model IV, combining the GA with AIC cri-
terion the average (on 500 replications) of the Rand index is
0.974 for the seasonalmeans and 0.778 for the PAR structure.
TheAdjusted Rand index is 0.843 for the seasonal means and
is 0.491 for the PAR structure. Using BIC criterion we obtain
an average R equal to 0.982 for the seasonal means and equal
to 0.939 for the PAR structure. The corresponding average
of R∗ is 0.899 for the seasonal means and is 0.875 for the
PAR structure.

For Model V, our methods combined with AIC criterion
provide an average R equal to 0.898 for the seasonal means
and equal to 0.932 for the PAR structure. The average of
R∗ is 0.749 for the seasonal means and is 0.81 for the PAR
structure. With BIC we obtain an average R of 0.937 for the
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Table 4 Percentages for each replication of the observations pairs
belonging to the same true season for the AR structures and classified
into the same estimated season

Criterion AIC BIC

Percentage Model IV Model V Model IV Model V

0–60 1 0 0 13

60–70 6 2 2 18

70–80 47 9 24 14

80–90 105 116 266 283

90–100 341 373 208 172

seasonal means and equal to 0.939 for the PAR structure,
while the corresponding values for R∗ are 0.852 and 0.849.

As an additional evaluation, we shall consider also the
differences between the estimated partition of the observa-
tions set into seasons and that of the true models. If the
former is a refinement of the latter, no pair of observations is
erroneously split into two true seasons. We observe that the
selected partition is always a refinement of the true one in
the 500 replications for the means in every simulation exper-
iment, while the season arrangement of the AR structures is
less precise. To be more specific, we computed (only for the
seasonal arrangement of the AR structure) for each replica-
tion the percentage of observation pairs that, belonging to
the same true season, are correctly classified into the same
estimated season. We report the results in Table 4 for both
Model IV andV. The frequencies are large, better for the AIC
than the BIC, and slightly better for Model V than Model IV.

We considered also, for comparison, two standard change-
point tests: the original Cusum test based on recursive
residuals of Brown et al. (1975) and the Cusum test based
on ordinary least squares (ols) residuals of Ploberger and
Krämer (1992), including in the regression a constant and
the index of time, with size 0.05. We referred to the R pack-
age strucchange (Kleiber et al. 2002) for the computations.
Suchmethods are not designed for dealingwith evolving sea-
sonality, and the results were not satisfactory. On the series
simulated according to Models I and IV all tests suggest no
break in more than 99% of the replications. For Model II (3
regimes) the Cusum test based on recursive residuals detects,
in about 58% of the replications, a break around the second
actual change time (τ2 = 841) and never the first one, while
the ols-based Cusum test detects a unique break around the
first change time (τ1 = 481) but only for 24 of the 500
replications. For the simulations according to Model III, the
ols-based Cusum test detects a break around the actual date
τ1 = 1801 in 43 series, while the Cusum based on recursive
residuals suggests in 137 replications a break towards the
last observations (located between 2500 and 2900). Similar
results were found for Model V (that has no regime change):
the Cusum test based on recursive residuals detected one

break at the last observations in 210 series, while the ols-
based test never suggested any break.

5 Applications

We used our proposed model to analyse time series in vari-
ous fields such as climatology, hydrology and economics, and
found that results are comparable with more specific models
presented in literature. The proposed model privileges parsi-
mony but allows for reproducing both long term and seasonal
inhomogeneity, and the only critical decision left to the user
is the choice of the information criterion.

In the present applications we adopted the hybrid algo-
rithm strategy: the regime changes are searched on complete
models, then the season groupings and subset choices are
evaluated by the second stage GA and the best one retained.
The GA population size was 50 and the number of gen-
erations 200. We used roulette wheel selection with elitist
strategy and uniform crossover.

Various specifications of the proposed models were fitted:
a complete model with no restrictions on the AR parame-
ters and no season grouping; a subset model with no season
grouping but choosing the best subset AR model for each
month according to fitness; a grouped model where the sea-
sonal parameters for the mean and for the AR parameters
are grouped together in the best arrangement with respect to
fitness; a non periodic AR model, where the AR parameters
are assumed equal for each month and regime; and finally (if
more than one regime is detected) a constant season grouped
model where we assume that the seasonal components (num-
ber and values of the seasonal means, number, structure and
parameter values of the AR models) are the same in each
regime. The fitness comparison of the different models helps
to highlight the importance of the seasonality and its evolving
behaviour.

5.1 Italian industrial production index

We focus on the time series of monthly industrial produc-
tion index (IPI) in Italy. It is among the most important
macroeconomic indicators, so understanding and forecasting
its behaviour is a fundamental need for many decision mak-
ers. Most of the recent research on this topic (e.g. Bodo et al.
1991; Bruno and Lupi 2004; Bulligan et al. 2010; Girardi
et al. 2016) is devoted to forecasting using various proposed
leading indicators, and the forecasts are compared with those
of a univariate linear model, generally a seasonal multiplica-
tive SARI MA(3, 0, 0) × (0, 1, 0)12 model (see Bulligan
et al. 2010). We will show that our proposed procedure is
superior with respect to such univariate models which do not
use other indicators.
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Fig. 4 Left panel: Italian industrial production index 1990–2017 (dotted line: estimated trend). Right panel: monthly means, continuous line: first
regime; dotted line: second regime

Table 5 Estimated models for the industrial production index series

Model Complete Subset Grouped Const. season AR SARIMA

Regimes 2, 11/2008 2, 11/2008 2, 11/2008 2, 11/2008 2, 11/2008 1

Fitness (×100) 3.70 4.91 5.70 4.24 3.13 3.99

Means (12, 12) (12, 12) (11, 11) 11 11

AR models (12, 12) (12, 12) (4, 9) 8 1

Res. Var. 8.07 8.63 9.86 20.39 23.84 23.35

MSFE(1:3) 34.4, 27.4, 21.2 38.1, 26.1, 28.5 32.8, 27.9, 24.2 45.2, 42.5, 63.6 26.5, 20.3, 24.8 34.4, 36.5, 31.9

MSFE(4:6) 33.2, 42.3, 41.5 29.2, 42.8, 42.6 23.2, 34.2, 40.1 15.2, 35.5, 50.6 24.9, 29.0, 36.7 31.4, 33.7, 28.9

We considered the monthly time series of the IPI (Ateco
class 020, base 2015) from January 1990 to December 2017
(336 observations).1 The series is displayed in Fig. 4 (left
panel). Our proposed models (with order p = 3) were fitted
under various specifications and fitness based on BIC; the
results are summarized in Table 5.

In all cases two regimes are detected, with a change point
in November, 2008 (the Cusum test with ols residuals detects
a break around the same date and an additional break dur-
ing 1996, while the test based on recursive residuals does not
suggest breaks). Groupingmeans does not provide a substan-
tial advantage in terms of fitness, since the only suggested
merging is May with June in the first regime and October
with November in the second regime (models with 11 differ-
ent monthly means). The estimated monthly means for the
two regimes are reported in Fig. 4 (right panel). The variance
of the series is 313, the variance of the detrended demeaned
seriesWt is 23.5, and the global residual variance ranges from
8 to 9.8 (according to the model), therefore the variability is
explained for more than 90% by trend and seasonal means,
and the periodic autoregression accounts for about 60% of
the remaining variability.

1 Downloaded from http://dati-congiuntura.istat.it/.

The comparison of the non periodic AR and constant sea-
son models with the other more flexible alternatives, both in
terms of residual variance and of fitness, suggests that as far
as the second moments are concerned, the seasonal pattern
is also relevant and changes according to the regime.

The best model in terms of fitness is the grouped season
model. For the first regime only four different AR struc-
tures are specified, associated to the months of April, May
to October, November, December to March. In the second
regime, a more articulated PAR model is suggested, with
parameters equal only for December–January, April–May,
August–September. The usual portmanteau tests applied to
global residuals and residuals of each season are not signifi-
cant at level 0.05.

The last column in Table 5 shows the results obtained for
theSARIMAmodel (1−0.167 B−0.269 B2 −0.426 B3)(1−
B12) Xt = −0.162+εt that are uniformly far less satisfying.

The results of a small forecasting experiment appear in
the last two rows of Table 5. Employing also fresh data from
January to March 2018, we computed one to six-step-ahead
forecasts for origins from January to September 2017, and
the average square forecast errors for the 9 forecasts at each
fixed horizon are reported. There is a large variability due
to the reduced number of instances, but in general we may
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Table 6 Estimated models for the central England temperature series

Model Complete Subset Grouped Const. season AR Proietti Hillebrand

Regimes 2, 10/1897 2, 10/1897 2, 10/1897 2, 10/1897 2, 10/1897 1

Fitness .566 .599 .603 .595 .557 .590

Means (12,12) (12,12) (12,11) 12 12 5

AR models (12,12) (12,12) (5,8) 8 1 5

Res. Var. 1.717 1.718 1.724 1.759 1.776 1.848

MSFE(1:3) 1.71, 1.81, 1.83 1.72, 1.81, 1.83 1.70, 1.80, 1.82 1.72, 1.81, 1.83 1.72, 1.81, 1.83 1.67, 1.79, 1.81

MSFE(4:6) 1.84, 1.85, 1.87 1.84, 1.85, 1.87 1.83, 1.84, 1.86 1.84, 1.85, 1.87 1.84, 1.85, 1.87 1.81, 1.81, 1.81

conclude that the forecast ability of the SARIMA and that of
the constant seasonmodels are smaller than the othermodels.

5.2 Central England temperature monthly data

The CET series of monthly mean surface temperature for
a location in the Midlands region2 is one of the longest
time series available for monthly temperature. It starts at
year 1659, but since a quality issue arises for data before
1772,we analysed data from January 1772 toDecember 2013
(2904 observations). This series was studied in a recent paper
(Proietti and Hillebrand 2017), where a detailed analysis and
review of the results in literature may also be found. The
main features of the series are a trend change around the
beginning of 20-th century, due to global warming, and an
evolving seasonal structure appearing as a shift of the sea-
sonal cycle toward an earlier inception of the Spring, that has
been identified in the literature as precession of Earth’s axis
of rotation. Proietti and Hillebrand (2017) consider a state-
space model with a separate stochastic trend for each month
and deviations from trend following a PAR(1) model with
white noise variance different for each month. To achieve
parsimony, for each parameter type, the 12 monthly values
are assumed to be a linear combination of only five represen-
tativemonths (January,March, July, October, December). As
a basic measure of goodness of fit, Proietti and Hillebrand
(2017) report the estimated one-step-ahead prediction error
variance (averaged over the 12 months) equal to 1.8486, and
the results of a forecasting exercise formulti-step-ahead fore-
casts with origin moving from January 1979 to December
2014; the observed average squared forecast errors appear in
the last column of Table 6. We fitted our proposed models
(with order p = 1 as used in Proietti and Hillebrand) under
various specifications. For the fitness the AIC information
criterion (π = 2) was used since the very large number
of observations makes the BIC exceedingly parsimonious.
The results are summarized in Table 6. Two regimes were
selected, with change time at October 1897 and a larger pos-

2 Downloaded from http://www.metoffice.gov.uk/hadobs/hatcet/data/
download.html.

itive slope in the second regime, agreeing with the assessed
increase in temperature starting at the beginning of the 20-th
century (the Cusum tests did not detect any break). Most of
the variability (around 90%) is accounted for by the trend
and the monthly means, and grouping the monthly means
has not a positive effect on fitness. However, the fitness of
the constant season model and of the non periodic model are
smaller than those of the other models, suggesting that the
autocorrelation exhibits a seasonal pattern. Figure 5 (right
panel) reports the graph of the monthly means estimated in
the two regimes, and partly supports the hypothesis of a shift
in the seasonal cycle. The effect of the AR structure is lim-
ited, therefore the variousmodels do not yieldmuch different
results, but the best model in terms of fitness is the grouped
season model, with only 5 different AR structures for the
first regime (months: March–April, May, June–September,
October–November, December–February) and 8 for the sec-
ond regime (months: January–February, March, April–July,
August, September, October, November, December). None
of the usual portmanteau tests applied to global residuals and
residuals of each season suggests to reject thismodel. The last
rows for each model in Table 6 display the estimated resid-
ual variance and the 1 to 6-step-ahead mean square forecast
errors for the forecast exercise proposed in Proietti and Hille-
brand (2017), labeled MSFE(1–6). Results are similar, with
our models having a slightly better fit and a slightly worse
forecast ability.

5.3 Saugeen river flow

We shall analyse the Saugeen river flow data, measured at
Walkerton, Ontario. Observations are average monthly flows
in m3/s from January 1915 to December 1976.3

River flows of Saugeen have already been analysed in
Noakes et al. (1985); Thompstone et al. (1985); Wong et al.
(2007). The third paper adapts a functional coefficient autore-
gression for the analysis, while the first two employ PAR
models. Thompstone et al. (1985) also propose a parsimo-

3 Downloaded from http://www.stats.uwo.ca/faculty/mcleod/epubs/
mhsets/MHSETS.zip.
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Fig. 5 Left panel: CET series and trend (dotted line). Right panel: monthly means, continuous line: first regime; dotted line: second regime
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Fig. 6 Left panel: Saugeen series (logs) and trend (dotted line). Right panel: monthly means

nious version of the PAR, introduced to reduce the number of
parameters, which allows to group together pairs of adjacent
months by means of tests on equality of variances of fitted
residuals. If two months are joined, this is assumed both for
the mean and AR parameters; moreover, no trend is allowed.
We consider 708 observations from January 1915 to Decem-
ber 1973, order p = 3 and fitness based on BIC. Data are
plotted in Fig. 6 (left panel).

No regime change was detected (also by the Cusum tests)
but a slowly increasing trend. Here also various model speci-
ficationswerefitted and the results are summarized inTable 7.
For this series, the total variance is explained for nearly 60%
by trend and seasonal means, and the periodic autoregression
accounts for about 35% of the remaining variability.

First of all, the considerably smaller fitness (and larger
residual variance) of the non periodic model suggests that
the choice of periodic AR models for this series is appro-
priate. It may also be seen that the subset model provides
a substantial advantage, in terms of fitness, on the com-
plete model. The best model is the grouped seasonal, with
9 seasonal means (only means of August–September, and
December to February are grouped) and only 5 different
AR structures (months of March, April, May to Septem-

Table 7 Estimated models for the Saugeen river flow series

Model Complete Subset Grouped AR

Fitness 3.92 4.36 4.82 4.11

Means 12 12 9 12

AR models 12 12 5 1

Res. Var. 0.175 0.177 0.182 0.210

MSFE (×103) 175 158 163 212

ber, October–November, December to February). None of
the usual portmanteau tests applied to global residuals and
residuals of each season suggests to reject this model. The
monthly means are reported in Fig. 6, right panel. We have
also computed out-of-sample one-step-ahead forecasts for
the same range considered byNoakes et al. (1985): 36months
from January 1974 to December 1976, the observed average
square forecast errors are shown in the last row of Table 7.
Noakes et al. (1985) report corresponding figures of 186 for
the SARI MA(1, 0, 0) × (0, 1, 1)12 model and 177 for their
best fitted PAR by BIC criterion (with no trend and no season
grouping). For their model, based on 8 seasons, Thompstone
et al. (1985) report a corresponding error equal to 182.
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6 Conclusions

The idea of allowing different regimes in time where both
the trend, the seasonal means and the autocorrelations may
change seems adequate for modelling several phenomena
with evolving features inside a large time span.

More parsimonious but satisfactorily fit models were
obtained by arbitrarily grouping the seasonal patterns. The
balance between goodness of fit and parsimony is controlled
by the information criterion on which the fitness function is
based. The choice of the information criterion is very impor-
tant and critical: we have considered the original Akaike’s
and the Schwarz criterion, but several other forms may be
used.

For selecting and estimating a model inside the very large
space of solutions we proposed a procedure based on genetic
algorithmswith an efficient coding, that proved to be effective
and successful. Alternative sub-optimal strategies were also
outlined in case the solution space is exceedingly large and
high-dimensional (asmay be the case with weekly or decadal
observations).

Finally we observe that many extensions are possible.
A natural generalization is considering smooth transitions
between regimes, as in Teräsvirta (1994). A further interest-
ing extension would be allowing regime changes driven not
by time, but by the values assumed by a preceding obser-
vation (like in Tong 1990), or both (like in Battaglia and
Protopapas 2012).
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Appendix: Asymptotic equivalence of a test
of hypothesis and an information criterion

Let us consider two nested models M0 and M1, where M0

has p parameters and M1 has q additional parameters that
under the null hypothesis H0 are assumed equal to zero. A
standard F test under gaussianity for H0 is obtained by the
test statistic:

F = (SS0 − SS1)/q

SS1/(N − p − q)
(4)

where SS0 and SS1 are the residual sum of squares of the
model M0 and M1 fitted to N observations.

Under the null hypothesis the statistic (4) follows a F dis-
tribution with q and N − p − q degrees of freedom. Let Fα

denote the (1−α)-quantile of that distribution, then hypoth-
esis H0 is rejected at level 1 − α whenever F > Fα , or

log(SS0) − log(SS1) > log

(
1 + Fα

q

N − p − q

)
.

For N large the right hand side may be approximated by
Fα q/(N − p − q) and rejection is equivalent to

log(SS0) − log(SS1) > Fα

q

N − p − q

that may be also written IC∗
0 − IC∗

1 > 0 where IC∗
0 =

log(SS0) + π∗ p , IC∗
1 = log(SS1) + π∗ (p + q) and

π∗ = N

N − p − q
Fα. (5)

It follows that choosing a penalizing constant equal to π∗ in
(5), model M1 will be preferred to model M0 by the infor-
mation criterion whenever the test rejects the null hypothesis
H0.
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